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Logical Nets

logical nets induce functions F': ({0,1}")* — ({0,1}™)*

x input | output
l L] input | output 000 000 input | output
SHRE 0 0 001 000 s ..

1 0 010 000 11011 | 01001
vel 00 00 011 001 11100 | 01100
01 00 100 000 11101 | 01100
et 10 00 101 000 11111 | 01111

11 01 110 010

Y 111 011
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Automata — Definition

Definition:
A (deterministic finite) automaton is a quintuple A = (X,Y, Z, zg, J,y) where
— X, Y and Z are finite non-empty sets
of input and output symbols and states, respectively,
— 2o € Z is the initial state,
—0:Z4xX —Zand~v:Z x X — Y are functions
called the transition and output function.

Extensionto 0" : Z x X* — Z and v*: Z x X* = Y™ by
- 0*(z,\) = z and 0*(z,wa) = §(6*(z,w), a)

—v*(z,A) = X and v*(z,wa) = v*(z,w)y(6*(z,w), a)
forwe X*andae X
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Automata — Example

A — ({07 1}7 {07 1}7 {OO? 10’ 11}’ OO’ 5’ ’7)

5o 1 ~ 0 1
00 | 00 10 000 0
10 | 00 11 10/0 1
11|00 11 11|10 1
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Sequential Functions — Definition

Definition: A function F': X* — Y™ is called sequential,
if the following conditions are satisfied:

o |F(p)| = |p| for any p € X,

e for any word p € X*, there is a function F}, such that F'(pq) = F(p)F,(q) for
any g € X*,

o the set {F), | p € X*} is finite.

F(\) =\
F(xixzo...xn) =11y2...yp Withx; € X and y; € Y for 1 <i <n
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Sequential Functions — Example

F' {O, 1}* — {O) 1}*

1 ZZQ, .in_l:ﬂji:l,

F(xixo...20) = 1192 ... Yn With y; = { 0 otherwise

1 i=1, o =1,
Fl(rixo...xp) =Y. . Yyp Withy, =< 1 12>2 x; 1 =x; =1,
0 otherwise
F, = F for p € {0,1}*0
F, = F' for p € {0,1}*1
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Sequential Functions — Description

sequential function F': ({0,1}™)* — {0, 1}*,
arity of F' — arity(F') =m

F(xixo...20) = 1192 - .- Yn
where z; € {0,1}™ and y; € {0,1} for 1 <7 <mn

Ti = (@i1, Tig, - ., Tim) for 1 <@ <m Dj = T1;T25 ... Tpj
_ i

yi—SQF(xlax27-°-axi) F(p1,p2,...pm)
- 1
- SOF(ajll)le)-°'7x1m7$217---7xim)
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Operations on F |

F™ — set of all sequential functions F': ({0,1}™)* — {0,1}* (of arity m)
F=UpmsoF™

For F € F™ and G € FF, we set

I
ﬁ

pP2,P3,- .. 7pm7p1)7
P2,P1,P3,P4, - - - 7pm)7

(CEF)(p1,p25- -, Pm (
(
(P1,P1,P2,- - Pm—1);
(
(

)
(nF)(p1,p2,- - Pm)
(AF)(p1,p2; -, Pm—1) =
)
)

| |
™ T

P1,P2, - -- 7pm)7
G(plap27 .. 'pk)apk—i—la S 7p/€—|—m—1)

(VF)(p17p27 ey Pm+1
(F © G) (plap27 co vy Pm+k—1

I
o
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Operations on F |l

F' € F™ depends delayed on its first variable if, for ¢ > 1, gp% does not depend
on x;i.

If F' € F™ depends delayed on its first variable, we define T F' by

SO%F(me, T135 -+ T1m) = 80}:(%1, T12, 7135 - -+, L1m),

t
SOTF(x127 ceey LImy L22y - -+ 5 L2my - -+ 5 L§2y - - - 7xim)
_ At 1
— SOF(SOTF(Zl)a L12, L13y - -+ s L1my
2
SOTF(ZZ)a L22, X235+, L2m,
t—1
PrE (26-1)s Tt—1,2,+ - Tt—1,m;
Lt2, Lt3y - - - 7xtm)
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Algebra F

algebra F= (F,{(,n,A,V,0,T})
[M] — subalgebra generated by M C F in F
algebra ﬂ: (fy {Ca 7, Aa va O})

< M > — subalgebra generated by M C F in F’

P.={f|f:{0,1,....k—=1}" = {0,1,...,k— 1}, m > 0}
algebra P, = (Pg, {¢,n,A,V,0})
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Completeness with respect to an Equivalence Relation

Definition: Let p be an equivalence relation on F.
A subalgebra M of F is called a p-algebra iff M N K # () for all equivalence
classes K of p.

Definition: Let p be an equivalence relation on F.
A subset M of F is called g-complete iff [M] is a p-algebra.

Definition: Let p be an equivalence relation on F.

A subalgebra M of F is called o-maximal iff the following conditions are satisfied:
— M is not a p-algebra and

— any subalgebra N with M C N is a p-algebra.
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o-Completeness — Example

Equivalence relation g7 :
o1 =A{(F,G) | arity(F) = arity(G), F'((0,0,...,0)) = G((0,0,...,0))}

Equivalence classes of o1 :
K, o= {F | F has arity n, F((0,0,...,0)) =a}, meN,ac{0,1}

o1-algebras: F,
{F | Fy(q) = 019l for |p| > 1}

o01-completeness:
M is p1-complete iff M contains at least one F' with F'((0,0,...,0)) =0 and at
least one G with G((0,0,...,0)) = 1.

o1-maximal subalgebra: Mg, = {F | F((0,0,...,0)) =0}
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Congruence Relations

complete relation - o¢c={(F,G)|F,G € F}
equality relation - op={(F,G) | F =G}
arity relation - 04 ={(F,G) | arity(F) = arity(G)}
t-bounded equality - o ={(F,G) | F(p) = G(p) for all p with |p| < ¢}
teN
Theorem:

1) oc, o, 04 and o for t > 1 are the only congruence relations on F’.
i) oc, 0g, 04 and oy for t > 1 are the only congruence relations on F.
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Completeness with respect to the complete and arity relation

Results for o¢:
— Any non-empty subalgebra of F is a oc-algebra.
— Any non-empty subset of F is og-complete.

— () is the only oc-maximal subalgebra.

— The oc-completeness of a finite subset of F is decidable.

Results for o 4:
— Any non-empty subalgebra of F is a o 4-algebra.
— Any non-empty subset of F is o 4-complete.

— () is the only o 4-maximal algebra.

— The o 4-completeness of a finite subset of F is decidable.

SMS Montreal, July 2003
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Completeness with respect to equality relation

o g-completeness is the "classical’ completeness

e For any n, there is a complete set M = {Fy, F5, ..., F,} such that M \ {F;}
Is not complete.

e M is complete if and only if M is not contained in any maximal subalgebra.

e The cardinality of the set of maximal subalgebras is the cardinality of the set
of real numbers.

e There is a countable set N of maximal subalgebras such that M C F is
complete iff M is not contained in any algebra of V.

e There is no algorithm to decide the completeness of a finite subset of F.
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Completeness with respect to t-bounded equality |

Theorem:

For any set M C F and any t € N,

[M] and < M > are os-equivalent,

i.e., for any two functions F' € [M] and F' €< M >, there are functions
G €< M > and G’ € [M] such that (F,G) € o and (F',G’) € oy.

Theorem:
For any t € N, there is a mapping 7 : F — Pst such that
M C Fis oi-complete if and only if (M) = {m(F) | F € M} generates 1:(F).
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Completeness with respect to t-bounded equality |l

Theorem: Let £t € N. M C F is o;-complete if and only if M is not contained
in any o;,-maximal subalgebra of F.

Theorem: For any t € N, there is a finite number of g;-maximal subalgebras.

There is a description of all o;-maximal subalgebras by relations

(F preserves R iff (p,q) € R implies (F'(p), F(q)) € R,
U(R) — set of functions preserving R,
for any o;-maximal subalgebra M, there is a relation R with M = U(R))

Theorem For any t € N, the o;-completeness of a finite subset of F is decidable.

SMS Montreal, July 2003 16



Fakultat fur Informatik Universitat Magdeburg Jirgen Dassow

Regular Sets

product - L-I'={ww |wel, wel'}
power - LY={)\}, L' =L.L"fori>0,
Kleene-closure - L* ={J;5o L

Definition:

A set L of words over X is called regular iff L can be obtained from (), {\} and
{x} where x € X by iterated application of union, product and Kleene-closure.

Example: If 1 € X, then X*{1}{1} is regular.
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Sequential Functions as Acceptors

Definition:

Let I/ : X* — Y™ be a sequential function and ) C Y’ C Y. Then the language
T(F,Y") accepted by F' and Y’ is defined as the set of all words p such that
F(p) =p'y with y € Y’.

Example: F' from Foil 5,
T(F,{1}) = set of all words ending with two 1's

= {0, 1" {1 {1}

Theorem:
A set L C X ™ isregular if and only if there are a sequential function F' : X* — Y™
andaset Y, ) CY'CY, such that T(F,Y’) = L.
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Kleene-Equivalence

Definition:

Two sequential functions F': X* — Y* and G : X* — Z* are Kleene-equivalent
(written as (F,G) € o) if and only if there are sets Y/ and Z' with) CY' C Y
and ) € Z/ C Z such that T(F,Y") =T(G, Z").

Lemma:
ok 1S an equivalence relation on F.

Flnon) € F' defined by
Flnon) (122 ... xp) = non(x1) non(xz) ... non(zy,)

Theorem: Let ' € F™ and G € F™.
(F,G) € ok if and only if F' = F,0n) 0 G (and G = Fiy,0n) © F).
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Completeness with respect to Kleene-Equivalence

Forie {0,1}, My, ={F | F((i,%,...,%)) =i}
Theorem: The only ox-algebras of F are M, M7, and F.

Theorem: There is no algorithm which decides the o -completeness of a finite
set.

Theorem:

i) M C F is og-complete if and only if M is not contained in any o x-maximal
subalgebra.

ii) The cardinality of the set of ox-maximal subalgebras of F is the cardinality
of the set of real numbers.
iii) There is a countable set N of o-maximal subalgebras of F such that M C F
is complete iff M is not contained in any algebra of V.
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Variations of Kleene-Equivalence |

Definition:

i) '€ F™ and G € F™ are called negation-equivalent (written as (F,G) € on)
if and only if

F<p17p27 I 7pn) — G<F(non)(p1)7 F(non)(pQ)a IO 7F(non)<pn>) .

i) FFe F™ and G € F™ are called dual (written as (F,G) € op) if and only if

F(pl;pQ; K 7pn) — F(non) <G<F(non) (p1>7 F(non) <p2>7 IR 7F(non) (pn>)) .
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Variations of Kleene-Equivalence Il

Theorem:
i) M C F is on-complete if and only if M is complete.
i) M C F is op-complete if and only if M is complete.

Corollary:
i) There is no algorithm which decides the on-completeness of a finite set.

ii) There is no algorithm which decides the op-completeness of a finite set.
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Metric Equivalence — Definition

Definition:
For '€ F™ and G € F™, we define

1
d(F,G) = 7 iff  F(p) = G(p) for all p with |p| <t —1 and
F(p') # G(p') for some p’ with |p| =t
Definition:

M C F and M’ C F are called metrically equivalent if, for any t € N and any
two sequential functions F' € M and F’ € M’, there are sequential functions

G € M’ and G’ € M such that

d(F,G) < % and  d(F'. Q) < %
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Metric Equivalence — Example

For ' € F and 7 € N, let F; be defined by

Ei(p) = F(p) for pwith [p| <i
Fi(q) = F(¢")0™ for qwithq=¢q¢",|d|=11¢"=n>0

Q ={F; | F € F, i € N} is metrically equivalent to F

Note that () is a subalgebra,
@ C F, and
@ i1s not finitely generated.
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Metric Completeness

Definition:

M C F is called metrically complete if and only if
[M] is metrically equivalent to F.

Theorem:

There is no algorithm which decides whether or not a finite set is
metrically complete.
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Metrically Maximal Subalgebras

Definition:

A subalgebra M C F is called metrically maximal if
— M is not metrically complete and

— M U {F'} is metrically complete for any F' € F.

Theorem:

i) M is metrically complete if and only if M is not contained in any metrically
maximal subalgebra of F.

ii) Any metrically maximal subalgebra of F is o;-maximal for some ¢ € N. For
t € N, any o;-maximal subalgebra of F is a metrically maximal subalgebra.

iii) The cardinality of the set of all metrically maximal subalgebras of F is the
cardinality of N.
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