COUNTING OCCURRENCES OF A PATTERN OF LENGTH THREE WITH AT MOST TWO DISTINCT LETTERS IN A k-ARY WORD

TOUFIK MANSOUR(A) ARMEND SH. SHABANI(B)

(A) University of Haifa, Department of Mathematics
3498838 Haifa, Israel
tmansour@univ.haifa.ac.il

(B) University of Prishtina, Department of Mathematics
10000 Prishtinë, Republic of Kosova
armend.shabani@uni-pr.edu

ABSTRACT

Define \(\tau(\pi) \) to be the number of subsequences of \(\pi \) that are order-isomorphic to \(\tau \). Let \(\tau \) be a pattern of length three with at most two distinct letters, namely, \(\tau \in \{111, 112, 121, 122, 211, 212, 221\} \).

In this paper, we give an algorithm for finding the generating function \(w_{\tau,r}(n;y) = \sum_{k \geq 1} \sum_{\pi \in [k]^n, \tau(\pi) = r} y^k \) for the number of \(k \)-ary words of length \(n \) that contain exactly \(r \) occurrences of the pattern \(\tau \), for given \(r \geq 0 \). In particular, we obtain explicit formulas for the generating functions \(w_{\tau,r}(n;y) \), where \(r = 0, 1 \).

Keywords: \(k \)-ary word, pattern, enumeration, generating function, Eulerian polynomial

1. Introduction

Permutations. We denote the set of permutations of \([n] = \{1, 2, \ldots, n\}\) by \(S_n \). We shall view permutations in \(S_n \) as words with \(n \) distinct letters in \([n]\). A permutation or just pattern is a permutation \(\tau \in S_k \), and an occurrence of \(\tau \) in a permutation \(\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n \) is a subsequence of \(\pi \) that is order-isomorphic to \(\tau \). For instance, an occurrence of 312 is a subsequence \(\pi \) of \(\pi_1 \pi_2 \pi_3 \) such that \(\pi_1 < \pi_3 < \pi_2 \). We denote the number of permutations in \(S_n \) that contain exactly \(r \) occurrences of the pattern \(\tau \) by \(s_{\tau,r}(n) \). In the last two decades much attention has been paid to the problem of finding the numbers \(s_{\tau,r}(n) \) for a fixed \(r \geq 0 \) and a given pattern \(\tau \) (see [1][2][8][10][12] and references therein). Up to now, only the