Stripe Picture Languages

Definition: A picture languages L is called a stripe picture language, if there are real numbers k, d_{1} and d_{2} such that, for any picture $p \in L$ and any point $(m, n) \in V(p)$,

$$
k m+d_{1} \leq n \leq k m+d_{2} .
$$

Lemma: Let $G=(N, \pi, P, S)$ be a reduced context-free grammar such that $\operatorname{dccp}(G)$ is a $\left(k, d_{1}, d_{2}\right)$-stripe picture. For any non-empty word x such that $A \Longrightarrow^{*} x A y$ or $A \Longrightarrow^{*} y A x$ for some $A \in N$ and $y \in \pi^{*}$, $\operatorname{sh}(\mathrm{x})=(0,0) \operatorname{orsh}(x)=(m, k m)$ for some m.

Corollary: Any (k, d_{1}, d_{2})-stripe picture language with a non-rational k is finite.

String Representation Lemma

Lemma: Let k be a rational number and d_{1} and d_{2} real numbers with $d_{1}<d_{2}$. Then there is an alphabet V and an encoding μ which maps any picture in the stripe to a word over V such that the following properties hold:
i) For two $\left(k, d_{1}, d_{2}\right)$-stripe pictures q and $q^{\prime}, \mu(q)=\mu\left(q^{\prime}\right)$ if and only if $q=q^{\prime}$.
ii) For a $\left(k, d_{1}, d_{2}\right.$)-stripe picture $q, \mu(q)$ can be computed in linear time (in the size of q).
iii) If L is a regular $\left(k, d_{1}, d_{2}\right)$-stripe picture language, then $\mu(L)=\{\mu(q) \mid$ $q \in L\}$ is a regular word language over V, which can effectively be constructed.

Decision Problems for Stripe Picture Grammars

Theorem: For a regular grammar G such that $\operatorname{bccp}(G)$ is a stripe picture language and a picture p, it is decidable in linear time whether or not $p \in b c c p(G)$.

Theorem: For two regular grammars G_{1} and G_{2} such that bccp $\left(G_{1}\right)$ and $\operatorname{bccp}\left(G_{2}\right)$ are stripe picture languages, it is decidable whether or not $b c c p\left(G_{1}\right)=b c c p\left(G_{2}\right)$.

Theorem: For a regular grammar G such that $\operatorname{bccp}(G)$ is a stripe picture language, it is decidable whether or not $\operatorname{bccp}(G)$ contains
i) a simple curve,
ii) a closed simple curve,
iii) a regular curve,
iv) an Eulerian curve.

Decidability of Being a Stripe Language

Lemma: Let $G=(N, \pi, P, S)$ be a context-free grammar in Chomsky normal form such that $L(G)=\operatorname{pref}(L(G))$. If there is a real number k such that, for all words x in the set
$T=\left\{x \mid x \in \pi^{*}, A \Longrightarrow^{*} x A y\right.$ or $A \Longrightarrow^{*} y A x$ for some $y \in \pi^{*}$ and $\left.A \in N\right\}$,
$\operatorname{sh}(x)=(m, m k)$ for some m, then there are two real numbers d_{1} and d_{2} such that $\operatorname{dccp}(G)$ is a $\left(k, d_{1}, d_{2}\right)$-stripe language.

Theorem: For a context-free grammar G, it is decidable whether or not $\operatorname{bccp}(G)$ is a stripe language.

Extended Chain Code Pictures

Inductive definition of an extended drawn picture $\operatorname{edccp}(w)$ of $w \in \pi_{\uparrow}$

- if $w=\lambda$, then $\operatorname{edccp}(w)=((0,0), \emptyset,(0,0), \downarrow)$,
— if $w=w^{\prime} b, w^{\prime} \in \pi_{\downarrow}^{*}, b \in \pi$ and $\operatorname{edccp}\left(w^{\prime}\right)=((0,0), p, z, \downarrow)$,
then $\operatorname{edccp}(w)=((0,0), p \cup\{z, b(z))\}, b(z), \downarrow)$,
- if $w=w^{\prime} b, w^{\prime} \in \pi_{\uparrow}^{*}, b \in \pi$ and $\operatorname{edccp}\left(w^{\prime}\right)=((0,0), p, z, \uparrow)$,
then $\operatorname{edccp}(w)=((0,0), p, b(z), \uparrow)$, - if $w=w^{\prime} b, w^{\prime} \in \pi_{\uparrow}^{*}, b=\uparrow$,
$\operatorname{edccp}\left(w^{\prime}\right)=((0,0), p, z, s)$ and $s \in\{\uparrow, \downarrow\}$,
then $\operatorname{edccp}(w)=((0,0), p, z, \uparrow), \quad$ - if $w=w^{\prime} b, w^{\prime} \in \pi_{\uparrow}^{*}, \quad b=\downarrow$,
$\operatorname{edccp}\left(w^{\prime}\right)=((0,0), p, z, s)$ and $s \in\{\uparrow, \downarrow\}$,
then $\operatorname{edccp}(w)=((0,0), p, z, \downarrow)$.
Theorem: i) $\mathcal{C C} \mathcal{P}_{\uparrow}(R E G) \subset \mathcal{C C} \mathcal{P}_{\uparrow}(C F) \subset \mathcal{C C} \mathcal{P}_{\uparrow}(C S)=\mathcal{C C} \mathcal{P}_{\uparrow}(R E)$.
ii) $\mathcal{C C P}(X) \subset \mathcal{C C} \mathcal{P}_{\uparrow}(X)$ for $X \in\{R E G, C F, C S, R E\}$.

A First Koch Curve and a Result

$$
\left(\pi, \pi,\left\{u \rightarrow u r u l^{2} u r l, d \rightarrow d l d r^{2} d l d, r \rightarrow r d r u^{2} r d r, l \rightarrow l u l d^{2} \mid u l\right\}, u r d l\right)
$$

Theorem: $\mathcal{C C P}(C F) \subset \mathcal{C C P}(E 0 L)$

Turtle Grammars - I

Definition:

A turtle grammar is an $(n+4)$-tuple $G=\left(V, T, P_{1}, P_{2}, \ldots, P_{n}, w, \alpha_{0}, \alpha\right)$, where

- V is a finite alphabet, and $T \subseteq V$ is a subset containing the letter F,
- for $1 \leq i \leq n, P_{i}$ is a finite set of productions of the form $A \rightarrow v$ with $A \in V$ and $v \in(V \cup\{+,-\})^{*}$,
$-w \in(V \cup\{+,-\})^{*}$,
- α_{0} and α are two angles.

Turtle Grammars - II

Let α_{0} and α be two angles and, V an alphabet containing the letter F. For a word $w \in(V \cup\{+,-\})^{*}$, we define inductively a configuration $c(w)=(M,(x, y), \beta)$ with a set M of lines of unit length, a point (x, y) in the plain and an angle as follows
$-c(\lambda)=\left(\emptyset,(0,0), \alpha_{0}\right)$,
— if $c(w)=(M,(x, y), \beta)$, then

- $c(w x)=c(w)$ for $x \in V$ and $x \neq F$,
- $c(w+)=(M,(x, y), \beta+\alpha)$ and
- $c(w-)=(M,(x, y), \beta-\alpha)$,
- $c(w F)=\left(M \cup\{b\},\left(x^{\prime}, y^{\prime}\right), \beta\right)$, where $\left(x^{\prime}, y^{\prime}\right)$ is the point such that the distance between $\left(x^{\prime}, y^{\prime}\right)$ and (x, y) is $1, b$ is the line connecting (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ and the angle between b and the x-axes is β.
The picture $\operatorname{tur}(w)$ is defined as the first component of $c(w)$.

A Second Koch curve

$$
\begin{aligned}
& K_{2}=\left((\{F\},\{F \rightarrow F+F--F+F\}, F), 0^{o}, 60^{\circ}\right) \\
& K_{2}^{\prime}=\left(\{F\},\{F \rightarrow F+[F]-[F] F\}, F, 0^{0}, 60^{0}\right)
\end{aligned}
$$

Turtle Grammars - III

An extended turtle grammar is an $(n+4)$-tuple

$$
G=\left(V, T, P_{1}, P_{2}, \ldots, P_{n}, w, \alpha_{0}, \alpha\right),
$$

where

- V is a finite alphabet, and $T \subseteq V$ is a subset containing the letter F,
- for $1 \leq i \leq n, P_{i}$ is a finite set of productions of the form $A \rightarrow v$ with $A \in V, v \in(V \cup\{+,-,[,]\})^{*}$, and v is correctly bracketed with respect to [and],
$-w \in(V \cup\{+,-,[,]\})^{*}$ and w is correctly bracketed with respect to [and],
- α_{0} and α are two angles.

Turtle Grammars - IV

Let α_{0} and α be two angles and, V an alphabet containing F. For a word $w \in(V \cup\{+,-,[,]\})^{*}$, we define inductively the extended configuration $e c(w)=\left(M,(x, y), s, \beta_{0}, \beta\right)$ with a set M of lines of unit length, a point (x, y) in the plain, a sequence s of angles, and two angles β_{0} and β by
$-e c(\lambda)=\left(\emptyset,(0,0), \lambda, \alpha_{0}, \alpha_{0}\right)$,

- if $e c(w)=\left(M,(x, y), s, \beta_{0}, \beta\right)$, then
- ec(wx) $=c(w)$ for $x \in V$ and $x \neq F$,
- $e c(w+)=\left(M,(x, y), s, \beta_{0}, \alpha\right)$ and $e c(w-)=\left(M,(x, y), s, \beta_{0},-\alpha\right)$,
- ec $(w F)=\left(M \cup\{b\},\left(x^{\prime}, y^{\prime}\right), s, \beta_{0}, \beta\right)$, where $\left(x^{\prime}, y^{\prime}\right)$ is the point such that the distance between $\left(x^{\prime}, y^{\prime}\right)$ and (x, y) is $1, b$ is the line connecting (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ and the angle between b and the line given by the angle β_{0} is α,
- $e c\left(w[)=\left(M,(x, y), s \beta_{0}, \alpha, 0^{0}\right)\right.$, and
- $e c(w])=\left(M,(x, y), s^{\prime}, \beta, 0^{0}\right)$ where $s=s^{\prime} \beta$

The extended picture $\operatorname{etur}(w)$ is defined as the first component of $e c(w)$.

A Statement

Theorem:

For a picture language L, the following two statements are equivalent:
i) $L=b c c p(G)$ for some ETOL system G.
ii) $L=\operatorname{etur}(G)$ for some $\left(G, \alpha_{0}, \alpha\right)$ where G is an ETOL system, $\alpha=90^{\circ}$ and α is a multiple of 90°.

