References I

- F. Drewes: Grammatical Picture Generation. Springer-Verlag, 2006.
- H. Freeman, Computer processing of line-drawing images. Computer Surveys 6 (1974) 57-97.
- H. W. MAURER, G. ROZENBERG, E. WELZL: Using string languages to describe picture languages. Inform. Control 54 (1982) 155-185.
- I. H. Sudborough and E. Welzl: Complexity and decidability of chain code picture languages. Theor. Comp. Sci. 36 (1985) 175-202.
- J. DASSOW, F. HINZ: Decision problems and regular chain code picture languages. Discrete Appl. Math. 45 (1993) 29-49
- P. PRUZINKIEWICZ, A. LINDENMAYER: The Algorithmic Beauty of Plants. Springer, New York, 1990.
- P. Pruzinkiewicz, M. Hammel, J. Hanan, R. Mech: Visual models of plant development. In: Handbook of Formal Languages, Vol. III, Springer, Berlin, 1997, 535–597.

Descriptions of a Chain Code Picture

Definition:

For a drawn chain code picture q and and basic chain code picture p, we set

$$des(q) = \{ w \in \pi^* \mid dccp(w) = q \}$$

and

$$des(p) = \{ w \in \pi^* \mid bccp(w) = p \}$$

.

Theorem:

For a drawn chain code picture q and and basic chain code picture p, des(q) and des(p) are regular languages.

Operations red and ref |

$$R = \{ud, du, lr, rl\}$$
 — set of retreats

A word w is called retreat-free, if no word of R is a subword of w.

Definition:

For a word $w \in \pi^*$, we define the $retreat\ deletion\ image\ red(w)$ inductively as follows:

- (1) $w \in red(w)$,
- (2) If $z \in red(w)$ and $z = z_1sz_2$ for some $s \in R$, then $z_1z_2 \in red(w)$.
- (3) A word belongs to red(w) if and only if it is constructed by steps (1) or (2).

For a language $L \subseteq \pi^*$, we set $red(L) = \bigcup_{w \in L} red(w)$.

Operations red and ref II

Lemma: Let $w \in \pi^*$.

- Then red(w) contains exactly one retreat-free word.
- For any word $z \in red(w)$, sh(z) = sh(w).

For $w \in \pi^*$, let ref(w) be the only retreat-free word in red(w).

For a language $L \subseteq \pi^*$, we set $ref(L) = \{ref(w) \mid w \in L\}$.

Lemma: $ref(\pi^*)$ is a regular language.

Lemma: $D_{\pi} = \{w \mid ref(w) = \lambda\}$ is context-free.

Theorem: i) If $L \subseteq \pi^*$ is a regular language, then red(L) and ref(L) are regular, too (i.e., $\mathcal{L}(REG)$ is closed under the operations red and ref). ii) $\mathcal{L}(CF)$ and $\mathcal{L}(CS)$ are not closed under red and ref.

Grammars Generating Pictures

$$\begin{split} &dccp(G) = \{dccp(w) \mid w \in L(G)\} \text{ and } bccp(G) = \{bccp(w) \mid w \in L(G)\} \\ &G_1 = (\{S\}, \ \pi, \ \{S \to urdluS, \ S \to urdlu\}, S) \\ &G_2 = (\{S,A\}, \ \pi, \ \{S \to rAr, \ A \to uAd, \ A \to ud\}, \ S) \\ &G_3 = ((\{S,A\}, \ \pi, \ \{S \to rAr, \ A \to uAd, \ A \to r\}, \ S) \\ &G_4 = (\{S.A\}, \ \pi, \ \{S \to lA, \ A \to urlAd, \ A \to urd\}, \ S) \\ &G_5 = (\{S,A\}, \ \pi, \ \{S \to srS, \ S \to lA, \ A \to urlAd, \ A \to urd\}, \ S) \\ &G_6 = (\{S\}, \ \pi, \ \{S \to urdlS, \ S \to ldruS, \ S \to \lambda\}, \ S) \end{split}$$

CHOMSKY Hierarchy for Chain Code Picture Languages

Definition: A chain code picture language B is called regular or context-free or monotone or $recursively\ enumerable$ if there is a regular or context-free or monotone grammar or a phrase structure grammar, respectively, such that B = bccp(L(G)).

By $\mathcal{CCP}(REG)$, $\mathcal{CCP}(CF)$, $\mathcal{CCP}(CS)$, and $\mathcal{CCP}(RE)$, we denote the families of all regular, context-free, monotone and recursively enumerable chain code picture languages.

Theorem:

$$\mathcal{CCP}(REG) \subset \mathcal{CCP}(CF) \subset \mathcal{CCP}(CS) = \mathcal{CCP}(RE)$$

Membership Problem for Chain Code Picture Languages

- (1) $Membership\ problem$: Given a grammar $G=(N,\pi,P,S)$ and a chain code picture p Decide whether or not $p\in bccp(G)$.
- (2) Given a grammar $G=(N,\pi,P,S)$ and a chain code picture p Decide whether the set $\{w\mid w\in L(G) \text{ and } bccp(w)=p\}$ is finite.
- (3) Given a grammar $G=(N,\pi,P,S)$ and a word $w\in\pi^*$ Decide whether the set $\{w\mid w\in L(G) \text{ and } bccp(w)=p\}$ is a singleton.

Theorem: i) The problems (1), (2), and (3) are decidable for context-free grammars G.

ii) The problems (1), (2), and (3) are undecidable for monotone grammars G.

Theorem: The membership problem is **NP**-complete for regular grammars.

Emptiness and Finiteness Problems for Chain Code Picture Languages

Theorem: The emptiness problem

Given a phrase structure grammar $G = (N, \pi, P, S)$, decide whether or not the picture set bccp(G) is empty?

is decidable for context-free grammars and undecidable for monotone grammars.

Theorem: The finiteness problem

Given a phrase structure grammar $G = (N, \pi, P, S)$, decide whether or not the picture set bccp(G) is finite

is decidable for context-free grammars and undecidable for monotone grammars.

Normal Context-Free Grammars

Definition: A context-free grammar $G = (N, \pi, P, S)$ is called normal if, for every nonterminal $A \in N$ and any derivation $A \Longrightarrow^* xAy$ with $x, y \in \pi^*$, sh(x) = sh(y) = (0,0).

Lemma: For any normal context-free grammar G, there exist a constant c such that, for any $w \in L(G)$, $\sqrt{m^2 + n^2} \le c$ holds where (m, n) = sh(w).

Lemma: Let $G=(N,\pi,P,S)$ be a normal context-free grammar. Then there exist a normal context-free grammar $G'=(N',\pi,P',S')$ such that L(G')=pref(L(G)).

Corollary: Let G be a context-free grammar. Then bccp(G) is finite if and only if G is normal.

Lemma: It is decidable whether or not a given context-free grammar G is normal.

Equivalence Problem for Chain Code Picture Languages

Theorem:

The equivalence problem

```
Given two phrase structure grammars G_1 = (N_1, \pi, P_1, S_1) and G_2 = (N_2, \pi, P_2, S_2) decide whether or not bccp(G_1) = bccp(G_2) holds?
```

is undecidable for regular grammars.

Subpicture Problem for Chain Code Picture Languages

Definition:

We say that the basic chain code picture p is a subpicture of the basic chain code picture q if there is a chain code picture p' such that $p' \equiv p$ and $p' \subseteq q$.

We say that the basic chain code picture p is a subpicture of the basic chain code picture language L, if p is a subpicture of some $q \in L$.

Theorem:

- i) For an arbitrary basic chain code picture p and an arbitrary context-free grammar $G=(N,\pi,P,S)$, it is decidable whether or not p is a subpicture of bccp(G).
- i) For an arbitrary chain code picture p and an arbitrary monotone grammar $G=(N,\pi,P,S)$, it is undecidable whether or not p is a subpicture of bccp(G).

Universal Subpicture Problem for Chain Code Picture Languages

Definition:

We say that the basic chain code picture p is a $universal\ subpicture$ of the basic chain code picture language L, if p is a subpicture of any $q \in L$.

Theorem:

For an arbitrary basic chain code picture p and an arbitrary regular grammar $G = (N, \pi, P, S)$, it is undecidable whether or not p is a universal subpicture of bccp(G).

Some "geometric" properties

A chain code picture p is a simple curve, if all its nodes have a degree at most 2.

A chain code picture p is a $closed\ simple$ curve, if all its nodes have degree 2.

A chain code picture p is a tree, if it does not contain a closed simple curve as a subpicture.

A chain code picture p is called regular, if all nodes of p have the same degree.

A chain code picture p is called Eulerian, if

- all nodes of p have an even degree or
- there are two nodes n and n' in p such that all nodes of p different from n and n' have even degree.

A chain code picture p is called Hamiltonian, if it contains a subpicture p which is a simple curve and contains all nodes of p.

Decidability of "geometrical" properties I

Theorem:

Given a regular grammar $G=(N,\pi,P,S)$, it is undecidable whether or not bccp(G) contains

- a) a simple curve,
- b) a closed simple curve,
- c) a Eulerian picture,
- d) a tree
- e) a Hamiltonian picture,
- f) a regular picture.

Decidability of "geometrical" properties II

Theorem: For an arbitrary context-free grammar $G=(N,\pi,P,S)$, it is decidable whether or not all pictures of bccp(G) are trees.

Lemma: Let G be a regular grammar such that all elements of bccp(G) are closed simple curves. Then bccp(G) is finite.

A chain code picture p is called convex if there is a chain code picture q such that $p \cup q$ is a closed simple curve and the intersection of the inner part of $p \cup q$ with any straight line which is parallel to one of the axes is a finite straight line.

Theorem: For an arbitrary regular grammar $G = (N, \pi, P, S)$, it is decidable whether or not

- a) all pictures of bccp(G) are rectangles,
- b) bccp(G) contains a rectangle,
- c) bccp(G) contains a convex picture.