Stripe Picture Languages

Definition: A picture languages L is called a stripe picture language, if there are real numbers k, d_1 and d_2 such that, for any picture $p \in L$ and any point $(m, n) \in V(p)$,

$$km + d_1 \le n \le km + d_2.$$

Lemma: Let $G = (N, \pi, P, S)$ be a reduced context-free grammar such that dccp(G) is a (k, d_1, d_2) -stripe picture. For any non-empty word x such that $A \Longrightarrow^* xAy$ or $A \Longrightarrow^* yAx$ for some $A \in N$ and $y \in \pi^*$, sh(x)=(0,0)orsh(x)=(m, km) for some m.

Corollary: Any (k, d_1, d_2) -stripe picture language with a non-rational k is finite.

Grammatical Picture Generation

String Representation Lemma

Lemma: Let k be a rational number and d_1 and d_2 real numbers with $d_1 < d_2$. Then there is an alphabet V and an encoding μ which maps any picture in the stripe to a word over V such that the following properties hold:

i) For two (k, d_1, d_2) -stripe pictures q and q', $\mu(q) = \mu(q')$ if and only if q = q'.

ii) For a (k, d_1, d_2) -stripe picture q, $\mu(q)$ can be computed in linear time (in the size of q).

iii) If L is a regular (k, d_1, d_2) -stripe picture language, then $\mu(L) = \{\mu(q) \mid q \in L\}$ is a regular word language over V, which can effectively be constructed.

Grammatical Picture Generation

Decision Problems for Stripe Picture Grammars

Theorem: For a regular grammar G such that bccp(G) is a stripe picture language and a picture p, it is decidable in linear time whether or not $p \in bccp(G)$.

Theorem: For two regular grammars G_1 and G_2 such that $bccp(G_1)$ and $bccp(G_2)$ are stripe picture languages, it is decidable whether or not $bccp(G_1) = bccp(G_2)$.

Theorem: For a regular grammar G such that bccp(G) is a stripe picture language, it is decidable whether or not bccp(G) contains i) a simple curve, ii) a closed simple curve,

iii) a regular curve,

iv) an Eulerian curve.

Decidability of Being a Stripe Language

Lemma: Let $G = (N, \pi, P, S)$ be a context-free grammar in Chomsky normal form such that L(G) = pref(L(G)). If there is a real number k such that, for all words x in the set

 $T = \{x \mid x \in \pi^*, A \Longrightarrow^* xAy \text{ or } A \Longrightarrow^* yAx \text{ for some } y \in \pi^* \text{ and } A \in N\},\$

sh(x) = (m, mk) for some m, then there are two real numbers d_1 and d_2 such that dccp(G) is a (k, d_1, d_2) -stripe language.

Theorem: For a context-free grammar G, it is decidable whether or not bccp(G) is a stripe language.

Grammatical Picture Generation

Extended Chain Code Pictures

Inductive definition of an extended drawn picture edccp(w) of $w \in \pi_{\uparrow}$

$$\begin{array}{l} - \text{ if } w = \lambda, \text{ then } edccp(w) = ((0,0), \emptyset, (0,0), \downarrow), \\ - \text{ if } w = w'b, \, w' \in \pi_{\uparrow}^{*}, \, b \in \pi \text{ and } edccp(w') = ((0,0), p, z, \downarrow), \\ \text{ then } edccp(w) = ((0,0), p \cup \{z, b(z))\}, b(z), \downarrow), \\ - \text{ if } w = w'b, \, w' \in \pi_{\uparrow}^{*}, \, b \in \pi \text{ and } edccp(w') = ((0,0), p, z, \uparrow), \\ \text{ then } edccp(w) = ((0,0), p, b(z), \uparrow), - \text{ if } w = w'b, \, w' \in \pi_{\uparrow}^{*}, \, b = \uparrow, \\ edccp(w') = ((0,0), p, z, s) \text{ and } s \in \{\uparrow, \downarrow\}, \\ \text{ then } edccp(w) = ((0,0), p, z, s) \text{ and } s \in \{\uparrow, \downarrow\}, \\ edccp(w') = ((0,0), p, z, s) \text{ and } s \in \{\uparrow, \downarrow\}, \\ \text{ then } edccp(w) = ((0,0), p, z, \downarrow). \end{array}$$

Theorem: i)
$$\mathcal{CCP}_{\uparrow}(REG) \subset \mathcal{CCP}_{\uparrow}(CF) \subset \mathcal{CCP}_{\uparrow}(CS) = \mathcal{CCP}_{\uparrow}(RE)$$
.
ii) $\mathcal{CCP}(X) \subset \mathcal{CCP}_{\uparrow}(X)$ for $X \in \{REG, CF, CS, RE\}$.

A First Koch Curve and a Result

 $(\pi, \pi, \{u \to urul^2 url, d \to dldr^2 dld, r \to rdru^2 rdr, l \to luld^2 lul\}, urdl)$

Theorem: $\mathcal{CCP}(CF) \subset \mathcal{CCP}(E0L)$

Turtle Grammars – I

Definition:

A turtle grammar is an (n + 4)-tuple $G = (V, T, P_1, P_2, \dots, P_n, w, \alpha_0, \alpha)$, where

- V is a finite alphabet, and $T \subseteq V$ is a subset containing the letter F,
- for $1 \le i \le n$, P_i is a finite set of productions of the form $A \to v$ with $A \in V$ and $v \in (V \cup \{+, -\})^*$,
- $-\!\!- w \in (V \cup \{+,-\})^*\text{,}$
- α_0 and α are two angles.

Turtle Grammars – II

Let α_0 and α be two angles and, V an alphabet containing the letter F. For a word $w \in (V \cup \{+, -\})^*$, we define inductively a configuration $c(w) = (M, (x, y), \beta)$ with a set M of lines of unit length, a point (x, y) in the plain and an angle as follows

$$- c(\lambda) = (\emptyset, (0, 0), \alpha_0), - \text{if } c(w) = (M, (x, y), \beta), \text{ then }$$

•
$$c(wx) = c(w)$$
 for $x \in V$ and $x \neq F$,

•
$$c(w+) = (M, (x, y), \beta + \alpha)$$
 and

•
$$c(w-) = (M, (x, y), \beta - \alpha)$$
,

 c(wF) = (M ∪ {b}, (x', y'), β), where (x', y') is the point such that the distance between (x', y') and (x, y) is 1, b is the line connecting (x, y) and (x', y') and the angle between b and the x-axes is β.

The picture tur(w) is defined as the first component of c(w).

A Second Koch curve

 $K_{2} = ((\{F\}, \{F \to F + F - -F + F\}, F), 0^{o}, 60^{o})$ $K_{2}' = (\{F\}, \{F \to F + [F] - [F]F\}, F, 0^{0}, 60^{0})$

Turtle Grammars – III

An extended turtle grammar is an (n+4)-tuple

$$G = (V, T, P_1, P_2, \ldots, P_n, w, \alpha_0, \alpha),$$

where

- V is a finite alphabet, and $T \subseteq V$ is a subset containing the letter F,
- for $1 \leq i \leq n$, P_i is a finite set of productions of the form $A \rightarrow v$ with $A \in V$, $v \in (V \cup \{+, -, [,]\})^*$, and v is correctly bracketed with respect to [and],
- $w \in (V \cup \{+, -, [,]\})^*$ and w is correctly bracketed with respect to [and],
- α_0 and α are two angles.

Turtle Grammars – IV

Let α_0 and α be two angles and, V an alphabet containing F. For a word $w \in (V \cup \{+, -, [,]\})^*$, we define inductively the extended configuration $ec(w) = (M, (x, y), s, \beta_0, \beta)$ with a set M of lines of unit length, a point (x, y) in the plain, a sequence s of angles, and two angles β_0 and β by $-ec(\lambda) = (\emptyset, (0, 0), \lambda, \alpha_0, \alpha_0),$ — if $ec(w) = (M, (x, y), s, \beta_0, \beta)$, then

- ec(wx) = c(w) for $x \in V$ and $x \neq F$,
- $ec(w+) = (M, (x, y), s, \beta_0, \alpha)$ and $ec(w-) = (M, (x, y), s, \beta_0, -\alpha)$,
- $ec(wF) = (M \cup \{b\}, (x', y'), s, \beta_0, \beta)$, where (x', y') is the point such that the distance between (x', y') and (x, y) is 1, b is the line connecting (x, y) and (x', y') and the angle between b and the line given by the angle β_0 is α ,
- $ec(w[) = (M, (x, y), s\beta_0, \alpha, 0^0)$, and
- $ec(w]) = (M, (x, y), s', \beta, 0^0)$ where $s = s'\beta$

The extended picture etur(w) is defined as the first component of ec(w).

A Statement

Theorem:

For a picture language L, the following two statements are equivalent:

i) L = bccp(G) for some ET0L system G.

ii) L = etur(G) for some (G, α_0, α) where G is an ET0L system, $\alpha = 90^{\circ}$ and α is a multiple of 90° .