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Introduction

Pictures are an important aspect of our life. They occur almost everywhere as technical
drawings describing machines or buildings etc., as paintings of an artist, as language-
independent hints and so on. Moreover, pictures have a lot of advantages in comparison
with words (we only mention the saying that a picture tells more than 1000 words). Thus
there is large interest to generate pictures by computers. Therefore it is not surprising
that a lot of picture-generating devices were introduced in the last four decades. They
are based on two-dimensional automata (see e.g. [15]), on weighted finite automata (see
e.g [1]), on a generalization of the concept of local languages from words (sequences of
letters) to matrices of letters (see [9, 10]) and on different kinds of grammars.

Picture generating grammars are the subject of this lecture. The main focus will be
given to the following three types of grammars:

• Chain code picture grammars

Here, firstly, languages of words over certain alphabets are generated and, secondly,
the letters of the alphabet are interpreted as directions. Thus a word can be inter-
preted as a sequence of movements along or of drawings of lines of a unit length (e.g.
as it is done by a plotter) which form a picture. This approach was initiated by
H. Freeman in [7, 8] in 1961 and studied intensively from point of formal languages
by H. A. Maurer, E. Welzl, F. Hinz, I. Sudborough, Ch. Kim and others
in the eighties (see e.g. [18, 24, 2, 16]). Chain code picture languages generated by
Lindenmayer systems are used to produce pictorial descriptions of the development
of plants (see [20, 19]).

• Picture grammars based on arrays

Here one generates matrices of letters instead of words. There are some mechanisms
to produce the arrays, e.g. arrays grammars (where nonterminals are replaced by
matrices of letters instead of words) and Siromoney matrix grammars (where, first,
a word is produced and then any letter generates a row of letters) (see e.g. [23]).
Finally, any letter is interpreted as a (small) picture of fixed size such that a matrix
of letters corresponds to a large picture. The research in this direction started in
the sixties already. We shall investigate Siromoney matrix grammars as a typical
example of this approach.

• Collage grammars.

The basic idea of this grammar type is to generalize (context-free) graph grammars
in such a way that one directly replaces a subpicture by another picture. This
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approach was initiated by H. J. Kreowski, A. Habel and F. Drewes in the
beginning of the nineties (see [11, 4]).

Other grammatical devices, e.g. the random context picture grammars by S. Ewert
and A. P. J. van der Walt (see [5, 6]) will be mentioned only shortly or omitted.

We shall discuss hierarchies within one type of generation of picture languages with
respect to the type of the rules, relations between the different approaches and decidability
of language theoretic as well as geometric properties.

Most topics of this lecture are covered by the book Grammatical Picture Generation
by F. Drewes. However, Drewes’ book develops the theory on the basis of tree gram-
mars, tree automata and tree transformations. In contrast, in this lecture we only assume
that the reader is familiar with the ”classical” concepts of the theory of phrase structure
grammars which can be found in most standard text books on theoretical computer sci-
ence (see e.g. [14, 17]). In Chapter 1 we give a summary of the definitions and facts from
the theory of phrase structure grammars and their formal languages used in the lecture.
Besides definitions and statements we add some easy proofs that a reader gets an im-
pression of the working of the grammars. Moreover, we need some very basic knowledge
on Lindenmayer systems. Detailed information on Lindenmayer systems can be found
in the textbooks [12, 21]. In Chapter 1 we give the definitions of this type of language
generating devices, and mostly we need only these basic definitions.

Within a Chapter x all definitions, examples, theorems, lemmas, corollaries etc. have a
common numbering, i.e., in the text the successor of Definition x.y can be Lemma x.y+1,
which is followed by Example x.y+2 and so on. We conclude a proof by the symbol 2. If
the proof of a statement is omitted, then already the formulation of the statement ends
with 2. The end of an example is denoted by ¦.

Jürgen Dassow Magdeburg, April 2011
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Chapter 1

Basics of Formal Language Theory

The subject of this lecture is the generation of pictures by grammars or devices similar
to grammars. Thus in many places we shall use definitions, concepts and statements of
the theory of formal languages. Detailed information on formal languages can be found
in [22]. Most material which is used in the lecture can be found in standard textbooks
on theoretical computer science (see e.g. [14, 17]) and is presented in basic courses on
theoretical computer science. Thus we assume that the reader is familiar with these basic
notions, concepts and ideas.

In this chapter we give a summary of the definitions and facts which will be used in
this lecture. Besides the notions and statements we also present some easy proofs and
examples. Thus a reader without basic knowledge on formal language can consider this
chapter as an introduction in the field.

1.1 Phrase Structure Grammars

An alphabet is a non-empty finite set. A word (over an alphabet V ) is a finite sequence
of letters (of V ). By λ we denote the empty word (which consists of no letter). By V ∗

(and V +) we designate the set of all (non-empty) words over V . We denote the number
of occurrences of a letter a in a word w by #a(w). The length of a word w is defined by

|w| =
∑
a∈V

#a(w) .

A language (over V ) is a subset of V ∗.
We say that two languages L1 and L2 are equal iff L1 \ {λ} = L2 \ {λ}, i.e., if two

languages only differ in the empty word, then the difference between them is ignored.

For an alphabet V = {a1, a2, . . . , an} (with an fixed enumeration of the letters) and a
word w ∈ V ∗, we define the Parikh vector of w by

Ψ(w) = (#a1(w), #a2(w), . . . , #an(w)),

i.e., we map w onto a n-dimensional vector over the natural numbers, where the i-th
component gives the number of occurrences of the i-th letter.
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A set M ⊂ Nn is called semi-linear if and only if there are natural numbers m ≥ 1
and ri ≥ 1, 1 ≤ i ≤ m, and vectors aij ∈ Nn =, 1 ≤ i ≤ m, 0 ≤ j ≤ ri, such that

M =
m⋃

i=1

{ai0 +

ri∑
j=1

αijaij | αij ∈ N for 1 ≤ j ≤ ri} .

A language L is called semi-linear if its Parikh set Ψ(L) = Ψ({w | w ∈ L} is semi-linear.

Example 1.1 We consider the alphabet

V = {a, c,

∫
, α, ◦, ; }

consisting of the latin letters a and c, the symbol for the integral, the greek letter α,
the symbol ◦ used for operations in mathematics, and the semicolon (alphabets are sets;
it is not necessary that we associate some meaning with the letters and the words built
from the letters; however, the use of alphabet comes from the fact that most concepts are
overtaken from linguistics). Then we have the words

w1 = a c c

∫ ∫
; α and w2 =

∫
; ; ; ◦α

over V . Moreover,

#a(w1) = #α(w1) = 1, #;(w2) = 3, |w1| = 7, |w2| = 6

and
Ψ(w1) = (1, 2, 2, 1, 0, 1) and Ψ(w2) = (0, 0, 1, 1, 1, 3) .

Examples for languages over V are

L1 = {w1, w2} and L2 = {aαnc | n ≥ 1} = {aαc, aααc, . . . }

(where we write αn for the sequence of length n which consists of α only).
The language L2 is semi-linear since

Ψ(L2) = {(1, 1, 0, n, 0, 0) | n ≥ 0} = {(1, 1, 0, 0, 0, 0) + α(0, 0, 0, 1, 0, 0) | α ∈ N} .

¦

Theorem 1.2 The intersection of two semi-linear sets is semi-linear, too. 2

We now introduce one of the basic concepts of this lecture – the phrase structure
grammars.

Definition 1.3 i) A phrase structure grammar is a quadruple G = (N, T, P, S), where
— N and T are alphabets (sets of nonterminals and terminals, resp.),
— N ∩ T = ∅,
— P is a finite subset of (V ∗ \ T ∗)× V ∗) (set of rules/productions),
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(instead of (α, β) we write α → β),
— S ∈ N (axiom/start symbol).

ii) We say that x directly derives (generates) y (written as x =⇒G y) iff

x = x1αx2, y = x1βx2, α → β ∈ P.

iii) The language generated by G is defined as

L(G) = {z | z ∈ T ∗ and S =⇒∗
G z}

where =⇒∗
G is the reflexive and transitive closure of =⇒G.

If the grammar under consideration is clear from the context, we omit the subscript
G and write =⇒ and =⇒∗.

Example 1.4 i) We consider the grammar

G1 = ({S}, {(, ), [, ]}, P1, S)

with
P1 = {S → SS, S → (S), S → [S], S → ( ), S → [ ]} .

We show that L(G1) is the set of all correctly bracketed expressions over the pairs (, ) and
[, ] of brackets.

We first prove (by induction on number of derivation steps) that only corrected brack-
eted expressions can be generated. If we generate a word by one derivation step, then
we only have the derivations S =⇒ ( ) or S =⇒ [ ] (since, otherwise, we do not derive a
word over the terminal alphabet {[, ], (, )}). Therefore we get correctly bracketed expres-
sions. Now assume, that we have a derivation with n ≥ 2 derivation steps. Then we get
derivations of the form

S =⇒ SS =⇒∗ w1S =⇒∗ w1w2,

S =⇒ ( S ) =⇒∗ ( w1 ) , (1.1)

S =⇒ [ S ] =⇒∗ [ w1 ]

where the derivations S =⇒∗ w1 and S =⇒∗ w2 have a length at most n−1. By induction
hypothesis, w1 and w2 are correctly bracketed. Thus w1w2, (w1) and [w1] are also correctly
bracketed.

Conversely, we prove by induction on the length of the expression that all correctly
bracketed expression can be obtained. If the length is 2 (by the correctness, the words
have an even length), then the only possible expression are ( ) and [ ]. Both expression
can be generated by application of the rules S → ( ) and S → [ ] to the start element
S. Now let w be an correctly bracketed expression of length n ≥ 4. Then w = w1w2 or
w = (w1) or w = [w1] for some correctly bracketed expressions w1 and w2. By induction
hypothesis, we have derivations S =⇒∗ w1 and S =⇒∗ w2. Now w can be generated by
derivations of the forms given in (1.1).

ii) We consider the grammar

G2 = ({S, #, §, A,B, C, }, {a, b}, P2, S)
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with

P2 = {S → bbabb, S → #Aa§, #Aa → #aaA, aAa → aaaA, aA§ → aB§,
aB → Ba, #B → #A, #B → #C, #Ca → bbaC, aCa → aaC, aC§ → abb}

We consider a word w = #Aa2n§ (the word with n = 0 can be derived from the axiom
by application of the second rule). We can use only the third rule and get #aaAa2n−1§.
Now we can apply only the fourth rule and obtain the derivation

#aaAa2n−1§ =⇒ #aaaaA2n−2§ =⇒ #a6Aa2n−3§ =⇒∗ #a2n+1

A§ .

Now we have to apply once the fifth rule and then some times aB → Ba which leads to

#a2n+1

A§ =⇒ #a2n+1

B§ =⇒ #a2n+1−1Ba§ =⇒ #a2n+1−2Baa§ =⇒∗ #Ba2n+1§ .

Now the rules #B → #A and #B → #C are applicable. In the former case we get
#Aa2n+1§, i.e., we obtain a word of the same form as w and we can iterate the process.
In the latter case we have the derivation

#Ba2n+1§ =⇒ #Ca2n+1§ =⇒ bbaCa2n+1−1§ =⇒ bbaaCa2n+1−2§ =⇒∗ bba2n+1

C§ =⇒ bba2n+1

bb .

Taking into consideration the application of the first rule we get

L(G2) = {bba2n

bb | n ≥ 0} .

¦
Definition 1.5 i) G is called monotone, if |α| ≤ |β| holds for all rules α → β of P .

ii) G is called context-free, if all rules of P are of the form A → w with A ∈ N and
w ∈ V ∗.

iii) G is called regular, if all rules of P are of the form A → wB or A → w with
A,B ∈ N and w ∈ T ∗.

iv) A language L is called monotone or context-free or regular, iff L = L(G) for some
monotone or context-free or regular grammar G, respectively.

The grammar G1 is context-free (the left hand side of any rule only consist of the
nonterminal S), it is also monotone ( the right hand sides have a length at least two and
therefore greater than the length one of the left hand sides). Obviously, G1 is a phrase
structure grammar. However, G1 is not regular, since the rule S → SS and some others
do not have the required form.

The grammar G2 is a monotone phrase structure grammar. But it is neither context-
free nor regular since its production set P2 contains rules with a left hand side consisting
of a word of length ≥ 2.

We denote the families of all regular, context-free and monotone languages by L(REG),
L(CF ) and L(CS)1, respectively. L(RE)2 denotes the family of all languages which can
be generated by phrase-structure grammars.

1We use the usual notation which refers to context-sensitive grammars. This can be done because
a language is context-sensitive ii it is monotone. We omit the definition of context-sensitive gram-
mars/languages since we use always monotone grammars

2The abbreviation RE stands for recursively enumerable sets. This notation is taken from recursion
theory and justified by Theorem 1.20.
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We now give some normal forms for grammars, i.e., we put some restriction to the
form of rules without restricting the family of languages.

Theorem 1.6 i) For any language L ∈ L(RE), there is a phrase-structure grammar
G = (N, T, P, S) such that L = L(G) and P has only rules of the forms A → B, A → BC,
AB → CD, A → a and A → λ, where A,B,C,D ∈ N and a ∈ T .

ii) For any language L ∈ L(CS), there is a monotone grammar G = (N, T, P, S) such
that L = L(G) and P has only rules of the forms A → B, A → BC, AB → CD and
A → a, where A,B, C, D ∈ N and a ∈ T .

iii) For any language L ∈ L(CF ), there is a context-free grammar G = (N, T, P, S)
such that L = L(G) and P has only rules of the forms A → BC and A → a, where
A,B, C ∈ N and a ∈ T .

iv) For any language L ∈ L(REG), there is a regular grammar G = (N, T, P, S) such
that L = L(G) and P has only rules of the forms A → aB and A → a, where A,B ∈ N
and a ∈ T .

Proof. We only prove the statement iv). Let L be a regular language. Then there is a
regular grammar G = (N, T, P, S) with L(G) = L. We first construct a regular grammar
G′ = (N, T, P ′, S) such that L(G′) = L and P ′ contains no rules of the form A → B with
A,B ∈ N .

For any letter A, we consider all derivations in G which have the form

A =⇒G A1 =⇒G A2 =⇒G . . . =⇒G Ar =⇒G x (1.2)

with A,A1, A2, . . . , Ar ∈ N and x /∈ N (note that x is a terminal word or a non-empty
terminal word followed by exactly one nonterminal). We define the set PA as the set of
all rules A → x such that there is a derivation of the form (1.2). Obviously, PA contains
no rules of the form A → B with B ∈ N . We now define the grammar

G′ = (N, T, (P \ {A → B | A → B ∈ P, A,B ∈ N}) ∪
⋃

A∈N

PA, S).

Clearly, G′ is regular and its set of rules contains no rule A → B with A, B ∈ N .
We now prove that L(G′) = L(G) = L. Assume that there is a derivation in G which

uses a rule A → B with A,B ∈ N , i.e.,

D : S =⇒∗
G xA =⇒G xB =⇒∗

G xy ∈ T ∗ .

Since D terminates, there is a k ≥ 0 such that the derivation D has the form

D : S =⇒∗
G xA =⇒G xB =⇒G xB1 =⇒ xB2 =⇒G . . . =⇒G xBk =⇒G xz =⇒∗ xy′

with z /∈ N und z =⇒∗
G y. Then in G′ we have the derivation

D′ : S =⇒∗
G xA =⇒G′ xz =⇒∗

G xy

using A → z ∈ PA. By iterated application of this procedure we get a derivation S =⇒ xy
G′ which uses only rules from G, which do not have the form A → B with A,B ∈ N , and
rules from

⋃
A∈N PA. Thus it is a derivation in G′. Thus L(G) ⊆ L(G′).
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On the other hand, let D′ be a derivation in G′ using some rules A → x ∈ PA. For
each such rule there is a derivation of the form (1.2) in G. If we substitute any derivation
step uA =⇒G′ ux by the derivation uA =⇒G uA1 =⇒G uA2 =⇒G . . . =⇒G uAr =⇒G ux
in G we get a derivation in G which derives the same word as G. Hence L(G′) ⊆ L(G).

Analogously, we can show that all rules of the form A → λ (instead of B =⇒ wA =⇒ w
take B =⇒ w by using the new rule B → w). Let G′′ be the obtained regular grammar.

Finally we construct the grammar G′′′ from G′′ by replacing each rule A → a1a2 . . . arB
with r ≥ 2, A,B ∈ N and ai ∈ T for 1 ≤ i ≤ r by the rules

A → a1A1, A1 → a2A2, . . . , Ar−2 → ar−1Ar−1, Ar−1 → arB

and by replacing each rule A → a1a2 . . . as with s ≥ 2, A ∈ N and aj ∈ T for 1 ≤ j ≤ s
by the rules

A → a1B1, B1 → a2B2, . . . , Bs−2 → as−1Bs−1, Bs−1 → ar

where A1, A2, . . . , Ar−1, B1, B2, . . . , Bs−1 are new nonterminals. Then we have a derivation

uA =⇒G′′ ua1a2 . . . arB if and only if uA =⇒G′′′ ua1A1 =⇒G′′′ ua1a2A2 =⇒∗
G′′′ ua1a2 . . . arB

and

uA =⇒G′′ ua1a2 . . . ar if and only if uA =⇒G′′′ ua1B1 =⇒G′′′ ua1a2B2 =⇒∗
G′′′ ua1a2 . . . ar .

Hence L(G′′) = L(G′′′).
Summarizing we get L(G′′′) = L and G′′′ has all required properties. 2

Theorem 1.7 a) Let L be a regular language. Then there is a constant k (which depends
on L) such that, for any word z ∈ L with |z| ≥ k, there are words u, v, w which satisfy
the following properties:
i) z = uvw,
ii) |uv| ≤ k, |v| > 0, and
iii) uviw ∈ L for all i ≥ 0.

b) Let L be context-free language. Then there is a constant k (which depends on L)
such that, for any word z ∈ L with |z| ≥ k, there are words u, v, w, x, y which satisfy the
following properties:
i) z = uvwxy,
ii) |vwx| ≤ k, |vx| > 0, and
iii) uviwxiy ∈ L for all i ≥ 0.

Proof. We only prove i). Let L ∈ L(REG). By Theorem 1.6, there is a regular grammar
G = (N, T, P, S) such that L(G) = L and all its rules are of the form A → aB or A → a
with A,B ∈ N and a ∈ T . Thus any derivation has the form

S = A0 =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an−1an . (1.3)

Let k = #(N) + 1. If n ≥ k, then in (1.3) there are two nonterminals Ai and Aj such
that i < j ≤ k and Ai = Aj. We set

u = a1a2 . . . ai, v = ai+1ai+2 . . . aj, w = aj+1aj+2 . . . an .
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Then |uv| ≤ k and |v| > 0. Moreover, for any m ≥ 0, we have the derivation

S =⇒∗ uAi =⇒∗ uvAj = uvAi =⇒ uvvAj = uvvAi =⇒∗ uvmAj =⇒∗ uvmw

which proves that uvmw ∈ L(G) = L for any m ≥ 0. 2

Finally in this section we mention a property of the Parikh-sets of context-free lan-
guages.

Theorem 1.8 For any context-free language L, Ψ(L) is semi-linear. 2

1.2 Lindenmayer Systems

A characteristic property of the derivation process of the context-free grammars is that
in any step exactly one letter is replaced and using the normal forms (see Theorem 1.6
for general phrase structure grammars and monotone grammars exactly one subword of
length at most two is replaced. This contrast processes in biology where mostly all cells
develop in one step. Therefore A. Lindenmayer introduced a new type of grammar-like
devices where the characteristic feature is a parallel replacement of all letters.

Definition 1.9 i) An extended tabled Lindenmayer system (abbr. by ET0L) with n tables
is an (n + 3)-tuple G = (V, T, P1, P2, . . . , Pn, w), where
– V is a finite alphabet, T is a non-empty subset of V ,
– for 1 ≤ i ≤ n, Pi is a finite subset of V × V ∗ such that, for any a ∈ V , there is a pair
(a, wa) in Pi,
– w ∈ V +.

ii) We say that x directly derives (generates) y (written as x =⇒G y) iff there is an i,
1 ≤ i ≤ n, such that

x = x1x2 . . . xm, xj ∈ V for 1 ≤ j ≤ m,

y = y1y2 . . . ym, and

xj → yj ∈ Pi for 1 ≤ j ≤ m.

iii) The language generated by G is defined as

L(G) = {z | z ∈ T ∗ and w =⇒∗
G z}

where =⇒∗
G is the reflexive and transitive closure of =⇒G.

The set T is called the terminal alphabet of G. The sets Pi, 1 ≤ i ≤ n, are called
tables; they are set of productions (a, v) for which we write a → v (as in the case of
grammars).

By this definition the most importance difference to the classical (sequential) phrase
structure grammars is the parallelism in the derivation: any letter of a sentential form
is replaced according to the rules of some set Pi, 1 ≤ i ≤ n. However, there is also a
difference with respect to the set T of terminals. It is only used to filter out the words in
the language which consist of those sentential forms which only contain terminal symbols;
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but there are also rules for the letters of V \ T (i.e., with respect to the applicability of
rules there is no difference between the letters). Moreover, we start the derivation with a
non-empty word and not necessarily with a single letter from the nonterminal alphabet.

We give some examples.

Example 1.10 i) Let

H1 = ({a, b}, {a, b}, {a → aa, b → b}, bbabb)

be an ET0L system. Since there is only one rule for any letter we get a unique derivation

bbabb =⇒ bbaabb =⇒ bbaaaabb =⇒ bbaaaaaaaabb =⇒ bba16bb =⇒ . . .

from which immediately follows that

L(H1) = {bba2n

bb | n ≥ 0} .

ii) We consider the ET0L system

H2 = ({a, b}, {a}, {a → a, a → aa, b → b, b → λ}, ab) .

If w can be generated from the axiom ab, i.e., ab =⇒∗ w, then w = anb or w = an for
some n ≥ 1. This follows from the fact that such words only generate words of this form
which can be seen as follows. Let v = amb for some m ≥ 1. Let m = m1 + m2. We now
apply a → a to m1 occurrences of a and a → a2 to the remaining m2 occurrences of a
and to b one of the possible rules, then we get

amb =⇒ am1+2m2b or amb =⇒ am1+2m2

which both have the required form. Analogously, am =⇒ am1+2m2 gives words of the
asked form, too. On the other hand, applying a → a2 to only one occurrence of a, for any
n ≥ 1, we get the derivations

ab =⇒ aab =⇒ aaab =⇒ a4b =⇒ . . . anb

and
ab =⇒ aab =⇒ aaab =⇒ a4b =⇒ . . . an−1b =⇒ an

(using b → b with the exception of the last mentioned derivation step where b → λ is
applied). This proves that all words of the forms can be generated.

Taking into consideration that a is the only terminal letter, we get

L(H2) = {an | n ≥ 1} .

iii) Let
H3 = ({a, b, c}, {a, b}, P1, P2, ca)

with
P1 = {a → aa, b → b, c → ca} and P2 = {a → b, b → bbb, c → a} .
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We start any derivation with ca, a word over {a, c}. As long as we apply only the
rules from P1, this situation is not changed, we only generate words over {a, c}. The
application of rules from P2 leads to words over {a, b}, a situation which is again not
changed by applications of P1. A second application of P2 gives words over the singleton
alphabet {b}, which is not changed by any rule. In order to determine the language we
therefore assume that the derivation starts with applications of P1. This gives all words
of the form ca2n−1 and only such words, because we start with ca of that form and

ca2n−1 =⇒P1 caa2·(2n−1) = ca1+2n+1−2 = ca2n+1−1 .

The application of P2 to such a word gives ab2n−1. If we now apply sometimes P1 we get

ab2n−1 =⇒P1 a2b2n−1 =⇒P1 a4b2n−1 =⇒P1=⇒P1 . . . =⇒P1 a2m

b2n−1

for some m ≥ 0. The application of P2 leads to a2m
b2n−1 =⇒P2 b2m

b3(2n−1) = b2m+3(2n−1).
Now the application of P1 does not change the word. Moreover, by applications of P2,

b2m+3(2n−1) =⇒ b3(2m+3(2n−1)) =⇒ b32(2m+3(2n−1)) =⇒ b33(2m+3(2n−1)) =⇒ . . .

If we take into consideration that the terminal set does not contain c, we obtain

L(H3) = {a2m

b2n−1 | m ≥ 1, n ≥ 1} ∪ {b3k(2m+3(2n−1)) | n ≥ 1, m ≥ 0, k ≥ 0}} .

¦

By L(ET0L) we denote the family of all languages generated by ET0L systems.
We now define special types of ET0L systems. We omit the letter E if the generating

system satisfies V = T . We omit the letter T if the generating system satisfies n = 1
(non-tabled case). We add the letter D if the generating system is deterministic, i.e., for
all 1 ≤ i ≤ n and all a ∈ V , there is exactly one rule with left side a in Pi. Such we get
D0L, ED0L, EDT0L, 0L, E0L, T0L and EDT0L systems.

Let X ∈ {ET,EDT, ED, E, T, DT, D, λ}. We call a language a X0L language if it is
generated by some X0L system. By L(X0L) we denote the set of all X0L languages.

The system H1 is deterministic, satisfies V = T and is not tabled; therefore H1 is a
D0L system, but it is also an X0L system for any X defined above. The system H2 is a
T0L system and H3 is a EDT0L system.

1.3 Hierarchies and Closure Properties

One of the most investigated question concerns the relations between all the families of
languages which we have defined in the two preceding sections. We summarize the known
facts in the following theorem.

Theorem 1.11 The diagram of Figure 1.1 holds where L(X) ⊂ L(Y ) if and only if there
is a (directed) path from L(X) to L(Y ) and two families are incomparable if they are not
connected.
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L(RE)

L(CS)

OO

L(ET0L)

44hhhhhhhhhhhhhhhhhhhhh

L(EDT0L)

77ooooooooooo
L(T0L)

OO

L(E0L)

ffMMMMMMMMMM

L(DT0L)

OO 77ooooooooooo
L(ED0L)

88qqqqqqqqqq

ggOOOOOOOOOOO

L(0L)

ffMMMMMMMMMM

OO

L(CF )

ffLLLLLLLLLL

OO

L(D0L)

ggOOOOOOOOOOO

OO 88qqqqqqqqqq
L(REG)

OO

Figure 1.1: Hierarchy of language families

Proof. We do not prove all relations. We only give proofs for some inclusions, some
strictnesses of inclusions and some incomparabilities.

i) Inclusions

First we mention that all inclusions – with exception of L(ET0L) ⊆ L(CS) and
L(CF ) ⊆ L(E0L) – follow from the definition of the systems and grammars (in the
normal form (see Theorem 1.6). We omit the proof of the first exceptional inclusion and
prove L(CF ) ⊆ L(E0L).

Let L ∈ L(CF ). Then there is a context-free grammar G = (N, T, P, S) such that
L(G) = L. We now construct

H = (N ∪ T, T, P ′, S) with P ′ = P ∪ {A → A | A ∈ N} ∪ {a → a | T} .

By the rules added to P it is obvious that, for any x ∈ N ∪ T , there is a rule with left
hand side x in the production set of H. Moreover, H has only one table. Therefore H is
an E0L system. We now prove that L(H) = L(G) = L which implies L ∈ L(E0L).

We consider the derivation step xAy =⇒G xwy using A → w ∈ P . Since we have
z → z ∈ P ′ for any letter z ∈ N ∪ T and A → w ∈ P ⊆ P ′, we can apply z → z to all
letters z in x and y and A → w and get xAy =⇒H xwy. Hence any derivation in G can
be simulated in H, which proves L(G) ⊂ L(H) (since in both devices we start with S and
take into the language only the words over T ).

Conversely, let

x0A1x1A2x2 . . . Anxn =⇒H x0w1x1w2x2 . . . wnxn

be a derivation in H where we apply to all letters z of xi, 0 ≤ i ≤ n, the rules z → z ∈ P ′

and to Aj, 1 ≤ j ≤ n, a rule Aj → wj ∈ P ′ with Aj 6= wj. Then Aj → wj ∈ P , and we
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have in G the derivation

x0A1x1A2x2 . . . Anxn =⇒G x0w1x1A2x2 . . . Anxn

=⇒G x0w1x1w2x2 . . . Anxn

. . .

=⇒G x0w1x1w2x2 . . . wnxn .

Thus we can simulate any derivation in H by a derivation in G which gives L(H) ⊆ L(G).
Therefore L(G) = L(H).

ii) L(CF ) ⊂ L(CS).
By Example 1.4 ii), L = {bba2n

bb | n ≥ 0} ∈ L(CS). We now prove that L /∈ L(CF ).
Let us assume that L ∈ L(CF ). Let k be the constant which exist by Theorem 1.7 b)

and n = k + 3. Then n < 2n. We consider the word bba2n
bb ∈ L. By Theorem 1.7 b),

there is a decomposition bba2n
bb = uvwxy with |vwx| ≤ k, vx 6= λ, and uviwxiy ∈ L for

i ≥ 0. If v or x contain the letter b, then uv5wx5y contains at least five occurrences of
the letter b which contradicts uv5wx5y ∈ L. Hence v = ar and x = as for some r and s
with 0 < r + s ≤ k < n. Then uv2wx2y = bba2n+r+sbb. Obviously, bba2n+r+sbb ∈ L if and
only 2n + r + s is a power of 2. However, this is impossible by 2n < 2n + r + s ≤ 2n + n <
2n + 2n = 2n+1.

This contradiction proves that our assumption is false.
We can give another proof for L /∈ L(CF ) by showing that Ψ(L) = {(2n, 4) | n ≥ 0}

is not a semi-linear set and taling into consideration Theorem 1.8.

iii) L(REG) ⊂ L(CF )
By Example 1.4 i), the language L′ of all correctly bracketed expression over two pairs

of brackets is in L(CF ). We now show that L′ /∈ L(REG).
Let us assume that L′ is a regular language. Let k be the constant which exist by

Theorem 1.7 a) and n = k + 2. We consider the word (n)n ∈ L′. By Theorem 1.7 a),
there is a decomposition (n)n = uvw with |uv| ≤ k, v 6= λ, and uviw ∈ L for i ≥ 0. By
our choice of n, v = (r for some r. Thus uv2w = (n+r)n /∈ L′ in contrast to the above
statement.

Hence our assumption is false.

iv) All subsets of L(T0L) are incomparable with L(CF ) and L(REG) are incompa-
rable.

Obviously, it is sufficient to prove that there are languages K and K ′ such that

K ∈ L(REG), K /∈ L(T0L) and K ′ ∈ L(D0L), K ′ /∈ L(CF )

.
Let K = {a2, a4}. Because the regular grammar ({S}, {a}, {S → a2, S → a4}, S)

obviously generates K, we have K ∈ L(REG).
Let us assume that K = L(G) for a T0L system G = ({a}, {a}, P1, P2, . . . , Pn, w). By

the definition of the language generated by a T0L system, w ∈ L(G). We now distinguish
two cases.

Case 1. w = a2. Then there is a table Pi, 1 ≤ i ≤ n, such that a2 =⇒Pi
a4. Therefore

a → am ∈ Pi where m ∈ {2, 3}. Then we have a4 =⇒Pi
a4m, and therefore a4m ∈ L(G).

But m ≥ 2 implies a4m /∈ K in contradiction to L(G) = K.

15



Case 2. w = a4. Then there is a table Pj, 1 ≤ j ≤ n, such that a4 =⇒Pj
a2. Since

we can produce a contradiction as in Case 1, if Pj contains a rule a → am with m ≥ 2,
we can assume that Pj = {a → λ, a → a} (if we only have a → λ or only a → a, then
a4 =⇒Pj

a2 is impossible). However, then we also have a4 =⇒Pj
a3, i.e., we can generate

a word which does not belong to K. Again we have a contradiction to L(G) = K.
This proves that our assumption is false and therefore K /∈ L(T0L).
We choose K ′ = {bba2n

bb | n ≥ 0}. By Example 1.10 i), K ∈ L(D0L). On the other
hand, by part ii) of this proof, K ′ /∈ L(CF ). 2

Let X and Y be two alphabets. Furthermore, let L, L1 and L2 be languages over X,
and let K be a language over Y . Then we set

L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2} (product, concatenation),

L0 = {λ} and Li+1 = Li · L for i ≥ 0 (power),

L+ =
⋃
i≥1

Li and L∗ =
⋃
i≥0

Li (Kleene-closure)

A mapping h : X∗ → Y ∗ is a homomorphism if h(w1w2) = h(w1)h(w2) for all w1, w2 ∈
X∗. In order to define a homomorphism h it is sufficient to give h(a) for any a ∈ X since
we have h(a1a2 . . . an) = h(a1)h(a2) . . . h(an). For a homomorphism h, we set

h(L) = {h(w) | w ∈ L} and h−1(K) = {w | h(w) ∈ K} .

A substitution σ : X∗ → 2Y ∗ is defined inductively as follows:
– σ(λ) = {λ},
– σ(a) is a finite subset of Y ∗ for any a ∈ X,
– σ(wa) = σ(w)σ(a) for w ∈ X∗ and a ∈ X.
Thus, for w = a1a2 . . . an with ai ∈ X for 1 ≤ i ≤ n, σ(w) consists of all words z1z2 . . . zn

where zi ∈ σ(ai) for 1 ≤ i ≤ n. Moreover, for a language L ⊆ X∗, we set

σ(L) =
⋃
w∈L

σ(w) .

Obviously, homomorphisms can be considered as special substitutions, where σ(a)
consists of exactly one element for each a ∈ X.

A substitution σ (or homomorphism h) is called λ-free iff λ /∈ σ(a) (or h(a) 6= λ) for
all a ∈ X.

Let τ be an n-ary operation on languages. A family L is closed under τ , if τ(L1, L2, . . . , Ln) ∈
L holds for all L1, L2, . . . , Ln ∈ L.

The following theorem summarizes some known closure properties.

Theorem 1.12 The table of Figure 1.2 holds where a + or a – in the intersection of
the row associated with the family L(X) and the column associated with the operation τ
indicates that L(X) is closed or not closed under τ . Moreover, in the affirmative case
we can construct a X grammar or an X system for τ(L1, L2 . . . , Ln) if X grammars or X
systems for Li, 1 ≤ i ≤ n, are given.
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union pro- Kleene- homo- inverse intersect. substi-
duct closure morph. homomorph. with reg. sets tution

L(RE) + + + + + + +
L(CS) + + + – + + –
L(CF ) + + + + + + +
L(REG) + + + + + + +
L(ET0L) + + + + + + +
L(EDT0L) + + + + – + +
L(E0L) + + + + – + +
L(T0L) – – – – – – –
L(DT0L) – – – – – – –
L(0L) – – – – – – –
L(D0L) – – – – – – –

Figure 1.2: Table of closure properties

Proof. We only prove some of the properties.
i) L(CF ) is closed under homomorphisms and substitutions.
Let L ∈ L(CF ) be a language over the alphabet X and let h : X∗ → Y ∗ be a

homomorphism. Then there is a context-free grammar G = (N, T, P, S) with L(G) = L.
Then the context-free grammar

G′ = (N ∪X,Y, P ∪ {a → h(a) | a ∈ X}, S
generates h(L(G)) = h(L) because we can continue any derivation S =⇒∗

G a1a2 . . . an,
where ai ∈ X for 1 ≤ i ≤ n to a derivation

S =⇒∗
G′ a1a2 . . . an =⇒G′ h(a1)a2a3 . . . an =⇒G′ h(a1)h(a2)a3 . . . an =⇒G′ . . .

=⇒G′ h(a1)h(a2) . . . h(an) .

The proof for substitutions follow the same lines, we only add all rules of the a → z
with z ∈ σ(a).

ii) L(ET0L) is closed under homomorphisms and substitutions.
Let L ∈ L(ET0L) be a language over the alphabet X and let h : X∗ → Y ∗ be a

homomorphism. Then there is an ET0L system G = (V, X, P1, P2, . . . Pn, w) with L(G) =
L. Without loss of generality we assume that V ∩Y = ∅ (the modifications for the general
case can be done easily by renaming the letters of V in G). Then we construct the ET0L
system

G′ = (V ∪ Y ∪ {F}, Y, P ′
1, P

′
2, . . . , P

′
n, P ′

n+1, w)

with

P ′
i = Pi ∪ {a → F | a ∈ Y } ∪ {F → F} for 1 ≤ i ≤ n,

P ′
n+1 = {a → h(a) | a ∈ X} ∪ {a → F | a ∈ V \X} ∪ {a → F | a ∈ Y } ∪ {F → F} .

As long as we do not apply the table P ′
n+1, we have x =⇒P ′i y if and only if x =⇒Pi

y
since the application only concerns letters of V for which Pi and P ′

i contain the same
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rules. Thus any derivation in G′ has the form

w =⇒∗
G v =⇒P ′n+1

h(v) =⇒P ′j F |h(v)| if v ∈ X∗

or

w =⇒∗
G v =⇒P ′n+1

z1Fz2 for some z1, z2 ∈ (Y ∪ {F})∗ if v /∈ X∗

(since v contains at least one letter not in X, P ′
n+1 produces at least one F ). The result

of both derivations is a word containing at least one letter F . Since F → F is the only
rule for F in all tables of G′, F will occur in all words which are derived in the sequel.
Now it is easy to see that the only words over Y are the words h(v) with v ∈ L(G). Hence
L(G′) = h(L(G)) = h(L).

The changes for substitution are analogous to those done in part i) of this proof.

iii) L(T0L) is not closed under union, product, homomorphisms, and intersections
with regular sets.

In part iv) of the proof of Theorem 1.11 we have shown that {a2, a4} /∈ L(T0L).
On the other hand,

– {a2} ∈ L(T0L) (generated by ({a}, {a}, {a → a}, a2)),
– {a4} ∈ L(T0L) (generated by ({a}, {a}, {a → a}, a4)),
– {a2, λ} ∈ L(T0L) (generated by ({a}, {a}, {a → λ}, a2)),
– {a2, b4} ∈ L(T0L) (generated by ({a, b}, {a, b}, {a → b2, b → b}, a2)),
– {an | n ≥ 1} ∈ L(T0L) (generated by ({a}, {a}, {a → a, a → a2}, a)).

Now the non-closure properties follow from
– {a2} ∪ {a4} = {a2, a4} /∈ L(T0L),
– {a2} · {a2, λ} = {a2, a4} /∈ L(T0L),
– h({a2, b4}) = {a2, a4} /∈ L(T0L) for the homomorphism h given by h(a) = h(b) = a,
– {an | n ≥ 1} ∩ {a2, a4} = {a2, a4} /∈ L(T0L) (since {a2, a4} ∈ L(REG), see part iv) of
the proof of Theorem 1.11).

iv) L(D0L) is not closed under Kleene-closure and inverse homomorphisms.
The D0L system ({a}, {a}, {a → a}, a)) generates L = {a}. We show that

L∗ = {an | n ≥ 0} /∈ L(D0L).

Let assume that there is a D0L system G = ({a}, {a}, P, w) such that L(G) = L∗. Because
G is a deterministic system, P = {a → as} for some s ≥ 0, and w = at for some t ≥ 1.
Now it follows that

L(G) =

{ {atsm | m ≥ 0} for s ≥ 1
{at, λ} for s = 0

Obviously, we have a contradiction to our assumption L(G) = L∗ in all cases.
Let g : {a, b}∗ → {a}∗ be the homomorphism given by h(a) = a and h(b) = λ. We

show that

g−1(L) = {bnabm | n ≥ 0,m ≥ 0} /∈ L(D0L) .

Let us assume that there is a D0L system

G′ = ({a, b}, {a, b}, {a → wa, b → wb, b
rabs)
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such that L(G′) = g−1(L) (since G′ is deterministic there is only one rule for each letter
and by the structure of the words in g−1(L) the axiom has to have that form). If wb

contains an a, then from b2a ∈ g−1(L) = L(G′) we can generate a word w containing
at least two occurrences of a which contradicts w ∈ L(G′) = g−1(L). Thus wb = bt for
some t. Analogously, we can see that wa = bpabq for some p and q.

If t = 0, then L(G′) = {brabs, bpabq} which contradicts L(G′) = g−1(L). Thus let
t ≥ 1. Then brabs is the shortest word in L(G′). By L(G′) = g−1(L), the unique shortest
word is a which implies r = s = 0. If p = 0 or q = 0, we can only generate words of the
form abn or bna, respectively, which is a contradiction to L(G′) = g−1(L), again. If p ≥ 1
and q ≥ 1, then we are not able to derive ba and have a contradiction to L(G′) = g−1(L).
Thus in all cases we get a contradiction which proves that our assumption is false. 2

The family L(CS) is not closed under homomorphisms and substitutions. This situa-
tion changes if one restricts to λ-free versions.

Theorem 1.13 For any monotone grammar G and any λ-free homomorphism h and
any λ-free substitution σ, one can construct monotone grammars G1 and G2 such that
L(G1) = h(L(G) and L(G2) = σ(L(G)). 2

Without proof we mention the following result.

Theorem 1.14 The families L(REG) and L(CS) are closed under complement, but
L(CF ) and L(RE) are not closed under complement. 2

By Theorem 1.12 the family L(REG) is closed under union, product, and Kleene-
closure. The well-known Theorem by Kleene says that the family L(REG) can be char-
acterized by closure under these three operations.

Theorem 1.15 A language L over X is regular if and only if L can be generated by a
finite number of iterated applications of the operations union, product and Kleene-closure ∗
starting with the sets ∅, {λ} and {x}, x ∈ X. 2

For a language L, we denote the set of all subwords of words of L by sub(L). Formally,
we get

sub(L) = {w′ | w = w1w
′w2 for some w ∈ L} .

Analogously, by pref(L) and suff(L) we denote the sets of all prefixes and suffixes,
respectively, of words in L.

Theorem 1.16 i) For any regular language L, the sets sub(L), pref(L) and suff(L)
are regular, too.

ii) For any context-free language L, the sets sub(L), pref(L) and suff(L) are context-
free, too.

Proof. i) Let L ∈ L(REG) and L ⊆ X∗. Let X ′ = {a′ | a ∈ X}. For w = a1a2 . . . an

with ai ∈ X for 1 ≤ i ≤ n, we set w′ = a1a
′
2 . . . a′n. We define the substitution σ : X∗ →

(X ∪X ′)∗ by σ(a) = {a, a′} for a ∈ X. By Theorem 1.12,

L′ = σ(L) ∩ {w′
1w2w

′
3 | w1, w2, w3 ∈ X∗} = {x′1x2x

′
3 | x1x2x3 ∈ L, x1, x2, x3 ∈ X∗}
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is regular because {w′
1w2w

′
3 | w1, w2, w3 ∈ X∗} ∈ L(REG) (the easy proof for this fact is

left to the reader). Now let h : (X ∪X ′)∗ → X∗ be the homomorphism given by h(a) = a
for a ∈ X and h(a′) = λ for a′ ∈ X ′. Then

h(L′) = {x2 | x′1x2x
′
3 ∈ L′}

is regular by Theorem 1.12. Since it is easy to see that h(L′) = sub(L), the assertion is
shown.

The easy modifications to prove that pref(L) and suff(L) are regular are left to the
reader (one has to filter out x1 or x3 instead of x2).

ii) The proof is identical to part i) because L(CF ) has all the closure properties used
in i), too. 2

1.4 Turing Machines, Decidability and Complexity

In this section we introduce some basic notions on computability ad complexity, i.e., we
discuss concepts which allow statements whether or not a problem is solvable by algo-
rithms and how complex such algorithms are in the affirmative case. As a formalization
of the notion of an algorithm we introduce Turing machines.

Definition 1.17 i) A (non-deterministic) Turing machine is a seven-tuple

M = (Γ, X, ∗, Z, z0, Q, F, δ),

where

• Γ is an alphabet (of tape symbols), X ⊆ Γ is an alphabet (of input symbols), and ∗
is a special symbol not in Γ,

• Z is a finite set (of states), z0 ∈ Z is the initial state, Q ⊆ Z is the set of halt
states, F ⊆ Q is the set of accepting states, and

• δ : (Z \Q)× (Γ ∪ {∗}) → 2Z×((Γ∪{∗})×{R,L,N} is a (total) function.

ii) A Turing machine M is called deterministic if δ maps (Z \ Q) × (Γ ∪ {∗}) into
Z × ((Γ ∪ {∗})× {R, L, N}.

Intuitively, a Turing machine consists of a unit (storing the state), an infinite tape
which cells are filled with letters from Γ ∪ {∗} and a read/write head. If a machine is in
a state z and reads the symbol a in some cell and (z′, a′, r) ∈ δ(z, x), then it changes the
state from z to z′, replaces a by a′ and moves the head one cell to the right, if r = R, or
one cell to the left, if r = L, or does not move the head, if r = N . M halts if it reaches
a state of Q.
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Definition 1.18 The set T (M) of words accepted by a Turing machine M consists of
all words w such that M reaches a state in F if it starts in state z0 with w written on
the tape (i.e., the letters of w are written in consecutive cells and all other cells are filled
with ∗) and the head is positioned on the first letter of w.

We now give an example.

Example 1.19 We consider the deterministic Turing machine

M = ({a, b}, {a}, ∗, Z, {z5, z6}, {z5}, δ)

with
Z = {z0, z1, z2, z3, z4, z5, z6}

and δ given by the following table (in the intersection of the row associated with a tape
symbol x and the column associated with a state z we present δ(z, x))

δ z0 z1 z2 z3 z4

∗ (z0, ∗, N) (z5, ∗, N) (z4, ∗, L) (z6, ∗, N) (z0, ∗, R)
a (z1, a, R) (z2, b, R) (z3, a, R) (z2, b, R) (z4, a, L)
b (z0, ∗, N) (z1, b, R) (z2, b, R) (z3, b, R) (z4, b, L)

The machine works as follows: It reads the word from left to right and replaces every
second a by b and do not change the b’s at the tape. We have three situation, if it reaches
the ∗ after the word:

• it has read an odd number k ≥ 3 of a’s (M is in state z3), then it stops the work in
state z6, i.e., the word is not accepted,

• it has read an even number k ≥ 2 of a’s (M is in state z2), then the head moves
back to the first letter, and the process is started again; this work corresponds to a
division of the number of occurrences of a’s by 2,

• it has read exactly one a (M is in state z1), then it accepts.

Therefore a word is accepted if the machine performs a certain number of divisions by 2
and reads exactly one a during the last move from left to right. Thus we get

T (M) = {a2n | n ≥ 0}

(Because we want to replace every second occurrence of a, to perform a division by 2, we
need an additional letter b which is not in the input alphabet, but in the tape alphabet.) ¦

We now give (without proof) a relation between Turing machines and languages gen-
erated by phrase structure grammars.

Theorem 1.20 A language L is in L(RE) if and only if there is a (deterministic or non-
deterministic) Turing machineM such thatM accepts the language L (i.e., T (M) = L
holds). 2
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We now give a modification of the Turing machine which can be used to characterize
the languages generated by monotone grammars.

Definition 1.21 A non-deterministic Turing machine is called a linearly bounded au-
tomaton if, for any w, the head position while working on the input w is restricted to the
cells in which the letters of w are written, the cell before w and the cell after w.

The Turing machine given in Example 1.19 is a linearly bounded automaton.

Theorem 1.22 A language L is in L(CS) if and only if there is a linearly bounded
automata M such that M accepts the language L (i.e., T (M) = L). 2

A decision problem is a question which only allows the answers ”yes” or ”no”. Such
a problem can be described as the language formed by all instances for which the answer
is ”yes”.

Definition 1.23 We say that a language L is decidable if there exists a deterministic
Turing machine M such that
— L = T (M) and
— M halts on any input.

From the point of formal language theory the following problems are of special interest.

Membership Problem: Given grammar/system G and word w,
decide whether or not w ∈ L(G).

Emptiness Problem: Given grammar/system G,
decide whether or not L(G) = ∅.

Finiteness Problem: Given grammar/system G,
decide whether or not L(G) is a finite language.

Equivalence Problem: Given grammars/systems G1 and G2,
decide whether or not L(G1) = L(G2).

The following theorem summarizes the results on the decidability status of these prob-
lems for phrase structure grammars and Lindenmayer systems.

Theorem 1.24 The table of Figure 1.3 holds, where a + or – denotes that the problem
(given in that column) is decidable or undecidable for the grammar/system type (given in
the row) and t stands for triviality, i.e., the answer is always ”yes”.

Theorem 1.25 i) The membership problem for semi-linear sets is decidable.
ii) For two semi-linear sets M1 and M2 (given by their sets of vectors), it is decidable

whether or not M1 ⊆ M2 holds. 2

For the membership problem we give two results which give a statement on the com-
plexity of the problem.
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membership emptiness finiteness equivalence
problem problem problem problem

arbitrary grammars – – – –
monotone grammars + – – –
context-free grammars + + + –
regular grammars + + + +
ET0L systems + + + –
EDT0L systems + + + –
E0L systems + + + –
T0L systems + t + –
DT0L systems + t + –
0L systems + t + –
D0L systems + t + +

Figure 1.3: Decidability status of some problems for phrase structure grammars and
Lindenmayer systems.

Theorem 1.26 i) Let G be a regular grammar. Then there exists an algorithm which
decides whether or not w ∈ L(G) with a time bound O(|w|), i.e., there is a constant c
such that the algorithm stops after at most c|w| steps).

ii) Let G be a context-free grammar. Then there exists an algorithm which decides
whether or not w ∈ L(G) with a time bound O(|w|3). 2

Mostly we are not interested in the exact complexity of the problems. We only want
to know whether or not the algorithm works with a polynomial time bound. Thus we
introduce the following concepts.

Definition 1.27 i) The set P is defined as the set of all languages which are decidable
in polynomial time by deterministic Turing machines.

ii) The set NP is defined as the set of all languages which can be accepted in polynomial
time by non-deterministic Turing machines.

It is obvious by the definitions that P ⊆ NP. It is an open question whether or
not equality between P and NP holds. In order to answer this question the so-called
NP-complete problems are of interest.

Definition 1.28 A language L is called NP-complete if the following two conditions are
satisfied:
— L ∈ NP and
— any language L′ ∈ NP can be polynomially transformed to L (i.e., there is a mapping
h such that h(w) can be computed with a polynomial time bound and h(w) ∈ L holds if
and only if w ∈ L′).

By the definition, the NP-complete languages can be considered as the ”hardest”
languages in NP (because the decision of w ∈ L′ ∈ NP is not more complicated than the
decision of h(w) ∈ L up to an polynomial to compute h(w)).
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The satisfiability problem known from logic is an example of an NP-complete prob-
lem/language. We present it here in a special form.

Theorem 1.29 The problem 3-SAT defined as

Given a finite set of disjunctions of three literals3,
decide whether there is an assignment such that any disjunction gets true.

is NP-complete. 2

The importance of the NP-complete language comes from the following statement.

Theorem 1.30 The following assertions are equivalent:
i) P = NP.
ii) All NP-complete language are in P.
iii) There is an NP-complete language which is in P.

Proof. i) =⇒ ii) and ii) =⇒ iii) are trivial.
Thus assume that iii) holds, i.e., there is an NP-complete language L which satisfies

L ∈ P. Let L′ be an arbitrary language from NP. Then there is a function h computable
in polynomial time such that h(w) ∈ L if and only if w ∈ L. Therefore we can decide
whether w ∈ L′ by a computation of h(w) and a decision whether h(w) ∈ L. Since both
can be done in polynomial time, we have L ∈ P. This implies NP ⊆ P, which gives i). 2

The following theorem gives a method to prove that a certain problem or equivalent
a certain language L is NP-complete. It is called reduction.

Theorem 1.31 If a language L′ is a NP-complete and L′ can be polynomially trans-
formed to L ∈ NP, then L is NP-complete, too.

Proof. By supposition L ∈ NP holds. Therefore we only have to show that any
language L′′ ∈ NP can be polynomially transformed to L. Since L′ is NP-complete,
there is a polynomial transformation h from L′′ to L′, and by supposition, there is a
polynomial transformation from L′ to L. Then the composition h ◦ g gives a polynomial
transformation from L′′ to L. 2

3A literal is a variable or a negated variable.
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Chapter 2

Chain Code Picture Languages

2.1 Chain Code Pictures

We consider the grid over the integers. In terms of sets, we regard Z×Z. With any point
z = (m,n) ∈ Z× Z, we associate its four neighbours which are given by

u(z) = (m,n + 1), d(z) = (m,n− 1), r(z) = (m + 1, n), l(z) = (m− 1, n)

where we use the notations u, d, r and l, because we have to go up, down, right and left
to reach the neighbouring point.

By π we denote the set formed by the four directions, i.e., π = {u, d, r, l}. For any
b ∈ π, we designate the direction opposite to b by b. Thus we have u = d, d = u, r = l
and l = r.

By a unit line we understand a finite part of a straight line connecting two neighbouring
points. Therefore, for any unit line, there are a point z ∈ Z × Z and a direction b ∈
{u, d, r, l} such that the unit line connects z and b(z). We denote this unit line by (z, b(z)).
From the geometrical point of view, (z, b(z)) is equal to (b(z), z).

A picture is a finite set of unit lines. An example of a picture is presented in Figure 2.1.
The picture given in Figure 2.1 consist of the unit lines
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Figure 2.1: Example of a picture consisting of ten unit lines
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((1, 2), (1, 1)), ((1, 1), (0, 1)), ((0, 1), (−1, 1)), ((−1, 1), (−2, 1)),

((−2, 1), (−2, 0)), ((−2, 0), (−2,−1)), ((−2,−1), (−1,−1)), (2.1)

((−1,−1), (0,−1)), ((0,−1), ((0, 0)), ((0, 0), (0, 1)).

Given a picture p, we define the set V (p) of its points as

V (p) = {z | (z, z′) ∈ p or (z′, z) ∈ p} .

For the picture of Figure 2.1, we obtain the point set

{(1, 2), (1, 1), (0, 1), (−1, 1), (−2, 1), (−2, 0), (−2,−1), (−1,−1), (0,−1), (0, 0)}.

In order to give the picture of Figure 2.1, we have presented its unit lines in (2.1) by
a special enumeration. Obviously, any other enumeration of the unit lines different from
that given in (2.1) describes the picture of Figure 2.1, too. This situation changes if we
are not only interested in the picture, but in its drawing/construction, too. The above
enumeration presents a drawing of the picture where we start in the point (1, 2), go for
every unit line (z, z′) from z to z′, and end in the point (0, 1). Clearly, for a given picture
there exist some different drawings. For instance, we can draw the picture of Figure 2.1
by starting in (0, 1), following the unit lines in the order reverse to the enumeration above
and from z′ to z for a unit line (z, z′) and finishing in the point (1, 2). Moreover, it is
not necessary, that any unit line occurs exactly once in the drawing process as it is in the
case of a set representation. For instance, if we start in (0, 1) and draw the unit lines in
the order of (2.2), then we stop in (0, 1) and have drawn the picture of Figure 2.1, again:

((0, 1), (1, 1)), ((1, 1), (1, 2)), ((1, 2), (1, 1)), ((1, 1), (0, 1)),

((0, 1), (−1, 1)), ((−1, 1), (−2, 1)), ((−2, 1), (−2, 0)), ((−2, 0), (−2,−1)), (2.2)

((−2,−1), (−1,−1)), ((−1,−1), (0,−1)), ((0,−1), ((0, 0)), ((0, 0), (0, 1)).

Therefore we say that a sequence

(z0, z1), (z1, z2), (z2, z3), . . . , (zr−2, zr−1), (zr−1, zr)

is a drawing of a picture p with start point z0 and end point zr if and only if, for 1 ≤ i ≤ r,
there are bi ∈ π such that zi = bi(zi−1) and p =

⋃r
i=1(zi−1, zi).

Obviously, if a picture p can be drawn, then it is connected, i.e., for any two points
z, z′ ∈ V (p) there is a path from z to z′ along unit lines belonging to p.

If we are interested in the drawing of a picture p, we do not present the whole drawing
process, but we mention the start point and the end point of the drawing. Thus a drawn
picture is a triple

(z, p, z′) with a basic picture p and z, z′ ∈ V (p).

Therefore the picture p of Figure 2.1 can be described as the drawn picture ((1, 2), p, (0, 1),
if we use the drawing corresponding to (2.1).

Given a drawn picture q = (z, p, z′), then we define the shift of q by sh(q) = z′ − z
(where z and z′ are considered to be elements of N2)
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We now define two relations on basic and drawn pictures.
We say that two basic pictures p and p′ are equivalent if and only if there are integers

m and n such that (z, z′) ∈ p if and only if (z + (m,n), z′ + (m,n)) ∈ p′.
We say that two drawn pictures q = (z1, p, z2) and q′ = (z′1, p

′, z′2) are equivalent if and
only if there are integers m and n such that

(z, z′) ∈ p if and only if (z + (m,n), z′ + (m,n)) ∈ p′,

z′1 = z1 + (m,n) and z′2 = z2 + (m,n)

We write p ≡b p′ and q ≡d q′ if the basic pictures p and p′ and the drawn pictures q and
q′ are equivalent, respectively. If it is clear from the context that basic or drawn pictures
are considered, we omit the indices b and d sometimes.

It is easy to see that ≡b and ≡d are equivalence relations on the set of basic and drawn
pictures, respectively. We give a short proof for the case of basic pictures.

Reflexivity: Because (z, z′) = (z + (0, 0), z′ + (0, 0)), we have p ≡b p.
Symmetry: Because (z, z′) ∈ p if and only if (z + (m, n), z′ + (m,n)) ∈ p′ implies

(u, u′) ∈ p′ if and only if (u + (−m,−n), u′ + (−m,−n)) ∈ p, we obtain that p ≡b p′

implies p′ ≡b p.
Transitivity: Let p ≡b p′ and p′ ≡b p′′. Then there are integers m, n, m′ and n′ such

that (z, z′) ∈ p if and only if (z + (m,n), z′ + (m,n)) ∈ p′ and (u, u′) ∈ p′ if and only
if (u + (m′, n′), u′ + (m′, n′)) ∈ p′′. Therefore (z, z′) ∈ p if and only if (z + (m,n) +
(m′, n′), z′ + (m,n) + (m′, n′)) ∈ p′′, i.e., p ≡b p′′.

The equivalence classes of the basic picture p and the drawn picture q are denoted by
[p] and [q], respectively.

As word languages are sets of words over some alphabet, we say that a set of drawn
(or basic) pictures is a drawn (or basic) picture language.

In the case of basic pictures we are not interested in the (exact) place of the picture in
the grid. Thus we intuitively assume that all pictures of [p] are contained in the language
if we have the basic picture p in the language. Thus we define the equality of two basic
picture languages L and L′ by

L = L′ if and only if, for any p ∈ L and any q ∈ L′, there are pictures p′ ∈ L′

and q′ ∈ L such that p ≡b p′ and q ≡b q′.

Equivalently, L = L′ iff
⋃

p∈L[p] =
⋃

q∈L′ [q].

In order to present a drawn picture we can also give the start point and the end point
and the directions in which we have to draw, i.e., instead of giving the line (z, b(z)), b ∈ π,
we present the direction b itself. The picture of Figure 2.1 with start point (1, 2), end
point (0, 1) and drawn according to given (2.1) can be given by the word dlllddrruu.
Formally, with any drawing

(z0, z1), (z1, z2), . . . (zr−1, zr) , where zi = bi(zi−1) for 1 ≤ i ≤ r,

of a picture p, we associate the word b1b2 . . . br ∈ π∗. Since the drawing remembers to a
chain (the end point of a unit line is the start point of the following unit line), b1b2 . . . br

is called the chain code of the given drawing.
Conversely, with any word w ∈ π∗, we now associate a drawn picture dccp(w) by the

following inductive settings:
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• if w = λ, then dccp(w) = ((0, 0), ∅, (0, 0)), and

• if w = w′b, w′ ∈ π∗, b ∈ π and dccp(w′) = ((0, 0), p, z), then dccp(w) = ((0, 0), p ∪
{(z, b(z))}, b(z)).

Moreover, if dccp(w) = ((0, 0), p, z), then we define the basic picture associated with w
by bccp(w) = p.

Here b and d stand for basic and drawn, respectively, and ccp is an abbreviation for
chain code picture. In the sequel we shall use the term basic (drawn) chain code picture for
any connected basic (drawn) picture p since there is a word w ∈ π∗ such that p ∈ [bccp(w)]
(p ∈ [dccp(w)]).

For a word w ∈ π∗, we set sh(w) = sh(dccp(w)). It is easy to see that, for w1 ∈ π∗

and w2 ∈ π∗,
sh(w1w2) = sh(w1) + sh(w2). (2.3)

With any chain code picture we now associate the sets of its descriptions by words
over π.

Definition 2.1 For a drawn chain code picture q and and basic chain code picture p, we
set

des(q) = {w ∈ π∗ | q ∈ [dccp(w)]}
and

des(p) = {w ∈ π∗ | p ∈ [bccp(w)]}.

Example 2.2 Let q = ((0, 0), {((0, 0), (0, 1)), ((0, 1), ((0, 2))}, (0, 2)), i.e., q has the start
point (0, 0), consists of the first unit line of the y-axis in positive direction, and the
endpoint is (0, 2). Then any drawing of q has to start in the origin, any prefix of the
drawing process has to lead to (0, 0) or (0, 1) or (0, 2) and finally we have to reach (0, 2).
Thus des(q) consists of all words w which satisfy the following properties:
– for any prefix v of w, i.e., w = vv′ for some v′, 0 ≤ #u(v)−#d(v) ≤ 2, and
– #u(w) = #d(w) + 2. ¦

We now prove that the sets of descriptions of a chain code picture are regular.

Theorem 2.3 For a drawn chain code picture q and and basic chain code picture p,
des(q) and des(p) are regular languages.

Proof. First, we give the proof for the case of drawn pictures. Let (z, p, z′) be a drawn
picture. We construct the regular grammar

G = (V (p)× 2p, π, P, (z, ∅))

where

P = {(u, p′) → b(b(u), p′ ∪ {(u, b(u)}) | u ∈ V (p), p′ ⊆ p, (u, b(u)) ∈ p} ∪ {(z′, p) → λ}.

The grammar simulates a drawing of p. The first component of a nonterminal gives the
point of V (p) reached by the derivation and the second component remembers the drawn
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part of p. The simulation starts with (z, ∅), i.e., in the start point of p and nothing is
drawn. If the nonterminal is (u, p′), i.e., the point u is reached and the subset p′ of lines
of p is drawn, then the grammar produces a letter b if and only if the drawing can be
continued by going in the direction b, which is only possible if (u, b(u)) belongs to the
picture, and it reaches the state (b(u), p′ ∪ {(u, b(u)}), i.e., the drawing reaches b(u) and
the drawn unit line (u, b(u)) is added to the set of drawn lines. A derivation can only
terminate if and only if the rule (z′, p) → λ is applied, i.e., if the end point is reached and
the whole picture p is drawn. 2

Let w = w1bbbw2 with b ∈ π be a word over π. Obviously, we have dccp(w) =
dccp(w1bw2) and bccp(w) = bccp(w1bw2). Thus in some situations we can cancel special
subwords without a change of the picture. In the sequel we shall use this fact sometimes.
Hence we study it as an operation. Let

Ret = {ud, du, lr, rl}

be the set of retreats.
A word w is called retreat-free, if no word of Ret is a subword of w.

Definition 2.4 i) For a word w ∈ π∗, we define the retreat deletion image red(w) induc-
tively as follows:
(1) w ∈ red(w),
(2) If z ∈ red(w) and z = z1sz2 for some s ∈ R, then z1z2 ∈ red(w).
(3) A word belongs to red(w) if and only if it is constructed by steps (1) or (2).

ii) For a language L ⊆ π∗, we set red(L) =
⋃

w∈L red(w).

Intuitively, the set red(w) consists of all words which can be obtained from w by an
iterated deletion of retreats. We denote such a deletion step from z1sz2 with s ∈ Ret to
z1z2 by w1sw2 ` w1w2 and its transitive and reflexive closure by `∗.

Example 2.5 Let D1 be the language generated by context-free grammar

G = ({S}, π, {S → SS, S → uSd, S → λ}, S).

D1 is the set of all correctly bracketed expressions over the ”opening bracket” u and
the ”closing bracket” d (see Example 1.4). We prove that red(D1) = D1. Obviously, by
Definition 2.4, part (1), we have D1 ⊆ red(D1). Now let w ∈ D1 be a non-empty word. Let
w = w1udw2. Clearly, the mentioned occurrence of u and d form a pair of corresponding
”brackets”. Therefore the deletion of the retreat ud leads to w1w2 which belongs to D1.
Now assume that we cancel an occurrence of the retreat du, i.e, w = v1duv2. Then there is
an opening u belonging to d and a closing d belonging to u. Therefore w = v′1uv′2duv′3dv4

such that v′1v
′
4, v′2 and v′3 are correctly bracketed. Therefore v′2v

′
3 and v′1uv′2v

′
3dv′4 are also

correctly bracketed and thus the word obtain from w by deletion of the mentioned retreat
du belongs to D1. ¦

Lemma 2.6 Let w ∈ π∗.
i) Then red(w) contains exactly one retreat-free word.
ii) For any word z ∈ red(w), sh(z) = sh(w).
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Proof. i) We give a proof by induction on the length of the word.
Induction basis: If |w| ≤ 1, then w contains no retreat and thus red(w) = {w}.
Induction step: Let |w| ≥ 2. If w is retreat-free, then red(w) = {w} and the statement

holds trivially. There we assume that w = w1abw2 with ab ∈ Ret. Let w `∗ z where z is
retreat-free. Then z does not contain the occurrence of ab. Assume that ab is cancelled
at some iteration step. Then we have

w = w1abw2 `∗ w′
1abw′

2 ` w′
1w

′
2 `∗ z with w1 `∗ w′

1 and w2 `∗ w′
2.

Then we have
w = w1abw2 ` w1w2 `∗ w′

1w
′
2 `∗ z,

too. Now let us assume that ab is not deleted, but the b is cancelled sometimes. Then we
have

w = w1abw2 `∗ w′
1abw′

2 = w′
1abaw′′

2 ` w′
1aw′′

2 `∗ z with w1 `∗ w′
1 and w2 `∗ w′

2,

which implies the existence of

w = w1abw2 ` w1w2 `∗ w′
1w

′
2 = w′

1aw′′
2 `∗ z.

Analogously, we handle the case that ab is not cancelled, but a is cancelled sometimes.
Thus in all cases we can derive the a retreat-free word z by starting with a cancellation of
ab. Therefore red(w) and red(w1w2) contain the same retreat-free words. By induction
hypothesis, red(w1w2) contains only one retreat-free word. Thus red(w) contains only
one retreat-free word, too.

ii) By (2.3), sh(w1abw2) = sh(w1w2) for any ab ∈ Ret. By iterated application of this
fact we get immediately the statement. 2

Definition 2.7 i) For w ∈ π∗, let ref(w) be the only retreat-free word in red(w).
ii) For a language L ⊆ π∗, we set ref(L) = {ref(w) | w ∈ L}.

For the language D1 given in Example 2.5, we get ref(D1) = {λ}.

Lemma 2.8 ref(π∗) is a regular language.

Proof. Obviously, ref(π∗) is the set of all retreat-free words. Therefore

π∗ \ {z1sz2 | z1, z2 ∈ π∗, s ∈ Ret} = ref(π∗).

The regular grammar G = ({S, A}, π, P, S) with

P = {S → bS | b ∈ π} ∪ {S → sA | s ∈ Ret}
∪{A → bA | b ∈ π} ∪ {A → λ}

generates {z1sz2 | z1, z2 ∈ π∗, s ∈ Ret}. By the closure of L(REG) under complement
(see Theorem 1.14, we obtain that ref(π∗) is regular, too. 2

30



Lemma 2.9 Dπ = {w | w ∈ π∗, ref(w) = λ} is context-free.

Proof. It is easy to see that the context-free grammar G = ({S}, π, P, S) with

P = {S → SS, S → uSd, S → dSu, S → rSl, S → lSr, S → λ}

generates the set Dπ (see Example 1.4). 2

Theorem 2.10 i) If L ⊆ π∗ is a regular language, then red(L) and ref(L) are regular,
too (i.e., L(REG) is closed under the operations red and ref).
ii) L(CF ) and L(CS) are not closed under red and ref .

Proof. i) Let L = L(G) for some regular grammar G = (N, π, P, S). For A ∈ N and
B ∈ N we define the sets

LA,B = {w | w ∈ Dπ and A =⇒∗ wB is a derivation in G}

and
LA = {w | w ∈ Dπ and A =⇒∗ w is a derivation in G}.

It is easy to see that
LA,B = Dπ ∩ L(GA,B),

where
GA,B = (N, π, (P \ {A → w | w ∈ π∗}) ∪ {B → λ}, A)

(the only terminating derivation in GA,B are of the form A =⇒∗ wB =⇒ w). Because
GA,B is a regular grammar, LA,B is an intersection of a context-free language (see Lemma
2.9) and a regular language. By the closure properties of L(CF ) (see Theorem 1.12), the
emptiness of LA,B is decidable (see Theorem 1.24). Analogously, we can show that the
emptiness LA is decidable.

We construct now the the regular grammar

H = (N, π, P ∪ {A → B | LA,B 6= ∅} ∪ {A → λ | LA 6= ∅}, S).

Now let w ∈ L and v ∈ red(w). Then w = w0v1w1v2w2 . . . vnwn `∗ v1v2 . . . vn = v by an
cancellation of the words w0, w1, . . . , wn by iterated deletions of retreats, i.e., wi ∈ Dπ for
0 ≤ i ≤ n. Since w ∈ L we have a derivation

S = A0 =⇒∗ w0B0 =⇒∗ w0v1A1 =⇒∗ w0v1w1B1

=⇒∗ w0v1w1v2A2 =⇒∗ w0v1w1v2w2B2 =⇒∗ . . .

=⇒∗ w0v1w1 . . . wn−1Bn−1 =⇒∗ w0v1w1 . . . wn−1vnAn

=⇒∗ w0v1w1 . . . wn−1vnwn

in G. Thus we get wi ∈ LAi,Bi
for 0 ≤ i ≤ n − 1 and wn ∈ LAn . Therefore we have the

following derivation in H

S = A0 =⇒ B0 =⇒∗ v1A1 =⇒ v1B1 =⇒∗ v1v2A2 =⇒ . . . =⇒∗ v1v2 . . . vnAn =⇒ v1v2 . . . vn.
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Hence v1v2 . . . vn = v ∈ L(H).
By analogous arguments one can show that v ∈ L(H) implies v ∈ red(w) for some

w ∈ L.
Combining these relations we get red(L) = L(H). Thus red(L) is regular.
The statement for ref(L) follows from ref(L) = red(L) ∩ ref(π∗), Lemma 2.8 and

the closure properties of L(REG) (see Theorem 1.12).

ii) Let us assume that ref(U) is context-free for any context-free language U .
The context-free grammar G = ({S}, π, {S → u2Sd, S → uld}, S) generates the

language L′ = {u2ildi | i ≥ 1}. We consider the language L = (L′)+ which is context-free
by the closure properties of L(CF ) (see Theorem 1.12). By definition,

L = {u2i1ldi1u2i2ldi2 . . . u2inldin | n ≥ 1, ij ≥ 1 for 1 ≤ j ≤ n}.
Let

K ′ = {umlnd | m ≥ 1, n ≥ 1} and K = ref(L) ∩K ′.

Because K ′ is regular (it is left to the reader to construct a regular grammar generating
K ′), K is context-free by our assumption and the closure properties of L(REG) (see
Theorem 1.12).

On the other hand, ref(u2i1ldi1u2i2ldi2 . . . u2inldin) is in K ′ if and only if in = 1 and
2ij−1 = ij for 2 ≤ i ≤ n (we can delete only retreats du between two occurrences of l, and
no u and no d remains between two occurrences of l). Thus in−1 = 2, in−2 = 4 and so on
and finally i1 = 2n. Hence

ref(u2i1ldi1u2i2ldi2 . . . u2inldin) = u2n

lnd.

This implies
K = {u2n

lnd | n ≥ 1}.
Let k be the constant of the pumping lemma for context-free languages (see Theorem 1.7
b)) and n > k. Then u2n

lnd ∈ L and |u2n
lnd| > k. Therefore there are z, v, w, x, y such

that u2n
lnd=zvwxy, vx 6= λ, |vwx| ≤ k and t = zv2wx2y ∈ K. If v contains two different

letters, then v2 contains a subword lu or dl which is impossible by t ∈ K. If v = d, then
we get a contradiction because t contains two times the letter d. These two fact hold for
x, too. Therefore we have the following three cases:

Case 1: v = ur and x = us and r + s > 0. Then t = u2n+r+slnd which contradicts
t ∈ K because 2n + r + s > 2n.

Case 2: v = ur and x = ls and r + s > 0. Then t = u2n+rln+sd. If s > 0, then
2n + r < 2n + 2n = 2n+1 ≤ 2n+s (because r ≤ |vwx| ≤ k < n < 2n ≤) in contradiction
to t ∈ K. If s = 0, then r > 0 and 2n + r > 2n = 2n+s which is contradiction to t ∈ K,
again.

Case 3: v = lr and x = ls and r+s > 0. Then t = u2n
ln+r+sd which contradicts t ∈ K

because 2n < 2n+r+s.
Since we get a contradiction in all cases, our assumption is false. Hence there is a

context-free language U such that ref(U) is not context-free.

Let U be a context-free language such that ref(U) is not context-free. Assume that
red(U) is context-free. Then ref(U) = red(U)∩ ref(π∗) is context-free by the regularity
of ref(π∗) (see Lemma 2.8) and the closure properties of L(CF ) (see Theorem 1.12) which
contradicts our choice of U . 2
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2.2 Hierarchy of Chain Code Picture Languages

In the preceding section we have associated a chain code picture with any word over the
alphabet π. We now extend this idea to languages. For any language L ⊆ π∗, we set

dccp(L) = {dccp(w) | w ∈ L} and bccp(L) = {bccp(w) | w ∈ L} .

Especially we are interested in the sets of pictures which are generated by phrase structure
grammars or Lindenmayer systems. Let G be a phrase structure grammar or ET0L system
such that L(G) ⊆ π∗, i.e., that the set of terminals of G is π. Then we set

dccp(G) = {dccp(w) | w ∈ L(G)} and bccp(G) = {bccp(w) | w ∈ L(G)} .

Example 2.11 i) Let the regular grammar

G1 = ({S}, π, {S → urdluS, S → urdlu}, S)

be given. Then we have

L(G1) = {(urdlu)n | n ≥ 1} = {urdlu, urdluurdlu, urdluurdluurdlu, . . . } .

Consequently, the drawn picture language dccp(G1) consists of the pictures shown in
Figure 2.2, where the startpoint (0, 0) is marked by a circle and the endpoint by a square.
Thus the chain code picture language bccp(G1) consists of all towers of unit squares with
an arbitrary height.
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•
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•
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, , , , . . .

Figure 2.2: Pictures of the language dccp(G1)

ii) We consider the context-free grammar

G2 = ({S, A}, π, {S → lA, A → urlAd, A → urd}, S)

The word language generated by G2 is

L(G2) = {l(url)nurddn | n ≥ 0} .

The corresponding drawn pictures are given in Figure 2.3. Obviously, the pictures of
dccp(G2) differ from those of dccp(G1) only in the start and end points. Hence we get
bccp(G2) = bccp(G1).
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Figure 2.3: Pictures of the language dccp(G2)

iii) Let the context-free grammar

G3 = ({S,A}, π, {S → SrrS, S → lA, A → urlAd, A → urd}
be given. Then

L(G3) = {l(url)n1urddn1rrl(url)n2urddn2rr . . . l(url)nk−1urddnk−1rrl(url)nkurddnk |
k ≥ 1, nj ≥ 0 for 1 ≤ j ≤ k}

(because by the first rule we generate words of the form (Srr)k−1S and then from any
S we derive words l(url)nurddn as in part ii)). Consequently, the pictures generated by
G3 are some towers of unit squares (of arbitrary height) (see part ii)) with a distance of
one unit line and connected in the base line. A typical picture of bccp(G3) is shown in
Figure 2.4.
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Figure 2.4: A typical picture of bccp(G3)

iv) We consider the context-free grammar

G4 = ({S}, π, {S → urdlS, S → ldruS, S → urdl, S → ldru}, S) .

then the generated word language is

L(G4) = {w1w2 . . . wn | n ≥ 1, wi ∈ {urdl, ldru} for 1 ≤ i ≤ n} .

If w ∈ {urdl, ldru}, then dccp(w) is the unit square in the first or third quadrant which
contains the origin. Hence dccp(G4) consists of the three pictures given in Figure 2.5.

We mention that bccp(G4) only consists of two pictures since the two unit squares of
dccp(G4) are in the same equivalence class of ≡b. ¦
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Figure 2.5: Pictures of dccp(G4)

We now classify the chain code picture languages in analogy to the Chomsky classifi-
cation for word languages.

Definition 2.12 A chain code picture language B is called regular or context-free or
monotone or recursively enumerable if there is a regular or context-free or monotone
grammar or a phrase structure grammar, respectively, such that B = bccp(L(G)).

By CCP(REG), CCP(CF ), CCP(CS), and CCP(RE), we denote the families of all
regular, context-free, monotone and recursively enumerable basic chain code picture lan-
guages.

Theorem 1.11 gives a hierarchy of the families of word languages. Our aim is to give an
analogous result for picture languages. First we mention that L /∈ L(X) for some family X
of grammars does not imply that bccp(L) /∈ CCP(X). This can be seen from the grammars
G1 and G2 given in Example 2.11. We know that L(G2) is a context-free languages, which
is not regular (one can use the pumping lemma to prove the non-regularity of L(G2)).
But this does not imply bccp(G2) /∈ CCP(REG) because we have bccp(G2) = bccp(G1)
and G1 is a regular grammar, i.e., bccp(G1) ∈ CCP(REG).

Theorem 2.13 CCP(REG) ⊂ CCP(CF ) ⊂ CCP(CS) = CCP(RE)

Proof. i) CCP(REG) ⊂ CCP(CF ).
The inclusion CCP(REG) ⊆ CCP(CF ) holds by the definition of the families.
Let L = {runrdnr | n ≥ 1}. L is context-free since it is generated by the context-free

grammar with the rules S → rAr, A → uAd and A → r. Thus bccp(L) ∈ CCP(CF ).
The pictures of bccp(L) consist of two parallel vertical lines with the distance 1 which

are connected by a unit line at the upper end of the lines, and there is a unit line to the
left and right at the lower point of the left and right line, respectively. Let q and q′ be
the end points of the lower lines which are not at the vertical lines. Obviously, the degree
of q und q′ is 1. Let w be a word which describes such a picture, i.e., bccp(w) ∈ L. Then
the drawing according to w starts somewhere and reaches one of the points q and q′, say
q, before the other one. Therefore w = w1w2w3 where w2 corresponds to a drawing of the
whole picture starting in q and finishing in q′. Let bb be a retreat. If bb occurs in w2, i.e.,
w2 = w′

2bbw
′′
2 , then w′

2w
′′
2 describes also a drawing of the picture from q to q′. Therefore

ref(w2) = lunldnl (we start in the right point) or ref(w2) = runrdnr (we start in the left
point), where n is the length of the vertical lines.

Let the homomorphism h be given by h(r) = h(l) = r, h(u) = u and h(d) = d. Then
h(runrdnr) = h(lunldnl) = runrdnr.

Let us assume, that there is a regular grammar G such that bccp(G) = bccp(L). From
the above considerations we get

K = h(ref(sub(L(G))) ∩ {runrdmr | n ≥ 1,m ≥ 1} = {runrdnr | n ≥ 1} .
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Since {runrdmr | n ≥ 1,m ≥ 1} = {r}{u}∗{r}{d}∗{r}, it is a regular language by
Theorem 1.15. Therefore K is a regular language by the closure properties of L(REG)
(see Theorems 1.12 and 1.16) and Theorem 2.10 i). On the other hand, by the pumping
lemma (see Theorem 1.7) it is easy to prove that {runrdnr | n ≥ 0} /∈ L(REG) (see part
iii) of the proof of Theorem 1.11).

This contradiction proves bccp(L) /∈ CCP(REG).

ii) CCP(CF ) ⊂ CCP(CS)
The inclusion CCP(CF ) ⊆ CCP(CS) follows from the definitions, again.
Let L′ = {rru2n

rr | n ≥ 0}. Since L′ is a monotone language (see Example 1.4 ii),
bccp(L′) ∈ CCP(CS).

Any picture of bccp(L′) consists of a vertical line of length 2n for some n ≥ 1 and at each
end point a horizontal line of length 2 is added. As in the preceding proof any word w with
bccp(w) ∈ bccp(L′) contains a subword w2 which corrresponds to a drawing from one end
point of the picture to the other end point. Clearly, w2 = rw′

2r or w2 = lw′
2l. Moreover,

in the former case #u(w2) − #d(w2) = 2n and in the latter case #d(w2) − #u(w2) = 2n

since we have to draw the complete vertical line.
Let us assume that there is a context-free grammar G′ such that bccp(G′) = bccp(L′).

Let

K1 = sub(L(G′)) ∩ {rzr | z ∈ π+} and K2 = sub(L(G′)) ∩ {lzl | z ∈ π+} .

By the closure of L(CF ) under sub and intersections by regular sets (see Theorems 1.16
and 1.12), K1 and K2 are context-free languages. Let h′ and h′′ be the homomorphisms
defined by h′(u) = u, h′(d) = d, h′(r) = h′(l) = λ and h′′(u) = d, h′′(d) = u, h′′(r) =
h′′(l) = λ. Again, by Theorem 1.12, K ′ = h′(K1) ∪ h′′(K2) ∈ L(CF ).

On the other hand,
– if v ∈ K ′, then #u(v)−#d(v) = 2n for some n ≥ 0, and
– for any n ≥ 0, there is a v ∈ K ′ such that #u(v)−#d(v) = 2n.
This implies that,
– for v ∈ K ′, Ψ(v) = (2n + m,m) for some n ≥ 1 and m ≥ 1, and
– for any n ≥ 0, there are a v ∈ K ′ and an m ≥ 0 such that Ψ(v) = (2n + m,m). Now it
is easy to see that Ψ(K ′) is not semi-linear (the adding of a vector (x, y) to (2n + m, m)
with sufficient large n do not give a vector of the form (2n′ +m′,m′)). Hence by Theorem
1.8, K ′ is not a context-free language.

This contradiction proves the falsity of our assumption and thus bccp(L) /∈ CCP(CF ).

iii) CCP(CS) = CCP(RE)
By the definition of the families of picture languages, CCP(CS) ⊆ CCP(RE).
We now prove the converse inclusion. Let L ∈ CCP(RE). Then there is a phrase

structure grammar H = (N, T, P, S) such that bccp(G) = L and all rules of P are of the
form AB → CD or A → BC or A → B or A → a or A → λ, where A,B, C, D ∈ N and
a ∈ π (see Theorem 1.6 i)). Without loss of generality we can assume that any derivation
in H has the form

S =⇒∗ A1A2 . . . Am =⇒∗ a1a2 . . . an , (2.4)

where we only use rules of the form AB → CD or A → BC or A → B in the first phase
and only rules of the form A → a or A → λ in the second phase.
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We construct the phrase structure grammar H ′ = (N ∪ {$}, T, P ′, S) by the setting

P ′ = {α → β | α → β ∈ P, β 6= λ} ∪ {A → $ | A → λ ∈ P}
∪{$A → A$ | A ∈ N} ∪ {$b → bbb | b ∈ π} ∪ {b$ → bbb | b ∈ π} .

By construction, all rules of P ′ are monotone, and thus H ′ is a monotone grammar.
From a derivation (2.4) in H we get a derivation

S =⇒∗ A1A2 . . . Am =⇒∗ $i1a1$
i2a2 . . . $inan$in+1 , (2.5)

where we used A → $ instead of A → λ. By iterated applications of $b → bbb, we
get $nb =⇒∗ (bb)nb. Obviously, bccp(b) = bccp((bb)nb). Analogously, by applications of
b$ → bbb, we have b$n =⇒∗ b(bb)n and bccp(b) = bccp(b(bb)n). Therefore

$i1a1$
i2a2 . . . $inan$in+1 =⇒∗ a′1a

′
2 . . . a′r (2.6)

such that
bccp(a1a2 . . . an) = bccp(a′1a

′
2 . . . a′r).

This proves bccp(H) ⊆ bccp(H ′).
Conversely, without loss of generality we can assume that any derivation in H ′ is of

the form

S =⇒∗ A1A2 . . . Am =⇒∗ $i1a1$
i2a2 . . . $inan$in+1 =⇒∗ a′1a

′
2 . . . a′r

by a combination of derivation of the form (2.5) and (2.6). Now it easy to show that
a1a2 . . . an ∈ L(H) and bccp(a1a2 . . . an) = bccp(a′1a

′
2 . . . a′r). Thus bccp(H ′) ⊆ bccp(H)

holds, too.
Hence L = bccp(H) = bccp(H ′) and therefore CCP(RE) ⊆ CCP(CS). 2

We see that with respect to pictures the situation is simpler because the hierarchy
has only three families instead of four in the word case. However, in the word case, most
decision problems are undecidable for L(RE). Thus we can expect that the corresponding
problems for pictures are undecidable for CCP(RE), too. By CCP(CS) = CCP(RE),
we can expect that the problems are already undecidable for the monotone grammars,
although the corresponding word problem is decidable for monotone grammars. Therefore
we have a hint that picture grammars will have more worse decidability properties. In
the following section we shall give a verification of this expectation.

2.3 Decision Problems for

Chain Code Picture Languages

2.3.1 Classical Decision Problems

In this section we consider the four problems known from word languages in their variants
for picture languages.

We begin with the membership problem. If one transfers the membership problem
from word languages to picture languages one gets the following version.
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Membership problem (P1)
Given a grammar G = (N, π, P, S) and a chain code picture p,
decide whether or not p ∈ bccp(G).

Considering (P1) we ask whether or not there is a word w ∈ L(G) such that p = bccp(w).
Obviously, this problem can be reformulated as the question whether or not L(G) ∩
des(p) = ∅. Clearly, one can refine the question and ask on the cardinality of the set
L(G) ∩ des(p) or equivalently of the set of words in L(G) which describe p. Two special
cases are of interest. Are there infinitely many different descriptions of p in L(G), and is
there a unique description of p in L(G). Formally we get the following two problems.

Problem (P2)
Given a grammar G = (N, π, P, S) and a chain code picture p,
decide whether the set {w | w ∈ L(G) and bccp(w) = p} is finite.

Problem (P3)
Given a grammar G = (N, π, P, S) and a word w ∈ π∗,
decide whether the set {w | w ∈ L(G) and bccp(w) = p} is a singleton.

Theorem 2.14 i) The problems (P1), (P2), and (P3) are decidable for context-free gram-
mars G.

ii) The problems (P1), (P2), and (P3) are undecidable for monotone grammars G.

Proof. i) (P1) and (P2) are equivalent to the questions whether or not L(G) ∩ des(p)
is empty and finite, respectively. Since des(p) is regular by Theorem 2.3, we get that
L(G) ∩ des(p) is a context-free language by Theorem 1.12. Since the emptiness and
the finiteness are decidable for context-free languages (see Theorem 1.24), we get the
decidability of (P1) and (P2).

To decide whether or not L(G) ∩ des(p) consists of exactly one word we proceed as
follows. First we check whether or not L(G) ∩ des(p) is finite. If the answer is ”no”,
then L(G) ∩ des(p) does not contain exactly one element. In the affirmative case we
determine the constant k of the pumping lemma for the language L(G) ∩ des(p). The
language L(G)∩ des(p) cannot contain a word longer than k (such a word z would imply
a decomposition z = uvwxy and the infinite set of words uviwxiy ∈ L(G)∩ des(p), i ≥ 0,
in contrast to the finiteness of this set). Therefore we check all words which are not longer
than k whether or not they are in L(G) ∩ des(p). If we find exactly one such word, the
answer to (P3) is ”yes”; otherwise the answer is ”no”.

ii) By the closure properties of L(CS) (see Theorem 1.12) L(G) ∩ des(p) ∈ L(CS).
But we cannot say that L(G)∩ des(p) = ∅ is undecidable because the emptiness problem
for monotone grammars is undecidable, because languages of the form L(G)∩des(p) form
a subset L(CS), and for this subset the emptiness problem can be decidable.

Let G = (N, π, P, S) be an arbitrary monotone grammar. We consider the λ-free
homomorphism h given by h(u) = h(d) = h(r) = h(l) = u. Then h(L(G)) consists of all
words un such that there is a word w of length n in L(G). Clearly,

L(G) = ∅ if and only if h(L(G)) = ∅ . (2.7)
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Let σ be the λ-free substitution defined by σ(u) = {u, r}. Then

K = σ(h(L(G)) ∩ {urm | m ≥ 0} = {urm−1 | m = |w| for some w ∈ L(G)}.
Furthermore,

h(L(G)) = ∅ if and only if K = ∅ . (2.8)

Let g be the λ-free homomorphism with g(u) = u and g(r) = du. Then

K ′ = g(K) = {u(du)m−1 | m = |w| for some w ∈ L(G)}.
Then

K = ∅ if and only if K ′ = ∅ . (2.9)

Moreover, K ′ is obtained from L(G) by a sequence of applications of λ-free homomor-
phisms and substitutions. By Theorem 1.13, K ′ = L(G′) for some monotone grammar.

We consider G′ and the picture p consisting of a vertical unit line. Because

des(p) = {u(du)k | k ≥ 0} ∪ {u(du)kd | k ≥ 0} ∪ {d(ud)k | k ≥ 0} ∪ {d(ud)ku | k ≥ 0} ,

we have

L(G′) ∩ des(p) = ∅ if and only if K ′ ∩ des(p) = ∅ if and only if K ′ = ∅ . (2.10)

Thus by a combination of (2.7) – (2.10),

L(G′) ∩ des(p) = ∅ if and only if L(G) = ∅ . (2.11)

Let us assume that (P1) is decidable for monotone grammars. Then we can decide
the emptiness of L(G′) ∩ des(p). By (2.11), we can decide the emptiness of L(G) which
contradicts Theorem 1.24. Thus our assumption has to fail, i.e., (P1) is undecidable for
monotone grammars.

Let G be a monotone grammar and p a picture. Then, for b ∈ π, we consider the
languages

Lb = L(G) ∩ des(p) ∩ {bw | w ∈ π∗}
of all words of L(G) which begin with the letter b and describe p. Furthermore, we set

L′b = {(bb)m | m ≥ 0}Lb = {(bb)mbw | m ≥ 0, bw ∈ L(G)} .

By the closure properties of L(CS) (see Theorem 1.12), there is a monotone grammar G′

with
L(G′) = L′u ∪ L′d ∪ L′r ∪ L′l .

Now assume that L(G) ∩ des(p) is not empty. Then there is a non-empty word v ∈
L(G) ∩ des(p) such that bccp(v) = p. Clearly, v = bw for some b ∈ π. Then all words
(bb)mbw with m ≥ 0 are in L′b and therefore in L(G′). Because bccp(bw) = bccp((bb)mbw)
for any m ≥ 0, L(G′) contains an infinite set of words which describe p. Hence we have
show that the non-emptiness of L(G) ∩ des(p) implies the infinity of L(G′) ∩ des(p).

Conversely, if L(G) ∩ des(p) is empty, then L(G′) ∩ des(p) is empty, too, and hence
L(G′) ∩ des(p) is finite.
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Hence L(G) ∩ des(p) = ∅ if and only if L(G′) ∩ des(p) is finite. Assume that (P2) is
decidable for monotone grammars. Then the finiteness of L(G′)∩des(p) is decidable, and
thus the emptiness of L(G) ∩ des(p) is decidable, which contradicts the undecidability of
(P1).

Therefore our assumption has to fail, i.e., (P2) is undecidable for monotone grammars.

We omit the proof of the undecidability of (P3) for monotone grammars. 2

Comparing the decidability status of the membership problem for word languages (see
Theorem 1.24) and for picture languages (see Theorem 2.14) we see that picture languages
have a more worse behaviour since the membership problem is undecidable already for
monotone grammars.

If we take into consideration the complexity also with respect to context-free and reg-
ular grammars the situation in case of picture languages is more worse. By Theorem 1.26
the complexity of the membership problem for word languages is cubic for context-free
grammars and linear and regular grammars. In the case of picture languages one has to
expect that the membership problem for regular grammars has a non-polynomial com-
plexity. This follows from the following statement (if one expects that P 6= NP).

Theorem 2.15 The membership problem (P1) is NP-complete for regular grammars.

Proof. i) First we prove that (P1) is in NP.
Let G = (N, T, P, S) be a regular grammar. Without loss of generality we assume

that G is in the normal form given in Theorem 1.6, i.e., all rules have the form A → aB
or A → a with A,B ∈ N and a ∈ T . We show that, for any p ∈ bccp(G), there is a word
w with

bccp(w) = p and |w| ≤ #(N) ·#(p) ·#(V (p)) (2.12)

(note that p is a finite set of unit lines and hence #(p) denotes the number of unit lines
of p). In order to prove this let w ∈ L(G) be a word of minimal length which describes p.
Let

D : S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an−1an = w

be a derivation of w. Let wi = a1a2 . . . ai and dccp(wi) = ((0, 0), pi, ei).
We now prove the following fact.

Fact: For 1 ≤ i < j ≤ n, dccp(wi) = dccp(wj) implies Ai = Aj.

Let us assume that this assertion does not hold, i.e., we have dccp(wi) = dccp(wj) and
Ai 6= Aj. Then the derivation

D′ : S =⇒∗ wiAi =⇒ wiaj+1Aj+1 =⇒ wiaj+1aj+2Aj+2 =⇒∗ wiaj+1aj+2 . . . an

gives a word w′ = wiaj+1aj+2 . . . an ∈ L(G). Moreover, since w = wjaj+1aj+2 . . . an,
pi = pj and ei = ej, we add the unit lines corresponding to the letters aj+1, aj+2, . . . , an

at the same positions to draw dccp(w′) or dccp(w). Hence dccp(w′) = dccp(w). This
contradicts our assumption that w has minimal length of all words describing p because
|w′| = |w| − (j − i).
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By the fact, all elements of the sequence

(p1, e1, A1), (p2, e2, A2), . . . , (pn−1, en−1, An−1)

are different. Hence n is bounded by the product of the number of pictures pi, the
number of endpoint ei and the number of nonterminals Ai. Because pi ⊆ pj for i < j by
the construction of a drawn picture, the number of possible pi is bounded by the size of p.
Since any endpoint belongs to V (p), #(V (p)) bounds the number of possible endpoints.
Now the estimation of (2.12) follows.

Hence we generate nondeterministically all words of length ≤ #(N) ·#(p) ·#(V (p))
and check whether it describes p and whether it belongs to L(G). Both parts can be
performed in polynomial time. Thus we can nondeterministically check in polynomial
time (with respect to the size of the given picture p and the size of the given grammar G)
whether or not p ∈ bccp(G).

ii) We now give a reduction of 3-SAT to (P1). By Theorems 1.29 and 1.31, we then
get the NP-completeness of (P1).

Let an instance of 3-SAT be given by the disjunctions Cj, 1 ≤ j ≤ n over the variables
x1, x2, . . . , xm. Let

Cj = xk1
j1
∨ xk2

j2
∨ xk3

j3

where x1 = x and x0 = x is the negation of x.
We associate with this problem the regular grammar

G = ({S, S ′, T, F, X1, X2, X3, U,G, H, Y }, π, P, S)

where P consists of all rules of the forms

S → d2r2u2S ′,

S ′ → T, S ′ → F, S ′ → rd3ru3,

T → uU, T → rF, T → d2ru2S ′,

F → uG, F → rT, F → d2ru2S ′,

U → uU, U → ruiluXi for 1 ≤ i ≤ 3,

Xi → rXi, Xi → lXi, Xi → drdilY for 1 ≤ i ≤ 3,

Y → dY, Y → rulrF,

G → uG, G → ruiludrdilH,

H → dH, H → rulrT

and the picture p which is constructed as follows:

1. p consists of m parts, each associated with a variable xi, each of these parts has the
form bccp(r4nd2ru2), we label the point reached after drawing u4(i−1) and u4(i−1)+1

by xj
i and xi

j, respectively,

2. if Cj = xk1
j1
∨ xk2

j2
∨ xk3

j3
, then

• we start in xj
j1

if k1 = 1 or in xj1
j if k1 = 0 the drawing of u5(j−1)+3rulu and

dru,
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• we start in xj
j2

if k2 = 1 or in xj2
j if k2 = 0 the drawing of u5(j−1)+2ru2lu and

dru,

• we start in xj
j3

if k3 = 1 or in xj3
j if k3 = 0 the drawing of u5(j−1)+1ru3lu and

dru, and

• we connect the upper ends of these drawings by a line,

3. we add in the beginning and in the end the drawings of d2r2u2 and rd3ru3, respec-
tively.

In Figure 2.6 we give an example for the construction of the picture from a 3-SAT instance.
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Figure 2.6: The picture associated with the instance of 3-SAT consisting of the disjunc-
tions x ∨ y ∨ z, x ∨ y ∨ z and x ∨ y ∨ z

Now we prove that p ∈ bccp(G) if and only if there is an assignment of the variables
x1, x2, . . . , xm such that all disjunctions C1, C2, . . . , Cn get the value true, i.e., the instance
of 3-SAT has a solution. In order to get this result we analyse the derivations in G. Using
the only rule for the axiom S we get d2r2u2S ′, i.e., we draw the picture of d2r2u2 which
we have added in point 3 of the construction of p and we are in a position labelled by
x1

1. Let us assume we are in a position labelled by x1
i and the only nonterminal (at he

end) of the sentential form is S ′. Now we use a rule S ′ → T or S → F , which assigns
the truth value T for true or F for false to the variable xi. In the sequel we move to the
right and change by each such move the truth value. Therefore in any position labelled
by xj

i or xi
j the assigned truth value is correct (since the distance between points labelled

by xj
i and xj′

i is even, and the same holds for the negated versions). If the value T
holds in some position, then we can draw pictures of the form shown in Figure 2.7 using
the nonterminals U,X1, X2, X3, Y where the right part of Figure 2.7 holds if the upward
and downward move are performed in the same position. Moreover, if the truth value
is F , then we only get the pictures shown in Figure 2.8. The difference to the situation
where the truth value is T (see Figure 2.7) is that the upper straight line produced by the
nonterminal X1 or X2 or X3 is missing. By application of T → d2ru2S ′ or F → d2ru2S ′ we
start the same procedure for the next variable and finish the derivation by S ′ → rd3ru3.
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Figure 2.7: Possible pictures associated with the truth value T
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Figure 2.8: Possible picture associated with the truth value F

By this explanation it is obvious that we produce p if and only if we have a upper
lines connecting the vertical lines from the positions associated with the variables of the
disjunction fore all disjunctions, which holds if and only if each disjunction contains a
literal whose truth value is T . Therefore p can be generated if and only if there is an
assignment such that all disjunctions get true. 2

We now discuss the emptiness problem.

Theorem 2.16 The emptiness problem

Given a phrase structure grammar G = (N, π, P, S),
decide whether or not the picture set bccp(G) is empty?

is decidable for context-free grammars and undecidable for monotone grammars.

Proof. It is obvious that bccp(G) = ∅ if and only if L(G) = ∅ because bccp(G) consist of
the pictures which are associated with the words of L(G). Hence both statements follow
from Theorem 1.24. 2

With respect to the finiteness we cannot give such an easy reduction from picture
languages to word languages as given for the emptiness problem. This can be seen from
the grammar G4 of Example 2.11. The word language generated by G4 is infinite whereas
its picture language is finite.

Definition 2.17 A context-free grammar G = (N, π, P, S) is called normal if, for every
nonterminal A ∈ N and any derivation A =⇒∗ xAy with x, y ∈ π∗, sh(x) = sh(y) =
(0, 0).
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Lemma 2.18 For any normal context-free grammar G, there exist a constant c such that,
for any w ∈ L(G),

√
m2 + n2 ≤ c holds where (m,n) = sh(w).

Proof. Let G = (N, π, P, S) be a normal context-free grammar. Without loss of generality
we can assume that G is in the normal form given in Theorem 1.6 iii) (it is easy to see
that the transformation in the normal form preserves normality). Thus all rules of P
have the A → BC or A → a. Hence the derivation trees are binary trees besides the last
application of A → a to get the leafs. Thus the derivation tree associated with a derivation
of w has |w| leaves and therefore a height at least 2|w|. Therefore the derivations trees of
words with |w| > 2#(N) have height > #(N). Hence any such tree contains a path from
the root S to a leave in which some nonterminal A occurs at least two times. Therefore
we have the derivation

S =⇒∗ z1Az2 =⇒∗ z1xAyz2 =⇒ z1xz3yz2 = w ∈ π∗ .

Obviously, we also have the derivation

S =⇒∗ z1Az2 =⇒∗ z1z3z2 ∈ π∗.

Note that sh(w) = sh(z1z3z2)+sh(x)+sh(y) by (2.3). Since G is normal, sh(x) = sh(y) =
(0, 0) and, consequently, sh(w) = sh(z1z3z2). Therefore, for any w with w > 2#(N) we
have a shorter word with the same shift. This implies that all shifts can already be
obtained by words of L(G) with a length ≤ 2#(N). Since there are only finitely many
words in L(G) with a length ≤ 2#(N),

c = max{
√

m2 + n2 | w ∈ L(G), |w| ≤ 2#(N), sh(w) = (m,n)}

can be computed. By our considerations above, for any word w ∈ L(G),
√

m2 + n2 ≤ c
where sh(w) = (m,n). 2

Lemma 2.18 says that, for any drawn picture ((0, 0), p, (m,n)) the end point (m,n) is
in a circle with radius c and centre (0, 0). However, the intermediate points of the drawing
can be outside of the circle. The following lemma shows that one can get a circle such
that any point of the drawing is in the circle, because any intermediate point belongs to
a prefix of a word of L(G).

Lemma 2.19 Let G = (N, π, P, S) be a normal context-free grammar. Then there exist
a normal context-free grammar G′ = (N ′, π, P ′, S ′) such that L(G′) = pref(L(G)).

Proof. Let G = (N, π, P, S) be a normal context-free grammar. without loss of generality
we can assume that G is in the normal form given in Theorem 1.6 iii). Thus all rules of
P have the form A → BC or A → a with A,B,C ∈ N and a ∈ π. We construct the
context-free grammar

G′ = (N ∪ {A′ | A ∈ N}, π, P ′, S ′) ,

where P ′ consist of all productions obtained in the following way:

– if A → BC ∈ P , then A → BC ∈ P ′, A′ → BC ′ ∈ P ′ and A′ → B′ ∈ P ′,
– if A → a ∈ P , then A → a ∈ P ′, A′ → a ∈ P ′ and A′ → λ ∈ P ′.
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We first note that L(G′) = pref(L(G)). This follows easily from the fact that S ′ =⇒∗

wA′ holds in G′ if and only if S → wAv holds in G for some v. Since any terminating
derivation in G′ has – without loss of generality – the form

S =⇒∗ wA′ =⇒ wa ∈ π∗ or S =⇒∗ wA′ =⇒ w ∈ π∗,

the words in L(G′) are prefixes of words in L(G). It is easy to prove that any prefix of
L(G) can be generated by G′. Thus L(G′) = pref(L(G).

Ne now prove that G′ is normal. If we have a derivation A =⇒∗ xAy with x, y ∈ π∗in
G′, then no primed version of a symbol of N can occur in this derivation. Therefore
A =⇒∗ xAy is a derivation in G, too. Since G is normal, sh(x) = sh(y) = (0, 0). If we
have a derivation A′ =⇒ xA′y with x, y ∈ π∗ in G′, then we have y = λ and therefore
sh(y) = sh(λ) = (0, 0). Moreover, there is a derivation A =⇒∗ xAz for some z ∈ π∗ in G.
By the normality of G, sh(x) = (0, 0). 2

Corollary 2.20 Let G be a context-free grammar. Then bccp(G) is finite if and only if
G is normal.

Proof. Let G be a normal context-free grammar. Then, by Lemma 2.19, there is a
normal context-free grammar G′ such that L(G′) = pref(L(G)). By Lemma 2.18, there
is a constant c such that, for any w ∈ L(G′),

√
m2 + n2 ≤ c where sh(w) = (m,n).

Now let p ∈ bccp(G). Then p = bccp(w) for some w ∈ L(G). Any point (m,n) ∈ V (p)
is reached by the drawing process according to w with start point (0, 0). Therefore
(m, n) ∈ V (p) is the end point of the drawing according of some prefix v of w. Since
v ∈ pref(L(G)) = L(G′), we get

√
m2 + n2 ≤ c. Thus, for any picture p ∈ bccp(G),

any point of V (p) is in the circle with radius c and centre (0, 0). Because there are only
finitely many unit lines in the circle, there are only finitely many pictures in the circle.
Hence bccp(G) is finite.

Let G be a context-free grammar which is not normal. Then there is a derivation
A =⇒∗ xAy with sh(x) 6= (0, 0) or sh(y) 6= (0, 0). We discuss the former case, the
considerations for the latter case are analogous. Let sh(x) = (k, l) with k + l > 0.
Without loss of generality we assume that k > 0.

Let r ∈ N be an arbitrary number. For any n ∈ N, in G we have a derivation

S =⇒∗ uAu′ =⇒∗ uxAyu′ =⇒∗ ux2Ay2u′ =⇒∗ . . . =⇒∗ uxnAynu′ =⇒∗ uxnzynu′ ∈ π∗.

Hence p = bccp(uxnzynu′) ∈ bccp(G). The drawing according to the prefix uxn ends in a
point (s, t) of V (p). Because (s, t) = sh(uxn) = sh(u) + n(k, l), by an appropriate choice
of n, we get |s| > |r|, i.e., the distance of (s, t) ∈ V (p) from the origin is larger than any
given threshold. Hence bccp(G) is infinite. 2

In order to use this corollary for a decision of the finiteness of bccp(G) we need some
information whether or not the normality of a context-free grammar is decidable. The
answer is given in the following lemma.

Lemma 2.21 It is decidable whether or not a given context-free grammar G is normal.
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Proof. Let G = (N, π, P, S) be a context-free grammar. For any A ∈ N , we define

LA = {x | x ∈ π∗, A =⇒∗ xAy for some y ∈ π∗}
and

L′A = {x | x ∈ π∗, A =⇒∗ yAx for some y ∈ π∗} .

It is easy to see that the grammar

GA = {N ∪ {A′}, π ∪ {$}, PA ∪ {A → $} ∪ {A′ → w | A → w ∈ P}, A′)

(where $ is not in V ∪ π ∪ {A′}) generates

L(GA) = {x$y | x, y ∈ π∗, A =⇒ xAy} ∪ {z | z ∈ π∗, A =⇒∗ z} .

By Theorems 1.12 and 1.16,

pref(L(GA)) ∩ π∗{$} = {x$ | x ∈ π∗, A =⇒ xAy for some y ∈ π∗}
is context-free. Let h be the homomorphism given by h(b) = b for b ∈ π∗ and h($) = λ.
Since LA = h(pref(L(GA)) ∩ π∗{$}, LA is context-free. Thus LA is semi-linear.

Note that the set M of all words with sh(w) = (0, 0) is semi-linear, too (for sh(w) =
(0, 0), #u(w) = #d(w) and #r(w) = #l(w), and therefore Ψ(w) = #u(w)(1, 1, 0, 0) +
#r(w)(0, 0, 1, 1)).

Obviously, LA ⊆ M iff Ψ(LA) ⊆ ψ(M). By Theorem 1.25 ii), we can decide whether
or not LA ⊆ M .

Analogously, we can decide whether L′A ⊆ M .
The given grammar G is normal if and only if LA and L′A are contained in M for all

A. By the above considerations, this is decidable. 2

Theorem 2.22 The finiteness problem

Given a phrase structure grammar G = (N, π, P, S),
decide whether or not the picture set bccp(G) is finite

is decidable for context-free grammars and undecidable for monotone grammars.

Proof. The statement with respect to context-free grammars follows immediately from
the Lemmas 2.20 and 2.21.

Let G be a monotone grammar. We construct a monotone grammar G′ such that
L(G′) = L(G){rn | n ≥ 1} (see Theorem 1.12). Obviously, if bccp(G) = ∅, then bccp(G′) =
∅ and hence bccp(G′) is finite. On the other hand, if bccp(G) 6= ∅, then bccp(G′) is infinite
since the added tails rn, n ≥ 1, produce an infinite set from a picture in bccp(G). Thus
bccp(G) = ∅ if and only if bccp(G′) is finite. Hence the decidability of the finiteness
of bccp(G′) implies the decidability of the emptiness of bccp(G) which is undecidable by
Theorem 2.16. Thus the finiteness of the set of pictures generated by a monotone grammar
is undecidable. 2

Without proof we mention the following theorem (for a proof we refer to [24]; the proof
uses a simulation of the work of a Turing machine by chain code pictures; an analogous
idea is the basis of the proof of Theorem ??, see below).
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