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Abstract: Context-free grammars are not able to cover all linguistic phenomena.
Thus we define some types of grammars where context-free rules are used and restric-
tion imposed on the derivations. We illustrate the concepts by example, compare
the generative power, give some closure and decidability properties and basic facts
on syntactic complexity.

0. Introduction

The regular and context-free grammars/languages are the most investigated types of
formal languages which, in addition, have a lot of nice properties (see [9, 11, 14] and the
corresponding chapters of this volume). However, these types of grammars/languages are
not able to cover all aspects which occur in modelling of phenomena by means of formal
languages. Here we only mention an example from natural languages. Let us consider the
following sequence of a German dialect spoken in Switzerland:

S1=Jan säit das mer em Hans hälfed.
(Jan says that we helped Hans.)

S2=Jan säit das mer em Hans es Huus hälfed aastriche.
(Jan said that we helped Hans to paint the house.)

S3=Jan säit das mer d’chind em Hans es Huus lönd hälfed aastriche.
(Jan said that we allowed the children to help Hans to paint the house.)

Further, let h be the morphisms which maps Hans and hälfed to the letter a, Huus,
aastriche, d’chind and lönd to b and all other words of the sentences to the empty word.
Then we get

h(S1) = aa, h(S2) = abab, h(S3) = babbab .

It is easy to see that sentences of the above structure form a sublanguage L of that
German dialect with

h(L) = {ww | w ∈ {a, b}∗} .

It is well-known that {ww | w ∈ {a, b}+} is neither a regular nor a context-free language.
Analogous phenomena can be given using programming languages instead of natural

languages.
Obviously, one can construct a context-sensitive or length-increasing grammar which

generates {ww | w ∈ {a, b}+}, and the same statement holds for other languages obtained
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by modelling aspects of natural or programming languages. However, the corresponding
classes of grammars and languages have bad features, e.g. for context-sensitive grammars,
the emptiness problem is undecidable and only exponential algorithms are known for the
membership problem. Moreover, such concepts as derivation tree, which is an important
tool for the analysis of context-free and natural languages, cannot be transformed to
context-sensitive and length-increasing grammars.

Therefore one is interested in classes of languages which on the one hand only use
context-free production rules and a sequential derivation process and on the other hand
have a larger generative capacity by some additional mechanisms. In this chapter we
present some of such classes where the mechanisms select some derivations as successful
and take the corresponding terminal words into the language whereas the words obtained
by other derivations are not taken into the language.

We finish this section with some notations. For a word w we denote by Perm(w) the
set of words which are obtained from w by a permutation of the letters. For a language L
we define Perm(L) as union of all sets Perm(w) taken over all words w ∈ L. Let U ⊆ V ,
then the morphism hU : V ∗ → U∗ is defined by hU(a) = a for a ∈ U and hU(b) = λ for
b /∈ U . By =⇒∗ we denote the reflexive and transitive closure of a relation =⇒.

Moreover, in Section 5 we shall assume that the reader is familiar with the basic
concepts of computational complexity. We refer to [11].

1. Control by Prescribed Sequences of Productions

We start with a type of grammars where we require that the sequence of productions
applied in a derivation belong to a given regular language associated with the grammar.
Formally we get the following definition.

Definition 1 i) A regularly controlled grammar is a quintuple G = (N, T, S, P, R) where
— N, T, P and S are specified as in a context-free grammar,
— R is a regular set over P .

ii) The language L(G) generated by G consists of all words w ∈ T ∗ such that there is
a derivation

S =⇒p1 w1 =⇒p2 w2 =⇒p3 . . . =⇒pn wn = w

with
p1p2p3 . . . pn ∈ R.

Example 1 Let

G1 = ({S, A,B}, {a, b}, S, {p0, p1, p2, p3, p4, p5, p6, p7, p8}, R)

be a regulary controlled grammar where

p0 = S → AB, p1 = A → aA, p2 = B → aB, p3 = A → bA, p4 = B → bB,
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p5 = A → a, p6 = B → a, p7 = A → b, p8 = B → b,

R = p0{p1p2, p3p4}∗{p5p6, p7p8}.
Any derivation has to start with p0 which yields AB. By the application of p1p2 or p3p4

we generate from A and B the same letter a or b, respectively. Furthermore, this can
be iterated. By p5p6 and p7p8 we produce the same letter from A and B and stop the
derivation. Thus the generated language is

L(G1) = {ww | w ∈ {a, b}+ } .

Thus we can generate the non-context-free language which is of interest by the introduc-
tion of this chapter.

Assume that we want to apply the sequence q1q2 . . . qr ∈ R of productions and we
have already applied q1q2 . . . qk, k < r. If the resulting sentential form does not contain
the left hand side of the production qk+1, then by the above definition the derivation is
blocked, i.e., we cannot use any string of R. In order to overcome this situation we give
the following definition.

Definition 2 We say that x ∈ V + directly derives y ∈ V ∗ in appearance checking mode
by application of p = A → w ∈ P (written as x =⇒ac

p y) if one of the following conditions
hold:

x = x1Ax2 and y = x1wx2 or A does not appear in x, p ∈ F and x = y.

Definition 3 i) A regularly controlled (context-free) grammar with appearance checking
is a 6-tuple G = (N, T, S, P, R, F ) where
— N, T, P, S and R are specified as in a regularly controlled grammar and
— F is a subset of P .

ii) The language L(G) generated by G with appearance checking consists of all words
w ∈ T ∗ such that there is a derivation

S =⇒ac
p1

w1 =⇒ac
p2

w2 =⇒ac
p3

. . . =⇒ac
pn

wn = w

with
p1p2p3 . . . pn ∈ R.

Example 2 We consider the regularly controlled grammar

G2 = ({S, A, X}, {a}, S, {p1, p2, p3, p4, p5}, R, F )

with appearance checking where

p1 = S → AA, p2 = S → X, p3 = A → S, p4 = A → X, p5 = S → a,

R = (p∗1p2p
∗
3p4)

∗p∗5 and F = {p2, p4}.
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We regard the sentential form w = S2n
for some n ≥ 0 and assume that we have applied

a sequence of (p∗1p2p
∗
3p4)

∗. This situation holds for the axiom. We have to continue with
p5 or p1. In the former case we have to finish by further applications of p5. Hence we get
a2n

. In the latter case after some applications of p1 we have to apply p2 which introduces
X which cannot be terminated. Thus p2 has to be applied until all letters S are replaced.
This gives Sn =⇒∗ (A2)n = A2n+1

. Now we apply p2 in the appearance checking mode
without changing the sentential form A2n+1

. By the same argumentation we now have to
replace all occurrences of A by p3 and then to apply p4 in the appearance checking mode.
This yields A2n+1

=⇒ S2n+1
which is of the form as the sentential form we started with.

Therefore G2 generates the non-semilinear language

L(G2) = {a2m | m ≥ 1} .

We denote by λrC, λrCac, rC and rCac the families of all languages generated by regu-
larly controlled grammars (without appearance checking), regularly controlled grammars
with appearance checking, regularly controlled grammars without erasing rules (and with-
out appearance checking) and regularly controlled grammars with appearance checking
and without erasing rules, respectively.

The following theorem summarizes the relations to the language families of the Chom-
sky hierarchy.

Theorem 1 i) All languages of λrC over a unary alphabet are regular.
ii) CF ⊂ rC ⊂ rCac ⊂ CS
iii) CF ⊂ rC ⊆ λrC ⊂ λrCac = RE

Proof. Since the known proofs for statement i) use deep results from the theory of Petri
nets (see [10]) we omit a proof.

CF ⊂ rC. Obviously, the context-free grammar G = (N, T, S, P ) (which can be as-
sumed to have no erasing rules) and the regularly controlled grammar G′ = (N, T, S, P, P ∗)
generate the same language since the control set P ∗ imposes no restriction. This proves
CF ⊆ rC. The strictness of the inclusion follows by Example 1.

rC ⊂ rCac and λrC ⊂ λrCac. The inclusions hold by definition. The strictnesses
follow by i) and Example 2.

rC ⊂ CS. Let G = (N, T, S, P, R) be a regularly controlled grammar, and let A =
(P, Z, z0, Q, δ) be a deterministic finite automaton (with input set P , set Z of states,
initial state z0, set Q of final states and transition function δ) which accepts R. Then we
construct the length-increasing grammar G′ = (N ∪ {S ′, $} ∪ Z, T ∪ {§}, S ′, P ′) with P
consisting of all rules of the following form:
– S ′ → $z0S

(initial rule which introduces a marker in the beginning and a state),
– zx → xz and xz → zx for z ∈ Z and x ∈ N ∪ T

(by these rules the state can be moved to any place in the sentential form),
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– zA → z′w for p = A → w ∈ P and δ(z, p) = z′

(this rule simulates an application of p and changes the state according to δ),
– $z → §2 for z ∈ Q

(if a final state is reached, we can finish the derivation; all rules require a state).
By the explanation added to the rules we can only finish a derivation with a terminal

word, if – besides the last rule – the sequence of productions belongs to the language
R accepted by A and the last rule is $z → §2. Therefore we obtain L(G′) = §2 · L(G).
Because CS is closed under derivatives we get that L(G) belongs to CS.

For the proof of the other inclusions and strictnesses we refer to [2, 3]. 2

The words of the (regular) control set describe the complete sequences of productions
which are allowed. We now define a new type of grammars where we require only partial
sequences of the derivations.

Definition 4 i) A matrix grammar with appearance checking is specified as a quintuple
G = (N, T, S, M, F ) where

• N , T and S are specified as in a context-free grammar,

• M = {m1,m2, . . . mn}, n ≥ 1, is a finite set of sequences mi = (pi1 , . . . , pik(i)
),

k(i) ≥ 1, 1 ≤ i ≤ n, where any pij , 1 ≤ i ≤ n, 1 ≤ j ≤ k(i), is a context-free
production

• F is a subset of all productions occurring in the elements of M , i.e. F ⊆ {pij : 1 ≤
i ≤ n, 1 ≤ j ≤ k(i)}.

ii) We say that M is a matrix grammar without appearance checking if and only if F = ∅.
iii) For mi, 1 ≤ i ≤ n, and x, y ∈ V ∗

G, we define x =⇒mi
y by

x = x0 =⇒ac
pi1

x1 =⇒ac
pi2

x2 =⇒ac
pi3

. . . =⇒ac
pik(i)

xk(i) = y

iv) The language L(G) generated by G (with appearance checking) is defined as the set of
all words w ∈ T ∗ such that there is a derivation

S =⇒mj1
y1 =⇒mj2

y2 =⇒mj3
. . . =⇒mjk

w

for some k ≥ 1, 1 ≤ ji ≤ n, 1 ≤ i ≤ k.

The elements of M are called matrices.
Intuitively, the application of a matrix consist of an application of the productions of

the matrix in the order given by the matrix.

Example 3 We consider the matrix grammar

G3 = ({S, A, B}, {a, b}, S, {m0,m1,m2,m3,m4}, ∅)
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(without appearance checking) where

m0 = (S → AB), m1 = (A → aA, B → aB), m2 = (A → bA, B → bB),

m3 = (A → a, B → a), m4 = (A → b, B → b) .

Assume we have a sentential form of the form w = zAzB for a certain word z ∈ {a, b}∗
(any derivation has to start with an application of m0 which yields AB of the desired
form). If we apply m1 or m2, then we obtain zxAzxB with x = a or x = b, respectively,
which are sentential form of the form we started with. If we apply m3 or m4, then we
obtain zxzx with x = a or x = b, respectively. Therefore

L(G3) = {ww | w ∈ {a, b}+ } .

Example 4 Let

G4 = ({S, A, A′, B, C,D}, {a, b}, S, {m0,m
′
0,m1,m2,m3,m4,m5,m

′
5}, F )

be a matrix grammar with appearance checking where

m0 = (S → AB), m′
0 = (S → AD),m1 = (A → A′A′, B → B),

m2 = (A → E, B → C), m3 = (A → a,D → D), m4 = (A → E, D → b),

m5 = (A′ → A, C → C), m6 = (A′ → T, C → B), m′
6 = (A′ → E, D → D),

F = {A → E,A′ → E} .

Obviously, the matrices m2 and m4 can only be applied to a sentential form w, if w does
not contain the letter A, since we generate the trap symbol E which cannot be replaced
otherwise. The same holds for m6 and m′

6 with respect to A′. Thus any derivation is
essentially of the following form:

S =⇒m0 AB =⇒m1 A′A′B =⇒m2 A′A′C =⇒m5 AA′C =⇒m5 AAC =⇒m6 AAB

=⇒m1 A′A′AB =⇒m1 A′A′A′A′B =⇒m2 A′A′A′A′C =⇒∗
m5

AAAAC =⇒m6 AAAAB

=⇒∗ A2n−1

B =⇒∗
m1

(A′)2n

B =⇒m2 (A′)2n

C =⇒∗
m4

A2n

C =⇒m′
5

A2n

D

=⇒∗
m3

a2n

D =⇒m4 a2n

b .

This implies L(G4) = {a2m
b : m ≥ 0}.

By λM , λMac, M and Mac we denote the families of languages generated by matrix
grammars (without appearance checking), matrix grammars with appearance checking,
matrix grammars without erasing rules (and without appearance checking) and matrix
grammars with appearance checking and without erasing rules, respectively.

Theorem 2 M = rC, λM = λrC, Mac = rCac and λMac = λrCac.
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Proof. We only prove the first statement; the proofs for the other statements can be
given by modifications.

M ⊆ rC. Let G = (N, T, S, M) be a matrix grammar as in Definition 4. Then
the regularly controlled grammar G′ = (N, T, S, {pi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)},M∗)
generates L(G).

rC ⊆ M . Let H = (N, T, S, P,R) be a regularly controlled grammar and let A =
(P, Z, z0, Q, δ) be a deterministic finite automaton which accepts R (by the set Q of final
states). Then we construct the matrix grammar

H ′ = (N ∪ {(z, x) | z ∈ Z, x ∈ N ∪ T}, T, (z0, S),M)

where M consists of all matrices of the form
– (A → w, (z, x) → (δ(z, p), x)) for p = A → w ∈ P , x ∈ N ∪ T , z ∈ Z,
– ((z, A) → (z, a1)a2a3 . . . an, (z, a1) → (δ(z, p), a1)) for p = A → a1a2 . . . an ∈ P , z ∈ Z,
– ((z, x) → x) for z ∈ Q, x ∈ T .
It is easy to prove by induction that

S =⇒p1 w1 =⇒p2 w2 . . . =⇒pk
x1x2 . . . xs

with xi ∈ N ∪ T for 1 ≤ i ≤ s holds in H if and only if

(z0, S) =⇒∗ (δ(z0, p1p2 . . . pk), x1)x2x3 . . . xs

holds in H ′. Thus
S =⇒p1p2...pk

x1x2 . . . xs ∈ L(H)

iff
(z0, S) =⇒∗ (δ(z0, p1p2 . . . pk), x1)x2 . . . xs =⇒ x1x2 . . . xs ∈ L(H ′) .

Now L(H) = L(H ′) follows. 2

In a matrix grammar, the rules of a matrix have to be used in the order given by the
matrix. We can modify the definition by allowing that all rules of a matrix have to be
used but they can be applied in an arbitrary order. If we require that a matrix can only
be started, if all rules of the matrix used before have already been applied, we obtain
unordered matrix grammars which have the same generative power as matrix grammars.
In the following type of grammars we can start a new matrix before finishing those which
have been started earlier.

Definition 5 i) An unordered vector grammar is a quadruple G = (V, T, S, M) where N ,
T , M and S are defined as for matrix grammars.

ii) The language L(G) generated by G is defined as the set of all words w ∈ T such
that there is a derivation

S =⇒p−1 w1 =⇒p2 w2 =⇒p3 . . . =⇒pn w

where p1p2 . . . pn is a permutation of some element of M∗.
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Example 5 We consider the unordered vector grammar

G5 = ({S, A, B}, {a, b}, {m0,m1,m2,m3,m4}, S, ∅)

with

m0 = (S → AB), m1 = (A → aA, B → aB), m2 = (A → bA, B → bB),

m3 = (A → a, B → a), m4 = (A → b, B → b) .

Obviously, any sentential form has the form s or zAz′B or zAz′ or zz′B or zz′ where z
and z′ are only generated by using rules for A and B, respectively. Since in a terminating
derivation all rules of a matrix have to be used and the rules of a matrix introduce in
z and z′ the same letter, the number of occurrences of a in z and z′ have to coincide,
and the same holds for b. Furthermore, in order to terminate we use exactly one of the
matrices m3 and m4. Hence

L(G5) = {wxw′x : x ∈ {a, b}, w ∈ {a, b}∗, w′ ∈ Perm(w)} .

We note that the control set Perm(M∗) is not regular in general. Assume that M
consists of a single matrix (p, q). Then Perm(M∗) ∩ p+q+ is the non-regular set {pnqn |
n ≥ 1}. By the closure of regular sets under intersection we get that Perm(M∗) is not
regular.

By λuV and uV we denote the families of languages generated by unordered vector
grammars and unordered vector grammars without erasing rules, respectively.

Without proof we mention some inclusion results for unordered vector languages.

Theorem 3 CF ⊂ uV = λuV ⊂ M . 2

Theorem 4 Each language in uV is semilinear.

Proof. For a context-free grammar G = (N, T, S, P ), define the context-free grammar
G′ = (N, P, S, P ′) where P ′ consists of all rules p′ = A → hN(w)p with p = A → w ∈ P .
Obviously, if v ∈ L(G′) then Perm(v) contains a sequence of productions generating a
terminal word. Conversely, if v is a sequence of productions generating a terminal word,
then Perm(v) contains an element of L(G′). Therefore L(G′) is semilinear.

Now let H = (N, T, S,M) be an unordered vector grammar. Further, let G =
(N, T, S, P ) be the context-free grammar where P consists of all productions which occur
in some matrix of M . Moreover, let G′ be the context-free grammar G′ = (N, P, S, P ′) as-
sociated with G as above. Then L(G′)∩Perm(M∗) is the set C of terminating derivations
in H. Since the intersection of semilinear sets is semilinear, C is semilinear.

We define the linear transformation τ as follows: For x = (x1, x2, . . . xn) ∈ ΨP (C), we
set τ(x) =

∑n
i=1 xiΨT (wi) where pi = Ai → wi is the ith rule of P . It is easy to see that

τ(ΨP (C)) = ΨT (L(H)). Since linear transformations preserve the semilinearity, L(H) is
semilinear. 2
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2. Control by Computed Sequences of Productions

In the preceding section the allowed derivations were given in the grammar. We now
give some grammars where the derivation is accompanied by a computation which selects
the allowed derivations.

Definition 6 i) A programmed grammar is a quadruple G = (N, T, S, P ) where N , T and
S are specified as in a context-free grammar and P is a finite set of triples r = (p, σ, ϕ)
where p is a context-free productions and σ and ϕ are subsets of P .

ii) If r = (p, σ, ∅) holds for any r ∈ P , then we say that G is a programmed grammar
without appearance checking. Otherwise G is a programmed grammar with appearance
checking.

iii) The language L(G) generated by G is defined as the set of all words w ∈ T ∗ such
that there is a derivation

S = w0 =⇒r1 w1 =⇒r2 w2 =⇒r3 . . . =⇒rk
wk = w,

k ≥ 1 and, for ri = (Ai → vi, σi, ϕi), one of the following conditions hold:

wi−1 = w′
i−1Aiw

′′
i−1, wi = w′

i−1viw
′′
i−1 for some w′

i−1, w
′′
i−1 ∈ VG and ri+1 ∈ σi

or

Ai does not occur in wi−1, wi−1 = wi and ri+1 ∈ ϕi.

If r = (p, σ, ϕ), then σ and ϕ are called the success field and failure field of r, respec-
tively.

In a programmed grammar after applying a production p we ”compute” (choose) the
next production which has to be taken from its success field; if the left hand side of p
does not occur in the sentential form, we apply p in the appearance checking mode and
continue with a rule from its failure field.

Example 6 We consider the programmed grammar

G6 = ({S,A, B}, {a, b}, S, {r0, r1, r2, . . . , r8})

with

r0 = (S → AB, {r1, r3, r5, r7}, ∅), r1 = (A → aA, {r2}, ∅),
r2 = (B → aB, {r1, r3, r5, r7}, ∅), r3 = (A → bA, {r4}, ∅),
r4 = (B → bB, {r1, r3, r5, r7}, ∅), r5 = (A → a, {r6}, ∅),
r6 = (B → a, ∅, ∅), r7 = (A → b, {r8}, ∅), r8 = (B → b, ∅, ∅).

G6 is a grammar without appearance checking since all failure fields are empty.
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Assume that we have a sentential form zAzB with z ∈ {a, b}∗ and we have to apply a
rule from the set Q = {r1, r3, r5, r7} (any derivation starts with an application of r0 which
yields the sentential form AB and we have to continue with a rule of Q). If we apply r1

or r3, we have to continue with r2 or r4, get zaAzaB or zbAzbB, respectively, and the
next production has to be taken from Q, again. If we apply r5 or r7, the next production
has to be r6 or r7, yielding zaza or zbzb, respectively, and the derivation stops. Therefore

L(G6) = {ww | w ∈ {a, b}+ } .

Example 7 Let
G7 = ({S,A}, {a}, {r1, r2, r3}, S)

be a programmed grammar with

r1 = (S → AA, {r1}, {r2}), r2 = (A → S, {r2}, {r1, r3}), r3 = (S → a, {r3}, ∅) .

By definition r1 and r3 have to applied as long as an S occurs in the sentential and then
we have to continue with r2 or to stop, respectively. r2 has to be applied as long as A
occurs and then we have to continue with r1. Thus any derivation is of the form

S =⇒r1 AA =⇒∗
r2

SS =⇒∗
r1

A4 =⇒∗
r2

S4 =⇒∗ S2n

=⇒∗
r3

a2n

.

This implies
L(G7) = {a2m

: m ≥ 0} .

By λPr and λPrac we denote the families of languages generated by programmed
grammars (without appearance checking) and programmed grammars with appearance
checking, respectively. We omit the λ if we restrict to families of languages generated by
grammars without erasing rules.

Theorem 5 Pr = M , λPr = λM , Prac = Mac, λPrac = λMac

Proof. We only prove the first statement; the proofs for the other statements can be
given by modifications.

M ⊆ Pr. Let G = (N, T, S,M) be a matrix grammar as in Definition 4. Then the
programmed grammar

G′ = (N ∪ {S ′}, T, S ′, {r} ∪ {ri,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k(i)}, )

with

r = (S ′ → S, {rt,1 | 1 ≤ t ≤ n}, ∅) ,

ri,j = (pi,j, {ri,j+1}, ∅) for 1 ≤ i ≤ n, j < k(i) ,

ri,k(i) = (pi,k(i), {rt,1 | 1 ≤ t ≤ n}, ∅) for 1 ≤ i ≤ n.
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It is easy to see that – besides the first rule – we have to use the rules in the programmed
grammar in the same order as in the matrix grammar. Hence L(G) = L(G′).

Pr ⊆ M . Let H = (N, T, S, P ) be a programmed grammar. Then we construct the
matrix grammar H ′ = (N ∪{S ′}∪{(r, x) | r ∈ P, x ∈ N ∪T}, T, S ′,M) where M consists
of all matrices of the form
– (S ′ → (r, S) with r ∈ P
– (A → w, (r, x) → (r′, x)) for r = (A → w, σ(r), ∅) ∈ P , r′ ∈ sigma(r) and x ∈ X,
– ((r, A) → (r, a1)a2a3 . . . an, (r, a1) → (r′, a1)) for r = (A → a1a2 . . . an, σ(r), ∅) ∈ P and
r′ ∈ σ(r),
– ((r, x) → x) for r ∈ P and x ∈ T .
It is easy to prove by induction that

S =⇒r1 x1w1 =⇒r2 x2w2 =⇒ . . . =⇒rk
xkwk

with xi ∈ N ∪ T , wi ∈ (N ∪ T )∗ for 1 ≤ i ≤ k holds in H if and only if

S ′ =⇒ (r1, S) =⇒∗ (r2, x)w1 =⇒∗ . . . =⇒∗ (rk, xk)wk =⇒ xkwk

holds in H ′. Thus L(H) = L(H ′) follows. 2

We now define a type of grammars where with each sentential form an element of a
monoid is associated, which is computed during the derivation. Then we accept only such
derivations where the element associated with the terminal word is the neutral element
of the monoid.

Definition 7 i) A valence grammar over a monoid is a quintuple G = (N, T, S, P, M)
where
– N , T and S are specified as in a context-free grammar,
– (M, ◦) is a monoid with neutral element e,
– P is a finite set of pairs r = (p,m) where p is a context-free production and m ∈ M .

ii) For x, y ∈ V ∗
G, k, l ∈ M , we say that (x, k) directly derives (y, l), written as x =⇒ y,

iff there is a pair r = (A → w, m) ∈ P such that
– x = x′Ax′′ and y = x′wx′′ for some x′, x′′ ∈ V ∗

G

and
– l = k ◦m.

iii) The language L(G) generated by G is defined as

L(G) = {w | w ∈ T ∗, (S, e) =⇒∗ (w, e)}.
A valence grammar is called additive or multiplicative if M is the monoid (Z, +) of

integers or (Q, ·) of rational numbers, respectively.

Example 8 We consider the multiplicative grammar

G8 = ({S, A,B}, {a, b}, S, {r0, r1, r2, r3, r4, r5, r6, r7, r8}, (Q, ·))

11



where

r0 = (S → AB, 1),

r1 = (A → aA, 2), r2 = (B → aB, 1/2), r3 = (A → bA, 3), r4 = (B → bB, 1/3),

r5 = (A → a, 2), r6 = (B → a, 1/2), r7 = (A → b, 3), r8 = (B → b, 1/3)

Obviously, any sentential form generated by G8 has the form

(S, 1) or (z1Az2B, 2#a(z1)3#b(z1)(
1

2
)#a(z2)(

1

3
)#b(z2)) or (z1z2, 2

#a(z1)3#b(z1)(
1

2
)#a(z2)(

1

3
)#b(z2)) .

Since the words of L(G) have to be associated with 1 we number of occurrences of a (and
b) have to be the same in z1 and z2. Thus

L(G8) = {w1w2 | w1 ∈ {a, b}+, w2 ∈ Perm(w1)} .

Example 9 Let

G9 = ({S, A,B}, {a, b}, S, {r′0, r′1, r′2, r′3, r′4, r′5, r′6, r′7, r′8}, (Z, +))

be an additive valence grammar with

r′0 = (S → AB, 0),

r′1 = (A → aA, 2), r′2 = (B → aB,−2), r′3 = (A → bA, 3), r′4 = (B → bB,−3),

r′5 = (A → a, 2), r′6 = (B → a,−2), r′7 = (A → b, 3), r′8 = (B → b,−3) .

Analogously to Example 8 we can see that

L(G9) = {w1w2 | w1, w2 ∈ {a, b}+, 2#a(w1) + 3#b(w1) = 2#a(w2) + 3#b(w2)} .

It is easy to prove by standard methods that L(G9) is not context-free.

By λaV , aV , λmV , mV we denote the families of languages generated by additive
valence grammars, additive valence grammars without erasing rules, multiplicative valence
grammars and multiplicative valence grammars without erasing rules, respectively.

The following theorem presents the relations between families of valence languages
and unordered vector languages.

Theorem 6 CF ⊂ aV = λaV ⊂ mV = λmV = uV .

Proof. A context-free grammar can be interpreted as a additive valence grammar where
each production is associated with 0. This implies the first inclusion, and its strictness
follows by Example 9.

We omit the proofs of the other relations and refer to [2, 7]. 2
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2. Control by Context Conditions

In this section we consider some grammars where the applicability of a rule depends
on the current sentential form. With any rule we associate some restrictions for words
(sentential forms) which have to be satisfied in order to apply the rule. The first restriction
is the belonging to a regular language associated with the rule.

Definition 8 i) A conditional grammar is a quadruple G = (N, T, S, P ) where
– N , T and S are specified as in a context-free grammar, and
– P is a finite set of pairs r = (p, R) where p is a context-free production and R is a
regular set over VG.

ii) For x, y ∈ V ∗
G, we say that x directly derives y, written as x =⇒ y, iff there is a

pair r = (A → w,R) ∈ P such that x = x′Ax′′ and y = x′wx′′ for some x′, x′′ ∈ V ∗
G and

x ∈ R.
iii) The language L(G) generated by G is defined as L(G) = {w : w ∈ T ∗, S =⇒∗ w}.

Example 10 We consider the conditional grammar

G10 = ({S, A, B, A′, B′}, {a, b}, {r0, r1, . . . r8}, S)

with

r0 = (S → AB, S), r1 = (A → aA′, V ∗BV ∗), r2 = (A → bA′, V ∗BV ∗),

r3 = (B → aB, V ∗aA′V ∗), r4 = (B → bB′, V ∗bA′V ∗), r5 = (A′ → A, V ∗B′V ∗),

r6 = (A′ → λ, V ∗B′V ∗), r7 = (B′ → B, V ∗AV ∗), r8 = (B′ → λ, T ∗B′T ∗) .

We consider zAzB with z ∈ {a, b}∗ (any derivation starts with an application of r0 which
gives AB of this form). The only applicable rules are r1 and r2 since the rules for B
require the presence of A′ in the sentential form.

In the former case we obtain zaA′zB which only allows the application of r3 since
the rules for A′ require an occurrence of B′ and r4 requires a b before A′. Thus we get
zaA′zaB′. Now we can continue with r5 or r6 which gives zaAzaB′ or zazaB′ and has to
be followed by r7 and r8, respectively. Hence we obtain zaAzaB, which means that we
can iterate the process, or the terminal word zaza.

Analogously, if we apply r2, we get zbAzbB or zbzb.
Thus L(G10) = {ww | w ∈ {a, b}+ }.

The following types of grammar will be obtained by restrictions to special regular sets.

Definition 9 i) A semi-conditional grammar is a quadruple G = (N, T, S, P ) where
— N , T and S are specified as in a context-free grammar, and
— P is a finite set of triples r = (p,R, Q) where p is a context-free production and R and
Q are disjoint finite sets of words over VG.

13



ii) For x, y ∈ V ∗
G, we say that x directly derives y, written as x =⇒ y, iff there is a

triple r = (A → w, R, Q) ∈ P such that
— x = x′Ax′′ and y = x′wx′′ for some x′, x′′ ∈ V ∗

G,
— any word of R is a subword of x, and no word of Q is a subword of x.

iii) The language L(G) generated by G is defined as L(G) = {w : w ∈ T ∗, S =⇒∗ w}.
R and Q are called the permitted context and forbidden context associated with r (or

p), respectively.

Example 11 We consider the semi-conditional grammar

G11 = ({S, S ′, S ′′, A}, {a}, {r1, r2, r3, r4, r5}, S)

with

r1 = (S → S ′S ′, ∅, {S ′′, A}), r2 = (S ′ → S ′′, ∅, {S}), r3 = (S ′′ → S, ∅, {S ′}),
r4 = (S → A, ∅, {S ′}), r5 = (A → a, ∅, {S}) .

We consider S2n
(the axiom S has this form). The only applicable rules are r1 and r4.

In the latter case we get SrASs with r + s = 2n − 1. Now the only applicable rule is
r4, again, since A is in the forbidden context of r1 and S is in the forbidden context of r5.
Thus we have to replace all occurrences of S by A, which gives A2n

. Now, we can only
apply r5 to all occurrences of a and get a2n

. In the former case, by analogous arguments
we get a derivation

S2n

=⇒∗
r1

(S ′S ′)2n

= (S ′)2n+1

=⇒∗
r2

(S ′′)2n+1

=⇒∗
r3

S2n+1

such that we can iterate the process. Hence L(G11) = {a2n
: n ≥ 0} .

Any semi-conditional grammar can be interpreted as a conditional grammar. Instead
of using (A → w,R,Q) we have to take (A → w, R′) where

R′ =
⋂

w∈R

(N ∪ T )∗{w}(N ∪ T )∗ ∩ ((N ∪ T )∗ \ (N ∪ T )∗Q(N ∪ T )∗) .

Obviously, in both cases the rule A → w can be applied to the same words.

We now make a further restriction to words of length 1 in the permitting and forbidden
contexts.

Definition 10 A random context grammar is a semi-conditional grammar where the per-
mitting and forbidden contexts of all productions are subsets of the set of nonterminals.

A permitting (forbidden, respectively) random context grammar is a random context
grammar where all forbidden (permitting, respectively) contexts are empty.

14



G11 of Example 11 is a forbidding random context grammar.
By λC, λsC, λRC, λpRC and λfRC we denote the families of languages generated by

conditional grammars, semi-conditional grammars, random context grammars, permitting
random context grammars and forbidden random context grammars, respectively. We
omit the λ if we restrict to families of languages generated by grammars without erasing
rules.

Theorem 7 λC = λsC = RE and C = sC = CS

Proof. C ⊆ CS. Let G = (N, T, S, P ) be a conditional grammar. We construct the
length increasing grammar G′ = (N ′, T ∪ {$, §}, S ′, P ′). For p = (A → w, Rp) ∈ P , let
Ap = (N ∪ T, Zp, z0,p, Qp, δp) be the finite deterministic automaton accepting Rp. We
assume Zp ∩ Zq = ∅ for p 6= q. We set

N ′ = N ∪ {S ′, S ′′} ∪ ⋃

p∈P

Zp ∪ {Sp}, ,

and define P as the set of all rules of the form
(1) S ′ → $z0,pS§ for p ∈ P
(2) zx → xz′ for z ∈ Zp, x ∈ N ∪ T , z′ = δp(z, x) and z§ → Sp§ for z ∈ Qp,
(3) xSp → Spx for p ∈ P , x ∈ N ∪ T and SpA → S ′′w for p = (A → w, R),
(4) xS ′′ → S ′′x for p ∈ P , x ∈ N ∪ T ,
(5) $S ′′ → $z0,p for p ∈ P and (8) $S ′′ → $$.
(1) is the initial step. By the rules of the form (2) we check whether the sentential form
belongs to Rp and switch to Sp in the affirmative case. By rules of the form (3), we move
Sp to the left and replace some occurrence of the left hand side of p by its right hand
side and introduce S ′′. Thus we have simulated the application of p in G.S ′′ is moved
to the left marker by rules of the form (4). By a rule of the form (5) we restart the
simulation process or we stop the derivation process. Thus we get L(G′) = $$L(G)§.
Since length-increasing grammars generate context-sensitive languages and CS is closed
under derivatives, we obtain L(G) ∈ CS.

CS ⊆ C. Let L ∈ CS. Then L = L(H) for some length-increasing H = (N, T, S, P )
in Kuroda normal form, i.e. all rules of P are of the form A → BC or AB → CD
or A → a with A,B, C, D ∈ N and a ∈ T . We construct the conditional grammar
H ′ = (N ′, T, S, P ′) where P ′ contains all rules of P of the forms A → BC and A → a and
all rules

(A → Ap, (N ∪ T )∗), (B → Bp, (N ∪ T )∗ApB(N ∪ T )∗),

(Ap → C, (N ∪ T )∗ApBp(N ∪ T )∗), (Bp → D, (N ∪ T )∗CBp(N ∪ T )∗)

for any rule p = AB → CD (which have to be applied in this order and give wABw′ =⇒∗

wCDw′, hence simulating the application of p) and N ′ contains the letters of N and all
symbols Ap and Bp for p ∈ P . It is easy to see that L(H) = L(H ′).

For a proof of the remaining statements we refer to [2, 3] 2
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Theorem 8 i) CF ⊂ pRC ⊂ RC = Mac ⊂ λRC = λMac.
ii) pRC ⊆ λpRC ⊂ λRC = λMac.
iii) RC ⊆ M
iv) λpRC ⊆ λM

Proof. We only prove RC ⊂ Mac; for proofs of the other statements we refer to [2, 3].
Let G = (N, T, S, P ) be a random context grammar. Then we construct the matrix

grammar G′ = (N ∪{E}, T, S, M, F ) where M and F are defined as follows: For any rule

p = (A → w, {A1, A2, . . . , Ar}, {B1, B2, . . . , Bs})
we associate the matrix

mp = (A1 → A1, A2 → A2, . . . , Ar → Ar, B1 → E, B2 → E, . . . , Bs → E, A → w).

Then M consists of all matrices mp for p ∈ P and F consists of all rules with right hand
side E. If mp is applied to w in a terminating derivation, then the letters A1, A2, . . . , Ar

have to occur in w and B1, B2, . . . , Bs cannot occur in w since the application of a rule
Bi → E introduces E which cannot be replaced. Thus w =⇒p w′ in G if and only if
w =⇒mp w′ in G′. Hence L(G) = L(G′). 2

Relations for the forbidden random context grammars will be given in Section 4. 3.

Further Regulations

We now introduce a type of grammars where we impose a partial order on the set
of productions, and we can only apply a production if there is no greater applicable
production.

Definition 11 i) An ordered grammar is a quadruple G = (N, T, S, P ) where
– N , T and S are specified as in a context-free grammar and
– P is a finite partially ordered set of context-free production.

ii) For x, y ∈ VG, we say that x directly derives y, written as x =⇒ y, if and only if
there is a production p = A → w ∈ P such that x = x′Ax′′, y = x′wx′′ and there is no
production q = B → v ∈ P such that p ≺ q and B occurs in x.

iii) The language L(G) generated by G is defined as L(G) = {w : w ∈ T ∗, S =⇒∗ w}.

Example 12 We consider the ordered grammar G12 = ({S, S ′, S ′′, A, Z}, {a}, P, S) where
the partially ordered set of productions is given by the following graph

S ′′ → Z A → Z S ′ → Z S → Z

S → S ′S ′

OO 77ppppppppppp
S ′′ → S

OO 88qqqqqqqqqq
S → A

OO

S ′ → S ′′

OO

A → a

ffMMMMMMMMMM
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(p is smaller than q if there is a directed edge from p to q). By definition, the rule S → S ′S ′

is only applicable to a sentential form which does not contain the nonterminals S ′′ and A,
S ′′ → S can only be applied to sentential form without an occurrence of A and S ′, S → A
is only applicable if S ′ does not occur, and S ′ → S ′′ and A → a can only be applied if
S is not present. These are exactly the requirements mentioned in the semi-conditional
grammar of Example 11. Thus G12 and G11 allow the same derivations and hence they
generate the same language. Hence L(G12) = {a2n

: n ≥ 0}.

By λO and O we denote the families of languages generated by ordered grammars and
ordered grammars without erasing rules, respectively.

Theorem 9 CF ⊂ O = fRC ⊆ λO = λfRC ⊂ λRC and O ⊂ RC

Proof. Obviously, a context-free grammar can be considered as an ordered grammar
where all rules are incomparable with each other. Thus the first inclusion holds. Its
strictness follows from Example 12.

fRC ⊆ O follows by the construction presented in Example 12. For any forbidden
random context grammar G = (N, T, S, P ) we construct the ordered grammar G′ =
(N ∪ {Z}, T, S, P ′) where P ′ contains all rules A → Z with A ∈ N and all rules B → w
with (B → w, ∅, Q) ∈ P . Moreover, A → Z is greater than B → w, if A is contained in
the forbidden context Q of B → w.

O ⊆ fRC. We take the same rules and add to A → w as forbidden context all left
hand sides of productions greater than A → w.

By definition, fRC ⊆ λfRC ⊆ λRC and fRC ⊆ RC. The strictnesses are shown in
[4] and [5]. 2

Now we consider a type of grammars where with any nonterminal in a sentential form
we associate (partially) its derivation.

Definition 12 i) An indexed grammar is a quintuple G = (N, T, S, I, P ) where – N , T
and S are specified as in a context-free grammar,
– I is a finite set of finite sets of productions of the form A → w with A ∈ N and w ∈ V ∗

G,
and
– P is a finite set of productions of the form A → α with A ∈ N and α ∈ (NI∗ ∪ T )∗.

ii) For x, y ∈ (NI∗∪T )∗, we say that x directly derives y, written as x =⇒ y, if either
– x = x1Aβx2 for some x1, x2 ∈ (NI∗ ∪ T )∗, A ∈ N , β ∈ I∗,

A → X1β1X2β2 . . . Xkβk ∈ P , y = x1X1γ1X2γ2 . . . Xkγkx2

with γi = βiβ for Xi ∈ N and γi = λ for Xi ∈ T , 1 ≤ i ≤ k,
or
– x = x1Aiβx2 for some x1, x2 ∈ (NI∗ ∪ T )∗, A ∈ N , i ∈ I, β ∈ I∗,

A → X1X2 . . . Xk ∈ i, y = x1X1γ1X2γ2 . . . Xkγkx2

with γi = β for Xi ∈ N and γi = λ for Xi ∈ T , 1 ≤ i ≤ k.
iii) The language L(G) generated by G is defined as L(G) = {w : w ∈ T ∗, S =⇒∗ w}
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Example 13 We consider the index grammar G13 = ({S, A, B}, {a, b}, S, {fa, fb, h}, P )
with

fa = {B → Ba}, fb = {B → Bb}, h = {B → λ},
P = {S → Ah,A → aAfa, A → bAfb, A → B} .

Any derivation has the form

S =⇒ Ah =⇒ x1Afx1h =⇒ x1x2Afx2fx1h =⇒∗ x1x2 . . . xkAfxk
fxk−1

. . . fx1h

=⇒ x1x2 . . . xkBfxk
fxk−1

. . . fx1h =⇒ x1x2 . . . xkBfxk−1
fxk−2

. . . fx1hxk

=⇒ x1x2 . . . xkBfxk−2
fxk−3

. . . fx1hxk−1xk =⇒∗ x1x2 . . . xkBhx1x2 . . . xk

=⇒ x1x2 . . . xkx1x2 . . . xk

which shows that
L(G13) = {ww | w ∈ {a, b}∗} .

By λI and I we denote the families of languages generated by indexed grammars and
indexed grammars without erasing rules, respectively.

Without proof we present the following theorem, for a proof we refer to [1].

Theorem 10 CF ⊂ I = λI ⊆ CS.

Proof. The first inclusion holds since a context-free grammar can be considered as an
index grammar with an empty set I and a production set P ⊂ N × (N ∪ T )∗. The
strictness follows from Example 13.

For the other relations we refer to [1]. 2

The following theorems summarize the relation between the language families intro-
duced in this and the preceding sections.

Theorem 11 i) The following equalities are valid:
RE = λMac = λrCac = λPrac = λRC = λC = λsC and CS = C = sC,
λM = λrC = λPr and Mac = rCac = Prac = RC, and M = rC = P ,
mV = λmV = uV = λuV and aV = λaV ,
λO = λfRC and O = fRC,
I = λI.

ii) The inclusions presented in Figure 1 hold. 2

5. Closure and Decidability Properties

In the preceding section we have defined some grammars with a control mechanism
for the application of productions, and we have compared their generative power. In
this section we add the closure properties of the language families introduced above and
discuss their decidability properties.
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Figure 1: If two families are connected by a line (an arrow), then the upper family includes
(includes properly) the lower family; if two families are not connected then they are not
necessarily incomparable.

Theorem 12 The table of Figure 2 gives the closure properties of the families I, λO, O,
λpRC, pRC, Mac, λM , M , mV and aV . 2

We now present some undecidability results.

Theorem 13 Let X be a family of grammars generating one of the following families

{Mac,M, pRC, O, λM, λpRC, λO, I, mV, aV }
of languages. Then the equivalence problem (decide whether or not two given grammars of
X generate the same language) and the context-freeness problem (decide whether or not
a grammar of X generates a context-free language) are undecidable.

Proof. The statement for the equivalence problem follows from the known fact that the
equivalence of context-free grammars is undecidable. The proof for the context-freeness
problem follows along the lines of the proof of Theorem 1.3.6 in [2]. 2

Theorem 14 The table of Figure 3 presents the decidability status of the membership,
finiteness and emptiness problem for grammar families generating I, λO, O, Mac, λM ,
M , pRC, mV and aV .

Proof. We only prove the decidability and NP-hardness of the emptiness problem for
matrix grammars without appearance checking and unordered matrix grammars, respec-
tively. For the other proofs, we refer to [3] and its references.

19



operation Mac λM M mV aV I λO O λpRC pRC

union + + + + + + + + + +
intersection ? - - - - - - - - -
complementation ? - - - - - - - - -
intersection by reg. sets + + + + + + + + + +
concatenation + + + + - + + + + +
Kleene-closure + ? ? - - + + + + +
λ-free morphisms + + + + + + + + + +
(arbitrary) morphisms - + - + + + + ? + ?
inverse morphisms + + + + + + + + + +
λ-free gsm-mappings + + + + + + + + + +
gsm-mappings - + - + + + + ? + ?
quotient by regular sets - + - + + + + + + ?
quotient by letters + + + + + + + + + +

Figure 2: If the family X is closed under the operation ◦, then we write a symbol + in
the intersection of the corresponding row and column. A symbol - is given, if X is not
closed under ◦. A question mark denotes an open problem.

An n-dimensional vector addition system is a couple (x0, K) where x0 ∈ Nn and K is
a finite subset of Zn.

A vector y ∈ Nn is called reachable within (x0, K) if and only if there are vectors
v1, v2, . . . , vt ∈ K, t ≥ 1, such that

x0 +
j∑

i=1

vi ∈ Nn for 1 ≤ j ≤ t and x0 +
t∑

i=1

vi = y.

It is known (see [12]) that the reachability problem (given an n-dimensional vector
addition system (x0, K) and a vector y ∈ Nn, decide whether or not y is reachable within
(x0, K)) is decidable (in exponential space).

Let G = (N, T, S, M) be a matrix grammar without appearance checking. Without
loss of generality we can assume that G is of the form presented in the proof of rC ⊆ M
(see Theorem 2). With G we associate a vector addition (x0, K) as follows. We set
x0 = ΨN(S). Further, let K be the set of all vectors vm = ΨN(hN(w1w2)) − ΨN(A1A2)
with m = (A1 → w1, A2 → w2) ∈ M . If we obtain w′ from w by application of m, then
ΨN(hN(w′)) = ΨN(hN(w)) + vm. On the other hand, if ΨN(hN(w)) + vm ∈ Nn, then we
can apply m to w. Thus L(G) contains a word if and only if (0, 0, . . . , 0) is reachable in
(x0, K).

The 3-partition problem (given a multiset {t1, t2, . . . , t3m} of integers and an integer
t, decide whether or not there is partition {Q1, Q2, . . . , Qm} of {t1, t2, . . . , t3m} such that
#(Qi) = 3 and

∑
s∈Qi

s = t for 1 ≤ i ≤ m) is NP-complete.
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grammar membership emptiness finiteness
family problem problem problem

I NP-complete + +

λO ? ? ?

O + , NP-hard ? ?

Mac + , NP-hard - -

λM + + , NP-hard + , NP-hard

M + + , NP-hard + , NP-hard

RC + + , NP-hard + , NP-hard

uV ∈LOGCFL + , NP-hard + , NP-hard

aV DTIME(n4) + +

Figure 3: The symbol + deotes that the problem is decidable for the grammar family;
the symbol - denotes undecidability; the symbol ? denotes an open problem; in some
(decidable) cases a remark on the complexity of the problem is added.

With such a problem we associate the unordered vector grammar

G = ({S, A1, A2, . . . , A3m}, {a1, a2, . . . , a3m}, S, P )

with

P = {S → A1A2 . . . A3m} ∪ {(Ai → ai, Aj → aj, Ak → ak) | (i, j, k) ∈ U}
where

U = {(i, j, k) | ti + tj + tk = t} .

Obviously, S =⇒∗ a1a2 . . . a3m if and only if a partition Q1, Q2, . . . , Qm exists. 2

6. Two Measures of Complexities

For a language, we are interested to have a concise description. This implies the search
for ”small” grammars, where ”small” can be understood as a small length of the word
representing the grammar. The number of nonterminals or the number of productions are
related measures of syntactic complexity. We here restrict to the number of nonterminals;
for other measures we refer to [2].

Definition 13 i) For a grammar G, V ar(G) denotes the cardinality of its set of nonter-
minals.

ii) Let X be a family of languages generated by grammars of type Y . For a language
L ∈ X, we set

V arX(L) = min{V ar(G) : G is of type Y, L(G) = L}.
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Obviously, V ar(G) can immediately be seen from the grammar. However, we note that
Gruska has shown that there is no algorithm to determine V arCF (L) for a context-free
language L.

The following theorem shows that the description of context-free languages by gram-
mars with regulation can be much more efficient than those by context-free grammars.

Theorem 15 There is a sequence of regular languages Ln, n ≥ 1, such that

V arCF (Ln) = n + 1, V arrC(Ln) = 1, V arM(Ln) ≤ 3, V arPr(Ln) = 1, V arpRC(Ln) ≤ 8.

Proof. We consider the language

Ln =
n⋃

i1

{aib}∗{b}n .

Ln can be generated by the regularly controlled grammar

({S}, {a, b}, S, {r} ∪ {ri | 1 ≤ i ≤ n− 1}, ⋃

i=1

{ri}∗{r})

with
r = S → bn and ri = A → aibA for 1 ≤ i ≤ n .

Thus V arrC(Ln) = 1 is shown.
It is left to the reader to give a matrix grammar, a programmed grammar and a

random context grammar (without erasing rules) and three, one and eight nonterminals,
respectively.

The context-free grammar

({S} ∪
n⋃

i=1

{Ai}, {a, b}, s,
n⋃

i=1

{S → Ai, Ai → aibAi, Ai → bn})

generates Ln, and it can be shown that this grammar is minimal with respect to the
number of nonterminals (see [2], Example 4.1.3). 2

We now present a theorem saying that any recursively enumerable language has a
succint description by matrix and programmed grammars whereas this does not hold for
random context grammars. For a proof we refer to [8], [6] and [2].

Theorem 16 i) For any recursively enumerable language L, we have V arλMac(L) ≤ 3
and V arλPrac(L) ≤ 3.

ii) V arλMac({anbncmdmepf p | n,m, p ≥ 1}) = 3
iii) There is a sequence of recursively enumerable languages Ln, n ≥ 1, such that

f(n) ≤ V arλRCac(Ln) ≤ [log2 n] + 3 for n ≥ 1 where f is an unbounded function from N
into N. 2
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We now introduce a further measure of complexity. However, it cannot immediately
be seen from the grammar; one has to calculated it from the derivations in the grammar.

Definition 14 i) Let G be a grammar, and let D = S = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒
wn = w be a derivation of w in G. Then we set

Ind(G,w, D) = max{#N(wi) | 0 ≤ 1 ≤ n} ,

Ind(G,w) = min{Ind(G,w,D) | D is a derivation of w in G} ,

Ind(G) = sup{Ind(G,w) | w ∈ L(G)} .

ii) Let X be a family of languages generated by grammars of type Y . For a language
L ∈ X, we set

Ind(L,X) = min{Ind(G) | G is of type Y, L = L(G)} ,

Xfin = {L | L ∈ X, Ind(L,X) < ∞} .

If we impose the finite index restriction the hierarchy of the language families (see
Theorem 11 is essentially changed; most of the families coincide as can be seen from
the following theorem (for the proof we refer to the constructions given in the preceding
sections and to [2]).

Theorem 17 i) All the following language families are equal to Mfin: Prfin, (Prac)fin,
λPrfin, (λPrac)fin, rCfin, (rCac)fin, λrCfin, (λrCac)fin, λMfin, (Mac)fin, (λMac)fin,
RCfin, λRCfin,

ii) Ofin ⊆ Mfin ⊆ Cfin

iii) pRCfin ⊆ Mfin ⊂ M
iv) aVfin ⊂ uVfin ⊆ Mfin 2

Theorem 18 Each language in Mfin is semilinear. 2

For a proof Theorem 18 we refer to [2].
By Theorem 18, the Parikh images of finite index matrix, programmed, regular control

etc. grammars coincide with that of regular languages.
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