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Words and Languages

alphabet — non-empty finite set
word (over V ) — (finite) sequence of letters (of V )
λ — empty word
V ∗ (resp. V +) — set of all (non-empty) words over V

#a(w) — number of occurrences of letter a in word w

|w| =
∑

a∈V #a(w) — length of word w ∈ V ∗

language (over V ) — subset of V ∗

We say that two languages L1 and L2 are equal iff L1 \ {λ} = L2 \ {λ}.
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Parikh Vectors and Semi-linear Sets

For V = {a1, a2, . . . , an},
Parikh vector of w ∈ V ∗ — Ψ(w) = (#a1(w),#a2(w), . . . , #an(w)),
Parikh set of L ⊂ V ∗ — Ψ(L) = {Psi(w) | w ∈ L}

A set M ⊂ N
n is called semi-linear if and only if there are natural numbers

m ≥ 1 and ri ≥ 1, 1 ≤ i ≤ m, and vectors aij ∈ N
m, 1 ≤ i ≤ m, 0 ≤ j ≤

ri, such that

M =
m⋃

i=1

{ai0 +

ri∑

j=1

αijaij | αij ∈ N for 1 ≤ j ≤ ri} .

A language L is called semi-linear if its Parikh set Ψ(L) is semi-linear.

Theorem: The intersection of two semi-linear sets is semi-linear, too.
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Grammars and Languages

Definition:
i) A phrase structure grammar is a quadruple G = (N, T, P, S), where
— N and T are alphabets (sets of nonterminals and terminals, resp.),
— VG = N ∪ T , N ∩ T = ∅,
— P is a finite subset of (V ∗ \ T ∗) × V ∗) (set of rules/productions),

(instead of (α, β) we write α → β),
— S ∈ N (axiom/start symbol).

ii) We say that x directly derives (generates) y (written as x =⇒G y) iff

x = x1αx2, y = x1βx2, α → β ∈ P .

iii) The language generated by G is defined as

L(G) = {z | z ∈ T ∗ and S =⇒∗
G z}

where =⇒∗
G is the reflexive and transitive closure of =⇒G.
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Examples

G1 = ({S}, {(, ), [, ]}, P1, S)

P1 = {S → SS, S → (S), S → [S], S → ( ), S → [ ]}

L(G1) is the set of all correctly bracketed expressions over the
pairs (, ) and [, ] of brackets

G2 = ({S,#, §, A, B,C, }, {a, b}, P2, S)

P2 = {S → bbabb, S → #Aa§,
#Aa → #aaA, aAa → aaaA, aA§ → aB§,
aB → Ba,#B → #A, #B → #C,

#Ca → bbaC, aCa → aaC, aC§ → abb}

L(G2) = {bba2n

bb | n ≥ 0}
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Types of Grammars and Languages

Definition:

i) G is called monotone, if |α| ≤ |β| holds for all rules α → β of P .

ii) G is called context-free, if all rules of P are of the form A → w with
A ∈ N and w ∈ V ∗.

iii) G is called regular, if all rules of P are of the form A → wB or A → w
with A, B ∈ N and w ∈ T ∗.

iv) A language L is called monotone or context-free or regular, iff L = L(G)
for some monotone or context-free or regular grammar G, respectively.

We denote the families of all regular, context-free and monotone languages
by L(REG), L(CF ) and L(CS), respectively.
L(RE) denotes the family of all languages which can be generated by
phrase-structure grammars.

Grammatical Picture Generation 5



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Normal Forms

Theorem:

i) For any language L ∈ L(RE), there is a phrase-structure grammar
G = (N, T, P, S) such that L = L(G) and P has only rules of the forms
A → B, A → BC, AB → CD, A → a and A → λ, where A, B,C,D ∈ N
and a ∈ T .
ii) For any language L ∈ L(CS), there is a monotone grammar G =
(N, T, P, S) such that L = L(G) and P has only rules of the forms A → B,
A → BC, AB → CD and A → a, where A, B,C,D ∈ N and a ∈ T .
iii) For any language L ∈ L(CF ), there is a context-free grammar G =
(N, T, P, S) such that L = L(G) and P has only rules of the forms A → BC
and A → a, where A, B,C ∈ N and a ∈ T .
iv) For any language L ∈ L(REG), there is a regular grammar G =
(N, T, P, S) such that L = L(G) and P has only rules of the forms
A → aB and A → a, where A, B ∈ N and a ∈ T .
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Pumping Lemmas and Parikh’s Theorem

Theorem: a) Let L be a regular language. Then there is a constant k
(which depends on L) such that, for any word z ∈ L with |z| ≥ k, there
are words u, v, w which satisfy the following properties:
i) z = uvw,
ii) |uv| ≤ k, |v| > 0, and
iii) uviw ∈ L for all i ≥ 0.

b) Let L be context-free language. Then there is a constant k (which
depends on L) such that, for any word z ∈ L with |z| ≥ k, there are words
u, v, w, x, y which satisfy the following properties:
i) z = uvwxy,
ii) |vwx| ≤ k, |vx| > 0, and
iii) uviwxiy ∈ L for all i ≥ 0.

Theorem: For any context-free language L, Ψ(L) is semi-linear.
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Lindenmayer Systems

Definition: i) An extended tabled Lindenmayer system (abbr. by ET0L)
with n tables is an (n + 3)-tuple G = (V, T, P1, P2, . . . , Pn, w), where
– V is a finite alphabet, T is a non-empty subset of V ,
– for 1 ≤ i ≤ n, Pi is a finite subset of V × V ∗ such that, for any a ∈ V ,

there is a pair (a,wa) in Pi,
– w ∈ V +.

ii) We say that x directly derives (generates) y (written as x =⇒G y) iff
there is an i, 1 ≤ i ≤ n such that

x = x1x2 . . . xm, xj ∈ V for 1 ≤ j ≤ m, y = y1y2 . . . ym,
xj → yj ∈ Pi for 1 ≤ j ≤ m

iii) The language generated by G is defined as

L(G) = {z | z ∈ T ∗ and w =⇒∗
G z}

where =⇒∗
G is the reflexive and transitive closure of =⇒G.
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Examples

H1 = ({a, b}, {a, b}, {a → aa, b → b}, bbabb)

L(H1) = {bba2n

bb | n ≥ 0}

H2 = ({a, b}, {a}, {a → a, a → aa, b → b, b → λ}, ab)

L(H2) = {an | n ≥ 1}

H3 = ({a, b, c}, {a, b}, P1, P2, ca)

P1 = {a → aa, b → b, c → ca} and P2 = {a → b, b → bbb, c → a}

L(H3) = {a2m

b2n−1 | m ≥ 1, n ≥ 1}

∪ {b3k(2m+3·2n−1) | k ≥ 0,m ≥ 0, n ≥ 1}
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Types of Lindenmayer Systems

L(ET0L) — family of all languages generated by ET0L systems

We omit the letter E if the generating system satisfies V = T .

We omit the letter T if the generating system satisfies n = 1 (non-tabled
case).

We add the letter D if the generating system is deterministic, i.e., for all
1 ≤ i ≤ n and all a ∈ V , there is exactly one rule with left side a in Pi.
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Generative Power I

L(RE)

L(CS)

L(ET0L)

L(EDT0L) L(T0L) L(E0L)

L(DT0L) L(ED0L) L(0L) L(CF )

L(D0L) L(REG)
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Operations I

X and Y — alphabets
L, L1 and L2 — languages over X , K — language over Y

L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2} (product, concatenation)

L0 = {λ} and Li+1 = Li · L for i ≥ 0 (power)

L+ =
⋃

i≥1 Li and L∗ =
⋃

i≥0 Li (Kleene-closure)

A mapping h : X∗ → Y ∗ is a (homo)morphism if h(w1w2) = h(w1)h(w2)
for all w1, w2 ∈ X∗

h(L) = {h(w) | w ∈ L} and h−1(K) = {w | h(w) ∈ K}
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Operations II

A substitution σ : X∗ → Y ∗ is defined inductively as follows:
– σ(λ) = {λ},
– σ(a) is a finite subset of Y ∗ for any a ∈ X ,
– σ(wa) = σ(w)σ(a) for w ∈ X∗ and a ∈ X .

For a language L ⊆ X∗, σ(L) =
⋃

w∈L σ(w).

A substitution σ (or homomorphism h) is called λ-free iff λ /∈ σ(a) (or
h(a) 6= λ) for all a ∈ X .
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Closure Properties I
Let τ : (2X)n → 2X be an n-ary operation on language. A family L is
closed under τ , if τ(L1, L2, . . . , Ln) ∈ L holds for all L1, L2, . . . , Ln ∈ L.

union product Kleene- morph. inverse intersect.
closure morph. with reg. sets

L(RE) + + + + + +
L(CS) + + + – + +
L(CF ) + + + + + +
L(REG) + + + + + +
L(ET0L) + + + + + +
L(EDT0L) + + + + – +
L(E0L) + + + + – +
L(T0L) – – – – – –
L(DT0L) – – – – – –
L(0L) – – – – – –
L(D0L) – – – – – –
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Closure Properties II

Theorem:
The families L(REG) and L(CS) are closed under complement, but L(CF )
and L(RE) are not closed under complement.

Theorem: A language L over X is regular if and only if L can be generated
by a finite number of iterated applications of the operations union, product
and Kleene-closure ∗ starting with to the sets ∅, {λ} and {x}, x ∈ X .
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Closure Properties III

For a language L ⊂ V ∗,

sub(w) = {w′ | w = w1w
′w2 for some w ∈ L, w1, w

′, w2 ∈ V ∗},
pref (w) = {w′ | w = w′w2 for some w ∈ L, w′, w2 ∈ V ∗},
suff (w) = {w′ | w = w1w

′ for some w ∈ L,w1, w
′ ∈ V ∗},

Theorem:
i) For any regular language L, the sets sub(L), pref (L) and suff (L) are
regular, too.
ii) For any context-free language L, the sets sub(L), pref (L) and suff (L)
are context-free, too.
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Turing Machines

Definition: A (non-deterministic) Turing machine is a seven-tuple
M = (Γ,X, ∗, Z, z0, Q, F, δ), where
— Γ is an alphabet (of tape symbols), X ⊆ Γ is an alphabet (of input

symbols), and ∗ is a special symbol,
— Z is a finite set (of states), z0 ∈ Z is the initial state, Q ⊆ Z is the set

of halt states, F ⊆ Q is the set of accepting states, and
— δ : (Z \ Q) × (Γ ∪ {∗}) → 2Z×((Γ∪{∗})×{R,L,N} is a (total) function.

Intuitively, a Turing machine consists of a unit (storing the state), an
infinite tape which cells a filled with letters from Γ ∪ {∗} and a read/write
head. If a machine is in a state z and reads the symbol a in some cell and
(z′, a′, r) ∈ δ(z, x), then it changes the state from z to z′, replaces a by a′

and moves the head one cell to the right, if r = R, or one cell to the left, if
r = L, or does not move the head, if r = N . M halts if it reaches a state
of Q.
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Turing Machines and Languages

A Turing machine M is called deterministic if f maps (Z \Q)× (Γ∪{∗})
into Z × ((Γ ∪ {∗}) × {R,L, N}.

Definition: The set T (M) of words accepted by a Turing machine M
consists of all words z such that M reaches a state in F if it starts in state
z0 with z written on the tape (i.e., the letters of z are written in consecutive
cells and all other cells are filled with ∗) and the head positioned on the
first letter of z.

Definition: We say that a language L is decidable if there exists a
deterministic Turing machine M such that
— L = T (M) and
— M halts on any input.
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Turing Machines – Example

M = ({a, b}, {a}, ∗, Z, {z5, z6}, {z5}, δ)

Z = {z0, z1, z2, z3, z4, z5, z6}

δ z0 z1 z2 z3 z4

∗ (z0, ∗, N) (z5, ∗, N) (z4, ∗, L) (z6, ∗, N) (z0, ∗, R)
a (z1, a, R) (z2, b, R) (z3, a,R) (z2, b, R) (z4, a, L)
b (z0, ∗, N) (z1, b, R) (z2, b, R) (z3, b, R) (z4, b, L)

T (M) = {a2n

| n ≥ 0}

Grammatical Picture Generation 19



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Generative Power II

Theorem:
A language L is in L(RE) if and only if there is a (deterministic or non-
deterministic) Turing machine M such that M accepts the language L
(i.e., T (M) = L).

A non-deterministic Turing machine is called a linearly bounded automaton
if, for any w, the head position while working on the input w is restricted
to the cells in which the letters of w are written, the cell before w and the
cell after w.

Theorem:
A language L is in L(CS) if and only if there is a linearly bounded automata
M such that M accepts the language L (i.e., T (M) = L).
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Decision Problems

Membership Problem: Given grammar/system G and word w
Decide whether or not w ∈ L(G).

Emptiness Problem: Given grammar/system G
Decide whether or not L(G) = ∅.

Finiteness Problem: Given grammar/system G
Decide whether or not L(G) is a finite language.

Equivalence Problem: Given grammars/systems G1 and G2

Decide whether or not L(G1) = L(G2).
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Decidability Properties I

membership emptiness finiteness equivalence
problem problem problem problem

L(RE) – – – –
L(CS) + – – –
L(CF ) + + + –
L(REG) + + + +
L(ET0L) + + + –
L(EDT0L) + + + –
L(E0L) + + + –
L(T0L) + t + –
L(DT0L) + t + –
L(0L) + t + –
L(D0L) + t + +

Grammatical Picture Generation 22



Fakultät für Informatik Universität Magdeburg Jürgen Dassow

Decidability Properties II

Theorem:
i) The membership problem for semi-linear sets is decidable.
ii) For two semi-linear sets M1 and M2 (given by their sets of vectors), it is
decidable whether or not M1 ⊆ M2 holds.

Theorem:
i) Let G be a regular grammar. Then there exists an algorithm which
decides whether or not w ∈ L(G) with a time bound O(|w|), i.e., there is
a constant c such that the algorithm stops after at most c|w| steps).
ii) Let G be a context-free grammar. Then there exists an algorithm which
decides whether or not w ∈ L(G) with a time bound O(|w|3). 2
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P versus NP I

Definition:

The set P is defined as the set of all languages which are decidable in
polynomial time (by deterministic Turing machines).

The set NP is defined as the set of all languages which can be accepted in
polynomial time (by non-deterministic Turing machines).

Definition:

A language L is called NP-complete if the following two conditions are
satisfied:
— L ∈ NP and
— any language L′ ∈ NP can be polynomially transformed to L (i.e., there
is a mapping h such that h(w) can be computed with a polynomial time
bound and h(w) ∈ L holds if and only if w ∈ L′).
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P versus NP II

Theorem: The problem 3-SAT defined as

Given a finite set of disjunctions of three literals, decide
whether there is an assignment such that any disjunction gets true.

is NP-complete.

Theorem: The following assertions are equivalent:
i) P=NP.
ii) All NP-complete language are in P.
iii) There is an NP-complete language which is in P.

Theorem: If a language L′ is a NP-complete and L′ can be polynomially
transformed to L ∈ NP, then L is NP-complete, too.
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