
Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Grammars with Regulated Rewriting

Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg

Fakultät für Informatik

Lecture
in the

5th PhD Program Formal Languages and Applications

PhD Program Formal Languages and Applications, Tarragona, June 2006 1



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

References [1] – [4] are summarizing books/papers, the remaining references give the papers

where the regulations were introduced.
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Preliminaries I

N – set of all natural numbers – {0, 1, 2, 3, . . .},
Z – set of all integers
Q – set of all rational numbers

V = {a1, a2, . . . , an} – alphabet (with letters in a fixed order)
V ∗ – set of all words over V
V + – set of all non-empty words over V

|w| – length of the word w
#U(w) – number of occurrences of letters of U ⊂ V in w ∈ V ∗
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Preliminaries II

ΨV (w) = (#a1(w),#a2(w), . . . ,#an(w)) – Parikh vector of w
ΨV (L) = {ΨV (w) | w ∈ L} – Parikh language of L ⊂ V ∗

L ⊂ V ∗ is called semilinear if and only if its Parikh language ΨV (L) is a
finite union of linear subsets of Nn

(i.e., a finite union of sets which can be represented

{v0 +

m∑

i=1

γivi | γi ∈ N, 1 ≤ i ≤ m}

for some v0, v1, . . . , vm ∈ Nn
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Preliminaries III

G = (N, T, S, P ) – phrase-structure grammar

N – set of nonterminals (usually denoted by capitals)

T – set of nonterminals (usually denoted by small letters)

P – set of productions (or rules) α → β

S – axiom

VG = N ∪ T (sometimes only denoted by V )

G length-increasing iff |α| ≤ |β| for all α → β ∈ P

G context-free iff all rules of P have the form A → β with A ∈ N , β ∈ V ∗

G

G regular iff all rules of P have the form A → β with A ∈ N , β ∈ TN ∪T ∪{λ}
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Preliminaries IV

REG – family of all regular languages

CF – family of all context-free languages

CS – family of all length-increasing/context-sensitive languages

RE – family of all recursively enumerable languages

{ww | w ∈ {a, b}∗ } /∈ CF ,

{ancmbndm | n, m ≥ 1} /∈ CF ,

{a2n
| n ≥ 0} /∈ CF ,

{anbncn | n ≥ 1} /∈ CF
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Preliminaries V

Any L ∈ CS can be generated by grammar G = (N, T, S, P ) where all rules are
of the form AB → CD, A → BC, A → B and A → a with A,B,C,D ∈ N and
a ∈ T .

Any L ∈ RE can be generated by grammar G = (N, T, S, P ) where all rules
are of the form AB → CD, A → BC, A → B, A → a and A → λ with
A, B,C, D ∈ N and a ∈ T .

For any language L ∈ REG, there is a finite automaton A = (X, Z, z0, F, δ)
(with input set X, state Z, initial state z0, set F of accepting states and transition
function δ) such that the set T (A) of words accepted by A coincides with L.
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Motivation – English

Mary and John are
a woman and a man, respectively.

Mary, John and William are
a woman, a man and a man, respectively.

Mary, John, William and Jenny are
a woman, a man, a man and a woman, respectively.

Sentences of this type form a sublanguage L with

h(L) = {ww | w ∈ {a, b}} for some morphism h
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Motivation – Swiss German

Jan säit das mer em Hans hälfed.

(Jan says that we helped Hans.)

Jan säit das mer em Hans es Huus hälfed aastriche.

(Jan said that we helped Hans to paint the house.)

Jan säit das mer d’chind em Hans es Huus lönd hälfed aastriche.

(Jan said that we allowed the children to help Hans to paint the house.)

Sentences of this type form a sublanguage L with

h(L) = {ww | w ∈ {a, b}} for some morphism h
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Regularly Controlled Grammar – Definition

Definition ([9]) :
i) A regularly controlled (context-free) grammar is a 5-tuple G = (N, T, S, P,R)
where
— N, T, P and S are specified as in a context-free grammar,
— R is a regular set over P .

ii) The language L(G) generated by G consists of all words w ∈ T ∗ such that
there is a derivation

S =⇒p1 w1 =⇒p2 w2 =⇒p3 . . . =⇒pn wn = w

with
p1p2p3 . . . pn ∈ R.

PhD Program Formal Languages and Applications, Tarragona, June 2006 11



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Regularly Controlled Grammar – Example I

G = ({S,A, B}, {a, b}, S, {p0, p1, p2, p3, p4, p5, p6, p7, p8}, R)

p0 = S → AB,
p1 = A → aA, p2 = B → aB, p3 = A → bA, p4 = B → bB,
p5 = A → a, p6 = B → a, p7 = A → b, p8 = B → b

R = p0{p1p2, p3p4}
∗{p5p6, p7p8}

L(G) = {ww | w ∈ {a, b}+ }
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Regularly Controlled Grammar – Example II

G = ({S,A, B}, {a, b, c, d}, S, {p0, p1, p2, p3, p4, p5, p6}, R)

p0 = S → AB,
p1 = A → aA, p2 = B → bB, p3 = A → cA, p4 = B → dB,
p5 = A → c, p6 = B → d

R = p0(p1p2)
+(p3p4)

∗p5p6

L(G) = {ancmbndm | n ≥ 1, m ≥ 1}
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Appearance Checking

N and T – set of nonterminals and terminals, respectively
P – (finite) set of (context-free) productions over V = N ∪ T
F – subset of P

We say that x ∈ V + directly derives y ∈ V ∗ in appearance checking mode by
application of p = A → w ∈ P (written as x =⇒ac

p y) if one of the following
conditions hold:

x = x1Ax2 and y = x1wx2

or

A does not appear in x, p ∈ F and x = y.
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Regularly Controlled Grammar with Appearance Checking –

Definition

Definition ([9]) :
i) A regularly controlled (context-free) grammar with appearance checking is a 6-
tuple G = (N, T, S, P,R, F ) where

— N, T, P, S and R are specified as in a regularly controlled grammar and

— F is a subset of P .

ii) The language L(G) generated by G with appearance checking consists of all
words w ∈ T ∗ such that there is a derivation

S =⇒ac
p1

w1 =⇒ac
p2

w2 =⇒ac
p3

. . . =⇒ac
pn

wn = w

with
p1p2p3 . . . pn ∈ R.
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Regularly Controlled Grammar with Appearance Checking –

Example

G = ({S,A, X}, {a}, S, {p1, p2, p3, p4, p5}, R, F ),

p1 = S → AA, p2 = S → X, p3 = A → S, p4 = A → X, p5 = S → a

R = (p∗1p2p
∗

3p4)
∗p∗5,

F = {p2, p4}

L(G) = {a2m
| m ≥ 1}
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Regularly Controlled Grammars versus Chomsky Grammars

λrC – family of all languages generated by regularly controlled grammars
(without appearance checking)

λrCac – family of all languages generated by regularly controlled grammars
with appearance checking

rC – family of all languages generated by regularly controlled grammars
without erasing rules (and without appearance checking)

rCac – family of all languages generated by regularly controlled grammars
with appearance checking and without erasing rules

Theorem :
i) All languages of λrC over a unary alphabet are regular.
ii) CF ⊂ rC ⊂ rCac ⊂ CS
iii) CF ⊂ rC ⊆ λrC ⊂ λrCac = RE
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Matrix Grammar – Definition I

Definition ([5]) :
i) A matrix grammar with appearance checking is a quintuple
G = (N, T, S,M, F ) where

— N , T and S are specified as in a context-free grammar,

— M = {m1,m2, . . .mn}, n ≥ 1, is a finite set of sequences
mi = (pi,1, pi,2, . . . , pi,k(i)), k(i) ≥ 1, 1 ≤ i ≤ n,
where any pi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ k(i), is a context-free production,

— F is a subset of all productions occuring in the elements of M ,
i.e., F ⊆ {pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)}.

ii) We say that M is a matrix grammar without appearance checking if and only
if F = ∅.
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Matrix Grammar – Definition II

iii) For mi, 1 ≤ i ≤ n, and x, y ∈ V ∗

G, we define x =⇒mi
y by

x = x0 =⇒ac
pi,1

x1 =⇒ac
pi,2

x2 =⇒ac
pi,3

. . . =⇒ac
pi,k(i)

xk(i) = y

iv) The language L(G) generated by G (with appearance checking) is defined as
the set of all words w ∈ T ∗ such that there is a derivation

S =⇒mj1
y1 =⇒mj2

y2 =⇒mj3
. . . =⇒mjk

yk = w

for some k ≥ 1, 1 ≤ ji ≤ n, 1 ≤ i ≤ k.
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Matrix Grammar – Example I

G = ({S,A, B}, {a, b}, S, {m0,m1, m2, m3,m4}, ∅)

m0 = (S → AB), m1 = (A → aA, B → aB), m2 = (A → bA, B → bB),
m3 = (A → a, B → a), m4 = (A → b, B → b)

L(G) = {ww | w ∈ {a, b}+ }

G′ = ({S,A, B}, {a, b, c, d}, {m0, m1, . . . ,m4}, S, ∅)

m0 = (S → ACBD, m1 = (A → aA, B → bB), m2 = (A → a, B → b),
m3 = (C → cC, D → dD), m4 = (C → c, D → d)

L(G′) = {ancmbndm | n ≥ 1, m ≥ 1}
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Matrix Grammar – Example II

G = ({S,A, A′, B,C, D,X}, {a, b}, M, S, F )

M = {m0, m
′

0,m1, m2,m3, m4, m5,m
′

5}

m0 = (S → AB), m′

0 = (S → AD)
m1 = (A → A′A′, B → B), m2 = (A → X, B → C),
m3 = (A → a, D → D), m4 = (A → X, D → b),
m4 = (A′ → A, C → C), m5 = (A′ → X, C → B),
m′

5 = (A′ → X, C → D)

F = {A → X,A′ → X}

L(G) = {a2m
b | m ≥ 0}
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Matrix Grammars versus Regularly Controlled Grammars

λM – family of all languages generated by matrix grammars
(without appearance checking)

λMac – family of all languages generated by matrix grammars
with appearance checking

M – family of all languages generated by matrix grammars
without erasing rules (and without appearance checking)

Mac – family of all languages generated by matrix grammars
with appearance checking and without erasing rules

Theorem :
i) M = rC,
ii) λM = λrC,
iii) Mac = rCac,
iv) λMac = λrCac
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Unordered Vector Grammar – Definition

Definition ([7]) :
i) An (unordered) vector grammar is a quadruple G = (V, T, S,M) where N , T ,
M and S are defined as for matrix grammars.

ii) The language L(G) generated by G is defined as the set of all words w ∈ T
such that there is a derivation

S =⇒p1 w1 =⇒p2 w2 =⇒p3 . . . =⇒pn w

where p1p2 . . . pn is a permutation of some element of M ∗.
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Unordered Vector Grammar – Example

G = ({S,A, B}, {a, b}, {m0, m1,m2, m3, m4}, S, ∅)

m0 = (S → AB),
m1 = (A → aA, B → aB), m2 = (A → bA, B → bB),
m3 = (A → a, B → a), m4 = (A → b, B → b)

{wxw′x | x ∈ {a, b}, w ∈ {a, b}∗, w′ ∈ Perm({w})}
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Unordered Vector Grammars versus Matrix Grammars

λuV – family of all languages generated by unordered vector grammars

uV – family of all languages generated by unordered vector grammars
without erasing rules

Theorem :
CF ⊂ uV = λuV ⊂ M

Theorem :
Each language in uV is semilinear.
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Programmed Grammar – Definition I

Definition ([12]) :
i) A programmed grammar is a quadruple G = (N, T, S, Lab, P, PG) where

— N , T and S are specified as in a context-free grammar,

— Lab is a finite set of labels,

— P is a finite set of context-free productions (set of core productions)

PG is a finite set of quadruples r = (q, p, σ, ϕ) where q ∈ Lab, p ∈ P ,
and σ and ϕ are subsets of Lab.

If r = (q, p, σ, ϕ), then σ and ϕ are called the success field and failure field of r,
respectively.

ii) If r = (q, p, σ, ∅) holds for any r ∈ PG, then we say that G is a programmed
grammar without appearance checking. Otherwise G is a programmed grammar
with appearance checking.
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Programmed Grammar – Definition II

iii) The language L(G) generated by G is defined as the set of all words w ∈ T ∗

such that there is a derivation

S = w0 =⇒r1 w1 =⇒r2 w2 =⇒r3 . . . =⇒rk
wk = w,

k ≥ 1 and, for ri = (qi, Ai → vi, σi, ϕi), one of the following conditions hold:

wi−1 = w′

i−1Aiw
′′

i−1, wi = w′

i−1viw
′′

i−1 for some w′

i−1, w
′′

i−1 ∈ V ∗

G and qi+1 ∈ σi

or

Ai does not occur in wi−1, wi−1 = wi and qi+1 ∈ ϕi.
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Programmed Grammar – Examples I

G = ({S,A, B}, {a, b}, S, {q0, q1, ,̇q8}, P, {r0, r1, r2, . . . , r8})

P = {S → AB, A → aA, B → aB, A → bA, B → bB,
A → a, B → a, A → b, B → b}

r0 = (q0, S → AB, {q1, q3, q5, q7}, ∅),
r1 = (q1, A → aA, {q2}, ∅), r2 = (q2, B → aB, {q1, q3, q5, q7}, ∅),
r3 = (q3, A → bA, {q4}, ∅), r4 = (q4, B → bB, {q1, q3, q5, q7}, ∅),
r5 = (q5, A → a, {q6}, ∅), r6 = (q6, B → a, ∅, ∅),
r7 = (q7, A → b, {q8}, ∅), r8 = (q8, B → b, ∅, ∅),

L(G) = {ww | w ∈ {a, b}+ }
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Programmed Grammar – Examples II

G′ = ({S,A}, {a}, {q1, q2, q3}, P
′, {r1, r2, r3}, S)

P ′ = {S → AA, A → S, S → a}

r1 = (q1, S → AA, {q1}, {q2}), r2 = (q2, A → S, {q2}, {q1, q3}),

r3 = (q3, S → a, {q3}, ∅)

L(G′) = {a2m
| m ≥ 0}
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Programmed Grammars versus Matrix Grammars

λP – family of all languages generated by programmed grammars
(without appearance checking)

λPac – family of all languages generated by programmed grammars
with appearance checking

P – family of all languages generated by programmed grammars
without erasing rules (and without appearance checking)

Pac – family of all languages generated by programmed grammars
with appearance checking and without erasing rules

Theorem :
i) P = M ,
ii) λP = λM ,
iii) Pac = Mac,
iv) λPac = λMac
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Regularly Controlled Grammar – Another Interpretation I

R ⊂ X∗ – regular set

R = T (A) for some finite (nondeterministic) automaton A = (X,Z, z0, Q, δ)

A – description as a graph with labelled edges

z′ = δ(z, x) corresponds to z
x

z′

x1x2 . . . xn ∈ T (A) = R if and only if x1x2 . . . xn is a sequence of edge labels
given by a path from z0 to some state in Q

Control by a regular set corresponds to
control by sequences of edge labels of paths from a source node to a target node
(in a graph with edge labelling, one source node and a set of target nodes)
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Regularly Controlled Grammar – Another Interpretation II

R = p0{p1p2, p3p4}
∗{p5p6, p7p8}

z4

p2

z4

p6
z5

z0

p0
z1

p1

p3

p5

p7

z4

p4

z6
p8

z7

source node – z0

target nodes – z5, z7
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Programmed Grammars – Another Interpretation I

G = (N, T, S, Lab, P, PG) – programmed grammar without appearance checking
r = (q(r), p(r), σ(r), ϕ(r))

H = (Lab,E) – graph
(q(r), q′) ∈ E if and only if q′ ∈ σ(r)

S =⇒r1 w1 =⇒r2 w2 . . . =⇒rk
wk = w – derivation in G

if and only if
q1q2 . . . qk is a sequence of nodes along a path in H

Control in programmed grammars corresponds to
control by node sequences along paths in graphs
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Programmed Grammars – Another Interpretation II

G = ({S,A, B}, {a, b}, S, {q0, q1, ,̇q8}, P, {r0, r1, r2, . . . , r8})

r0 = (q0, S → AB, {q1, q3, q5, q7}, ∅),
r1 = (q1, A → aA, {q2}, ∅),
r2 = (q2, B → aB, {q1, q3, q5, q7}, ∅),
r3 = (q3, A → bA, {q4}, ∅),
r4 = (q4, B → bB, {q1, q3, q5, q7}, ∅),
r5 = (q5, A → a, {q6}, ∅),
r6 = (q6, B → a, ∅, ∅),
r7 = (q7, A → b, {q8}, ∅),
r8 = (q8, B → b, ∅, ∅),

r1 r2

r4 r6

r0

r7 r8

r3 r4

PhD Program Formal Languages and Applications, Tarragona, June 2006 34



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Valence Grammar – Definition
Definition ([11]) :
i) A valence grammar over a monoid is a quintuple G = (N, T, S, P, (M, ◦))
where

— N , T and S are specified as in a context-free grammar,

— (M, ◦) is a monoid with neutral element e,

— P is a finite set of pairs r = (p,m) with a context-free rule p and m ∈ M .

ii) For x, y ∈ V ∗

G, k, l ∈ M , we say that (x, k) directly derives (y, l), written as
(x, k) =⇒ (y, l), iff there is a pair r = (A → w, m) ∈ P such that

— x = x′Ax′′ and y = x′wx′′ for some x′, x′′ ∈ V ∗

G and

— l = k ◦ m.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, (S, e) =⇒∗ (w, e)}.
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Valence Grammar – Examples

G = ({S,A, B}, {a, b}, S, {r0, r1, r2, r3, r4, r5, r6, r7, r8}, (Q, ·))

r0 = (S → AB, 1), r1 = (A → aA, 2), r2 = (B → aB, 1/2),
r3 = (A → bA, 3), r4 = (B → bB, 1/3), r5 = (A → a, 2),
r6 = (B → a, 1/2), r7 = (A → b, 3), r8 = (B → b, 1/3)

L(G) = {w1w2 | w1 ∈ {a, b}∗, w2 ∈ Perm(w1)}

G′ = ({S,A, B}, {a, b}, S, {r′0, r
′

1, r
′

2, r
′

3, r
′

4, r
′

5, r
′

6, r
′

7, r
′

8}, (Z,+))

r′0 = (S → AB, 0), r′1 = (A → aA, 2), r′2 = (B → aB,−2),
r′3 = (A → bA, 3), r′4 = (B → bB,−3), r′5 = (A → a, 2),
r′6 = (B → a,−2), r′7 = (A → b, 3), r′8 = (B → b,−3)

L(G′) = {w1w2 | w1, w2 ∈ {a, b}+, 2#a(w1) + 3#b(w1) = 2#a(w2) + 3#b(w2)}
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Valence Grammars versus other Grammars

Additive valence grammar – (M, ◦) = (Z, +)
Multiplicative valence grammar – (M, ◦) = (Q, ·)

λaV – family of all languages generated by additive valence grammars

aV – family of all languages generated by additive valence grammars
without erasing rules

λmV – family of all languages generated by multiplicative valence grammars

mV – family of all languages generated by multiplicative valence grammars
without erasing rules

Theorem :
aV = λaV ⊂ mV = λmV = uV
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Conditional Grammars – Definition

Definition ([8]) :
i) A conditional grammar is a quadruple G = (N, T, S, P ) where

— N , T and S are specified as in a context-free grammar, and

— P is a finite set of pairs r = (p,R) where p is a context-free production
and R is a regular set over VG.

ii) For x, y ∈ V ∗

G, we say that x directly derives y, written as x =⇒ y, iff there
is a pair r = (A → w, R) ∈ P such that x = x′Ax′′ and y = x′wx′′ for some
x′, x′′ ∈ V ∗

G and x ∈ R.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, S =⇒∗ w}.
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Conditional Grammars – Examples

G = ({S,A, B,A′, B′}, {a, b}, S, {r0, r1, . . . r8})

r0 = (S → AB,S),
r1 = (A → aA′, V ∗BV ∗), r2 = (A → bA′, V ∗BV ∗),
r3 = (B → aB′, V ∗aA′V ∗, r4 = (B → bB′, V ∗bA′V ∗),
r5 = (A′ → A, V ∗B′V ∗), r6 = (A′ → λ, V ∗B′V ∗),
r7 = (B′ → B,V ∗AV ∗), r8 = (B′ → λ, T ∗B′T ∗),

L(G) = {ww | w ∈ {a, b}+ }

G′ = ({S, S′, A, B}, {a}, S, {r1, r2, r3, r4, r5, r6})

r1 = (S → S′B,SA∗), r2 = (A → BB,S′B+A+),
r3 = (S′ → S, S′B+, r4 = (B → A, SA∗B+),
r5 = (S → a, SA∗), r6 = (A → a, a+A+)

L(G′) = {a2n
| n ≥ 0}
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Semi-Conditional Grammar – Definition
Definition ([10]) :
i) A semi-conditional grammar is a quadruple G = (N, T, S, P ) where

— N , T and S are specified as in a context-free grammar, and

— P is a finite set of triples r = (p,R, Q) where p is a context-free production
and R and Q are disjoint finite sets of words over VG.

R (Q) are called the permitted (forbidden) context of r or p, respectively.

ii) For x, y ∈ V ∗

G, we say that x directly derives y, written as x =⇒ y, iff there is
a triple r = (A → w, R,Q) ∈ P such that

— x = x′Ax′′ and y = x′wx′′ for some x′, x′′ ∈ V ∗

G,

— any word of R is a subword of x, and no word of Q is a subword of x.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, S =⇒∗ w}
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Semi-Conditional Grammar – Examples

G = ({S, S′, S′′}, {a}, S, {r1, r2, r3, r4})

r1 = (S → S′S′, ∅, {SS′, S′′, a}), r2 = (S′ → S′′, ∅, {S′S′′, S, a}),
r3 = (S′′ → S, ∅, {S′′S, S′, a}, r4 = (S → a, ∅, {Sa, S′, S′′})

L(G) = {a2n

| n ≥ 0}

G′ = ({S, S′, S′′, A}, {a}, S, {r1, r2, r3, r4, r5})

r1 = (S → S′S′, ∅, {S′′, A}), r2 = (S′ → S′′, ∅, {S}), r3 = (S′′ → S, ∅, {S′}),
r4 = (S → A, ∅, {S′, S′′}), r5 = (A → a, ∅, {S})

L(G′) = {a2n
| n ≥ 0}
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Random Context Grammar

Definition ([13]) :
A random context grammar is a semi-conditional grammar where the permitting
and forbidden contexts of all productions are subsets of the set of nonterminals.

A permitting (forbidden, respectively) random context grammar is a random
context grammar where all forbidden (permitting, respectively) contexts are
empty.

Example :
G = ({S,A, A′, Aa, Ab, B,B′}, {a, b}, S, {r0, r1, . . . r10})

r0 = (S → AB, ∅, ∅), r1 = (A → aAa, {B}, ∅), r2 = (A → bAb, {B}, ∅),
r3 = (B → aB′, {Aa}, ∅), r4 = (B → bB′, {Ab}, ∅),
r5 = (Aa → A, {B′}, ∅), r6 = (Ab → A, {B′}, ∅), r7 = (B′ → B, {A}, ∅)
r8 = (A → A′′, {B}, ∅), r9 = (B → λ, {A′′}, ∅), r10 = (A′′ → λ, ∅, ∅)

L(G) = {ww | w ∈ {a, b}∗ }
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Notations
λC – family of all languages generated by conditional grammars

C – family of all languages generated by conditional grammars
without erasing rules

λsC – family of all languages generated by semi-conditional grammars

sC – family of all languages generated by semi-conditional grammars
without erasing rules

λRC – family of all languages generated by random context grammars

RC – family of all languages generated by random context grammars
without erasing rules

λpRC – family of all languages generated by permitting random
context grammars

pRC – family of all languages generated by permitting random
context grammars without erasing rules
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Generative Capacity

Theorem :
i) λC = λsC = RE

ii) C = sC = CS

Theorem :
i) CF ⊂ pRC ⊂ RC = Mac ⊂ λRC.

ii) pRC ⊆ λpRC ⊂ λRC = λMac.

iii) pRC ⊆ M

iv) λpRC ⊆ λM
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Ordered Grammar – Definition

Definition ([8]) :
i) An ordered grammar is a quadruple G = (N, T, S, P ) where

— N , T and S are specified as in a context-free grammar and

— P is a finite (partially) ordered set of context-free production.

ii) For x, y ∈ VG, we say that x directly derives y, written as x =⇒ y, if and only
if there is a production p = A → w ∈ P such that x = x′Ax′′, y = x′wx′′ and
there is no production q = B → v ∈ P such that p ≺ q and B occurs in x.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, S =⇒∗ w}
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Ordered Grammar – Example

G = ({S, S′, S′′, A, Z}, {a}, S, P )

S′′ → Z A → Z S′ → Z S → Z

S → S′S′ S′′ → S S → A S′ → S′′ A → a

L(G) = {a2n
| n ≥ 0}
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Ordered Grammars versus Other Grammars

λfRC – family of all languages generated by forbidden
random context grammars

fRC – family of all languages generated by forbidden
random context grammars without erasing rules

λO – family of all languages generated by ordered grammars

O – family of all languages generated by ordered grammars
without erasing rules

Theorem :
i) O = fRC ⊆ λO = λfRC ⊂ RE.

ii) CF ⊂ O ⊂ rCac
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Indexed Grammar – Definition I

Definition ([6]) :
i) An indexed grammar is a quintuple G = (N, T, I, S, P ) where

• N , T and S are specified as in a context-free grammar,

• I is a finite set of finite sets of productions of the form A → w with A ∈ N
and w ∈ V ∗

G, and

• P is a finite set of productions of the form A → α with A ∈ N and
α ∈ (NI∗ ∪ T )∗.

The elements of I are called indexes.
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Indexed Grammar – Definition II

ii) For x, y ∈ (NI∗ ∪ T )∗, we say that x directly derives y, written as x =⇒ y, if
either

x = x1Aβx2 for some x1, x2 ∈ (NI∗ ∪ T )∗, A ∈ N , β ∈ I∗,
A → X1β1X2β2 . . . Xkβk ∈ P ,
y = x1X1γ1X2γ2 . . . Xkγkx2

with γi = βiβ for Xi ∈ N and γi = λ for Xi ∈ T , 1 ≤ i ≤ k,

or

x = x1Aiβx2 for some x1, x2 ∈ (NI∗ ∪ T )∗, A ∈ N , i ∈ I, β ∈ I∗,
A → X1X2 . . . Xk ∈ i,
y = x1X1γ1X2γ2 . . . Xkγkx2

with γi = β for Xi ∈ N and γi = λ for Xi ∈ T , 1 ≤ i ≤ k.
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Indexed Grammar – Definition III and a Result

=⇒∗ denotes the reflexive and transitive closure of =⇒.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, S =⇒∗ w}

λI – family of all languages generated by indexed grammars

I – family of all languages generated by indexed grammars
without erasing rules

Theorem :

CF ⊂ I = λI ⊆ CS.
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Indexed Grammar – Examples

G = ({S,A, B}, {a, b, c, d}, {f}, S, P )

f = {B → bB,B → b},

P = {S → aSf, S → A, A → cAd,A → B}

L(G) = {ancmbndm | n ≥ 1, m ≥ 1}

G′ = ({S,A}, {a, b}, {fa, fb, h}, S, P )

fa = {B → Ba}, fb = {B → Bb}, h = {B → λ},

P = {S → Ah, A → aAfa, A → bAfb, A → B}

L(G′) = {ww | w ∈ {a, b}∗}
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Hierarchy of Languages Obtained by Regulated Rewriting

Theorem : The following equalities are valid:

RE = λMac = λrCac = λPac = λRC = λC = λsC,

CS = C = sC,

λM = λrC = λP ,

Mac = rCac = Pac = RC,

M = rC = P ,

uV = λuV = mV = λmV ,

aV = λaV ,

λO = λfRC,

O = fRC,

I = λI
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Theorem :
The opposite diagram holds.

If two families are connected by a line

(an arrow), then the upper family includes

(includes properly) the lower family; if two

families are not connected then they are

not necessarily incomparable.

RE

CS

λO I Mac λM

M λpRC) mV

O pRC aV

CF
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Closure Properties

Theorem : The following table holds.

operation Mac λM M uV aV I λO O λpRC pRC

union + + + + + + + + + +

intersection ? – – – – – – – – –

complement ? – – – – – – – – –

intersection + + + + + + + + + +
by reg. sets
concatenation + + + + – + + + + +

Kleene-closure + ? ? – – + + + + +
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operation Mac λM M uV aV I λO O λpRC pRC

λ-free + + + + + + + + + +
morphisms
(arbitrary) – + – + + + + ? + ?
morphisms
inverse + + + + + + + + + +
morphisms
λ-free + + + + + + + + + +
gsm-mappings
gsm-mappings – + – + + + + ? + ?

derivative + + + + + + + + + +

quotient – + – + + + + + + ?
by reg. sets
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Decision Results I

Theorem :

Let X be a family of grammars generating one of the families

{Mac, M,RC, O, λM, λRC, λO, I, uV, aV }.

Then the equivalence problem

Instance: grammars G1 ∈ X and G2 ∈ X,
Answer: ”Yes” if and only if L(G1) = L(G2)

and the problem

Instance: grammar G ∈ X
Answer: ”Yes” if and only if G generates a context-free language.

are undecidable.
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Decision Results II

Theorem : The following table holds.

grammar membership emptiness finiteness
family problem problem problem

I NP-complete + +

λO ? ? ?

O + , NP-hard ? ?

Mac + , NP-hard - -

λM + + , NP-hard + , NP-hard

M + + , NP-hard + , NP-hard

uV ∈LOGCFL + , NP-hard + , NP-hard

RC + + , NP-hard + , NP-hard

aV DTIME(n4) + +
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Reachability Problem for Vector Addition System

An n-dimensional vector addition system is a couple (x0, K) where x0 ∈ Nn and
K is a finite subset of Zn.

A vector y ∈ Nn is called reachable within (x0, K) if and only if there are vectors
v1, v2, . . . , vt ∈ K, t ≥ 1, such that

x0 +

j∑

i=1

vi ∈ Nn for 1 ≤ j ≤ t and x0 +
t∑

i=1

vi = y.

The reachability problem

Instance: n-dimensional vector addition system (x0, K), vector y ∈ Nn

Answer: ”Yes” if and only if y is reachable within (x0,K)

is decidable (in exponential space).
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3–Partition Problem

The 3-partition problem

Instance: multiset {t1, t2, . . . , t3m} of integers and integer t
Answer: Yes, if there is partition {Q1, Q2, . . . , Qm} of {t1, t2, . . . , t3m}

such that #(Qi) = 3 and
∑

s∈Qi
s = t for 1 ≤ i ≤ m.

is NP-complete.
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Syntactic Complexity I

Definition :
i) For a grammar G, V ar(G) denotes the cardinality of its set of nonterminals.

ii) Let X be a family of languages and G(X) the corresponding set of grammars.
For a language L ∈ X, we set

V arX(L) = min{V ar(G) | G ∈ G(X), L(G) = L}.

Theorem :
There is a sequence of context-free languages Ln, n ≥ 1, such that

V arCF (Ln) = n,
V arM(Ln) ≤ 3, V arP (Ln) = 1, V arrC(Ln) = 1, V arpRC(Ln) ≤ 8.
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Syntactic Complexity II

Theorem :
i) For any recursively enumerable language L,

V arλMac(L) ≤ 3 and V arλPac(L) ≤ 3.

ii) V arλMac({a
nbncmdmepfp | n, m, p ≥ 1}) = 3

iii) There is a sequence of recursively enumerable languages Ln, n ≥ 1, such that

f(n) ≤ V arλRC(Ln) ≤ [log2 n] + 3 for n ≥ 1

where f is an unbounded function from N into N.
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Finite Index – Definitions

G – grammar

D = S = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn = w – derivation of w in G

Ind(G,w,D) = max{#N(wi) | 0 ≤ 1 ≤ n}

Ind(G,w) = min{Ind(G, w,D) | D is a derivation of w in G}

Ind(G) = sup{Ind(G,w) | w ∈ L(G)}

IndX(L) = min{Ind(G) | G ∈ G(X), L = L(G)}

Xfin = {L | L ∈ X, IndX(L) < ∞}
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Families of Languages of Finite Index

Theorem :

i) All the following language families are equal to Mfin

Pfin, (Pac)fin, λPfin, (λPac)fin,
rCfin, (rCac)fin, λrCfin, (λrCac)fin,
λMfin, (Mac)fin, (λMac)fin, RCfin, λRCfin,

ii) Ofin ⊆ Mfin ⊆ Cfin

iii) pRCfin ⊆ Mfin ⊂ M

iv) aVfin ⊂ uVfin ⊆ Mfin

Theorem :

Each language in Lfin(M) is semilinear.
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