Grammars with Regulated Rewriting

Jürgen Dassow
Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik
Lecture
in the
$5^{\text {th }}$ PhD Program Formal Languages and Applications

References [1] - [4] are summarizing books/papers, the remaining references give the papers where the regulations were introduced.

References

[1] J. Dassow, Grammars with regulated Rewriting. In C. Martin-Vide, V. Mitrana and Gh. PĂun (eds.), Formal Languages and Applications, Studies in Fuzziness and Soft Computing 148, Springer-Verlag, Berlin 2004.
[2] J. Dassow and Gh. PĂun, Regulated Rewriting in Formal Language Theory. AkademieVerlag, Berlin and Springer-Verlag, Berlin, 1989.
[3] J. Dassow, Gh. Păun and G. Rozenberg, Grammars with Controlled derivations. In Handbook of Formal Languages, Vol. II, Chapter 3, 101-154, Springer-Verlag, 1997
[4] A. Salomaa, Formal Languages. Academic Press, New York, 1973.
[5] S. Abraham, Some questions of phrase-structure grammars. Comput. Linguistics 4 (1965) 61-70.
[6] A.V. Aho, Indexed grammars - an extension of context-free grammars. J. ACM 15 (1968) 647-671.
[7] A.B. Cremers and O. Mayer, On matrix languages. Inform. Control 23 (1973) 86-96.
[8] I. Fris, Grammars with a partial ordering of the rules. Inform. Control 12 (1968) 415-425.
[9] S. Ginsburg and E.H. Spanier, Control sets on grammars. Math. Syst. Th. 2 (1968) 159-177.
[10] J. Kelemen, Conditional grammars: motivations, definitions and some properties. In: Proc. Conf. Automata Languages and Math. Sciences, Salgotarjan, 1984, 110-123.
[11] Gh. Paun, A new generative device: valence grammars. Rev. Roum. Math. Pures Appl. 25 (1980) 911-924.
[12] D.J. Rosenkrantz, Programmed grammars and classes of formal languages. J. ACM 16 (1969) 107-131.
[13] A.P.J. VAN DER Walt, Random context grammars. In: Proc. Symp. on Formal Languages, 1970.

Preliminaries I

\mathbf{N} - set of all natural numbers - $\{0,1,2,3, \ldots\}$,
Z - set of all integers
Q - set of all rational numbers
$V=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}-$ alphabet (with letters in a fixed order)
V^{*} - set of all words over V
V^{+}- set of all non-empty words over V
$|w|$ - length of the word w
$\#_{U}(w)$ - number of occurrences of letters of $U \subset V$ in $w \in V^{*}$

Preliminaries II

$$
\begin{aligned}
& \Psi_{V}(w)=\left(\#_{a_{1}}(w), \# a_{2}(w), \ldots, \not \#_{a_{n}}(w)\right)-\text { Parikh vector of } w \\
& \Psi_{V}(L)=\left\{\Psi_{V}(w) \mid w \in L\right\}-\text { Parikh language of } L \subset V^{*}
\end{aligned}
$$

$L \subset V^{*}$ is called semilinear if and only if its Parikh language $\Psi_{V}(L)$ is a finite union of linear subsets of \mathbf{N}^{n}
(i.e., a finite union of sets which can be represented

$$
\left\{v_{0}+\sum_{i=1}^{m} \gamma_{i} v_{i} \mid \gamma_{i} \in \mathbf{N}, 1 \leq i \leq m\right\}
$$

for some $v_{0}, v_{1}, \ldots, v_{m} \in \mathbf{N}^{n}$

Preliminaries III

$G=(N, T, S, P)-$ phrase-structure grammar
N - set of nonterminals (usually denoted by capitals)
T - set of nonterminals (usually denoted by small letters)
P - set of productions (or rules) $\alpha \rightarrow \beta$
S - axiom
$V_{G}=N \cup T$ (sometimes only denoted by V)
G length-increasing iff $|\alpha| \leq|\beta|$ for all $\alpha \rightarrow \beta \in P$
G context-free iff all rules of P have the form $A \rightarrow \beta$ with $A \in N, \beta \in V_{G}^{*}$
G regular iff all rules of P have the form $A \rightarrow \beta$ with $A \in N, \beta \in T N \cup T \cup\{\lambda\}$

Preliminaries IV

$R E G$ - family of all regular languages
$C F$ - family of all context-free languages
$C S$ - family of all length-increasing/context-sensitive languages
$R E \quad$ - family of all recursively enumerable languages

$$
\begin{aligned}
& \left\{w w \mid w \in\{a, b\}^{*}\right\} \notin C F \\
& \left\{a^{n} c^{m} b^{n} d^{m} \mid n, m \geq 1\right\} \notin C F \\
& \left\{a^{2^{n}} \mid n \geq 0\right\} \notin C F \\
& \left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} \notin C F
\end{aligned}
$$

Preliminaries V

Any $L \in C S$ can be generated by grammar $G=(N, T, S, P)$ where all rules are of the form $A B \rightarrow C D, A \rightarrow B C, A \rightarrow B$ and $A \rightarrow a$ with $A, B, C, D \in N$ and $a \in T$.

Any $L \in R E$ can be generated by grammar $G=(N, T, S, P)$ where all rules are of the form $A B \rightarrow C D, A \rightarrow B C, A \rightarrow B, A \rightarrow a$ and $A \rightarrow \lambda$ with $A, B, C, D \in N$ and $a \in T$.

For any language $L \in R E G$, there is a finite automaton $\mathcal{A}=\left(X, Z, z_{0}, F, \delta\right)$ (with input set X, state Z, initial state z_{0}, set F of accepting states and transition function δ) such that the set $T(\mathcal{A})$ of words accepted by \mathcal{A} coincides with L.

Motivation - English

Mary	and John are	
a woman	and a man, respectively.	
Mary,	John and William are	
a woman, a man and a man, respectively.		
Mary,	John, William and Jenny are	
a woman, a man, a man and a woman, respectively.		

Sentences of this type form a sublanguage L with
$h(L)=\{w w \mid w \in\{a, b\}\}$ for some morphism h

Motivation - Swiss German

Jan säit das mer em Hans hälfed. (Jan says that we helped Hans.)

Jan säit das mer em Hans es Huus hälfed aastriche. (Jan said that we helped Hans to paint the house.)

Jan säit das mer d'chind em Hans es Huus lönd hälfed aastriche. (Jan said that we allowed the children to help Hans to paint the house.)

Sentences of this type form a sublanguage L with
$h(L)=\{w w \mid w \in\{a, b\}\}$ for some morphism h

Regularly Controlled Grammar - Definition

Definition ([9]) :
i) A regularly controlled (context-free) grammar is a 5-tuple $G=(N, T, S, P, R)$ where

- N, T, P and S are specified as in a context-free grammar,
$-R$ is a regular set over P.
ii) The language $L(G)$ generated by G consists of all words $w \in T^{*}$ such that there is a derivation

$$
S \Longrightarrow_{p_{1}} w_{1} \Longrightarrow_{p_{2}} w_{2} \Longrightarrow_{p_{3}} \ldots \Longrightarrow_{p_{n}} w_{n}=w
$$

with

$$
p_{1} p_{2} p_{3} \ldots p_{n} \in R
$$

Regularly Controlled Grammar - Example I

$$
\begin{aligned}
& G=\left(\{S, A, B\},\{a, b\}, S,\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}\right\}, R\right) \\
& p_{0}=S \rightarrow A B, \\
& p_{1}=A \rightarrow a A, \quad p_{2}=B \rightarrow a B, \quad p_{3}=A \rightarrow b A, \quad p_{4}=B \rightarrow b B, \\
& p_{5}=A \rightarrow a, \quad p_{6}=B \rightarrow a, \quad p_{7}=A \rightarrow b, \quad p_{8}=B \rightarrow b \\
& R=p_{0}\left\{p_{1} p_{2}, p_{3} p_{4}\right\}^{*}\left\{p_{5} p_{6}, p_{7} p_{8}\right\} \\
& L(G)=\left\{w w \mid w \in\{a, b\}^{+}\right\}
\end{aligned}
$$

Regularly Controlled Grammar - Example II

$$
\begin{aligned}
& G=\left(\{S, A, B\},\{a, b, c, d\}, S,\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}, R\right) \\
& p_{0}=S \rightarrow A B, \\
& p_{1}=A \rightarrow a A, \quad p_{2}=B \rightarrow b B, \quad p_{3}=A \rightarrow c A, \quad p_{4}=B \rightarrow d B, \\
& p_{5}=A \rightarrow c, \quad p_{6}=B \rightarrow d \\
& R=p_{0}\left(p_{1} p_{2}\right)^{+}\left(p_{3} p_{4}\right)^{*} p_{5} p_{6} \\
& L(G)=\left\{a^{n} c^{m} b^{n} d^{m} \mid n \geq 1, m \geq 1\right\}
\end{aligned}
$$

Appearance Checking

N and T - set of nonterminals and terminals, respectively
P - (finite) set of (context-free) productions over $V=N \cup T$
F - subset of P
We say that $x \in V^{+}$directly derives $y \in V^{*}$ in appearance checking mode by application of $p=A \rightarrow w \in P$ (written as $x \Longrightarrow_{p}^{a c} y$) if one of the following conditions hold:

$$
x=x_{1} A x_{2} \text { and } y=x_{1} w x_{2}
$$

or
A does not appear in $x, p \in F$ and $x=y$.

Regularly Controlled Grammar with Appearance Checking Definition

Definition ([9]) :

i) A regularly controlled (context-free) grammar with appearance checking is a 6tuple $G=(N, T, S, P, R, F)$ where

- N, T, P, S and R are specified as in a regularly controlled grammar and
$-F$ is a subset of P.
ii) The language $L(G)$ generated by G with appearance checking consists of all words $w \in T^{*}$ such that there is a derivation

$$
S \Longrightarrow{ }_{p_{1}}^{a c} w_{1} \Longrightarrow{ }_{p_{2}}^{a c} w_{2} \Longrightarrow_{p_{3}}^{a c} \ldots{ }_{p_{n}}^{a c} w_{n}=w
$$

with

$$
p_{1} p_{2} p_{3} \ldots p_{n} \in R
$$

Regularly Controlled Grammar with Appearance Checking Example

$$
\begin{aligned}
& G=\left(\{S, A, X\},\{a\}, S,\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}, R, F\right), \\
& p_{1}=S \rightarrow A A, \quad p_{2}=S \rightarrow X, p_{3}=A \rightarrow S, p_{4}=A \rightarrow X, p_{5}=S \rightarrow a \\
& R=\left(p_{1}^{*} p_{2} p_{3}^{*} p_{4}\right)^{*} p_{5}^{*}, \\
& F=\left\{p_{2}, p_{4}\right\} \\
& L(G)=\left\{a^{2^{m}} \mid m \geq 1\right\}
\end{aligned}
$$

Regularly Controlled Grammars versus Chomsky Grammars

$\lambda r C \quad-\quad$ family of all languages generated by regularly controlled grammars (without appearance checking)
$\lambda r C_{a c}$ - family of all languages generated by regularly controlled grammars with appearance checking
$r C \quad$ - family of all languages generated by regularly controlled grammars without erasing rules (and without appearance checking)
$r C_{a c} \quad$ - family of all languages generated by regularly controlled grammars with appearance checking and without erasing rules

Theorem :
i) All languages of $\lambda r C$ over a unary alphabet are regular.
ii) $C F \subset r C \subset r C_{a c} \subset C S$
iii) $C F \subset r C \subseteq \lambda r C \subset \lambda r C_{a c}=R E$

Matrix Grammar - Definition I

Definition ([5]) :
i) A matrix grammar with appearance checking is a quintuple $G=(N, T, S, M, F)$ where

- N, T and S are specified as in a context-free grammar,
- $M=\left\{m_{1}, m_{2}, \ldots m_{n}\right\}, n \geq 1$, is a finite set of sequences $m_{i}=\left(p_{i, 1}, p_{i, 2}, \ldots, p_{i, k(i)}\right), k(i) \geq 1,1 \leq i \leq n$, where any $p_{i, j}, 1 \leq i \leq n, 1 \leq j \leq k(i)$, is a context-free production,
- F is a subset of all productions occuring in the elements of M, i.e., $F \subseteq\left\{p_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq k(i)\right\}$.
ii) We say that M is a matrix grammar without appearance checking if and only if $F=\emptyset$.

Matrix Grammar - Definition II

iii) For $m_{i}, 1 \leq i \leq n$, and $x, y \in V_{G}^{*}$, we define $x \Longrightarrow m_{i} y$ by

$$
x=x_{0} \Longrightarrow{ }_{p_{i, 1}}^{a c} x_{1} \Longrightarrow{ }_{p_{i, 2}}^{a c} x_{2} \Longrightarrow{ }_{p_{i, 3}}^{a c} \ldots \Longrightarrow{ }_{p_{i, k(i)}}^{a c} x_{k(i)}=y
$$

iv) The language $L(G)$ generated by G (with appearance checking) is defined as the set of all words $w \in T^{*}$ such that there is a derivation

$$
S \Longrightarrow m_{j_{1}} y_{1} \Longrightarrow_{m_{j_{2}}} y_{2} \Longrightarrow_{m_{j_{3}}} \ldots \Longrightarrow_{m_{j_{k}}} y_{k}=w
$$

for some $k \geq 1,1 \leq j_{i} \leq n, 1 \leq i \leq k$.

Matrix Grammar - Example I

$$
\begin{aligned}
& G=\left(\{S, A, B\},\{a, b\}, S,\left\{m_{0}, m_{1}, m_{2}, m_{3}, m_{4}\right\}, \emptyset\right) \\
& m_{0}=(S \rightarrow A B), \quad m_{1}=(A \rightarrow a A, B \rightarrow a B), \quad m_{2}=(A \rightarrow b A, B \rightarrow b B), \\
& m_{3}=(A \rightarrow a, B \rightarrow a), \quad m_{4}=(A \rightarrow b, B \rightarrow b) \\
& L(G)=\left\{w w \mid w \in\{a, b\}^{+}\right\} \\
& G^{\prime}=\left(\{S, A, B\},\{a, b, c, d\},\left\{m_{0}, m_{1}, \ldots, m_{4}\right\}, S, \emptyset\right) \\
& m_{0}=\left(S \rightarrow A C B D, \quad m_{1}=(A \rightarrow a A, B \rightarrow b B), \quad m_{2}=(A \rightarrow a, B \rightarrow b),\right. \\
& m_{3}=(C \rightarrow c C, D \rightarrow d D), \quad m_{4}=(C \rightarrow c, D \rightarrow d) \\
& L\left(G^{\prime}\right)=\left\{a^{n} c^{m} b^{n} d^{m} \mid n \geq 1, m \geq 1\right\}
\end{aligned}
$$

Matrix Grammar - Example II

$$
\begin{aligned}
& G=\left(\left\{S, A, A^{\prime}, B, C, D, X\right\},\{a, b\}, M, S, F\right) \\
& M=\left\{m_{0}, m_{0}^{\prime}, m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{5}^{\prime}\right\} \\
& m_{0}=(S \rightarrow A B), \quad m_{0}^{\prime}=(S \rightarrow A D) \\
& m_{1}=\left(A \rightarrow A^{\prime} A^{\prime}, B \rightarrow B\right), \quad m_{2}=(A \rightarrow X, B \rightarrow C), \\
& m_{3}=(A \rightarrow a, D \rightarrow D), \quad m_{4}=(A \rightarrow X, D \rightarrow b), \\
& m_{4}=\left(A^{\prime} \rightarrow A, C \rightarrow C\right), \quad m_{5}=\left(A^{\prime} \rightarrow X, C \rightarrow B\right), \\
& m_{5}^{\prime}=\left(A^{\prime} \rightarrow X, C \rightarrow D\right) \\
& F=\left\{A \rightarrow X, A^{\prime} \rightarrow X\right\} \\
& L(G)=\left\{a^{2^{m}} b \mid m \geq 0\right\}
\end{aligned}
$$

Matrix Grammars versus Regularly Controlled Grammars

$\lambda M \quad$ - family of all languages generated by matrix grammars (without appearance checking)
$\lambda M_{a c}$ - family of all languages generated by matrix grammars with appearance checking
$M \quad$ - family of all languages generated by matrix grammars without erasing rules (and without appearance checking)
$M_{a c} \quad$ - family of all languages generated by matrix grammars with appearance checking and without erasing rules

Theorem :

i) $M=r C$,
ii) $\lambda M=\lambda r C$,
iii) $M_{a c}=r C_{a c}$,
iv) $\lambda M_{a c}=\lambda r C_{a c}$

Unordered Vector Grammar - Definition

Definition ([7]) :
i) An (unordered) vector grammar is a quadruple $G=(V, T, S, M)$ where N, T, M and S are defined as for matrix grammars.
ii) The language $L(G)$ generated by G is defined as the set of all words $w \in T$ such that there is a derivation

$$
S \Longrightarrow_{p_{1}} w_{1} \Longrightarrow_{p_{2}} w_{2} \Longrightarrow_{p_{3}} \ldots \Longrightarrow_{p_{n}} w
$$

where $p_{1} p_{2} \ldots p_{n}$ is a permutation of some element of M^{*}.

Unordered Vector Grammar - Example

$$
\begin{aligned}
& G=\left(\{S, A, B\},\{a, b\},\left\{m_{0}, m_{1}, m_{2}, m_{3}, m_{4}\right\}, S, \emptyset\right) \\
& m_{0}=(S \rightarrow A B), \\
& m_{1}=(A \rightarrow a A, B \rightarrow a B), \quad m_{2}=(A \rightarrow b A, B \rightarrow b B) \\
& m_{3}=(A \rightarrow a, B \rightarrow a), \quad m_{4}=(A \rightarrow b, B \rightarrow b) \\
& \left\{w x w^{\prime} x \mid x \in\{a, b\}, w \in\{a, b\}^{*}, w^{\prime} \in \operatorname{Perm}(\{w\})\right\}
\end{aligned}
$$

Unordered Vector Grammars versus Matrix Grammars

$\lambda u V$ - family of all languages generated by unordered vector grammars
$u V \quad$ - family of all languages generated by unordered vector grammars without erasing rules

Theorem :
$C F \subset u V=\lambda u V \subset M$

Theorem :

Each language in $u V$ is semilinear.

Programmed Grammar - Definition I

Definition ([12]) :
i) A programmed grammar is a quadruple $G=\left(N, T, S, L a b, P, P_{G}\right)$ where

- N, T and S are specified as in a context-free grammar,
- $L a b$ is a finite set of labels,
- P is a finite set of context-free productions (set of core productions)
P_{G} is a finite set of quadruples $r=(q, p, \sigma, \varphi)$ where $q \in L a b, p \in P$,
and σ and φ are subsets of $L a b$.
If $r=(q, p, \sigma, \varphi)$, then σ and φ are called the success field and failure field of r, respectively.
ii) If $r=(q, p, \sigma, \emptyset)$ holds for any $r \in P_{G}$, then we say that G is a programmed grammar without appearance checking. Otherwise G is a programmed grammar with appearance checking.

Programmed Grammar - Definition II

iii) The language $L(G)$ generated by G is defined as the set of all words $w \in T^{*}$ such that there is a derivation

$$
S=w_{0} \Longrightarrow_{r_{1}} w_{1} \Longrightarrow_{r_{2}} w_{2} \Longrightarrow_{r_{3}} \ldots \Longrightarrow_{r_{k}} w_{k}=w
$$

$k \geq 1$ and, for $r_{i}=\left(q_{i}, A_{i} \rightarrow v_{i}, \sigma_{i}, \varphi_{i}\right)$, one of the following conditions hold:
$w_{i-1}=w_{i-1}^{\prime} A_{i} w_{i-1}^{\prime \prime}, w_{i}=w_{i-1}^{\prime} v_{i} w_{i-1}^{\prime \prime}$ for some $w_{i-1}^{\prime}, w_{i-1}^{\prime \prime} \in V_{G}^{*}$ and $q_{i+1} \in \sigma_{i}$
or
A_{i} does not occur in $w_{i-1}, w_{i-1}=w_{i}$ and $q_{i+1} \in \varphi_{i}$.

Programmed Grammar - Examples I

$$
\begin{array}{rlr}
G= & \left(\{S, A, B\},\{a, b\}, S,\left\{q_{0}, q_{1}, \dot{;} q_{8}\right\}, P,\left\{r_{0}, r_{1}, r_{2}, \ldots, r_{8}\right\}\right) \\
P= & \{S \rightarrow A B, A \rightarrow a A, B \rightarrow a B, A \rightarrow b A, B \rightarrow b B, \\
& A \rightarrow a, B \rightarrow a, A \rightarrow b, B \rightarrow b\} & \\
r_{0}=\left(q_{0}, S \rightarrow A B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), & \\
r_{1}=\left(q_{1}, A \rightarrow a A,\left\{q_{2}\right\}, \emptyset\right), & r_{2}=\left(q_{2}, B \rightarrow a B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), \\
r_{3}=\left(q_{3}, A \rightarrow b A,\left\{q_{4}\right\}, \emptyset\right), & r_{4}=\left(q_{4}, B \rightarrow b B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), \\
r_{5}=\left(q_{5}, A \rightarrow a,\left\{q_{6}\right\}, \emptyset\right), & r_{6}=\left(q_{6}, B \rightarrow a, \emptyset, \emptyset\right), \\
r_{7}=\left(q_{7}, A \rightarrow b,\left\{q_{8}\right\}, \emptyset\right), & r_{8}=\left(q_{8}, B \rightarrow b, \emptyset, \emptyset\right), \\
L(G)=\left\{w w \mid w \in\{a, b\}^{+}\right\} &
\end{array}
$$

Programmed Grammar - Examples II

$$
\begin{aligned}
& G^{\prime}=\left(\{S, A\},\{a\},\left\{q_{1}, q_{2}, q_{3}\right\}, P^{\prime},\left\{r_{1}, r_{2}, r_{3}\right\}, S\right) \\
& P^{\prime}=\{S \rightarrow A A, A \rightarrow S, S \rightarrow a\} \\
& r_{1}=\left(q_{1}, S \rightarrow A A,\left\{q_{1}\right\},\left\{q_{2}\right\}\right), \quad r_{2}=\left(q_{2}, A \rightarrow S,\left\{q_{2}\right\},\left\{q_{1}, q_{3}\right\}\right), \\
& r_{3}=\left(q_{3}, S \rightarrow a,\left\{q_{3}\right\}, \emptyset\right) \\
& L\left(G^{\prime}\right)=\left\{a^{2^{m}} \mid m \geq 0\right\}
\end{aligned}
$$

Programmed Grammars versus Matrix Grammars

$\lambda P \quad-\quad$ family of all languages generated by programmed grammars (without appearance checking)
$\lambda P_{a c} \quad$ family of all languages generated by programmed grammars with appearance checking
$P \quad-\quad$ family of all languages generated by programmed grammars without erasing rules (and without appearance checking)
$P_{a c} \quad$ family of all languages generated by programmed grammars with appearance checking and without erasing rules

Theorem :

i) $P=M$,
ii) $\lambda P=\lambda M$,
iii) $\quad P_{a c}=M_{a c}$,
iv) $\lambda P_{a c}=\lambda M_{a c}$

Regularly Controlled Grammar - Another Interpretation I

$R \subset X^{*}$ - regular set
$R=T(\mathcal{A})$ for some finite (nondeterministic) automaton $\mathcal{A}=\left(X, Z, z_{0}, Q, \delta\right)$
\mathcal{A} - description as a graph with labelled edges
$z^{\prime}=\delta(z, x)$ corresponds to $\left.(z)^{x} \rightarrow z^{\prime}\right)$
$x_{1} x_{2} \ldots x_{n} \in T(\mathcal{A})=R$ if and only if $x_{1} x_{2} \ldots x_{n}$ is a sequence of edge labels given by a path from z_{0} to some state in Q

Control by a regular set corresponds to control by sequences of edge labels of paths from a source node to a target node (in a graph with edge labelling, one source node and a set of target nodes)

Regularly Controlled Grammar - Another Interpretation II

$$
R=p_{0}\left\{p_{1} p_{2}, p_{3} p_{4}\right\}^{*}\left\{p_{5} p_{6}, p_{7} p_{8}\right\}
$$

$$
\begin{aligned}
& \text { source node }-z_{0} \\
& \text { target nodes }-z_{5}, z_{7}
\end{aligned}
$$

Programmed Grammars - Another Interpretation I

$G=\left(N, T, S, L a b, P, P_{G}\right)$ - programmed grammar without appearance checking $r=(q(r), p(r), \sigma(r), \varphi(r))$
$H=(L a b, E)-$ graph
$\left(q(r), q^{\prime}\right) \in E$ if and only if $q^{\prime} \in \sigma(r)$
$S \Longrightarrow_{r_{1}} w_{1} \Longrightarrow_{r_{2}} w_{2} \ldots \Longrightarrow_{r_{k}} w_{k}=w$ - derivation in G
if and only if
$q_{1} q_{2} \ldots q_{k}$ is a sequence of nodes along a path in H

Control in programmed grammars corresponds to control by node sequences along paths in graphs

Programmed Grammars - Another Interpretation II

$$
G=\left(\{S, A, B\},\{a, b\}, S,\left\{q_{0}, q_{1}, ; q_{8}\right\}, P,\left\{r_{0}, r_{1}, r_{2}, \ldots, r_{8}\right\}\right)
$$

$$
\begin{aligned}
& r_{0}=\left(q_{0}, S \rightarrow A B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), \\
& r_{1}=\left(q_{1}, A \rightarrow a A,\left\{q_{2}\right\}, \emptyset\right), \\
& r_{2}=\left(q_{2}, B \rightarrow a B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), \\
& r_{3}=\left(q_{3}, A \rightarrow b A,\left\{q_{4}\right\}, \emptyset\right), \\
& r_{4}=\left(q_{4}, B \rightarrow b B,\left\{q_{1}, q_{3}, q_{5}, q_{7}\right\}, \emptyset\right), \\
& r_{5}=\left(q_{5}, A \rightarrow a,\left\{q_{6}\right\}, \emptyset\right), \\
& r_{6}=\left(q_{6}, B \rightarrow a, \emptyset, \emptyset\right), \\
& r_{7}=\left(q_{7}, A \rightarrow b,\left\{q_{8}\right\}, \emptyset\right), \\
& r_{8}=\left(q_{8}, B \rightarrow b, \emptyset, \emptyset\right),
\end{aligned}
$$

Valence Grammar - Definition

Definition ([11]) :
i) A valence grammar over a monoid is a quintuple $G=(N, T, S, P,(M, \circ))$ where

- N, T and S are specified as in a context-free grammar,
- (M, \circ) is a monoid with neutral element e,
- P is a finite set of pairs $r=(p, m)$ with a context-free rule p and $m \in M$.
ii) For $x, y \in V_{G}^{*}, k, l \in M$, we say that (x, k) directly derives (y, l), written as $(x, k) \Longrightarrow(y, l)$, iff there is a pair $r=(A \rightarrow w, m) \in P$ such that
$-x=x^{\prime} A x^{\prime \prime}$ and $y=x^{\prime} w x^{\prime \prime}$ for some $x^{\prime}, x^{\prime \prime} \in V_{G}^{*}$ and
$-l=k \circ m$.
iii) The language $L(G)$ generated by G is defined as

$$
L(G)=\left\{w \mid w \in T^{*},(S, e) \Longrightarrow^{*}(w, e)\right\} .
$$

Valence Grammar - Examples

$$
\begin{aligned}
& G=\left(\{S, A, B\},\{a, b\}, S,\left\{r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{8}\right\},(\mathbf{Q}, \cdot)\right) \\
& \quad r_{0}=(S \rightarrow A B, 1), \quad r_{1}=(A \rightarrow a A, 2), \quad r_{2}=(B \rightarrow a B, 1 / 2) \\
& r_{3}=(A \rightarrow b A, 3), \quad r_{4}=(B \rightarrow b B, 1 / 3), \quad r_{5}=(A \rightarrow a, 2) \\
& r_{6}=(B \rightarrow a, 1 / 2), \quad r_{7}=(A \rightarrow b, 3), \quad r_{8}=(B \rightarrow b, 1 / 3) \\
& L(G)=\left\{w_{1} w_{2} \mid w_{1} \in\{a, b\}^{*}, w_{2} \in \operatorname{Perm}\left(w_{1}\right)\right\} \\
& G^{\prime}=\left(\{S, A, B\},\{a, b\}, S,\left\{r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}, r_{5}^{\prime}, r_{6}^{\prime}, r_{7}^{\prime}, r_{8}^{\prime}\right\},(\mathbf{Z},+)\right) \\
& r_{0}^{\prime}=(S \rightarrow A B, 0), \quad r_{1}^{\prime}=(A \rightarrow a A, 2), \quad r_{2}^{\prime}=(B \rightarrow a B,-2) \\
& r_{3}^{\prime}=(A \rightarrow b A, 3), \quad r_{4}^{\prime}=(B \rightarrow b B,-3), \quad r_{5}^{\prime}=(A \rightarrow a, 2) \\
& r_{6}^{\prime}=(B \rightarrow a,-2), \quad r_{7}^{\prime}=(A \rightarrow b, 3), \quad r_{8}^{\prime}=(B \rightarrow b,-3) \\
& L\left(G^{\prime}\right)=\left\{w_{1} w_{2} \mid w_{1}, w_{2} \in\{a, b\}^{+}, 2 \# a\left(w_{1}\right)+3 \# b\left(w_{1}\right)=2 \# a\left(w_{2}\right)+3 \# b\left(w_{2}\right)\right\}
\end{aligned}
$$

Valence Grammars versus other Grammars

Additive valence grammar $\quad-\quad(M, \circ)=(\mathbf{Z},+)$
Multiplicative valence grammar $-\quad(M, \circ)=(\mathbf{Q}, \cdot)$
$\lambda a V$ - family of all languages generated by additive valence grammars
$a V \quad$ - family of all languages generated by additive valence grammars without erasing rules
$\lambda m V$ - family of all languages generated by multiplicative valence grammars $m V \quad$ - family of all languages generated by multiplicative valence grammars without erasing rules

Theorem :
$a V=\lambda a V \subset m V=\lambda m V=u V$

Conditional Grammars - Definition

Definition ([8]) :

i) A conditional grammar is a quadruple $G=(N, T, S, P)$ where

- N, T and S are specified as in a context-free grammar, and
- P is a finite set of pairs $r=(p, R)$ where p is a context-free production and R is a regular set over V_{G}.
ii) For $x, y \in V_{G}^{*}$, we say that x directly derives y, written as $x \Longrightarrow y$, iff there is a pair $r=(A \rightarrow w, R) \in P$ such that $x=x^{\prime} A x^{\prime \prime}$ and $y=x^{\prime} w x^{\prime \prime}$ for some $x^{\prime}, x^{\prime \prime} \in V_{G}^{*}$ and $x \in R$.
iii) The language $L(G)$ generated by G is defined as

$$
L(G)=\left\{w \mid w \in T^{*}, S \Longrightarrow^{*} w\right\}
$$

Conditional Grammars - Examples

$$
\begin{aligned}
G & =\left(\left\{S, A, B, A^{\prime}, B^{\prime}\right\},\{a, b\}, S,\left\{r_{0}, r_{1}, \ldots r_{8}\right\}\right) \\
r_{0} & =(S \rightarrow A B, S), \\
r_{1} & =\left(A \rightarrow a A^{\prime}, V^{*} B V^{*}\right), \quad r_{2}=\left(A \rightarrow b A^{\prime}, V^{*} B V^{*}\right) \\
r_{3} & =\left(B \rightarrow a B^{\prime}, V^{*} a A^{\prime} V^{*},\right. \\
r_{5} & =\left(r_{4}=\left(B \rightarrow b A^{\prime} \rightarrow A, V^{*} B^{\prime} V^{*}\right), \quad r_{6}=\left(A^{\prime} \rightarrow \lambda, V^{*} b A^{\prime} B^{\prime} V^{*}\right),\right. \\
r_{7} & =\left(B^{\prime} \rightarrow B, V^{*} A V^{*}\right), \quad r_{8}=\left(B^{\prime} \rightarrow \lambda, T^{*} B^{\prime} T^{*}\right) \\
L(G) & =\left\{w w \mid w \in\{a, b\}^{+}\right\} \\
G^{\prime} & =\left(\left\{S, S^{\prime}, A, B\right\},\{a\}, S,\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}\right) \\
r_{1} & =\left(S \rightarrow S^{\prime} B, S A^{*}\right), \quad r_{2}=\left(A \rightarrow B B, S^{\prime} B^{+} A^{+}\right) \\
r_{3} & =\left(S^{\prime} \rightarrow S, S^{\prime} B^{+}, \quad r_{4}=\left(B \rightarrow A, S A^{*} B^{+}\right)\right. \\
r_{5} & =\left(S \rightarrow a, S A^{*}\right), \quad r_{6}=\left(A \rightarrow a, a^{+} A^{+}\right) \\
L\left(G^{\prime}\right)=\left\{a^{2} \mid n \geq 0\right\} &
\end{aligned}
$$

Semi-Conditional Grammar - Definition

Definition ([10]) :
i) A semi-conditional grammar is a quadruple $G=(N, T, S, P)$ where

- N, T and S are specified as in a context-free grammar, and
- P is a finite set of triples $r=(p, R, Q)$ where p is a context-free production and R and Q are disjoint finite sets of words over V_{G}.
$R(Q)$ are called the permitted (forbidden) context of r or p, respectively.
ii) For $x, y \in V_{G}^{*}$, we say that x directly derives y, written as $x \Longrightarrow y$, iff there is
a triple $r=(A \rightarrow w, R, Q) \in P$ such that
- $x=x^{\prime} A x^{\prime \prime}$ and $y=x^{\prime} w x^{\prime \prime}$ for some $x^{\prime}, x^{\prime \prime} \in V_{G}^{*}$,
- any word of R is a subword of x, and no word of Q is a subword of x.
iii) The language $\mathrm{L}(\mathrm{G})$ generated by G is defined as

$$
L(G)=\left\{w \mid w \in T^{*}, S \Longrightarrow^{*} w\right\}
$$

Semi-Conditional Grammar - Examples

$$
\begin{aligned}
& G=\left(\left\{S, S^{\prime}, S^{\prime \prime}\right\},\{a\}, S,\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}\right) \\
& r_{1}=\left(S \rightarrow S^{\prime} S^{\prime}, \emptyset,\left\{S S^{\prime}, S^{\prime \prime}, a\right\}\right), \quad r_{2}=\left(S^{\prime} \rightarrow S^{\prime \prime}, \emptyset,\left\{S^{\prime} S^{\prime \prime}, S, a\right\}\right), \\
& r_{3}=\left(S^{\prime \prime} \rightarrow S, \emptyset,\left\{S^{\prime \prime} S, S^{\prime}, a\right\}, \quad r_{4}=\left(S \rightarrow a, \emptyset,\left\{S a, S^{\prime}, S^{\prime \prime}\right\}\right)\right. \\
& L(G)=\left\{a^{2^{n}} \mid n \geq 0\right\} \\
& G^{\prime}=\left(\left\{S, S^{\prime}, S^{\prime \prime}, A\right\},\{a\}, S,\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}\right) \\
& r_{1}=\left(S \rightarrow S^{\prime} S^{\prime}, \emptyset,\left\{S^{\prime \prime}, A\right\}\right), \quad r_{2}=\left(S^{\prime} \rightarrow S^{\prime \prime}, \emptyset,\{S\}\right), \quad r_{3}=\left(S^{\prime \prime} \rightarrow S, \emptyset,\left\{S^{\prime}\right\}\right), \\
& r_{4}=\left(S \rightarrow A, \emptyset,\left\{S^{\prime}, S^{\prime \prime}\right\}\right), \\
& L\left(G^{\prime}\right)=\left\{a^{2^{n}} \mid n \geq 0\right\}
\end{aligned}
$$

Random Context Grammar

Definition ([13]) :
A random context grammar is a semi-conditional grammar where the permitting and forbidden contexts of all productions are subsets of the set of nonterminals. A permitting (forbidden, respectively) random context grammar is a random context grammar where all forbidden (permitting, respectively) contexts are empty.

Example :

$G=\left(\left\{S, A, A^{\prime}, A_{a}, A_{b}, B, B^{\prime}\right\},\{a, b\}, S,\left\{r_{0}, r_{1}, \ldots r_{10}\right\}\right)$
$r_{0}=(S \rightarrow A B, \emptyset, \emptyset), \quad r_{1}=\left(A \rightarrow a A_{a},\{B\}, \emptyset\right), \quad r_{2}=\left(A \rightarrow b A_{b},\{B\}, \emptyset\right)$,
$r_{3}=\left(B \rightarrow a B^{\prime},\left\{A_{a}\right\}, \emptyset\right), \quad r_{4}=\left(B \rightarrow b B^{\prime},\left\{A_{b}\right\}, \emptyset\right)$,
$r_{5}=\left(A_{a} \rightarrow A,\left\{B^{\prime}\right\}, \emptyset\right), \quad r_{6}=\left(A_{b} \rightarrow A,\left\{B^{\prime}\right\}, \emptyset\right), \quad r_{7}=\left(B^{\prime} \rightarrow B,\{A\}, \emptyset\right)$
$r_{8}=\left(A \rightarrow A^{\prime \prime},\{B\}, \emptyset\right), \quad r_{9}=\left(B \rightarrow \lambda,\left\{A^{\prime \prime}\right\}, \emptyset\right), \quad r_{10}=\left(A^{\prime \prime} \rightarrow \lambda, \emptyset, \emptyset\right)$
$L(G)=\left\{w w \mid w \in\{a, b\}^{*}\right\}$

Notations

$\lambda C \quad-\quad$ family of all languages generated by conditional grammars
$C \quad$ - family of all languages generated by conditional grammars without erasing rules
$\lambda s C \quad-\quad$ family of all languages generated by semi-conditional grammars
$s C \quad-\quad$ family of all languages generated by semi-conditional grammars without erasing rules
$\lambda R C$ - family of all languages generated by random context grammars
$R C \quad$ - family of all languages generated by random context grammars without erasing rules
$\lambda p R C \quad$ - family of all languages generated by permitting random context grammars
$p R C \quad$ - family of all languages generated by permitting random context grammars without erasing rules

Generative Capacity

Theorem :

i) $\lambda C=\lambda s C=R E$
ii) $C=s C=C S$

$$
\begin{aligned}
& \text { Theorem : } \\
& \text { i) } \quad C F \subset p R C \subset R C=M_{a c} \subset \lambda R C . \\
& \text { ii) } \quad p R C \subseteq \lambda p R C \subset \lambda R C=\lambda M_{a c} . \\
& \text { iii) } \quad p R C \subseteq M \\
& \text { iv) } \quad \lambda p R C \subseteq \lambda M
\end{aligned}
$$

Ordered Grammar - Definition

Definition ([8]) :
i) An ordered grammar is a quadruple $G=(N, T, S, P)$ where

- N, T and S are specified as in a context-free grammar and
- P is a finite (partially) ordered set of context-free production.
ii) For $x, y \in V_{G}$, we say that x directly derives y, written as $x \Longrightarrow y$, if and only if there is a production $p=A \rightarrow w \in P$ such that $x=x^{\prime} A x^{\prime \prime}, y=x^{\prime} w x^{\prime \prime}$ and there is no production $q=B \rightarrow v \in P$ such that $p \prec q$ and B occurs in x.
iii) The language $L(G)$ generated by G is defined as

$$
L(G)=\left\{w \mid w \in T^{*}, S \Longrightarrow^{*} w\right\}
$$

Ordered Grammar - Example

$$
G=\left(\left\{S, S^{\prime}, S^{\prime \prime}, A, Z\right\},\{a\}, S, P\right)
$$

$$
L(G)=\left\{a^{2^{n}} \mid n \geq 0\right\}
$$

Ordered Grammars versus Other Grammars

$\lambda f R C \quad$ - family of all languages generated by forbidden random context grammars
$f R C \quad$ - family of all languages generated by forbidden random context grammars without erasing rules
$\lambda O \quad$ - family of all languages generated by ordered grammars
$O \quad-\quad$ family of all languages generated by ordered grammars without erasing rules

Theorem :

i) $O=f R C \subseteq \lambda O=\lambda f R C \subset R E$.
ii) $C F \subset O \subset r C_{a c}$

Indexed Grammar - Definition I

Definition ([6]) :
i) An indexed grammar is a quintuple $G=(N, T, I, S, P)$ where

- N, T and S are specified as in a context-free grammar,
- I is a finite set of finite sets of productions of the form $A \rightarrow w$ with $A \in N$ and $w \in V_{G}^{*}$, and
- P is a finite set of productions of the form $A \rightarrow \alpha$ with $A \in N$ and $\alpha \in\left(N I^{*} \cup T\right)^{*}$.

The elements of I are called indexes.

Indexed Grammar - Definition II

ii) For $x, y \in\left(N I^{*} \cup T\right)^{*}$, we say that x directly derives y, written as $x \Longrightarrow y$, if either

$$
\begin{aligned}
& x=x_{1} A \beta x_{2} \text { for some } x_{1}, x_{2} \in\left(N I^{*} \cup T\right)^{*}, A \in N, \beta \in I^{*} \\
& A \rightarrow X_{1} \beta_{1} X_{2} \beta_{2} \ldots X_{k} \beta_{k} \in P \\
& y=x_{1} X_{1} \gamma_{1} X_{2} \gamma_{2} \ldots X_{k} \gamma_{k} x_{2} \\
& \quad \text { with } \gamma_{i}=\beta_{i} \beta \text { for } X_{i} \in N \text { and } \gamma_{i}=\lambda \text { for } X_{i} \in T, 1 \leq i \leq k,
\end{aligned}
$$

or

$$
\begin{aligned}
& x=x_{1} A i \beta x_{2} \text { for some } x_{1}, x_{2} \in\left(N I^{*} \cup T\right)^{*}, A \in N, i \in I, \beta \in I^{*} \\
& A \rightarrow X_{1} X_{2} \ldots X_{k} \in i, \\
& y=x_{1} X_{1} \gamma_{1} X_{2} \gamma_{2} \ldots X_{k} \gamma_{k} x_{2} \\
& \quad \text { with } \gamma_{i}=\beta \text { for } X_{i} \in N \text { and } \gamma_{i}=\lambda \text { for } X_{i} \in T, 1 \leq i \leq k .
\end{aligned}
$$

Indexed Grammar - Definition III and a Result

$\Longrightarrow{ }^{*}$ denotes the reflexive and transitive closure of \Longrightarrow.
iii) The language $L(G)$ generated by G is defined as

$$
L(G)=\left\{w \mid w \in T^{*}, S \Longrightarrow^{*} w\right\}
$$

λI - family of all languages generated by indexed grammars
$I \quad$ - family of all languages generated by indexed grammars without erasing rules

Theorem :
$C F \subset I=\lambda I \subseteq C S$.

Indexed Grammar - Examples

$$
\begin{aligned}
& G=(\{S, A, B\},\{a, b, c, d\},\{f\}, S, P) \\
& f=\{B \rightarrow b B, B \rightarrow b\} \\
& P=\{S \rightarrow a S f, S \rightarrow A, A \rightarrow c A d, A \rightarrow B\} \\
& L(G)=\left\{a^{n} c^{m} b^{n} d^{m} \mid n \geq 1, m \geq 1\right\} \\
& G^{\prime}=\left(\{S, A\},\{a, b\},\left\{f_{a}, f_{b}, h\right\}, S, P\right) \\
& f_{a}=\{B \rightarrow B a\}, \quad f_{b}=\{B \rightarrow B b\}, \quad h=\{B \rightarrow \lambda\}, \\
& P=\left\{S \rightarrow A h, A \rightarrow a A f_{a}, A \rightarrow b A f_{b}, A \rightarrow B\right\} \\
& L\left(G^{\prime}\right)=\left\{w w \mid w \in\{a, b\}^{*}\right\}
\end{aligned}
$$

Hierarchy of Languages Obtained by Regulated Rewriting

Theorem : The following equalities are valid:

```
\(R E=\lambda M_{a c}=\lambda r C_{a c}=\lambda P_{a c}=\lambda R C=\lambda C=\lambda s C\),
\(C S=C=s C\),
\(\lambda M=\lambda r C=\lambda P\),
\(M_{a c}=r C_{a c}=P_{a c}=R C\),
\(M=r C=P\),
\(u V=\lambda u V=m V=\lambda m V\),
\(a V=\lambda a V\),
\(\lambda O=\lambda f R C\),
\(O=f R C\),
\(I=\lambda I\)
```


Theorem :
 The opposite diagram holds.

If two families are connected by a line (an arrow), then the upper family includes (includes properly) the lower family; if two families are not connected then they are not necessarily incomparable.

Closure Properties

Theorem: The following table holds.

operation	$M_{a c}$	λM	M	$u V$	$a V$	I	λO	O	$\lambda p R C$	$p R C$
union	+	+	+	+	+	+	+	+	+	+
intersection	$?$	-	-	-	-	-	-	-	-	-
complement	$?$	-	-	-	-	-	-	-	-	-
intersection by reg. sets	+	+	+	+	+	+	+	+	+	+
concatenation	+	+	+	+	-	+	+	+	+	+
Kleene-closure	+	$?$	$?$	-	-	+	+	+	+	+

operation	$M_{a c}$	λM	M	$u V$	$a V$	I	λO	O	$\lambda p R C$	$p R C$
λ-free morphisms	+	+	+	+	+	+	+	+	+	+
(arbitrary) morphisms	-	+	-	+	+	+	+	$?$	+	$?$
inverse morphisms	+	+	+	+	+	+	+	+	+	+
λ-free gsm-mappings	+	+	+	+	+	+	+	+	+	+
gsm-mappings	-	+	-	+	+	+	+	$?$	+	$?$
derivative	+	+	+	+	+	+	+	+	+	+
quotient by reg. sets	-	+	-	+	+	+	+	+	+	$?$

Decision Results I

Theorem :

Let X be a family of grammars generating one of the families

$$
\left\{M_{a c}, M, R C, O, \lambda M, \lambda R C, \lambda O, I, u V, a V\right\}
$$

Then the equivalence problem
Instance: grammars $G_{1} \in X$ and $G_{2} \in X$,
Answer: "Yes" if and only if $L\left(G_{1}\right)=L\left(G_{2}\right)$
and the problem
Instance: grammar $G \in X$
Answer: "Yes" if and only if G generates a context-free language.
are undecidable.

Decision Results II

Theorem : The following table holds.

grammar family	membership problem	emptiness problem	finiteness problem
I	NP-complete	+	+
λO	$?$	$?$	$?$
O	,+ NP-hard	$?$	$?$
$M_{a c}$,+ NP-hard	-	-
λM	+	,+ NP-hard	,+ NP-hard
M	+	,+ NP-hard	,+ NP-hard
$u V$	\in LOGCFL	,+ NP-hard	,+ NP-hard
$R C$	+	,+ NP-hard	,+ NP-hard
$a V$	DTIME $\left(n^{4}\right)$	+	+

Reachability Problem for Vector Addition System

An n-dimensional vector addition system is a couple (x_{0}, K) where $x_{0} \in \mathbf{N}^{n}$ and K is a finite subset of \mathbf{Z}^{n}.

A vector $y \in \mathbf{N}^{n}$ is called reachable within $\left(x_{0}, K\right)$ if and only if there are vectors $v_{1}, v_{2}, \ldots, v_{t} \in K, t \geq 1$, such that

$$
x_{0}+\sum_{i=1}^{j} v_{i} \in \mathbf{N}^{n} \text { for } 1 \leq j \leq t \quad \text { and } \quad x_{0}+\sum_{i=1}^{t} v_{i}=y
$$

The reachability problem
Instance: n-dimensional vector addition system $\left(x_{0}, K\right)$, vector $y \in \mathbf{N}^{n}$
Answer: "Yes" if and only if y is reachable within $\left(x_{0}, K\right)$
is decidable (in exponential space).

3-Partition Problem

The 3-partition problem
Instance: multiset $\left\{t_{1}, t_{2}, \ldots, t_{3 m}\right\}$ of integers and integer t
Answer: Yes, if there is partition $\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}$ of $\left\{t_{1}, t_{2}, \ldots, t_{3 m}\right\}$ such that $\#\left(Q_{i}\right)=3$ and $\sum_{s \in Q_{i}} s=t$ for $1 \leq i \leq m$.
is NP-complete.

Syntactic Complexity I

Definition:

i) For a grammar $G, \operatorname{Var}(G)$ denotes the cardinality of its set of nonterminals.
ii) Let X be a family of languages and $\mathcal{G}(X)$ the corresponding set of grammars. For a language $L \in X$, we set

$$
\operatorname{Var}_{X}(L)=\min \{\operatorname{Var}(G) \mid G \in \mathcal{G}(X), L(G)=L\}
$$

Theorem :

There is a sequence of context-free languages $L_{n}, n \geq 1$, such that

$$
\begin{aligned}
& \operatorname{Var}_{C F}\left(L_{n}\right)=n \\
& \operatorname{Var}_{M}\left(L_{n}\right) \leq 3, \operatorname{Var}_{P}\left(L_{n}\right)=1, \operatorname{Var}_{r C}\left(L_{n}\right)=1, \operatorname{Var}_{p R C}\left(L_{n}\right) \leq 8
\end{aligned}
$$

Syntactic Complexity II

Theorem :

i) For any recursively enumerable language L,

$$
\operatorname{Var}_{\lambda M_{a c}}(L) \leq 3 \quad \text { and } \quad \operatorname{Var}_{\lambda P_{a c}}(L) \leq 3
$$

ii) $\operatorname{Var}_{\lambda M_{a c}}\left(\left\{a^{n} b^{n} c^{m} d^{m} e^{p} f^{p} \mid n, m, p \geq 1\right\}\right)=3$
iii) There is a sequence of recursively enumerable languages $L_{n}, n \geq 1$, such that

$$
f(n) \leq \operatorname{Var}_{\lambda R C}\left(L_{n}\right) \leq\left[\log _{2} n\right]+3 \text { for } n \geq 1
$$

where f is an unbounded function from \mathbf{N} into \mathbf{N}.

Finite Index - Definitions

G - grammar
$D=S=w_{0} \Longrightarrow w_{1} \Longrightarrow w_{2} \Longrightarrow \ldots \Longrightarrow w_{n}=w$ - derivation of w in G
$\operatorname{Ind}(G, w, D)=\max \left\{\#_{N}\left(w_{i}\right) \mid 0 \leq 1 \leq n\right\}$
$\operatorname{Ind}(G, w)=\min \{\operatorname{Ind}(G, w, D) \mid D$ is a derivation of w in $G\}$
$\operatorname{Ind}(G)=\sup \{\operatorname{Ind}(G, w) \mid w \in L(G)\}$
$\operatorname{Ind}_{X}(L)=\min \{\operatorname{Ind}(G) \mid G \in \mathcal{G}(X), L=L(G)\}$
$X_{\text {fin }}=\left\{L \mid L \in X, \operatorname{Ind}_{X}(L)<\infty\right\}$

Families of Languages of Finite Index

Theorem :

i) All the following language families are equal to $M_{f i n}$
$P_{f i n},\left(P_{a c}\right)_{f i n}, \lambda P_{f i n},\left(\lambda P_{a c}\right)_{f i n}$,
$r C_{f i n},\left(r C_{a c}\right)_{f i n}, \lambda r C_{f i n},\left(\lambda r C_{a c}\right)_{f i n}$,
$\lambda M_{f i n},\left(M_{a c}\right)_{f i n},\left(\lambda M_{a c}\right)_{f i n}, R C_{f i n}, \lambda R C_{f i n}$,
ii) $O_{f i n} \subseteq M_{f i n} \subseteq C_{f i n}$
iii) $p R C_{f i n} \subseteq M_{f i n} \subset M$
iv) $a V_{f i n} \subset u V_{f i n} \subseteq M_{f i n}$

Theorem :
Each language in $\mathcal{L}_{\text {fin }}(M)$ is semilinear.

