Completeness of Automata with respect to Equivalence Relations

Jürgen Dassow Fakultät für Informatik Universität Magdeburg

June 19, 2003

SMS Montreal, July 2003

Logical Nets

logical nets induce functions $F: (\{0,1\}^n)^* \to (\{0,1\}^m)^*$

			input	output		
	input	output	000	000	input	output
	0	0	001	000		
	1	0	010	000	11011	01001
vel	00	00	011	001	11100	01100
	01	00	100	000	11101	01100
et	10	00	101	000	11111	01111
	11	01	110	010		
$\downarrow y$			111	011		

Automata – Definition

Definition:

A (deterministic finite) <u>automaton</u> is a quintuple $\mathcal{A} = (X, Y, Z, z_0, \delta, \gamma)$ where

- $X,\,Y$ and Z are finite non-empty sets of input and output symbols and states, respectively,
- $z_0 \in Z$ is the initial state,
- $-\delta: Z \times X \to Z$ and $\gamma: Z \times X \to Y$ are functions called the transition and output function.

Extension to $\delta^*: Z \times X^* \to Z$ and $\gamma^*: Z \times X^* \to Y^*$ by $-\delta^*(z,\lambda) = z$ and $\delta^*(z,wa) = \delta(\delta^*(z,w),a)$ $-\gamma^*(z,\lambda) = \lambda$ and $\gamma^*(z,wa) = \gamma^*(z,w)\gamma(\delta^*(z,w),a)$ for $w \in X^*$ and $a \in X$

Automata – Example

$$\mathcal{A} = (\{0,1\},\{0,1\},\{00,10,11\},00,\delta,\gamma)$$

δ	0	1	γ	0	1
00	00	10	00	0	0
10	00	11	10	0	1
11	00	11	00 10 11	0	1

Sequential Functions – Definition

Definition: A function $F: X^* \to Y^*$ is called <u>sequential</u>, if the following conditions are satisfied:

- |F(p)| = |p| for any $p \in X^*$,
- for any word $p\in X^*,$ there is a function F_p such that $F(pq)=F(p)F_p(q)$ for any $q\in X^*,$
- the set $\{F_p \mid p \in X^*\}$ is finite.

 $F(\lambda) = \lambda,$ $F(x_1x_2...x_n) = y_1y_2...y_n \text{ with } x_i \in X \text{ and } y_i \in Y \text{ for } 1 \le i \le n$

Sequential Functions – Example

$$F : \{0,1\}^* \to \{0,1\}^*$$

$$F(x_1x_2...x_n) = y_1y_2...y_n \text{ with } y_i = \begin{cases} 1 & i \ge 2, \ x_{i-1} = x_i = 1, \\ 0 & \text{otherwise} \end{cases}$$

$$F'(x_1x_2...x_n) = y_1y_2...y_n \text{ with } y_i = \begin{cases} 1 & i = 1, \ x_1 = 1, \\ 1 & i \ge 2, \ x_{i-1} = x_i = 1, \\ 0 & \text{otherwise} \end{cases}$$

 $F_p = F$ for $p \in \{0, 1\}^*0$ $F_p = F'$ for $p \in \{0, 1\}^*1$

Sequential Functions – Description

sequential function $F: (\{0,1\}^m)^* \to \{0,1\}^*$, arity of F - arity(F) = m

$$F(x_1x_2...x_n) = y_1y_2...y_n$$

where $x_i \in \{0,1\}^m$ and $y_i \in \{0,1\}$ for $1 \le i \le n$

$$\begin{aligned} x_i &= (x_{i1}, x_{i2}, \dots, x_{im}) \text{ for } 1 \leq i \leq n \\ y_i &= \varphi_F^i(x_1, x_2, \dots, x_i) \\ &= \varphi_F^i(x_{11}, x_{12}, \dots, x_{1m}, x_{21}, \dots, x_{im}) \end{aligned} \qquad \begin{array}{l} p_j &= x_{1j} x_{2j} \dots x_{nj} \\ F(p_1, p_2, \dots, p_m) \\ F(p_1, p_2, \dots, p_m) \\ \end{array}$$

SMS Montreal, July 2003

Operations on \mathcal{F} |

 \mathcal{F}^m - set of all sequential functions $F: (\{0,1\}^m)^* \to \{0,1\}^*$ (of arity m)

SMS Montreal, July 2003

Operations on ${\mathcal F}$ $\,$ II

 $F \in \mathcal{F}^m$ depends delayed on its first variable if, for $i \geq 1$, φ_F^i does not depend on x_{i1} .

If $F \in \mathcal{F}^m$ depends delayed on its first variable, we define $\uparrow F$ by

$$\varphi_{\uparrow F}^{1}(x_{12}, x_{13}, \dots, x_{1m}) = \varphi_{F}^{1}(x_{11}, x_{12}, x_{13}, \dots, x_{1m}),$$

$$\varphi_{\uparrow F}^{t}(x_{12}, \dots, x_{1m}, x_{22}, \dots, x_{2m}, \dots, x_{i2}, \dots, x_{im})$$

$$= \varphi_{F}^{t}(\varphi_{\uparrow F}^{1}(z_{1}), x_{12}, x_{13}, \dots, x_{1m}, y_{\uparrow F}^{2}(z_{2}), x_{22}, x_{23}, \dots, x_{2m}, \dots, y_{\uparrow F}^{t-1}(z_{t-1}), x_{t-1,2}, \dots, x_{t-1,m}, x_{t2}, x_{t3}, \dots, x_{tm})$$

Algebra \mathcal{F}

 $\mathsf{algebra}\ \underline{\mathcal{F}} = (\mathcal{F}, \{\zeta, \eta, \Delta, \nabla, \circ, \uparrow\})$

[M] – subalgebra generated by $M\subseteq \mathcal{F}$ in $\underline{\mathcal{F}}$

algebra $\underline{\mathcal{F}'} = (\mathcal{F}, \{\zeta, \eta, \Delta, \nabla, \circ\})$

< M > - subalgebra generated by $M \subseteq \mathcal{F}$ in $\underline{\mathcal{F}'}$

 $P_{k} = \{ f \mid f : \{0, 1, \dots, k-1\}^{m} \to \{0, 1, \dots, k-1\}, \ m \ge 0 \}$ algebra $\underline{P_{k}} = (P_{k}, \{\zeta, \eta, \Delta, \nabla, \circ\})$

Completeness with respect to an Equivalence Relation

Definition: Let ϱ be an equivalence relation on \mathcal{F} . A subalgebra M of \mathcal{F} is called a $\underline{\varrho}$ -algebra iff $M \cap K \neq \emptyset$ for all equivalence classes K of ϱ .

Definition: Let ρ be an equivalence relation on \mathcal{F} . A subset M of \mathcal{F} is called ρ -complete iff [M] is a ρ -algebra.

Definition: Let ϱ be an equivalence relation on \mathcal{F} .

A subalgebra M of \mathcal{F} is called ϱ -maximal iff the following conditions are satisfied:

- M is not a $\varrho\text{-algebra}$ and
- any subalgebra N with $M\subset N$ is a ϱ -algebra.

Q-Completeness − Example

Equivalence relation ρ_1 : $\rho_1 = \{(F,G) \mid arity(F) = arity(G), F((0,0,...,0)) = G((0,0,...,0))\}$

Equivalence classes of ϱ_1 : $K_{n,a} = \{F \mid F \text{ has arity } n, F((0, 0, \dots, 0)) = a\}, \quad n \in \mathbb{N}, a \in \{0, 1\}$

 $\varrho_1\text{-algebras:}\ \mathcal{F}\text{,} \\ \{F\mid F_p(q)=0^{|q|} \text{ for } |p|\geq 1\}$

 ϱ_1 -completeness:

M is ϱ_1 -complete iff M contains at least one F with $F((0, 0, \dots, 0)) = 0$ and at least one G with $G((0, 0, \dots, 0)) = 1$.

 ϱ_1 -maximal subalgebra: $M_{T_0} = \{F \mid F((0, 0, \dots, 0)) = 0\}$

SMS Montreal, July 2003

Fakultät für Informatik		Universität Magdeburg	Jürgen Dassow
		Congruence Relations	
complete relation	_	$\sigma_C = \{ (F, G) \mid F, G \in \mathcal{F} \}$	
equality relation	_	$\sigma_E = \{ (F, G) \mid F = G \}$	
arity relation	—	$\sigma_A = \{ (F, G) \mid arity(F) = arity(G) \}$	
t -bounded equality $t \in \mathbf{N}$	_	$\sigma_t = \{(F,G) \mid F(p) = G(p) \text{ for all } p \text{ with } p$	$ p \le t$
Theorem:	for	$t > 1$ are the only congruence relations on \mathcal{T}	-/

i) σ_C , σ_E , σ_A and σ_t for $t \ge 1$ are the only congruence relations on \mathcal{F}' . ii) σ_C , σ_E , σ_A and σ_t for $t \ge 1$ are the only congruence relations on \mathcal{F} .

Completeness with respect to the complete and arity relation

Results for σ_C :

- Any non-empty subalgebra of \mathcal{F} is a σ_C -algebra.
- Any non-empty subset of \mathcal{F} is σ_C -complete.
- \emptyset is the only σ_C -maximal subalgebra.
- The σ_C -completeness of a finite subset of \mathcal{F} is decidable.

Results for σ_A :

- Any non-empty subalgebra of \mathcal{F} is a σ_A -algebra.
- Any non-empty subset of \mathcal{F} is σ_A -complete.
- $-\emptyset$ is the only σ_A -maximal algebra.
- The σ_A -completeness of a finite subset of \mathcal{F} is decidable.

Completeness with respect to equality relation

 $\sigma_E\text{-}\mathrm{completeness}$ is the ''classical'' completeness

- For any n, there is a complete set $M = \{F_1, F_2, \ldots, F_n\}$ such that $M \setminus \{F_i\}$ is not complete.
- M is complete if and only if M is not contained in any maximal subalgebra.
- The cardinality of the set of maximal subalgebras is the cardinality of the set of real numbers.
- There is a countable set N of maximal subalgebras such that $M \subset \mathcal{F}$ is complete iff M is not contained in any algebra of N.
- There is no algorithm to decide the completeness of a finite subset of \mathcal{F} .

Completeness with respect to *t***-bounded equality I**

Theorem:

For any set $M \subset \mathcal{F}$ and any $t \in \mathbb{N}$, [M] and < M > are σ_t -equivalent, i.e., for any two functions $F \in [M]$ and $F' \in < M >$, there are functions $G \in < M >$ and $G' \in [M]$ such that $(F, G) \in \sigma_t$ and $(F', G') \in \sigma_t$.

Theorem:

For any $t \in \mathbb{N}$, there is a mapping $\tau_t : \mathcal{F} \to P_{2^t}$ such that $M \subset \mathcal{F}$ is σ_t -complete if and only if $\tau_t(M) = \{\tau_t(F) \mid F \in M\}$ generates $\tau_t(\mathcal{F})$.

Completeness with respect to *t*-bounded equality II

Theorem: Let $t \in \mathbb{N}$. $M \subseteq \mathcal{F}$ is σ_t -complete if and only if M is not contained in any σ_t -maximal subalgebra of \mathcal{F} .

Theorem: For any $t \in \mathbf{N}$, there is a finite number of σ_t -maximal subalgebras.

There is a description of all σ_t -maximal subalgebras by relations (F preserves R iff $(p,q) \in R$ implies $(F(p), F(q)) \in R$, U(R) – set of functions preserving R, for any σ_t -maximal subalgebra M, there is a relation R with M = U(R))

Theorem For any $t \in \mathbf{N}$, the σ_t -completeness of a finite subset of \mathcal{F} is decidable.

Regular Sets

product	—	$L \cdot L' = \{ww' \mid w \in L, \ w' \in L'\}$
power	—	$L^0=\{\lambda\}$, $L^{i+1}=L\cdot L^i$ for $i\geq 0$,
Kleene-closure		$L^* = \bigcup_{i>0} L^i$

Definition:

A set L of words over X is called regular iff L can be obtained from \emptyset , $\{\lambda\}$ and $\{x\}$ where $x \in X$ by iterated application of union, product and Kleene-closure.

Example: If $1 \in X$, then $X^*{1}{1}$ is regular.

Sequential Functions as Acceptors

Definition:

Let $F: X^* \to Y^*$ be a sequential function and $\emptyset \subset Y' \subset Y$. Then the language T(F, Y') accepted by F and Y' is defined as the set of all words p such that F(p) = p'y with $y \in Y'$.

Example: F from Foil 5, $T(F, \{1\}) = \text{set of all words ending with two 1's}$ $= \{0, 1\}^* \{1\} \{1\}$

Theorem:

A set $L \subset X^*$ is regular if and only if there are a sequential function $F : X^* \to Y^*$ and a set Y', $\emptyset \subset Y' \subset Y$, such that T(F, Y') = L.

Kleene-Equivalence

Definition:

Two sequential functions $F: X^* \to Y^*$ and $G: X^* \to Z^*$ are Kleene-equivalent (written as $(F, G) \in \sigma_K$) if and only if there are sets Y' and Z' with $\emptyset \subset Y' \subset Y$ and $\emptyset \subset Z' \subset Z$ such that T(F, Y') = T(G, Z').

Lemma:

 σ_K is an equivalence relation on \mathcal{F} .

$$F_{(non)} \in \mathcal{F}^1$$
 defined by
 $F_{(non)}(x_1x_2\dots x_n) = non(x_1) non(x_2)\dots non(x_n)$

Theorem: Let $F \in \mathcal{F}^m$ and $G \in \mathcal{F}^m$. $(F,G) \in \sigma_K$ if and only if $F = F_{(non)} \circ G$ (and $G = F_{(non)} \circ F$).

Completeness with respect to Kleene-Equivalence

For $i \in \{0, 1\}$, $M_{T_i} = \{F \mid F((i, i, \dots, i)) = i\}$

Theorem: The only σ_K -algebras of \mathcal{F} are M_{T_0} , M_{T_1} and \mathcal{F} .

Theorem: There is no algorithm which decides the σ_K -completeness of a finite set.

Theorem:

i) $M \subset \mathcal{F}$ is σ_K -complete if and only if M is not contained in any σ_K -maximal subalgebra.

ii) The cardinality of the set of σ_K -maximal subalgebras of \mathcal{F} is the cardinality of the set of real numbers.

iii) There is a countable set N of σ_K -maximal subalgebras of \mathcal{F} such that $M \subset \mathcal{F}$ is complete iff M is not contained in any algebra of N.

Variations of Kleene-Equivalence I

Definition:

i) $F \in \mathcal{F}^m$ and $G \in \mathcal{F}^m$ are called negation-equivalent (written as $(F, G) \in \sigma_N$) if and only if

$$F(p_1, p_2, \dots, p_n) = G(F_{(non)}(p_1), F_{(non)}(p_2), \dots, F_{(non)}(p_n)).$$

ii) $F \in \mathcal{F}^m$ and $G \in \mathcal{F}^m$ are called dual (written as $(F, G) \in \sigma_D$) if and only if

$$F(p_1, p_2, \dots, p_n) = F_{(non)}(G(F_{(non)}(p_1), F_{(non)}(p_2), \dots, F_{(non)}(p_n))).$$

Variations of Kleene-Equivalence II

Theorem:

- i) $M \subset \mathcal{F}$ is σ_N -complete if and only if M is complete.
- ii) $M \subset \mathcal{F}$ is σ_D -complete if and only if M is complete.

Corollary:

- i) There is no algorithm which decides the σ_N -completeness of a finite set.
- ii) There is no algorithm which decides the σ_D -completeness of a finite set.

Metric Equivalence – Definition

Definition:

For $F \in \mathcal{F}^m$ and $G \in \mathcal{F}^m$, we define

$$d(F,G) = \frac{1}{t} \quad \text{iff} \quad F(p) = G(p) \text{ for all } p \text{ with } |p| \le t - 1 \text{ and}$$
$$F(p') \neq G(p') \text{ for some } p' \text{ with } |p'| = t$$

Definition:

 $M \subseteq \mathcal{F}$ and $M' \subseteq \mathcal{F}$ are called metrically equivalent if, for any $t \in \mathbb{N}$ and any two sequential functions $F \in M$ and $F' \in M'$, there are sequential functions $G \in M'$ and $G' \in M$ such that

$$d(F,G) \leq \frac{1}{t}$$
 and $d(F',G') \leq \frac{1}{t}$

Metric Equivalence – Example

For $F \in \mathcal{F}$ and $i \in \mathbf{N}$, let F_i be defined by

$$F_i(p) = F(p) \quad \text{for} \quad p \text{ with } |p| \le i$$

$$F_i(q) = F(q')0^n \quad \text{for} \quad q \text{ with } q = q'q'', |q'| = i, |q''| = n \ge 0$$

 $Q = \{F_i \mid F \in \mathcal{F}, i \in \mathbf{N}\}$ is metrically equivalent to \mathcal{F}

Note that Q is a subalgebra, $Q \subset \mathcal{F}$, and Q is not finitely generated.

Metric Completeness

Definition:

 $M \subset \mathcal{F}$ is called metrically complete if and only if [M] is metrically equivalent to \mathcal{F} .

Theorem:

There is no algorithm which decides whether or not a finite set is metrically complete.

Metrically Maximal Subalgebras

Definition:

A subalgebra $M \subset \mathcal{F}$ is called metrically maximal if

- M is not metrically complete and
- $-M \cup \{F\}$ is metrically complete for any $F \in \mathcal{F}$.

Theorem:

i) M is metrically complete if and only if M is not contained in any metrically maximal subalgebra of \mathcal{F} .

ii) Any metrically maximal subalgebra of \mathcal{F} is σ_t -maximal for some $t \in \mathbb{N}$. For $t \in \mathbb{N}$, any σ_t -maximal subalgebra of \mathcal{F} is a metrically maximal subalgebra. iii) The cardinality of the set of all metrically maximal subalgebras of \mathcal{F} is the

iii) The cardinality of the set of all metrically maximal subalgebras of \mathcal{F} is the cardinality of N.