
Prof. Dr. Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

G R A M M A T I C A L

P I C T U R E

G E N E R A T I O N

Manuscript

Magdeburg, April 2011 – July 2011

Contents

Introduction 1

1 Basics of Formal Language Theory 5
1.1 Phrase Structure Grammars . 5
1.2 Lindenmayer Systems . 11
1.3 Hierarchies and Closure Properties . 13
1.4 Turing Machines, Decidability and Complexity 20

2 Chain Code Picture Languages 25
2.1 Chain Code Pictures . 25
2.2 Hierarchy of Chain Code Picture Languages 33
2.3 Decision Problems for

Chain Code Picture Languages . 37
2.3.1 Classical Decision Problems . 37
2.3.2 Decidability of Properties Related to Subpictures 47
2.3.3 Decidability of ”Geometric” Properties 50
2.3.4 Stripe Languages . 53

2.4 Some Generalizations . 59
2.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars 61

2.5.1 Definitions and some Theoretical Considerations 61
2.5.2 Applications for Simulations of Plant Developments 64
2.5.3 Space-Filling Curves . 67
2.5.4 Kolam Pictures . 69

3 Siromoney Matrix Grammars 71
3.1 Definitions and Examples . 73
3.2 Hierarchies of Siromoney Matrix Languages 78
3.3 Decision Problems for Siromoney Matrix Grammars 81

3.3.1 Classical Problems . 81
3.3.2 Decision Problems related to Submatrices and Subpictures 86
3.3.3 Decidability of geometric properties 90

Bibliography 97

3

Theorem 2.23 The equivalence problem

Given two phrase structure grammars G1 = (N1, π, P1, S1) and G2 = (N2, π, P2, S2)
decide whether or not bccp(G1) = bccp(G2) holds?

is undecidable for regular grammars. 2

2.3.2 Decidability of Properties Related to Subpictures

The membership problem (for word languages) has two variants with respect to subwords:
given a grammar G and a word w, decide whether or not w is a subword of at least one
word (or of all words) in L(G). Both variants are decidable for context-free grammars.
This can be seen as follows.

We construct a context-free grammar G′ with L(G′) = sub(L(G)) (see Theorem 1.16)
and decide w ∈ L(G′). Since membership is decidable for context-free grammars, the first
variant is a decidable problem for context-free grammars.

The set K = π∗{w}π∗ of all words with subword w is regular (see Theorem 1.15). By
Theorem 1.14, the complement K consisting of all words which do not have subword w is
regular, too. We consider L(G) ∩K which is empty if and only if all words of L(G) have
the subword w. Since L(G) ∩ K is context-free (see Theorem 1.12) and the emptiness
is decidable for context-free languages, the second variant is decidable for context-free
grammars, too.

We now study these two variants of the membership problem for picture grammars.

Definition 2.24 We say that the basic chain code picture p is a subpicture of the basic
chain code picture q if there is a chain code picture p′ such that p′ ≡ p and p′ ⊆ q.
We say that the basic chain code picture p is a subpicture of the basic chain code picture
language L, if p is a subpicture of some q ∈ L.

Theorem 2.25 i) For an arbitrary basic chain code picture p and an arbitrary context-
free grammar G = (N, π, P, S), it is decidable whether or not p is a subpicture of bccp(G).
i) For an arbitrary chain code picture p and an arbitrary monotone grammar G =
(N, π, P, S), it is undecidable whether or not p is a subpicture of bccp(G). 2

We omit the proof of Theorem 2.25 which can be given by modifications of the proofs
of Theorem 2.14 (consider sets of descriptions of subpictures instead of pictures).

Definition 2.26 We say that the basic chain code picture p is a universal subpicture of
the basic chain code picture language L, if p is a subpicture of any q ∈ L.

Theorem 2.27 For an arbitrary basic chain code picture p and an arbitrary regular gram-
mar G = (N, π, P, S), it is undecidable whether or not p is a universal subpicture of
bccp(G).

Proof. We shall present a reduction of the universal subpicture problem to the (unde-
cidable) emptiness problem for monotone grammars. By Theorem 1.22, the languages
generated by monotone grammars can be accepted by linearly bounded automata. Thus

47

the emptiness problem for linearly bounded automata (decide whether or not the language
accepted by a given linearly bounded automaton is empty) is undecidable, too.

We shall present a linearly bounded automaton in the following normal form: There
are two markers b at the tape which are written in the cells before and after the word.
The automaton scans in the beginning the left endmarker. Then it scans and rewrites the
complete input from left to right until it reaches the right endmarker. Then it performs
a stationary step and scans and rewrites the word at the tape from right to left until it
reaches the left endmarker. It performs a stationary step, again. This procedure is iterated
until the automaton reaches an accepting state which is only possible if the automaton
scans the right endmarker. It is easy to see that any linearly bounded automaton M
can be transformed in a linearly bounded automaton M′ in this normal form such that
T (M′) = T (M).

A run of a linear bounded automaton in normal form can be written in a rectangle
where each row corresponds to a move from the left marker to the right marker or to
a move from the right marker to the left marker. In the first row the input (with the
markers) is written. Therefore the width of the rectangle is given by the length of the
input word increased by 2. The height of the rectangle depends on the number of moves
along the word on the tape. An example for such a description is given in Figure 2.9.

Figure 2.9: Illustration of a run of a linearly bounded with input symbols 0 and 1, marker
b and states q,z,x,s,v,w,z,t, where q is the initial state and t is the accepting state

Now we consider the homomorphism h which encodes the input symbols and the
marker b by a word of {0, 1}n for some n. We choose h in such a way that h(x) =
x1x2 . . . xn and h(y) = y1y2 . . . yn contain positions i and j such that xi = 0, yi = 1, xj = 1
and yj = 0. Moreover we consider a linearly bounded automaton M′′ which accepts
the language uh(L(M))u where u is the image of the marker. It is easy to construct
M′′ = (({0, 1}, {0, 1}, ∗, Z, z0, F, F, δ) from M′. u is used as a ”software endmarker” in
M′′. Obviously, uh(L(M))u is empty if and only L(M) is empty. Figure 2.10 illustrates
this transformations for the run given in Figure 2.9.

Now we associated with M′′ the regular grammar grammar G = (Z, π, P, z0) where P
consists of all rules of the forms

48

Figure 2.10: Illustration of a transformed run where we use h(b) = 011, h(0) = 110 and
h(1) = 101

q → λ for q ∈ F ,

q → −−→
read(a)

−−−→
write(b) q′ for (q′, b, R) ∈ δ(q, a)

q → −−→
read(a)

−−−→
write(b)right− to− left q′ for (q′, b, N) ∈ δ(q, a)

q →←−−
read(a)

←−−−
write(b) q′ for (q′, b, L) ∈ δ(q, a)

q →←−−
read(a)

←−−−
write(b)right− to− left q′ for (q′, b, N) ∈ δ(q, a)

where

−−→
read(0) = r,

−−→
read(1) = urd,

←−−
read(0) = l,

←−−
read(1) = uld, (2.13)

−−−→
write(0) = dru,

−−−→
write(1) = r,

←−−−
write(0) = dlu,

←−−−
write(1) = l, (2.14)

right− to− left = rddl, left− to− right = lddr.

The pictures corresponding to these words are given in Figure 2.11. Since the nonterminals

0 1

read

write •
•

•
• • •

• • • •
• •

Figure 2.11: The pictures to the words of (2.13) and (2.14)

correspond to the states we draw a picture according to a run of machine where we draw
for each direction of the move first the read letter and then the written letter. For the
run given in Figure 2.10 we get the picture given in Figure 2.12.

If we move backwards in the next scan of the word we have to read that letter which
was written the scan before. The possible pictures which can occur in a ”column” are
given in Figure 2.13. Obviously, if a run is correctly simulated by the grammar, then the
picture p01 does not occur as a subpicture. Hence we get that M′′ is empty if and only p01

is a universal subpicture of bccp(G). Therefore the decidability of the universal subpicture
problems implies the decidability of the finiteness problem for monotone grammars. Since
the latter problem is undecidable, we have shown the statement of this theorem. 2

49

Figure 2.12: The picture corresponding to the run of Figure 2.10

• • • • • • • •
• • • • • •
• • • • • • • •

p00 p01 p10 p11

Figure 2.13: The pictures that can occur in a column of a rectangle describing a run

2.3.3 Decidability of ”Geometric” Properties

We now use the results of the preceding section to get some facts on the decidability of
some properties which are of geometric or graph-theoretical origin. We start with the
definition of the properties we are interested in.

Definition 2.28 A chain code picture p is a simple curve, if all its nodes have a degree
at most 2.

A chain code picture p is a closed simple curve, if all its nodes have degree 2.
A chain code picture p is a tree, if it does not contain a closed simple curve as a

subpicture.
A chain code picture p is called regular, if all nodes of p have the same degree.
A chain code picture p is called Eulerian, if

— all nodes of p have an even degree or
— there are two nodes n and n′ in p such that all nodes of p different from n and n′ have
even degree.

A chain code picture p is called Hamiltonian, if it contains a subpicture p which is a
simple curve and contains all nodes of p.

A chain code picture p is called convex if there is a chain code picture q such that p∪ q
is a closed simple curve and the intersection of the inner part of p ∪ q with any straight
line which is parallel to one of the axes is a finite straight line.

With respect to the definition of convexity we had to change the usual geometric
definition to ensure that it fits to chain code pictures. The usual definition requires that
a straight line connecting two arbitrary points of the curve does not intersect the curve in
a point different from the two given points. Since lines of a chain code picture are parallel
to the axes of the system, we restrict the lines connecting the points to such lines, too.

50

We also note that the definition of an Eulerian curve is usually given in another way
which is dual to that of a Hamiltonian curve. A curve is called Eulerian if it can be drawn
in such a way that each unit line is only drawn once. It is well known from graph theory
(and easy to prove) that our definition is equivalent to the usual one.

Furthermore, we mention that regularity is almost the same as closed simplicity. More
precisely, the following assertion holds: A curve is regular if and only if it is a simple closed
curve or it is a curve consisting of a single unit line. This can be seen as follows: If that
the degree of any point is 1, then the curve has to be a single unit line. If the degree of
any point is 2, then it is a simple closed curve by definition. Now assume that the curve
contains a point of degree k ≥ 3. Then we consider the most right-upper point (m,n) of
the curve. Clearly, (m,n) has a degree ≤ 2 since (m + 1, n) and (m,n + 1) are not points
of the curve (otherwise (m,n) would not be the most right-upper point). Therefore we
have two points with different degree which proves that the curve is not regular.

Theorem 2.29 Given a regular grammar G = (N, π, P, S), it is undecidable whether or
not bccp(G) contains

a) a simple curve,
b) a closed simple curve,
c) a Eulerian picture,
d) a tree
e) a Hamiltonian picture,
f) a regular picture.

Proof. a) In the proof of Theorem 2.27 we have constructed a grammar G such that it
is undecidable whether or not p01 (see Figure 2.13) is a universal subpicture of bccp(G).
Obviously, a curve is a simple curve if and only if it contains none of the pictures

• • • • • • • • • •

•

•

• •

• •
as a subpicture. Thus by the proof of Theorem 2.27 bccp(G) contains a simple curve
if and only if p01 is not a universal subpicture of bccp(G). Since the latter property is
undecidable, the existence of a simple curve is also undecidable.

b) We add to the pictures generated by the grammar G considered in the proof of
Theorem 2.27 a tail which connects the end point with with the start point. This can be
done by using

q → U, U → lU, U → uU ′, U ′ → uU ′, U ′ → rrr

for q ∈ F instead of q → λ. Now it is easy to see that the modified grammar generates
a closed simple curve if and only if the original grammar does not have the universal
subpicture p01. As above this gives the undecidability of the existence of a closed simple
curve.

c) By definition of G given in the proof of Theorem 2.27, the generated picture contains
a start and end point which both have the degree 1. Furthermore, by construction, bccp(G)
contains no points of degree 4. Thus a Eulerian picture of bccp(G) contains besides the

51

start and end point only nodes of degree 2. This means that any Eulerian curve in bccp(G)
is a simple curve. Therefore bccp(G) contains a Eulerian curve if and only if it contains a
simple curve. Now the statement follows from a).

d) follows from b).
e) We consider the grammar G′ obtained from the grammar G given in the proof of

Theorem 2.27 by replacing any occurrence of a letter b ∈ π by bb. Then it is undecidable
whether or not the picture p′01

•
•
•
•
•

•

•
•
•
•
•

is a universal subpicture. Moreover, it is easy to see that a picture of bccp(G′) is Hamil-
tonian if and only if it does not contain the picture p′01 (the strechted versions of the
other pictures given in Figure 2.13) do not destroy Hamiltonicity). Thus the existence
of a Hamiltonian picture is equivalent to the non-existence of p′01 as a universal subpic-
ture. Obviously, the latter property is undecidable, too, and therefore the existence of a
Hamiltonian curve is also undecidable.

f) By the fact that each picture generated by the grammar G of the proof of Theo-
rem 2.27 contains at least two unit lines and the assertion given before the Theorem, the
statement follows from b). 2

We now turn to the case that a property is required for all pictures.

Lemma 2.30 Let G be a regular grammar such that all elements of bccp(G) are closed
simple curves. Then bccp(G) is finite.

Proof. Let Z be the set of words b1b2b3b4 such that bccp(b1b2b3b4) is a unit square.
Since G is regular, L(G) can be represented according to Theorem 1.15. By r(L) we

denote the number of operation which is necessary to get L. We now prove by induction
on the number r of operations union, product and Kleene closure ∗ the statement.

It is easy to see that all sets – with exception of the sets {z}, z ∈ Z – obtained by 3
or less operation do not only consist of simple closed curves. For the sets {z}, z ∈ Z, the
statement holds by definition and thus the induction basis is shown.

Let r ≥ 4 and r = r(L). If L = L1 ∪ L2, then r(L1) < r and r(L2) < r and L1 and
L2 contain only closed simple curves. By induction hypothesis, bccp(L1) and bccp(L2) are
finite. Consequently, bccp(L) = bccp(L1) ∪ bccp(L2) is also finite.

Let L = (L′)∗. We consider some w ∈ L′. Since w ∈ L′ ⊆ L, bccp(w) is a closed
simple curve. If the start point and endpoint of dccp(w) are different, then it is easy to
see that bccp(ww) is not simple closed curve since it contains a point of degree at least 3.
However, ww ∈ (L′)2 ⊆ L and therefore bccp(ww) has to be a closed simple curve. But if
the start and endpoint coincide, then bccp(w) = bccp(w2) = bccp(w3) = Moreover, if
v ∈ L′ and v 6= w, then bccp(wv) is not a simple closed curve since it also contains a point
of degree at least 3. Thus L′ consists of a single word, and L has only one non-empty
picture. Hence L is finite.

Now let L = L1L2. If L1 = L′1∪L′2, then L = L′1L2∪L′2L2 and the statement follows as
in the case of union. Let L1 = (K ′)∗. If w1 ∈ K ′ and the start point and the end point of

52

dccp(w1) are different, then bccp(w1w2v2) for v2 ∈ L2 is not a simple curve. We continue
as in the case of Kleene closure above and get that K ′ contains only one non-empty word.
By the same considerations for L2 = L′′1 ∪ L′′2 and L2 = (K ′′)∗, we get that bccp(L) is
finite or bccp(L) = bccp(u1u2) where u1 ∈ K ′ and u2 ∈ K ′′. Clearly, bccp(L) is finite in
all these cases. It remains the case that L = L′1L

′
2L

′′
1L

′′
2 because L1 and L2 are products.

Then we continue as above and get that bccp(L) is a product of r single letter languages,
which also implies the finiteness of bccp(L). 2

Theorem 2.31 For an arbitrary regular grammar G = (N, π, P, S), it is decidable whether
or not

a) all pictures of bccp(G) are closed simple curves,
b) all pictures of bccp(G) are rectangles,
c) bccp(G) contains a rectangle,
d) bccp(G) contains a convex picture.

Proof. a) Let G be given. We first decide whether or not bccp(G) is finite. If the answer
is no, then bccp(G) contains a picture, which is not a simple closed curve by Lemma 2.30.
If the answer is yes, then we get a number r such that all pictures of bccp(G) are contained
in a circle with the radius r and the centre (0, 0). We now check any picture which is
contained in this circle and is not a closed simple curve whether or not it is generated
by G. If the answer in all cases is negative, bccp(G) contains only closed simple curves;
otherwise not.

b) The proof is the same as in a) with the only difference that we test all non-rectangles
in the circle.

c) and d) We omit the proofs and refer to [2]. 2

2.3.4 Stripe Languages

We have seen in the preceding sections that most of the interesting problems are unde-
cidable or at least it is very hard to decide them. Thus one is interested in special cases
where the problems can be decided (easily). We now present such a case.

Definition 2.32 A picture languages L is called a stripe picture language, if there are
real numbers k, d1 and d2 such that, for any picture p ∈ L and any point (m,n) ∈ V (p),

km + d1 ≤ n ≤ km + d2 .

We then also say that L is a (k, d1, d2)-stripe language.

By definition, a stripe is given by two parallel lines, and all points of all pictures of the
picture language can be placed between the two lines. An example is given in Figure 2.14.

Lemma 2.33 Let G = (N, π, P, S) be a reduced1 context-free grammar such that dccp(G)
is a (k, d1, d2)-stripe picture. For any non-empty word x ∈ π such that A =⇒∗ xAy or
A =⇒∗ yAx for some A ∈ N , sh(x) = (0, 0) or sh(x) = (m, km) for some m.

1A context-free grammar is called reduced iff, for any nonterminal A, there are derivations S =⇒∗ xAy
and A =⇒∗ w for some u, v ∈ (N∪T)∗ and w ∈ T ∗, i.e., none of the nonterminals can block the derivation
and none of the nonterminals is superflous.

53

©©©

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

(0,0)

Figure 2.14: Example of a stripe language (with k = 1/2, d1 = 1 and d2 = −4)

Proof. Let us assume that A =⇒∗ xAy with sh(x) = (m, n). By our assumption, for
any i ≥ 0, we have the derivations

Di : S =⇒∗ zAz′ =⇒∗ zxAyz′ =⇒ zx2Ay2z′ =⇒∗ . . . =⇒∗ zxiAyiz′ =⇒∗ zxiwyiz′ = wi ∈ T ∗

in G. If sh(z) = (m′, n′), then sh(zxi) = (m′ + im, n′ + in). Since dccp(G) is a (k, d1, d2)-
stripe language, we have

d1 ≤ n′ + in− k(m′ + im) ≤ d2

or equivalently,
d1 ≤ n′ − km′ + i(n− km) ≤ d2 (2.15)

for any i ≥ 0. Therefore n − km = 0 holds. Thus n = m = 0 or n = km, which proves
our statement. 2

Corollary 2.34 Any (k, d1, d2)-stripe picture language with a non-rational k is finite.

Proof. Assume that k is non-rational. By Lemma 2.33 we only have derivations A =⇒∗

xAy with sh(x) = sh(y) = (0, 0). This means that the grammar is normal, which implies
the finiteness of the language (see Corollary 2.20). 2

The essential key for a better situation for stripe languages with respect to decision
problems is the following lemma which reduces the problem for picture languages to that
of word languages.

Lemma 2.35 Let k be a rational number and d1 and d2 real numbers with d1 < d2. Then
there is an alphabet V and an encoding µ which maps any picture in the stripe to a word
over V such that the following properties hold:

54

i) For two (k, d1, d2)-stripe pictures q and q′, µ(q) = µ(q′) if and only if q = q′.
ii) For a (k, d1, d2)-stripe picture q, µ(q) can be computed in linear time (in the size

of q).

iii) If L is a regular (k, d1, d2)-stripe picture language, then µ(L) = {µ(q) | q ∈ L} is
a regular word language over V , which can effectively be constructed. 2

We do not prove Lemma 2.35. We only give one mapping µ which satisfies the re-
quirement of Lemma 2.35. We divide a given stripe picture into slices of a given width
d ≥ 0 where d is a natural number. Obviously, a slice is bounded by the lines y = kx+d1,
y = kx + d2 x = id + j and x = (i + 1)d + j for some i and j, 0 ≤ j ≤ d− 1. The point
and lines on the left bounding line belong to the slice (those of the right bound belong
to the right neighbour slice. Hence a slice is a finite part of the plain. Thus only a finite
number of pictures fits into a slice. All these pictures form a finite set which will be the
alphabet V . The mapping µ maps any slice onto the picture contained in the slice. Since
a picture p can be described as a sequence of slices, µ(p) is a sequence of elements of V ,
i.e., a word over V .

Figure 2.15: Slicing of a picture and the associated mapping mu

We are now in the position that some problems, which are very hard for arbitrary
regular picture languages, have a low complexity for regular stripe picture languages or
that some problems, which are undecidable for arbitrary regular picture languages, are
decidable for regular stripe picture languages.

Theorem 2.36 For a regular grammar G such that bccp(G) is a stripe picture language
and a picture p, it is decidable in linear time whether or not p ∈ bccp(G).

55

Proof. Given a regular grammar G such that bccp(G) is a stripe language, we construct
the regular grammar G′ generating µ(bccp(G)). For a given picture p of size t we construct
in O(t) the word µ(p). Obviously, by the definition of µ, |µ(p)| = O(t). Therefore we can
decide µ(p) ∈ µ(bccp(G)) in time O(t). Since p ∈ bccp(G) if and only if µ(p) ∈ µ(bccp(G)),
the statement is proved. 2

Theorem 2.37 For two regular grammars G1 and G2 such that bccp(G1) and bccp(G2)
are stripe picture languages, it is decidable whether or not bccp(G1) = bccp(G2).

Proof. We construct the regular grammar G′
1 and G′

2 generating µ(bccp(G1)) and
µ(bccp(G2)), respectively. Obviously, bccp(G1) = bccp(G2) if and only if L(G′

1) = L(G′
2).

Since there is a deciding procedure for the latter equality (see Theorem1.24) we can decide
whether or not bccp(G1) = bccp(G2). 2

Theorem 2.38 For a regular grammar G such that bccp(G) is a stripe picture language,
it is decidable whether or not bccp(G) contains

a) a simple curve,
b) a closed simple curve,
c) a regular curve,
d) an Eulerian curve.

Proof. a) Let G be a regular grammar. Let h be the homomorphisms with h(b) = b2

for b ∈ π. Then we construct the grammar G′ with L(G′) = h(L(G)). We now choose an
even d and slice the picture in such a way that the bounding vertical lines are of the form
x = id+1. By this choice it is obvious that the points on the bounding vertical lines have
degree 2 since the are middle point of subpictures corresponding to rr or ll (and there
are no lines of the picture which are a part of a bounding vertical line). Now it is obvious
that a picture of bccp(G) is a simple closed curve if and only if all – with exception of
perhaps exactly two points of degree 1 – points of the picture have the degree 2. Now let

• V1 be the set of all slices such that its points which are not on a bounding line have
degree 2 with exception of two points with degree 1,

• V ′
1 be the set of all slices such that its points which are not on a bounding line have

degree 2 with exception of one point with degree 1,

• V2 be the set of all slices such that its points which are not on a bounding line have
degree 2.

Now it is obvious that p is a simple curve if and only if

µ(p) ∈ K = (V2)
∗V1(V2)

∗ ∪ (V2)
∗V ′

1(V2)
∗V ′

1(V2)
∗ ∪ (V2)

∗ .

Thus in order to check whether bccp(G) contains a simple curve we have only to check
whether µ(L(G)) ∩ K is non-empty. Since K is regular (see Theorem 1.15), the set of
regular word languages is closed under intersection (see Theorem 1.12) and the decidability
of the emptiness problem for regular word languages (see Theorem 1.24), the existence of
a simple curve in bccp(G) can be decided.

56

b) We can give the same proof; we have only to choose K = (V2)
∗.

c) By the remarks after Definition 2.28, a picture is a regular curve if and only if it
is a unit line or a closed simple curve. Thus we first check whether bccp(G) contains one
of the four unit lines (which can be done by Theorem 2.14 i)). In the affirmative case
bccp(G) contains a regular curve. In the negative case we check whether bccp(G) contains
a simple closed curve by b).

d) We can give a proof analogous to that of a) taking

• V1 be the set of all slices such that its points which are not on a bounding line have
even degree with exception of two points with odd degree,

• V ′
1 be the set of all slices such that its points which are not on a bounding line have

even degree with exception of one point with odd degree,

• V2 be the set of all slices such that its points which are not on a bounding line have
even degree 2.

2

All our positive decision results given above have the supposition that the regular
grammar generates a stripe language. Thus the results are only useful if we can decide
whether or a given grammar generates a stripe language. We shall prove that this is
decidable for context-free grammars. For this purpose we need the following lemma.

Lemma 2.39 Let G = (N, π, P, S) be a context-free grammar in the normal form of
Theorem 1.6 iii) such that L(G) = pref(L(G)). If there is a real number k such that, for
all words x in the set

T = {x | x ∈ π∗, A =⇒∗ xAy or A =⇒∗ yAx for some y ∈ π∗ and A ∈ N} (2.16)

sh(x) = (m,mk) for some m, then there are two real numbers d1 and d2 such that dccp(G)
is a (k, d1, d2)-stripe language.

Proof. Since L(G) = pref(L(G)) we have only to show, that there are real numbers d1

and d2 such that, for any w ∈ L(G) with sh(w) = (m,n),

km + d1 ≤ n ≤ km + d2. (2.17)

Let w be a word of L(G) which is longer than the constant c of the pumping lemma (see
Theorem 1.7). Then there is a decomposition w = z1xz2yz3 with xy 6= λ, z1z2z3 ∈ L(G)
and there is a derivation

S =⇒∗ z1Az3 =⇒∗ z1xAyz3 =⇒∗ z1xz2yz3

for some A ∈ N (the last property holds by the proof of the pumping lemma). Let
sh(w) = (m,n) and sh(z1z2z3) = (m′, n′). Then we get sh(xy) = (m −m′, n − n′). By
assumption sh(x) = (a, ka) and sh(y) = (b, kb) for some a and b. Then (m−m′, n−n′) =
sh(xy) = sh(x) + sh(y) = (a + b, k(a + b)). Hence n− n′ = k(m−m′) = km− km′, from
which n − km = n′ − km′ follows. Consequently, km + d1 ≤ n ≤ km + d2 if and only if
km′ + d1 ≤ n′ ≤ km′ + d2. Therefore the relation (2.17) holds for w if and only it holds

57

for the shorter word z1z2z3, too. Therefore we have to find d1 and d2 such that (2.17)
holds for all words of length less than c.

If z ∈ L(G), |z| = r and sh(z) = (s, t), then −r ≤ s ≤ r and −r ≤ t ≤ r since any
letter of z contributes at most 1 to s or t. We now choose d2 = c + kc. Let z be a word
of length r ≤ c and with sh(z) = (m,n). Then we have n− km ≤ r + kr ≤ c + kc = d2.
Therefore n ≤ km + d2. Analogously, we can show that d1 = −d2 satisfies km + d1 ≤ n.

Thus (2.17) holds for any word z ∈ L(G) of length ≤ c and therefore for all words
w ∈ L(G). 2

Theorem 2.40 For a context-free grammar G, it is decidable whether or not bccp(G) is
a stripe language.

Proof. Let G = (N, π, P, S) be given. Obviously, L(G) is a stripe language if and only
if pref(L(G)) is a stripe languages because the intermediate points of the drawing have
to be in the stripe, too. Such without loss of generality we can assume that G is in the
normal form of Theorem 1.6 iii) and L(G) = pref(L(G)). By Lemmas 2.33 and 2.39 (note
that (0, 0) = (0, k · 0)), L(G) is a stripe language if and only if, for all words x in the set
T of (2.16), sh(x) = (m, km) for some k which can easily be derived from T . Let k = p

q

where the greatest common divisor of p and q is 1.
First we note that T is context-free. We consider the context-free grammars

GA = (N, π, P ∪ {A → #A}, A)

with new symbols #A. It is easy to see

T =
⋃

A∈N

h(pref(L(GA) ∩ π∗{#A})

where h is the homomorphism defined by h(b) = b for b ∈ π and h(#A) = λ for A ∈ N .
Hence Ψ(T) is a semi-linear set.

On the other hand, let T1 be the set of all words w such that sh(w) = (0, 0) and T2 the
set of all words w such that sh(w) = (m,mk) for some m (or equivalently, #r(w)−#l(w) =
k(#u(w)−#d(w)) or

#l(w) = #r(w)− k(#u(w)−#d(w)) (2.18)

. Then, for π = {u, d, r, l},
Ψ(T1) = {α(1, 1, 0, 0) + β(0, 0, 1, 1) | α, β ∈ N0},
Ψ(T2) = {α(q, 0, 0,−p) + β(0, q, 0, p) + γ(0, 0, 1, 1) | α, β, γ ∈ N0},

(note that ψ(T2) = {αq, βq, γ, γ − αp + βp) from which #l(w) = γ − αp + βp = γ −
(αq−βq)k = #r(w)−k(#u(w)−#d(w)), i.e., (2.18) follows). Thus T1∪T2 is semi-linear,
too. Moreover, G generates a stripe languages if and only if T ⊆ T1 ∪ T2 if and only if
Ψ(T) ⊆ Ψ(T1) ∪Ψ(T2) which is decidable by Theorem 1.25. 2

We mention that there are some other approaches to simplify the decision procedures.
As an example we give the 3-way pictures introduced by Ch. Kim in [16]. Here we restrict
to words over {u, d, r}, i.e., we cannot move to the left during the drawing process. It is
easy to see that curves describing a function which occur very often and in a lot of fields
can be presented by a 3-way picture.

58

2.4 Some Generalizations

In this section we shortly mention some possible generalization of the chain code pictures
which we have introduced and studied in the preceding sections. All these generalizations
are motivated by better drawings of some pictures.

The first type of generalization consist in a larger number of directions. We have to
note that the original definition of chain code pictures given by H. Freeman in [7] used
eight directions 0,1,2,. . . ,7 given in Figure 2.16. It is very obvious that the description

-¾ ¡
¡

¡µ

@
@

@I 6

?

¡
¡

¡ª

@
@

@R

0

123

4

5 6 7

Figure 2.16: Directions used by H. Freeman

of the line going from (0, 0) to (2, 2) can only be described over π by a stair, i.e., by
one of the words ruru or urur or ruur or urru, which does not give the curve we are
interested in, whereas the description 11 in the Freeman code gives exactly the line under
consideration. Also the part of the parabola y = x2 between the points (−2, 4) and (2, 4)
is better described by 67671212 than by ddrddrruuruu.

However, with respect to the properties of the language families we get almost the
same results if we go from π to the Freeman alphabet. With respect to undecidabilities
this is clear by the following remarks: The additional letters of the Freeman alphabet
correspond to lines which cannot be drawn by words over π; hence these letters cannot
be used in the generation of the pictures generated over π; thus we can repeat literally
the proofs for π if we use the same pictures. With respect to decidabilities it is mostly
easy to transfer the proof to the Freeman alphabet because the basic properties (as the
regularity of the set of all words describing a picture etc.) are also valid.

In order to get coloured pictures we can consider a finite set C of colours and the basic
alphabet π × C, i.e., the letters are of the form (b, c) with a direction b ∈ π and a colour
c ∈ C. The meaning of (b, c) is to draw a unit line in direction b with colour c. Here we
have again the situation the most of the results presented for π hold for π × C, too.

Our last extension is made in order to get disconnected figures whereas we know that
all pictures bccp(w) with w ∈ π∗ are connected. We add two new letters ↑ and ↓ to the
alphabet such that we get the alphabet

πl = {u, d, r, l, ↑, ↓} .

The intuitive meaning of these additional letters is ”lift the pen” (↑) and ”lower the pen”
(↓). Thus we can have two states: ”pen-up” and ”pen-down”. The new feature is that we
can move the pen in the state ”pen-up” which is not accompanied by a drawing whereas
in the state ”pen-down” we have the usual drawing process. Obviously, if we perform two

59

or more times in succession the operation ↑ we do not change the state ”pen-up”, and an
analogous remark holds for ↓.

Therefore we associate an extended drawn picture edccp(w) with a word w over πl in
the following inductive way.

• if w = λ, then edccp(w) = ((0, 0), ∅, (0, 0), ↓), and

• if w = w′b, w′ ∈ π∗l, b ∈ π and edccp(w′) = ((0, 0), p, z, ↓), then edccp(w) =

((0, 0), p ∪ {z, b(z))}, b(z), ↓),
• if w = w′b, w′ ∈ π∗l, b ∈ π and edccp(w′) = ((0, 0), p, z, ↑), then edccp(w) =

((0, 0), p, b(z), ↑),
• if w = w′b, w′ ∈ π∗l, b =↑, edccp(w′) = ((0, 0), p, z, s) and s ∈ {↑, ↓}, then

edccp(w) = ((0, 0), p, z, ↑),
• if w = w′b, w′ ∈ π∗l, b =↓, edccp(w′) = ((0, 0), p, z, s) and s ∈ {↑, ↓}, then

edccp(w) = ((0, 0), p, z, ↓).
The additional fourth component gives the state ”pen-up” (↑) or ”pen-down” (↓) and we
only draw, i.e., add a line to the picture, if we are in the state ”pen-down”.

The picture associated with rrr ↑ ddd ↓ lll ↑ ur ↓ r is

where the origin is the left-upper point of the picture.
The basic picture ebccp(w) associated with a word w ∈ π∗l is defined analogously to

the definition if w ∈ π∗.
For a grammar G = (N, πl, P, S) we define

edccp(G) = {edccp(w) | w ∈ L(G)} and ebccp(G) = {ebccp(w) | w ∈ L(G)},
and for a family X of grammars, we set

CCPl(X) = {ebccp(G) | G ∈ X, L(G) ⊆ π∗l}.
Without proof we mention the following relations.

Theorem 2.41 i) CCPl(REG) ⊂ CCPl(CF) ⊂ CCPl(CS) = CCPl(RE).
ii) CCP(X) ⊂ CCPl(X) for X ∈ {REG,CF, CS,RE}. 2

We also mention that with respect to decision problems the situation is more worse for
extended chain code picture languages, i.e., we have at least the same statement as in case
of usual chain code picture languages or the decidability status changes from decidable
to undecidable if we go from (usual) chain code picture languages to extended chain code
picture languages. For instance, the membership problem for regular extended chain code
picture languages is NP-complete, too, however, the membership problem for context-free
extended chain code picture languages is already undecidable.

For a detailed information on extended chain code pictures we refer to [13].

60

2.5 Lindenmayer Chain Code Picture Languages and

Turtle Grammars

In this section we shall start with chain code picture languages which are generated by
some types of Lindenmayer systems. Then we shall give another type of picture generating
devices which are – in a certain sense – equivalent to chain code pictures, however, the
new type allows changes of the direction (in the drawing process) by angles which are
not multiples of 900. This approach is used to draw plants in different phases of their
developments. Some further applications to space-filling curves and kolam pictures from
India will be given, too. Here we shall not develop a theory, we are more interested to
show some applications by examples.

2.5.1 Definitions and some Theoretical Considerations

In the preceding section we studied the properties of families of chain code picture lan-
guages which are generated by sequential grammars of the Chomsky hierarchy. Obviously,
the concepts considered there can be transformed to most devices which generate words
over π because such words can be interpreted as chain code picture.

With respect to Lindenmayer systems we obtain the following concept. For an ET0L
system G = (v, π, P1, P2, . . . , Pn, w) we define

bccp(G) = {bccp(w) | w ∈ L(G)} and dccp(G) = {dccp(w) | w ∈ L(G)}.

Example 2.42 We consider the D0L system

K1 = (π, π, {u → urul2url, d → dldr2dld, r → rdru2rdr, l → luld2lul}, urdl).

Since K1 is a deterministic system with only one table, the systems generates in n steps
exactly one word wn. The languages L(K1) consists of all words wn, n ≥ 0. Note that
w0 = urdl. Moreover,

w = w0 =⇒ w1 = urul2urlrdru2rdrdldr2dldluld2lul.

Since we replace any letter by a word of length 8 and |w| = 4, for n ≥ 0, |wn| = 4 · 8n.
The pictures bccp(wn) with n ∈ {0, 1, 2, 3} are given in Figure 2.17.

Figure 2.17: Pictures of the words generated by K1 in at most 3 steps

61

By CCP(E0L) and CCP(ET0L) we denote the families of all chain code picture lan-
guages which can be generated by E0L and ET0L systems, respectively.

It is very easy to transform some of the inclusions known for word languages to picture
languages. As an example we present the following statement.

Theorem 2.43 CCP(CF) ⊂ CCP(E0L)

Proof. Let G be a context-free grammar. By Theorem 1.11, L(CF) ⊂ L(E0L) and
therefore there is an E0L system G′ such that L(G′) = L(G). Thus bccp(G′) = bccp(G).
Hence CCP(CF) ⊆ CCP(E0L).

For the language L = {rru2n
rr | n ≥ 0 we have shown in the proof of Theorem 2.13

that bccp(L) /∈ CCP(CF). On the other hand L = L(G) for the E0L system

(π, π, {u → u2, d → d, r → r, l → l}, rrurr)

which proves bccp(L) ∈ CCP(E0L). Hence the inclusion CCP(CF) ⊆ CCP(E0L) is strict.
2

The change of the direction in the drawing process of a chain code picture is a multiple
of 900 (e.g. from r to u it is 900, from r to d it is −900 and from r to l it is 1800).
From the point of modelling the development of plant – which is the original idea behind
Lindenmayer systems – it is natural to allow other angles, too, because the drawing of a
branching in a plant requires angles different from multiples of 900 (usually the branchings
do not go perpendicularly to the original direction). Therefore one has introduced turtle
grammars.

Definition 2.44 A turtle grammar is an (n+4)-tuple G = (V, T, P1, P2, . . . , Pn, w, α0, α),
where
— V is an alphabet not containing + and −, and T ⊆ V is a subset containing the letter
F ,
— for 1 ≤ i ≤ n, Pi is a finite set of productions of the form A → v with A ∈ V and
v ∈ (V ∪ {+,−})∗,
— w ∈ (V ∪ {+,−})∗,
— α0 and α are two angles.

For 1 ≤ i ≤ n, we define dom(Pi) as the set of all letters A ∈ V such that Pi contains
a rule with left hand side A and set

P ′
i = Pi ∪ {a → a | a ∈ (V \ dom(Pi)) ∪ {+,−}}.

Then, by definition, HG = (V ∪{+,−}, T ∪{+,−}, P ′
1, P

′
2, . . . , P

′
n, w) is an ET0L system.

We call HG the ET0L system of G.
Obviously, all words z with w =⇒∗ z satisfy z ∈ (V ∪ {+,−})∗. Therefore we now

give an interpretation of a word over (V ∪ {+,−}) as an picture.
The letter F is interpreted as a drawing of a line of unit length in the current direction.

The remaining letters of V are ignored in the drawing. + and − mean a turn (rotation)
by the angle α and −α, respectively. (This process models the move of a turtle who first
changes the direction by moving the head in the new direction and then a move of the
body along the new direction.) The angle α0 gives the start direction. Formally we get
the following definition.

62

Definition 2.45 Let α0 and α be two angles and V an alphabet containing the letter
F and not containing the letters + and −. For a word w ∈ (V ∪ {+,−})∗, we define
inductively a configuration c(w) = (M, (x, y), β) with a set M of lines of unit length, a
point (x, y) in the plain and an angle as follows

• c(λ) = (∅, (0, 0), α0),

• if c(w) = (M, (x, y), β), then

– c(wx) = c(w) for x ∈ V and x 6= F ,

– c(w+) = (M, (x, y), β + α) and c(w−) = (M, (x, y), β − α),

– c(wF) = (M ∪ {b}, (x′, y′), β), where (x′, y′) is the point such that the distance
between (x′, y′) and (x, y) is 1, b is the line connecting (x, y) and (x′, y′) and
the angle between b and the x-axes is β.

The picture tur(w) is defined as the first component of c(w).

Definition 2.46 For a turtle grammar G with associated ET0L system HG we define the
picture language tur(G) generated by G as

tur(G) = {tur(w) | w ∈ L(HG)}.

Example 2.47 We consider the angles α0 = 00, α = 900 and the word w = +F−F +FF .
We obtain the following sequence of configurations

c(λ) = (∅, (0, 0), 00),

c(+) = (∅, (0, 0), 900),

c(+F) = ({((0, 0), (0, 1))}, (0, 1), 900),

c(+F−) = ({((0, 0), (0, 1))}, (0, 1), 00),

c(+F − F) = ({((0, 0), (0, 1)), ((0, 1), (1, 1))}, (0, 1), 00),

c(+F − F+) = ({((0, 0), (0, 1)), ((0, 1), (1, 1))}, (0, 1), 900),

c(+F − F + F) = ({((0, 0), (0, 1)), ((0, 1), (1, 1)), ((1, 1), (1, 2))}, (0, 1), 900),

c(+F − F + FF) = ({((0, 0), (0, 1)), ((0, 1), (1, 1)), ((1, 1), (1, 2)), ((1, 2), (1, 3))}, (0, 1), 900)

and therefore the picture

tur(w) = {((0, 0), (0, 1)), ((0, 1), (1, 1)), ((1, 1), (1, 2)), ((1, 2), (1, 3))}
consists of the four lines. It is easy to see that tur(w) = dccp(uruu).

Example 2.48 The picture dccp(urdl) can be described in the turtle mechanism as tur(F+
F + F + F) if we use α0 = 900 and α = 900. We now consider the turtle grammar

K ′
1 = ({F}, {F}, {F → F − F + F + FF − F − F + F}, F + F + F + F, 900, 900).

Since F → F − F + F + FF − F − F + F corresponds to r → rdru2rdr, u → urul2url,
d → dldr2dld and l → luld2lul if the direction is given by 00, 900, −900 and 1800,
respectively, it is easy to see that tur(K ′

1) = dccp(K1).

63

Example 2.49 Let the turtle grammar

K2 = ({F}, {F}, {F → F + F −−F + F}, F, 00, 600)

be given. For the word F + F −−F + F we get the sequence of configurations

c(λ) = (∅, (0, 0), 00),

c(F) = ({((0, 0), (1, 0))}, (1, 0), , 00),

c(F+) = ({((0, 0), (1, 0))}, (1, 0), , 600),

c(F + F) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
))}, (

3

2
,

√
3

2
), 600),

c(F + F−) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
))}, (

3

2
,

√
3

2
), 00),

c(F + F −−) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
))}, (

3

2
,

√
3

2
), −600),

c(F + F −−F) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
)), ((

3

2
,

√
3

2
), (2, 0))}, (2, 0), −600),

c(F + F −−F+) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
)), ((

3

2
,

√
3

2
), (2, 0))}, (2, 0), 00),

c(F + F −−F + F) = ({((0, 0), (1, 0)), ((1, 0), (
3

2
,

√
3

2
)), ((

3

2
,

√
3

2
), (2, 0)), ((2, 0), (3, 0))}, (2, 0), 00).

The corresponding picture is given in the right picture of the first line of Figure 2.18. Since
the associated Lindenmayer system HK2 is a D0L system, it generates a unique sequence
of words. The pictures of the first six pictures generated by K2 are given in Figure 2.18.

Figure 2.18: Pictures generated by K2 in at most 5 steps

2.5.2 Applications for Simulations of Plant Developments

In this section we give descriptions for the development of some plants. Because branching
occurs very often for plants, it is necessary to add a feature which can cover this aspect.
Therefore we change the concept of a turtle grammar slightly. The start of a branch is

64

denoted by the additional letter [and its end by the letter]. Moreover we use two stacks
which remember the branching point and the direction which was used before starting the
branch. We omit the formal definition of the operation and the drawing process with the
additional use of enc. Furthermore, for n ≥ 1, we write enc+n and enc−n to denote the a
change of the direction by n · α and −n · α, respectively (as usual + = +1 and − = −1).

Example 2.50 We consider the extended turtle grammar

({F}, {F → FF [+FF][−F + [F]]}, F, 900, 200)).

Then the start word F describes a upwards oriented unit line since the basic direction
is 900. Since the associated Lindenmayer system is a deterministic 0L system, we get a
unique sequence of derived words and corresponding a unique sequence of pictures. The
pictures obtained after 1, 2, 3, and 4 steps are given in Figure 2.19.

Figure 2.19: Pictures generated by the extended turtle grammar of Example 2.50

In the Figure 2.20 we present some further examples of descriptions of plants. In these
figures the basic direction α0 is not mentioned; we use in all cases α0 = 900 since it is
natural that plants grow upwards.

Hitherto we have only considered deterministic Lindenmayer systems with one table.
We now discuss partly a system with two tables. Let

Z = ({F}, {F}, P1, P2, F, 900, 22.50)

with

P1 = {F → F enc+2 [F]F enc−2 [F + [F + [F]]] enc+[F + [F + [F]]]},
P2 = {F → F enc+2 [F]F enc−2 [F + [F]] enc+[F + [F]]

F → F enc+2 [F]F enc−2 [F] enc+[F + [F]]

F → F enc+2 [F]F enc−2 [F + [F]] enc+[F]}

The pictorial interpretation of the rule of P1 is

65

Figure 2.20: Pictures generated by extended turtle grammars describing plant develop-
ments

- @
@

¡
¡

£
££

B
BB

,

@
@

PPP

If the conditions of the environment are bad, then the growth is smaller. This is modelled
by the rules of P2 where the first and second rule correspond to the situations that the
upper right or left branch is shortened by one line, the third rule describes the simultaneous
cancellation of one segment of the upper right branch and one segment of the upper
left branch. In dependence of the environmental situations we have to apply a sequence
Pi1Pi2Pi3 . . . of tables. In Figure 2.21 we have given the results for three different sequences
(where the sequence in the Figure only gives the indexes. For each sequence we present
three different pictures because we can use different rules of P2 for different occurrences
of F in a word. We see that the differences of the generated pictures of the plants come
mostly from the difference in the sequences of tables; if the same sequence is used, but
different rules are applied the three plants do not differ too much.

We refer to [20], [3]and [19] for a more detailed discussion of the application of turtle
and chain code picture Lindenmayer systems for the description of the development of
plants. We mention that this approach in combination with a precise drawing of a leave,

66

Figure 2.21: Pictures/plants generated by extended turtle grammar Z

a stalk etc. is sometimes used in computer graphics for the drawing of plants.

2.5.3 Space-Filling Curves

We start with an easy mapping which maps any point of the unit interval to a point
of the unit square and conversely. For any point X of the unit interval, there is a rep-
resentation as a decimal with an infinite number of digits after the decimal point, i.e.,
X = 0.x1x2x3 . . . with xi ∈ {0, 1, 2, . . . , 9} for i ≥ 1 (the number 1 is represented as
0.999 . . .). We define

f(X) = (0.x1x3x5 . . . , 0.x2x4x6 . . .) .

Obviously, any point X of the unit interval is mapped to a point of the unit square.
Obviously, f−1 also exists and we have

f−1(0.a1a2 . . . , 0.b1b2 . . .) = 0.a1b1a2b2

However, these functions have some very bad properties. Both functions are not bijective.
This can be seen from the different points X = 0.0090909 . . . and Y = 0.1000 . . . of the
unit interval which lead to the same point

f(X) = (0.0999 . . . , 0.000 . . .) = (0.1000 . . . , 0.000 . . .) = f(Y)

of the unit square. Moreover, the mappings are not continuous.

67

Figure 2.22: The basic steps of the construction of the Hilbert curve

From the mathematical point of view one is interested in bijective and continuous
mappings. In 1878 Georg Cantor gave a bijective mapping from the unit interval onto
the unit square. However, in 1879 Eugen Netto proved the non-existence of a mapping
which is bijective as well as continuous. In 1890 Guiseppe Peano and David Hilbert
gave examples of continuous and surjective (but not bijective) mappings. The graph of
such a function has to be a simple curve which fills the unit square completely. Therefore
such curves are called space-filling curves.

We give here as an example the construction of Hilbert. We start with the curve
given in the left part of Figure 2.22 . Then we take this curve as a basic element, take
four copies scaled to the half (in width and height), rotate them in such a way that a
continuous connection is possible (in the two upper quadrants we do no rotation, in the
lower quadrants we rotate by 90 to the right and to the left, respectively; see the right
part of Figure 2.22 b). This process is iterated. The fifth iteration is shown in Figure
2.23.

It is easy to see that the distance of an arbitrary point of the unit square to the curve
obtained in the n-th iteration is at most

1

2n
· 1

4

√
2.

Therefore the distance tends to 0 if n tends to infinity.
The sequence of pictures defined by the Hilbert curve construction is given by the

turtle grammar

({X,Y, F}, {X → +Y F−XFX−FY +, Y → −XF+Y FY +FX−, F → F}, X, 00, 900) .

The sequence of generated words starts with

w0 = X,

w1 = +Y F −XFX − FY +,

w2 = + −XF + Y FY + FX − F − +Y F −XFX − FY + F + Y F −XFX − FY +

−F −XF + Y FY + FX − +.

The pictures corresponding to w1 and w2 are shown in Figure 2.22.
The Peano curve and some other space-filling curves can also be described by turtle

grammars.

68

Figure 2.23: The fifth iteration step of the construction of the Hilbert curve

2.5.4 Kolam Pictures

As our final application we consider kolams. These are special figures which are mostly
drawn by the women in India into the sand before the house. These pictures should
prevent bad ghosts etc. and bring positive features as fertility and so on. Some typical
kolams – which are very often symmetric – are shown in Figure 2.24. Mostly the women
start by drawing some points and then the kolam itself which consists of curves going
around the points. The kolams differ from region to region. One of the most known
kolams is Krishna’s footlace. The basic figure is shown in the left part of Figure 2.25; the
right part of Figure 2.25 shows a slightly more complicated version.

Some Indian computer scientists especially the married couple Rani and Gift Siro-
money and their co-workers have described kolams using the idea of chain codes where
they use curves instead of unit lines as basic elements. We illustrate this idea by Krishna’s
footlace. We consider the alphabet {A,B, B′, B′′}, which symbols are interpreted as
follows: A is a straight line, and B is a ”circle” (see left part of Figure 2.25). The picture
of B′ is the same as the that corresponding to B. B′′ is associated with the half of the arcs
connecting the basic Krishna’s footlace in the right part of Figure 2.25. Now we consider
the DOL system

({A,B, B′, B′′}, {A → A,B → B′′AB′ABAB′AB′′, B′ → B′, B′′ → B′′}, ABABABAB)

which generates a sequence of words beginning with

ABABABAB,

AB′′AB′ABAB′AB′′AB′′AB′ABAB′AB′′AB′′AB′ABAB′AB′′AB′′AB′ABAB′AB′′

69

Figure 2.24: Some typical kolam pictures

Figure 2.25: Krishna’s footlace

which correspond to the pictures shown in Figure 2.25. In the sequel we replace the most
upper, most right, most down and most left ”circle” B by a picture corresponding to
B′′AB′ABAB′AB′′ which is given by one of the pictures between two of the original lines
corresponding to A.

70

Chapter 3

Siromoney Matrix Grammars

In this chapter we study a different grammatical approach for generation of pictures. In
the first step we generate a matrix, i.e., a two-dimensional scheme of symbols, and in a
second step we replace the symbols by (chain code) pictures.

In the literature one can find different ideas to generate two-dimensional schemes
of letters. We first mention here array grammars. Here instead of words in all cases
we replace letters by two-dimensional objects and start with a two-dimensional object.
Usually, one assumes that one has a grid, and the unit squares of the grid can be filled
with letters. Obviously, one cannot replace a nonterminal symbol which is surrounded by
symbols by an object consisting of some letters because we destroy connections between
the surrounding symbols. Therefore, if one wants to get a context-free variant (i.e., the
application of a rule does not take into consideration the surrounding symbols), the rules
can be applied only to nonterminals which are at the border of the object. Moreover,
we take into consideration the free places around a symbol which can be filled by letters.
As an example we consider an array grammar with nonterminals A,A′, B, B′, terminals
a, b1, b2, b3, b4, rules

A → a , A → Aa , A′ → Ab4 ,

B → a , B → aB , B′ → b2B ,

A → b1

B′ ,
B → b3

A′ ,

and take A as the start symbol. A typical derivation is given in Figure 3.1.
It is easy to see that our array grammar generates all two dimensional objects which

consist of a certain number of rows, say n rows, such that, for n = 1, the row consists of
a certain number of a’s, and for n > 1, the following conditions hold:
– the first row starts with an a and ends with b1,
– any i-th row, where i is an odd number and i < n, starts with b4 and ends with b1,
– any i-th row, where i is an even number and i < n, starts with b3 and ends with b2,
– the n-th row starts with a and ends with b2 or starts with b4 and ends with a, if n is
even or odd, respectively,
– besides the start and end letter, the rows contain only a’s,
– for i ≥ 0 and 2i < n, the last letter of the (2i + 1)-st row is above the last letter of the

71

=⇒
A

=⇒
a A

=⇒
a a A

=⇒
a a b1

B′
a a b1

b2B

=⇒ =⇒
a a b1

b2aB =⇒
a a b1

b2aaB =⇒
a a b1

b2aab3

A′

a a b1

b2aab3

b4 A

=⇒ =⇒
a a b1

b2aab3

b4 a A
=⇒

a a b1

b2aab3

b4 a b1

B′

=⇒
a a b1

b2aab3

b4 a b1

b2B

a a b1

b2aab3

b4 a b1

b2a

Figure 3.1: Derivation of a array grammar (we give all necessary squares of the grid
although if not all are filled from the beginning)

(2i)-th row,
– for i ≥ 1 and 2i + 1 < n, the first letter of the (2i)-th row is above the first letter of the
(2i + 1)-st row.

We now interpret the letters a, b1, b2, b2, b3 and b4 as pictures within a square of with
sides of length 2 by the mapping pic as follows (the small angles give the corners of the
square):

pic(a) = , pic(b1) = , pic(b2) = , pic(b3) = , pic(b4) = .

The two-dimensional object generated by the derivation given in Figure 3.1 is then
transformed into

The set of all pictures consist of an arbitrary number of vertical lines of arbitrary
lengths which are connected analogously to the given picture.

We do not discuss array grammars in detail (we refer for further information to [26],
[27], [28], [36], [29], [37] and [23]); in the following sections we consider Siromoney matrix
grammars where the basic idea is very similar. Again, we first generate two-dimensional
objects of letters and interpret the letters by pictures; however, the derivation of the
two-dimensional objects of letters is different from that used in array grammars.

72

3.1 Definitions and Examples

In Siromoney matrix grammars we first derive a word A1A2 . . . An by a usual phrase
structure grammar, and then we derive from any letter Ai a word wi by a regular grammar
in normal form and write these words as columns; therefore we get an object consisting of n
columns of letters. Before we give the formal definition of Siromoney matrix grammars we
introduce some concepts which describe the generated two-dimensional objects of letters.

Definition 3.1 A matrix (ai,j)k,l over a set V is a rectangular scheme with k rows and
l columns, and the element ai,j ∈ V is in the meet of the i-th row and the j-th column,
1 ≤ i ≤ k and 1 ≤ j ≤ l.

A quasi-matrix (ai,j)k1,k2,...,kl
over V is a scheme with l columns of length k1, k2, . . . , kl

and the element ai,j ∈ V is the i-th element of the j-th column (where we count from
above to below), 1 ≤ i ≤ kj and 1 ≤ j ≤ l.

By definition, a quasi-matrix consists of some columns of different length, whereas the
lengths of all columns of a matrix are equal. Thus each matrix (ai,j)k,l is a quasi-matrix
(ai,j)l,l,...,l, and each quasi-matrix (ai,j)k (with exactly one column) is a matrix (ai,j)k,1.

If a matrix M has m rows and n columns, then we say that M is a (m,n)-matrix.

We now give the notion of a shift of an extended chain code picture which is already
implicitly given in connection with the equivalence relation for (drawn and basic) chain
code pictures (see Section 2.1, page 27). For an extended chain code picture p and two
integers m and n, let shm,n(p) be the picture such that

((u, v), b((u, v))) ∈ p iff ((u + m, v + n), b((u + m, v + n)) ∈ shm,n(p).

We say that shm,n(p) is obtained by a shift of p by (m,n).
We now give an interpretation of letters of a (quasi-)matrix by extended chain code

pictures.

Definition 3.2 Let T be an alphabet. For two natural numbers s ≥ 1 and t ≥ 1, let
CCPs,t be the set of all extended basic chain code pictures p such that, for (m,n) ∈ V (p),
0 ≤ m ≤ s and 0 ≤ n ≤ t. Let pics,t : T → CCPs,t be a mapping.

For a quasi-matrix M = (ai,j)k1,k2,...,kl
or a matrix M = (ai,j)k,l, we define the picture

Pic(M) as the set

Pic(M) =
⋃

1≤j≤l
1≤i≤kj

sh(i−1)s,−jt(pics,t(ai,j))

and
Pic(M) =

⋃
1≤j≤l
1≤i≤k

sh(i−1)s,−jt(pics,t(ai,j)),

respectively.

Definition 3.3 i) A Siromoney matrix grammar is a construct

G = (N1, N2, I, T, P1, P2, S1, s, t, pics,t)

73

where
– G1 = (N1, I, P1, S1) is a phrase structure grammar,
– I ⊆ N2,
– for any A ∈ I, GA = (N2, T, P2, A) is a regular grammar in normal form,
– s, t ∈ N,
– pics,t : T → CCPs,t.

ii) M(G) is the set of all matrices (aij)k,l, 1 ≤ i ≤ k, 1 ≤ j ≤ l, k ≥ 1, l ≥ 1 such
that there is a word A1A2 . . . Al ∈ L(G1) and a1ja2j . . . akj ∈ L(GAj

) for 1 ≤ j ≤ l.
QM(G) is the set of all quasi-matrices (aij)k1,k2,...,kl

, l ≥ 1, ku ≥ 1 for 1 ≤ u ≤ l such
that there is a word A1A2 . . . Al ∈ L(G1) and a1ja2j . . . akjj ∈ L(GAj

) for 1 ≤ j ≤ l.
iii) We set

PM(G) = {Pic(M) | M ∈ M(G)} and PQM(G) = {Pic(M) | M ∈ QM(G)} .

This type of grammars was originally introduced by Rani Siromoney in [30]; how-
ever, there only matrices were considered. The interpretation as pictures (not necessarily
chain code pictures) was firstly considered in [31] in order to describe some designs related
to kolams (see Section 2.5.4). The interpretation as chain code pictures in the way given
above was introduced by Ralf Stiebe in [32] and [33]. This interpretation leads to a
generation of (extended) chain code pictures by Siromoney matrix grammars, and thus it
is possible to compare this type of generation with that via words over π as it was done
in Chapter 2.

The grammar G1 is called the horizontal grammar because it derives the intermediate
(horizontal) word A1A2 . . . Al ∈ I+. The set I is called the set of intermediates since its
letters are used to build the horizontal words, which are intermediate steps of the (quasi-)
matrix generation. The grammars Gi with i ∈ I are called vertical because they derive
the (vertical) columns of the matrix.

We now give some examples.

Example 3.4 We consider the Siromoney matrix grammar

G = ({S, S ′}, {A,A′, B,B′}, {A,B}, P1, P2, S, 1, 1, pic)

where

P1 = {S → AS, S → BS ′, S ′ → AS ′, S ′ → A},
P2 = {A → aA′, A′ → a′A′, A′ → a′, B → bB′, B′ → b′B′, B′ → b′}

and

pic(a) = , pic(a′) = , pic(b) = , pic(b′) = .

It is easy to see that

L(G1) = {AnBAm | n ≥ 0,m ≥ 0}, (3.1)

L(GA) = {a(a′)r | r ≥ 1},
L(GB) = {b(b′)s | s ≥ 1}. (3.2)

Therefore all matrices generated by G have the form

74

a a . . . a b a a . . . a
a′ a′ . . . a′ b′ a′ a′ . . . a′

a′ a′ . . . a′ b′ a′ a′ . . . a′
...

...
...

a′ a′ . . . a′ b′ a′ a′ . . . a′

a′ a′ . . . a′ b′ a′ a′ . . . a′

where n columns and m columns are before and after the b-column, respectively. Moreover,
the generated pictures have the form

where the length of the horizontal line before the vertical line is n + 1, the length of the
horizontal line after the vertical line is m and the length of the vertical line is s, where
the values for n, m and s can be taken from (3.1) and (3.2).

If we consider quasi-matrices generated by G, then we have almost the same structure,
only the length of the columns can be different. Since the pictures corresponding to a′

are empty, it is obvious that PM(G) = PQM(G).

Example 3.5 Let the Siromoney matrix

G = ({S}, {A, B, A′, B′}, {A,B}, {a, a′, b, b′}, P1, P2, S, 1, 1, pic)

with

P1 = {S → ABA},
P2 = {A → aA, A → a′, B → bB′, B → b, B′ → b′B, B′ → b′}

and

pic(a) = , pic(a′) = , pic(b) = , pic(b′) = .

be given. Then we get

L(G1) = {ABA},
L(GA) = {ana′ | n ≥ 0},
L(GB) = {b(b′)n | n ≥ 0},

and therefore M(G) and PM(G) consist of all matrices and all pictures of the form given
in the left and right part of Figure 3.2, respectively.

75

a b a
a b′ a
a b′ a
...

...
a b′ a
a′ b′ a′

Figure 3.2: Typical form of the elements of M(G) and PM(G)

We note that the picture language PM(G) coincides with the language {bccp(runrudnr) |
n ≥ 1} which is shown to be in CCP(CF) \ CCP(REG) in part i) of the proof of Theo-
rem 2.13. With respect to Siromoney grammars we have used only regular grammars.

If we consider the quasi-matrices and pictures of PQM(G), then we get three columns
of different length and pictures where the right and left horizontal lines can be positioned
at places different from the lower ends of the vertical lines.

Example 3.6 We consider the Siromoney grammar

G = ({S, T}, {A,B, C, B′}, {A,B,C}, {a, b, b′, b′′, b′′′, c}, P1, P2, S, 1, 1, pic)

where

P1 = {S → AT, T → BT, T → BC},
P2 = {A → aA,A → a, B → b′′′, B → bB′, B′ → b′B′, B′ → b′′, C → cC, C → c}

and pic is given by

pic(a) = , pic(b) = , pic(b′) = ,

pic(b′′) = , pic(b′′′) = , pic(c) = .

Then we obtain

L(G1) = {ABnC | n ≥ 1},
L(GA) = {am | m ≥ 1},
L(GB) = {b′′′} ∪ {b(b′)kb′′ | k ≥ 0},
L(GC) = {cm | m ≥ 1}.

Then we get that M(G) consists of all matrices of the form

a b b . . . b c
a b′ b′ . . . b′ c
a b′ b′ . . . b′ c

...
...

a b′ b′ . . . b′ c
a b′′ b′′ . . . b′′ c

or a b′′′ b′′′ . . . b′′′ c ,

76

and therefore PM(G) is the set of all rectangles.

Example 3.7 Let the Siromoney matrix grammar

G = ({S, T}, {A,B,C, A′, A′′, C ′}, {A,B, C}, {a, b, c, a1, a2, c1, c2}, S, P1, P2, 2, 2, pic)

with

P1 = {S → AT, T → BT, T → C},
P2 = {A → a,A → aA′, A′ → a1A

′′, A′′ → a2A
′, A′ → a,A′′ → a2,

B → bB, B → b, C → c, C → c1C
′, C ′ → c2C, C ′ → c2}

and

pic(a) = , pic(b) = , pic(c) = ,

pic(a1) = , pic(a2) = , pic(a1) = , pic(a1) = .

We obtain

L(G1) = {ABnC | n ≥ 0},
L(GA) = {a(a1a2)

n | n ≥ 0} ∪ {a(a1a2)
na | n ≥ 0},

L(GB) = {bm | m ≥ 1},
L(GC) = {(c1c2)

kc | k ≥ 0} ∪ {(c1c2)
k ∪ k ≥ 1}.

The matrices generated by G are all matrices of one of the forms

a b b . . . b c1

a1 b b . . . b c2

a2 b b . . . b c1

a1 b b . . . b c2
...

...
a2 b b . . . b c1

a1 b b . . . b c2

a2 b b . . . b c

or

a b b . . . b c1

a1 b b . . . b c2

a2 b b . . . b c1

a1 b b . . . b c2
...

...
a2 b b . . . b c1

a1 b b . . . b c2

a2 b b . . . b c1

a b b . . . b c2

where the number of rows is odd and even in the first and second case, respectively. These
matrices result in pictures of the forms

. . .

or

. . .

77

3.2 Hierarchies of Siromoney Matrix Languages

We want to give an analogy to the Chomsky hierarchy known for word languages generated
by the different types of phrase structure grammars. Therefore we first introduce the
corresponding notions.

A Siromoney matrix grammar G = (N1, N2, I, T, P1, P2, S, s, t, pics,t) is called an X Si-
romoney matrix grammar if G1 = (N1, I, P1, S) is an X grammar.

M(X), QM(X), PM(X) and PQM(X) denote the families of all languages M(G),
QM(G), PM(G) and PQM(G), respectively, where G is an X Siromoney matrix gram-
mar.

Theorem 3.8 i) M(REG) ⊂M(CF) ⊂M(CS) ⊂M(RE),
ii) QM(REG) ⊂ QM(CF) ⊂ QM(CS) ⊂ QM(RE),
iii) PM(REG) ⊂ PM(CF) ⊂ PM(CS) ⊂ PM(RE),
iv) PQM(REG) ⊂ PQM(CF) ⊂ PQM(CS) ⊂ PQM(RE).

Proof. We only give the proof for M(CF) ⊂M(CS) and PM(CF) ⊂ PM(CS). The
corresponding proofs for the other two strict inclusions can analogously be given using
{anban | n ≥ 1} ∈ L(CF) \ L(REG) and a recursively enumerable language L over a
single letter alphabet which is not in L(CS). The proofs for the case of quasi-matrices
are then literally the same proofs.

M(CF) ⊂ M(CS). The inclusion holds by definition. We now prove the strictness
of the inclusion.

By Example 1.4 and part ii) of the proof of Theorem 1.11, there exist a grammar
G1 = (N1, {a′, b′}, P1, S) with

L(G1) = {b′b′(a′)2n

b′b′ | n ≥ 0} ∈ L(CS) \ L(CF)

(use a′ and b′ instead of a and b in all places of the construction). We consider the
monotone Siromoney grammar

G = (N1, {a′, b′}, {a′, b′}, {a, b}, P1, {a′ → a, b′ → b}, S, 1, 1, pic).

Then all generated (quasi-)matrices consist of exactly one row bba2n
bb. By definition

M(G) ∈M(CS). Let us assume that there is a context-free Siromoney matrix grammar

H = (N ′
1, N

′
2, I

′, {a, b}, P ′
1, P

′
2, S

′, s, t, pics,t)

such that M(H) = M(G). It is easy to see that all rules in P2 are of the i → a or i → b
where i ∈ I ′. Let

Ia = {i | i ∈ I ′, i → a ∈ P ′
2} and Ib = {i | i ∈ I ′, i → b ∈ P ′

2}.

Let H1 = (N ′
1, I

′, P ′
1, S

′). It is clear that

L(H1) ⊆
⋃
n≥0

I2
b I2n

a I2
b

78

and that. for any n ≥ 0, there is a word wn = b1b2a1a2 . . . a2nb3b4 ∈ L(H1) such that
b1, b2, b3, b4 ∈ Ib and aj ∈ Ia for 1 ≤ j ≤ 2n. Let

H ′
1 = (N ′

1 ∪ I ′, {a, b}, P ′
1 ∪ {i → a | i ∈ Ia} ∪ {i → b | i ∈ Ib}, S ′).

Then H1 is context-free. By the above properties of L(H1), it is easy to see that

K = L(H ′
1) = {bba2n

bb | n ≥ 0}
and thus K ∈ L(CF). However, on the other hand, K /∈ L(CF) by part ii) of the proof
of Theorem 1.11. This contradiction proves that M(G) /∈M(CF).

PM(CF) ⊂ PM(CS). Again, the inclusion holds by definition. We prove the strict-
ness.

We complete the definition of G by

pic(a) = and pic(b) = .

Then all pictures of PM(G) have the form

where the two upper lines have the length 2 and the lower line has length 2n for some
n ≥ 0 (n = 3 in the picture).

Now assume that there is a context-free Siromoney grammar

H = (N ′
1, N

′
2, I

′, T ′, P ′
1, P

′
2, S, s, t, pics,t)

with PM(H) = PM(G). By the structure of the pictures in PM(G) – without loss of
generality – we can assume that s = 1 and therefore A → a ∈ T ′ for all rules in P ′

2.
We set m = d2

t
e and m′ = tm − 2. Then the two parts of a picture in PM(H)

consisting of the upper line of length 2 and the lower line of length m′ are covered by the
first and last m letters, respectively, and m′ .

Let p be the constant of the pumping lemma for the context-free grammar H1 =
(N ′

1, I
′, P ′

1, S). We choose n such that

2n − 2m′ < 2n − 2m′ + 2tp < 2n+1 − 2m′ and tp < 2n − 2m′. (3.3)

Then the picture with a lower line of length 2n is obtained from a word x = x1x2 . . . xq

where q = 2n+4
t

. Moreover, the beginning and end of the picture of length tm = m′ + 2 is
covered by x1x2 . . . xm and xq−m+1xq−m+2 . . . xq, and the middle part consisting of a lower
line of length 2n− 2m′ is covered by xm+1xm+2 . . . xq−m. By our choices and the pumping
lemma, x = x1x2x3x4x5 and x′ = x1x

2
2x3x

2
4x5 ∈ L(H1). If x2 or x4 contribute to the upper

line, then we get a picture from x′ where the upper line consist of at least 5 unit lines,
which contradicts the structure of the picture in PM(H). If x2 and x4 only contribute to
the lower line, then the lower line is extended at most by tp unit lines. But by (3.3), the
length of the lower line is not a power of 2, which contradicts the structure of the picture
in PM(H), again.

Since we get a contradiction in all cases, our assumption has to fail. 2

We now give a results which compares the families of picture languages generated by
chain code picture grammars and Siromoney matrix grammars.

79

Theorem 3.9 i) PQM(CF) is a subset of CCPl(CF).
ii) PM(REG) is not contained in CCPl(CF).
iii) CCP(REG) is not contained in PM(CF).

Proof. i) Let L ∈ PQM(CF). Then there is a context-free Siromoney matrix grammar
G = (N1, N2, I, T, P1, P2, S, s, t, pic) such that L = PQM(G). For any a ∈ T , let wa ∈ πl
be an extended chain code word such that dccp(wa) = ((0, 0), pic(a), (0,−t)), i.e., we start
the drawing in (0, 0) and end in (0,−t) which are the right upper and right lower corner
of the rectangle in which pic(a) is placed; it is obvious that such a word wa exists since
we can extend another drawing by adding in the beginning and end some moves in the
state ”pen-up”. Now we construct the extended context-free chain code grammar

H = (N1 ∪N2, πl, P1 ∪ P ′
2, S)

with

P ′
2 = {A → waB ↑ ut ↓| A → aB ∈ P2} ∪ {A → wa ↑ rsut ↓| A → a ∈ P2}.

It is easy to see that A =⇒∗ a1a2 . . . an in GA if and only if

A =⇒ wa1wa2 . . . wan ↑ rsut ↓ (↑ ut ↓)n−1 = z.

Moreover, the picture which corresponds to the column (a1a2 . . . an)T is identical to
dccp(wa1wa2 . . . wan) and the drawing ends in (0,−nt). If we complete the drawing ac-
cording to z then we move in the state ”pen-up” s steps to the right and nt steps upwards,
i.e., dccp(z) is also the picture corresponding to (a1a2 . . . an)T and the drawing ends in
(s, 0), i.e., it ends in that point where we have to start the drawing of the next column.

Thus we get bccp(H) = PQM(G). Therefore L ∈ CCP(CF).
ii) We consider the set K of all rectangles. By Example 3.6, K ∈ PM(REG). On

the other hand, one can show by pumping arguments that we cannot ensure the equal
length of the two vertical lines if we use context-free chain code picture grammars (more
precisely, if we can generate words z such that bccp(z) is a rectangle of sufficiently large
height and width, then we can also generate a word which does not describe a rectangle).
For a detailed proof we refer to [25].

iii) We consider the word language

L = {dkrldm | k ≥ 0, l ≥ 0, m ≥ 0},
which is generated by the regular grammar

G = ({A,B,C}, π, {A → dA,A → dB, B → rB, B → rC, C → dC, C → d}, A),

and the picture language PL = bccp(L). By construction PL ∈ CCP(REG).
We now prove that PL /∈ PM(CF). Assume the contrary, i.e., assume that there

is a context-free Siromoney matrix grammar H = (N1, N2, I, T, P1, P2, S, s, t, pic) with
PM(H) = PL. Let n = #(N2). Then bccp(d(n+1)tr3sdn2(n+1)t) is contained in PL. Now
there is a column such that its picture is bccp(rs). Let this column be generated from the
intermediate A. The column is a vertical word w1aw2, where |w1| ≥ n+1, |w2| ≥ n2(n+1),
1 ≤ |a| ≤ 2, Pic(w1) and Pic(w2) are empty and Pic(a) = bccp(rs).

80

According to the pumping lemma for regular languages (see Theorem 1.7 and note
that the constant can be chosen as n+1), there is a decomposition w1 = v1v2v3 such that
v1v

i
2v3w2 ∈ L(GA) for i ≥ 0. Moreover, let |v2| = p. Then 1 ≤ p ≤ n. Furthermore, w2

can be written as w2 = u1u2 . . . un2w′
2 where |uj| = n + 1 for 1 ≤ j ≤ n2. Again, each uj

has a decomposition uj = u′ju
′′
j u
′′′
j such that with zj = u′ju

′′′
j all words in

K = {v1v
i
2v3 | i ≥ 0}{a}{u1, z1}{u2, z2} . . . {un2 , zn2}{w′

2}

belong to L(GA). Since |u′′j | ≤ n for 1 ≤ j ≤ n2, there are at least n words u′′i1 , u
′′
i2
, . . . , u′′in ,

which have the same length q for some q with 1 ≤ q ≤ n. We now take p of these words
and zj instead of ui and choose i = q to choose a word from K. This word has the form
z = v1v

q
2v3auw′

2 where u is a word of length n2(n + 1)− qp because we cancelled p words
of length q. Thus |z| = |w1aw2| and z ∈ L(GA). Therefore we can take z for the column
instead of w1aw2. However, now the horizontal part rp is at another (strongly larger)
height, i.e., we get an disconnected picture whereas PL contains only connected picture.
Thus we have an contradiction. 2

As a consequence of the results presented in Theorem 3.9 we get the diagram

CCP(CF) PM(CF)
↑ ↑

CCP(REG) PM(REG)

where an arrow denotes strict inclusion and two families are not connected if they are
incomparable. Informally, the diagram says that picture language families generated by
chain code pictures grammars or Siromoney matrix grammars seem to be completely
different.

3.3 Decision Problems for Siromoney Matrix Gram-

mars

In the preceding section we have seen that the families of picture languages generated by
chain code pictures grammars or Siromoney matrix grammars are incomparable. There-
fore we cannot transfer the results with respect to decision problems from chain code
picture grammars to Siromoney matrix grammars. We have renewed to investigate the
decision problems for Siromoney matrix grammars.

3.3.1 Classical Problems

We start with the classical problems which we only discuss for the matrix case; the
modifications for quasi-matrices are left to the reader.

Matrix version of the membership problem:
given a matrix M and a Siromoney matrix grammar G, decide whether or not M ∈ M(G),

Matrix version of the emptiness problem:
given a Siromoney matrix grammar G, decide whether or not M(G) is empty,

81

Matrix version of the finiteness Problem:
given a Siromoney matrix grammar G, decide whether or not M(G) is finite,

Picture version of the membership problem:
given a picture p and a Siromoney matrix grammar G, decide whether or not p ∈ PM(G),

Picture version of the emptiness problem:
given a Siromoney matrix grammar G, decide whether or not PM(G) is empty,

Picture version of the finiteness Problem:
given a Siromoney matrix grammar G, decide whether or not PM(G) is finite.

Theorem 3.10 i) The matrix version of the membership problem is decidable for mono-
tone Siromoney matrix grammars.

ii) The matrix version of the membership problem is undecidable for arbitrary Siromoney
matrix grammars.

Proof. i) Let the monotone Siromoney matrix grammar G = (N1, N2, I, T, P1, P2, S, s, t, pic)
and the (m,n)-matrix M be given. For each column (a1i, a2i, . . . , ami)

T , 1 ≤ i ≤ n, and
any A ∈ I we decide whether wi = a1ia2i . . . ami is an element L(GA). If the answer is
positive, then A is a candidate for the i-th letter of the intermediate word. Let Mi be the
set all letters A ∈ I for which the answer is positive. If Mi is empty for some i, then M
cannot be generated. If Mi 6= ∅ for 1 ≤ i ≤ n, then the intermediate word has to be in
K = M1M2 . . . Mn. Since M1 ⊆ I ⊆ N2, K is a finite set. We now test all words of K
if they are in L(G1) for G1 = (N1, I, P1, S). If there is one word with a positive answer,
then using this word as intermediate word, we can generate all columns and thus M . If
no word of K is in L(G1), then M cannot be generated.

ii) For an arbitrary phrase structure grammar H = (N, T, P, S). Let T ′ = {a′ | a ∈
T}, and let the homomorphism h : (N ∪ T)∗ → (N ∪ T ′)∗ be given by h(A) = A for
A ∈ N and h(a) = a′ for a ∈ T . We construct the grammar H ′ = (N, T ′, P ′, S) with
P ′ = {A → h(w) | A → w ∈ P}. It is easy to see that L(H ′) = h(L(H)).

Now we define the Siromoney matrix grammar

G = (N, T ′, T ′, T, P ′, {a′ → a | a ∈ T), S, s, t, pic)

(where s,t and pic can chosen arbitrarily since we are only interested in matrices). It
is obvious that L(G) consists only of matrices which have exactly one row and that
(a1, a2, . . . , an) is a matrix in M(G) if and only if a1a2 . . . an is a word in L(H). Thus
the decidability of the matrix version of the membership problem for arbitrary Siromoney
matrix grammars implies the decidability of the membership problem for arbitrary phrase
structure grammars. Since the latter problem is undecidable, the former one is undecid-
able, too. 2

For context-free Siromoney grammars, the complexity of the deciding algorithm given
in the proof of Theorem 3.10 has polynomial complexity. This can be seen as follows.
We have to solve the membership problems for n regular word grammars and words of
length m (where n is the number of columns and m is the number of rows)) and at most
nk membership problems for a context-free word grammar and words of length n (where

82

k is the number of vertical nonterminals). Because these membership problems can be
decided in linear or cubic time, the algorithm is polynomial in the size of the picture and
the size of the grammar. Thus we have the following statement.

Corollary 3.11 The matrix version of the membership problem for context-free Siromoney
matrix grammars is decidable in polynomial time. 2

Theorem 3.12 i) The picture version of the membership problem is decidable for mono-
tone Siromoney matrix grammars.

ii) The picture version of the membership problem is undecidable for arbitrary Siromoney
matrix grammars.

Proof. i) Let a Siromoney matrix grammar G = (N1, N2, I, T, P1, P2, S, s, t, pic) and a
picture p be given. There is only a finite number of matrices M such that Pic(M) = p.
Let Mp be the set of all these matrices. Then p ∈ PM(G) if and only if there is an
M ∈ Mp such that M ∈ M(G). Thus we can decide the picture version of the membership
problem by finitely many applications of the matrix version of the membership problem.
This implies the first statement of the theorem.

ii) We take the Siromoney grammar G, given in part ii) of the proof of Theorem 3.10
and complete its definition by defining s, t and pic. Let T = {a1, a2, . . . ak}. Then we
set s = 1 and t = k − 1, and pic(ai) = bccp(↑ ui−1 ↓ r), i.e., pic(ai) consists of a vertical
unit line in height i − 1. Thus a generated picture consists of a sequence of unit lines.
From this we can uniquely determine the word over T . If we can decided the picture
version of the membership problem for G, then we can decided the matrix version of the
membership problem for G which is undecidable. 2

However, with respect to the complexity we have a large increase if we go from the
matrix version to the picture version. More precisely, we have the following theorem.

Theorem 3.13 The picture version of the membership problem for regular Siromoney
matrix grammars is NP-complete.

Proof. The problem is in NP. This can be seen as follows. For a picture p, we can guess
a matrix M with Pic(M) = p and check in polynomial time whether or not M ∈ M(G).
The answer is positive for at least one M if and only if p ∈ PM(G) holds.

We now give a reduction to the satisfiability problem. Let

K = D1 ∧D2 ∧ · · · ∧Dm

be a formula of the propositional calculus in conjunctive normal form over n variables,
i.e., each Di, 1 ≤ i ≤ m, is an expression Di = xi1 ∨ xi2 ∨ · · · ∨ xin(i)

. For 1 ≤ i ≤ m and
1 ≤ j ≤ n, we now define

ai,j =

1 xj appears in Di

−1 ¬xj appears in Di

0 neither xj nor ¬xj appear in Di

Moreover, we set

83

. . . #
a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

MK =
...

...
am,1 am,2 . . . am,n
. . . #

As an example, for the expression

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∨ (x2 ∨ x3 ∨ x4),

we get the matrix

#
1 -1 1 0
-1 0 1 -1
0 1 1 1
#

Now we construct the regular Siromoney matrix grammar

G = (N1, N2, {A,B, C}, {#, 1, 1r, 1l, 0, 0r, 0l,−1,−1r,−1l}, P1, P2, S, 4, 1, pic)

where

pic(#) = , pic(1) = , pic(0) = , pic(−1) = ,

pic(1l) = , pic(1r) = , pic(0l) = , pic(0r) = ,

pic(−1l) = , pic(−1r) = ,

and the nonterminal sets and production sets are chosen such that

L(G1) = {C}{A,B}∗{C},
L(GA) = {#}{0r, 0l, 1,−1r,−1l}∗{1}{0r, 0l, 1,−1r,−1l}∗{#},
L(GA) = {#}{0r, 0l, , 1r, 1l,−1}∗{−1}{0r, 0l, , 1r, 1l,−1}∗{#},
L(GC) = {#}∗.

Note that any matrix in M(G) starts and ends with a column consisting of #’s only
(originating from the C’s) and its first and last row consist of #’s only. Moreover, any
column originating from A or B contains at least one 1 and no -1 or contains at least one
−1 and no 1, respectively. Let

84

. . . #
a′1,1 a′1,2 . . . a′1,n
a′2,1 a′2,2 . . . a′2,n

U =
...

...
a′m,1 a′m,2 . . . a′m,n
. . . #

be a matrix of M(G). We associated with it an expression K ′ in conjunctive normal form
and an assignment α as follows: K(U) consists of m disjunctions D′

1, D
′
2, . . . , D

′
m over n

variables x1, x2, . . . , xn; for 1 ≤ i ≤ m,
– Di contains xj if and only if ai,j ∈ {1, 1r, 1l},
– Di contains ¬xj if and only if ai,j ∈ {−1,−1r,−1l},
– Di contains neither xj nor ¬xj if and only if ai,j ∈ {0r, 0l},
and
– α(xj) = true if and only if the (j + 1)-column contains a 1,
– α(xj) = false if and only if the (j + 1)-column contains a 1.
This means that we choose A or B as the (j + 1)-th letter of the intermediate word, if
we assign true or false to the j-th variable, respectively. We write U = MK′,α. It is
clear that M(G) is the set of all matrices MK′,α where K ′ is an expression in conjunctive
normal form and α is an assignment.

We now discuss whether or not Pic(MK) is contained in PM(G). By definition of pic,
Pic(MK) contains exactly n + 1 vertical lines in any height k with −5 ≥ k ≥ 4m + 4. If
Pic(MK) ∈ PM(G), then Pic(MK) = Pic(MK′,α) for some K ′. Since the horizontal lines
of Pic(MK) and Pic(MK′,α) coincide, we get K = K ′. Obviously, Pic(MK,α) contains
less than n+1 vertical lines in height k for −4k +1 ≥ k ≥ −4k +m, if the (k +1)-th row
of MK,α does contain neither 1 nor −1 (because any remaining indexed letter contributes
at most one vertical line, and since the row contains n letters we get at most n vertical
lines). This implies Pic(MK) 6= Pic(MK,α). Therefore any row of MK,α has to contain
at least one 1 or one −1. Assume it contains a 1, say a′i,j = 1. By construction, Di

contains the variable xj and α(xj) = true. Thus we obtain that Dj also gets the value
true. Moreover, using letters with index l to the left and letters with index r to the right,
we get n + 1 vertical lines. Analogously, the existence of a −1 leads to the value true for
Di and n + 1 vertical lines, too. Thus Pic(MK) is in PM(G) if and only if, Di gets true
for 1 ≤ i ≤ m, i.e., K is satisfiable. Since the satisfiability problem for expression (in
conjunctive normal form) is NP-complete, the picture version of the membership problem
for regular Siromoney grammars is NP-complete, too. 2

Theorem 3.14 The matrix and picture versions of the emptiness problem are decid-
able for context-free Siromoney matrix grammars, and they are undecidable for monotone
Siromoney matrix grammars.

Proof. It is obvious that, for a given Siromoney grammar G, PM(G) is empty if and
only if M(G) is empty. Therefore it is sufficient to show that the matrix version of the
emptiness problem for context-free Siromoney matrix grammars is decidable.

Let G = (N1, N2, I, T, P1, P2, S, s, t, pic) be a context-free Siromoney grammar. We
define the homomorphism h : T ∗ → {a}∗ where a is a new symbol. Moreover, for any

85

intermediate symbol A, we set LA = h(L(GA)). Then an ∈ LA if and only if L(GA)
contains a word of length n. For a set R ⊆ I, we set LR =

⋂
A∈R LA. Then an ∈ LR if

and only if we can generate from any word of R∗ a matrix with n columns. Thus M(G) is
empty if, for any R ⊂ I, either LR is empty or LR is non-empty and L(G1)∩R∗ is empty.
By the closure properties of L(REG) and L(CF) (see Theorem 1.12), for any R ⊆ I, LR

is regular and L(G1) ∩ R∗ is context-free. Therefore we can decide the above emptiness
problems for any R ⊆ I. Since there exist only finitely many sets R the matrix version of
the emptiness problem for context-free Siromoney matrix grammars is decidable. 2

Theorem 3.15 The matrix and picture versions of the finiteness problem are decidable
for context-free Siromoney matrix grammars, and they are undecidable for monotone
Siromoney matrix grammars.

Proof. Again, for a given Siromoney grammar G, PM(G) is finite if and only if M(G) is
finite. Therefore it is sufficient to show that the matrix version of the finiteness problem
for context-free Siromoney matrix grammars is decidable.

For a set R ⊂ I, we construct the sets LR and L(G1)∩R∗ as in the proof of Theorem
3.14. It is easy to see that M(G) is finite if and only if there is no set R ⊆ I such that
– LR is non-empty and L(G1) ∩R∗ is infinite, or
– LR is infinite and L(G1) ∩R∗ is non-empty.

Obviously, these conditions are decidable. 2

3.3.2 Decision Problems related to Submatrices and Subpic-
tures

As in the case of chain code pictures we now discuss problems related to subpictures
(and submatrices, too) and we shall use these results later to get some results on the
decidability of geometrical properties. We start with the problem of existence of a given
submatrix/subpictures in a matrix/picture languages generated by a Siromoney matrix
grammar.

Submatrix Problem:
Given: Siromoney matrix grammar G, matrix M
Question: Is there a matrix M ′ ∈ M(G) such that M is a submatrix of M ′ ?

Subpicture Problem:
Given: Siromoney matrix grammar G, chain code picture p
Question: Is there a matrix M ′ ∈ M(G) such that p is a subpicture of Pic(M ′)?

Theorem 3.16 For context-free Siromoney matrix grammars and arbitrary matrices, the
submatrix problem is decidable in polynomial time.

Proof. Let G = (N1, N2, I, T, P1, P2, S, s, t, pic) be a context-free Siromoney matrix
grammar and M an (m,n)-matrix. We first show that there is a constant K such that,
if M is a submatrix of some matrix of M(G), then M is a submatrix of some matrix in
M(G) which has at most 2K + m rows.

86

Let n = #(N2). We set K = (n + 1)(nn! + 1). Assume that M is a submatrix of the
(m′, n′)- matrix M ′ ∈ M(G) and that m′ > 2K + m. Let the (m,n)-matrix M be in the
rows r + 1, r + 2, . . . , r + m. Then there are r rows above M and m′ −m− r rows below
M . Obviously, r > K or m′ −m − r > K. We only discuss the former case r > K; the
consideration for the other case are analogous.

Let M ′ = (ai,j)(m′,n′). Let 1 ≤ j ≤ n′. Any word a1,ja2,j . . . am′,j belongs to a regular
languages L(GAj

) with the set N2 of nonterminals (Aj is the intermediate letter from
which the j-th column comes from). For 0 ≤ i ≤ nn!, we consider the subwords

wi,j = ai(n+1)+1,jai(n+1)+2,j . . . a(i+1)(n+1),j

of length n + 1. By the pumping lemma from any wi,j we can cancel a subword of some
length ni,j with 1 ≤ ni,j ≤ n. Because we have nn! + 1 lengths ni,j for any j, there is
one length, say sj, which occurs at least n! times. Now we shorten n!/sj words wi,j by sj

letters, which results in a column which has the length m′− (n!/sj) · sj = m′−n!. We do
this procedure for any j and get a matrix M ′′ ∈ M(G) which contains M and has only
m′ − n! rows where m′ − n! < m′. We continue this process until the number of rows is
smaller than 2K + m.

The algorithm to decide the existence of a submatrix works as follows. First build
the set U of all (u, n)-matrices M ′ such that u ≤ 2K + m. For each such matrix M ′ we
determine the set IM ′ of all words A1A2 . . . An ∈ I∗ such that, for 1 ≤ j ≤ n, we can
generate from Aj the j-th column of M ′. To do this we determine for a given column wT

all intermediate letters A such that w ∈ L(GA) (which is possible since the membership
problem for regular grammars is decidable in linear time). Let I ′ =

⋃
M ′∈U IM ′ . Obviously,

I ′ is a finite set and with any Y ∈ I ′ we can associate a finite set UY containing those
numbers r such that m ≤ r ≤ 2K+m and Y generates an (r, n)-matrix which contains M .
For m ≤ r ≤ 2K +m, let I(r) be the set of all intermediate letters B with L(GB) contains
at least one word of length r. Clearly, I(r) can be determined in polynomial time. Now
we determine for an Y ∈ I ′ and a number r ∈ UY whether or not L(G1)∩I(r)∗{Y }I(r)∗ is
empty, which can be done in polynomial time. It is easy to see that we get non-emptiness
for at least one pair (Y, r) if and only if M is a submatrix of some matrix of M(G). 2

Theorem 3.17 For context-free Siromoney matrix grammars and arbitrary pictures, the
subpicture problem is decidable.

Proof. Let p be a chain code picture of width p and height q. Let p = as + b and
q = a′t + b′ where b < s and b′ < t. Then p is a subpicture of some matrix M with at
most a + 2 columns and at most a′ + 2 rows (since a subpicture of width as and height
a′t corresponds to a matrix M and the remaining parts of p are subpictures from the
row and column before and the row and column behind M). We build all (a′ + 2, a + 2)-
matrices whose associated pictures have p as a subpicture and solve for all these matrices
the submatrix problem. If we get one positive answer, then p is a subpicture of some
Pic(M ′) where M ′ ∈ M(G); otherwise, p is not such a subpicture. 2

Theorem 3.18 The subpicture problem is NP-complete for regular Siromoney matrix
grammars.

87

Proof. We repeat the proof of Theorem 3.13. It is easy to see that Pic(MK) is a
subpicture of some Pic(MK′,α) if and only if Pic(MK) = Pic(MK′,α). Hence for the
considered picture and grammar, the subpicture problem and the membership problem
coincide. 2

We now consider the universal submatrix/subpicture problem. Since we are here
interested in those matrices/pictures which are contained as a submatrix/subpicture in
any matrix, it is of interest to consider the sets of matrices/pictures which contain or do
not contain a certain matrix/picture.

Definition 3.19 For a matrix language L and a matrix M we set

LM = {M ′ | M ′ ∈ M(G), M is a submatrix of M ′},
L¬M = {M ′ | M ′ ∈ M(G), M is not a submatrix of M ′}.

For a fixed matrix M , by Definition 3.19, we get unary operations OM and O′
M which

map any matrix language L on LM and L¬M , respectively. We now present some nonclo-
sure/closure results under these operations.

Lemma 3.20 There is a language L ∈ M(REG) and matrices M and M ′ such that
LM /∈M(CF) and L¬M ′ /∈M(CF).

Proof. We consider the regular Siromoney matrix grammar

G = ({S}, {A,B}, {A}, {a, b}, {S → AA}, {A → aA,A → bB, B → aB, B → a}, S, s, t, pic)

(we omit a definition of s, t and pic since we are only interested in the matrices) and take
L = M(G). It is easy to see that any matrix of M(G) consists of exactly two columns
and that each column contains exactly one b (the remaining letters of the columns are
a’s). Moreover, we choose M = bb, i.e., it consists of one row which contains exactly two
b’s. Then LM is the set of all matrices which consist of two identical columns (since one
row consists of two b’s and all other rows of two a’s), i.e., any matrix of LM has the form
uu for some column u which contains exactly one b.

Let us assume that LM ∈M(CF). Then LM = M(H) for some context-free Siromoney
matrix grammar H. We consider the matrix uu ∈ M(G) = LM of two columns of length
2n + 1 and containing the row bb as the (n + 1)-th row. If we choose n sufficiently large,
then we can analogous to the proof of Theorem 3.8, part iii) shorten the upper part an

of the first column by k letters for some k > 0 and extend the lower part an of the first
column by ak. Let v be this column. Analogously to the proof of Theorem 3.8, part iii),
we can show that the matrix vu is in M(H), too. However, the matrix vu is not in LM

because the first column v contains b in the row n− k + 1 whereas the second column u
has b in the (n + 1)-th row. Thus we have a contradiction to M(H) = LM .

We choose M ′ = ba. Since any column of L contains exactly one letter b, the absence of
ba in a matrix is equivalent to the presence of bb. Thus L¬M ′ = LM . Since LM /∈M(CF),
L¬M ′ is also not contained in M(CF). 2

Lemma 3.21 For X ∈ {REG, CF}, any Siromoney matrix language L ∈ M(X) and
any (m, 1)-matrix M , the languages LM and L¬M are in M(X).

88

Proof. Let G = (N1, N2, I, T, P1, P2, S, s, t, pic) be an X Siromoney matrix grammar
such that L = M(G) and let M be a (m, 1)-matrix consisting of the column wT . Then
M is a submatrix of some matrix M ′ ∈ M(G) if and only if there is an intermediate word
A1A2 . . . An and xwy ∈ L(Ai) for some i, 1 ≤ i ≤ n, some x ∈ T ∗ and some y ∈ T ∗ (M ′ is
a matrix generated from A1A2 . . . An), or equivalently, L(GAj

) ∩ T ∗{w}T ∗ is non-empty.
Moreover, M is not a submatrix of any M ′ ∈ M(G) if and only if, for all intermediate
words A1A2 . . . An, we have L(GAi

) ⊆ T ∗ \ T ∗{w}T ∗ for all i, 1 ≤ i ≤ n. For A ∈ I, we
set

LA = L(GA) ∩ T ∗{w}T ∗ and L′A = L(GA) ∩ (T ∗ \ T ∗{w}T ∗).

We note that LA and L′A are regular languages by the closure properties of L(REG) (see
Theorem 1.12).

Let I ′ = {A′ | A ∈ I} and the substitution σ : I → I ∪ I ′ be given by σ(A) = {A,A′}.
We now construct the Siromoney matrix grammar H = (N ′

1, N
′
2, I∪I ′, T, P ′

1.P
′
2, S, s, t.pic)

such that

L(H1) = σ(L(G1)) ∩ I∗I ′I∗, L(HA) = L(GA) for A ∈ I, and L(HA′) = LA for A ∈ I.

It is easy to see that M(H) = LM . Since L(H1) is context-free or regular, if G1 is
context-free or regular, respectively, H is of the same type as G. Thus LM ∈M(X), too.

For L¬M we modify H by the settings

L(H1) = L(G1) and L(HA) = L′A for A ∈ I

and get M(H) = L¬M . 2

Lemma 3.22 For X ∈ {REG,CF}, any Siromoney matrix grammar G of type X such
that L(GA) is finite for any A ∈ I and any matrix M , the languages M(G)M and M(G)¬M

are in M(X)

Proof. Let G = (N1, N2, I, T, P1, P2, S, s, t, pic) be an X Siromoney matrix grammar
such that, for any A ∈ I, L(GA) is finite. Let M be an arbitrary (m,n)-matrix. Without
loss of generality we can assume that L(GA) is a singleton, i.e., L(GA) = {wA} for some
word wA (take A1, A2, . . . Ak instead of A with L(GA) = {w1, w2, . . . , wk} and choose the
productions in such a way that L(GAi

) = {wi} for 1 ≤ i ≤ k).
Let SM be the set of all words A1A2 . . . An ∈ I∗ such that |wA1| = |wAi

| for 2 ≤ i ≤ n
and M is a submatrix of the matrix wT

A1
wT

A2
. . . wT

An
. Obviously, SM is finite. We now

construct the Siromoney matrix grammars H and H ′ with the set I of intermediates such
that

L(H1) = L(G1) ∩ I∗SMI∗, L(H ′
1) = L(G1) ∩ (I∗ \ I∗SMI∗),

L(HA) = L(H ′
A) = {wA}.

It is easy to see that M(H) = LM and M(H ′) = L¬M . By the closure properties of the
families L(CF) and L(REG), L(H1) and L(H ′

1) are of the same type as L(G1). Thus
LM ∈M(X) and L¬M ∈M(X). 2

We now discuss the problems of the existence of universal submatrices/subpictures
which can be given as follows.

89

Universal Submatrix Problem:
Given: Siromoney matrix grammar G, matrix M
Question: Is M a submatrix of any M ′ ∈ M(G)?

Universal Subpicture Problem:
Given: Siromoney matrix grammar G, picture p
Question: Is p a subpicture of Pic(M ′) for any M ′ ∈ M(G)?

Theorem 3.23 For context-free Siromoney matrix grammars and arbitrary (m, 1)-matrices,
the universal submatrix problem is decidable.

Proof. Let the context-free Siromoney matrix grammar G and a (m, 1)-matrix M be
given. Then it is obvious that M is a universal submatrix of M(G) if and only if the matrix
language M(G)¬M of all matrices of M(G) which do not contain M as a submatrix is
empty. In the proof of Lemma 3.21 we have constructed a context-free Siromoney matrix
grammar H generating L¬M . Therefore we have only to decide whether L(H) is empty.
This can be decided by Theorem 3.14. 2

Theorem 3.24 For context-free Siromoney matrix grammars such that L(Gi) is finite
for any i ∈ I1 and arbitrary matrices, the universal submatrix problem is decidable.

Proof. We can give a proof which is analogous to that of Theorem 3.23 using Lemma
3.22. 2

Without a proof we state the following theorems which give the undecidability in the
general case.

Theorem 3.25 For regular Siromoney matrix grammars and arbitrary matrices (with at
most two columns), the universal submatrix problem is undecidable. 2

Theorem 3.26 For regular Siromoney matrix grammars, the universal subpicture prob-
lem is undecidable. 2

3.3.3 Decidability of geometric properties

Before we present the decidability results we add a further ”geometric” property.

Definition 3.27 We say that a chain code picture p is edge-colourable by k colours, if
there is a mapping from the set of unit lines of p to {1, 2 . . . , k} such that any two different
unit lines of p which intersect in a node are mapped to different numbers.

The classical interpretation of edge-colourability is that we map the edges to k colours
instead of k numbers. Then it is required that edges with a common node have different
colours. Obviously, any chain code picture can be edge-coloured by 4 colours. This
colouring is given by the mapping which maps
– any vertical unit line whose lower node has an odd value in the second component to
the first colour,
– any vertical unit line whose lower node has an even value in the second component to

90

the second colour,
– any horizontal unit line whose left node has an odd value in the first component to the
third colour,
– any horizontal unit line whose left node has an even value in the first component to the
fourth colour.
Again, if p is a connected picture the edge-colourabilty by 1 colour is only possible if the
picture consists of a single unit line.

If a picture is connected, then the notions of a simple closed curve and a 2-regular
graph coincide. However, the pictures generated by a Siromoney matrix grammar are
not necessarily connected (in contrast to chain code picture grammars) which makes it
necessary to consider the notion of k-regularity. However it remains true, that only the
values k = 1 and k = 2 are possible for chain code pictures (see the remark before
Theorem 2.29).

Theorem 3.28 It is undecidable for regular Siromoney grammars whether or not PM(G)
contains
i) a connected picture,
ii) a 2-regular picture,
iii) a Eulerian picture,
iv) a Hamiltonian picture,
v) a tree.

Proof. i) We reduce the problem to the (undecidable) emptiness problem for monotone
grammars or equivalently for linearly bounded automata A = (Q, {0, 1, #}, q0, F, δ). We
consider the automaton in a form nearly related to that we have used in the proof of
Theorem 2.27, i.e., that the automaton has an input alphabet consisting of 0, 1 and the
endmarker #, moves alternately from left to right and right to left between the two
markers, makes a step without move reading an endmarker # and changes the direction.
We denote the change of the direction by LR and RL, the reading of x and writing of y
by rxwy and use an arrow above in order to present the direction which the head has, i.e.,
we use −−→rxwy and ←−−rxwy. Let

Right = {−−→riwj | i, j ∈ {0, 1}},
Left = {←−−riwj | i, j ∈ {0, 1}},

I = Right ∪ Left ∪ ∪{LR, RL},

We consider the regular Siromoney matrix grammar

G = (Q× {r, l}, N2, I ∪ {A,E}, T, P1, P2, (q0, r), 3, 6, pic)

where

T = {v, x, y, y′, y′′, y′′′, z, ao, a1, b0, b1, b
′
0, b

′
1, c0, c1, d0, d1},

P1 = {(q, r) → −−→riwj(q
′, r) | (q′, j, r) ∈ δ(q, i)} ∪ {(q, r) → RL(q′, l) | (q′, #, l) ∈ δ(q, #)}

∪{(q, l) →←−−riwj(q
′, l) | (q′, j, l) ∈ δ(q, i)}

∪{(q, r) → RL(q′, l) | (q′, #, l) ∈ δ(q, #)} ∪ {(q, l) → λ | q ∈ F},

91

N2 and P2 are chosen in such a way that

L(GA) = {{x}({d0, d1}{z})+{y′},
L(GE) = {{v}({v}{b0, b1})+{y′′},

L(GRL) = {{x}({z}{a0, a1})+{y},
L(GLR) = {{x}({a0, a1}{z})+{y},

L(G−−→riwj
) = {{v}({v}{c0, c1})∗{bib

′
j}({c0, c1}{v})∗{w′} for i, j ∈ {0, 1},

L(G←−−riwj
) = {{v}({v}{c0, c1})∗{b′jbi}({c0, c1}{v})∗{w′} for i, j ∈ {0, 1},

and pic(v) is the empty picture and for the remaining letters, pic is given by

pic(a0) = , pic(a1) = , pic(b0) = , pic(b1) = ,

pic(b′0) = , pic(b′1) = , pic(c0) = , pic(c1) = ,

pic(d0) = , pic(d1) = , pic(w) = , pic(x) = ,

pic(y) = , pic(y′) = , pic(y′′) = , pic(z) = ,

We first note that

L(G1) = {Au1(RL)v1(RL)u2(RL)v2(LR) . . . un−1(RL)vn−1(LR)un(RL)E |
ui ∈ Right+ for 1 ≤ i ≤ n, vj ∈ Left+ for 1 ≤ j ≤ n− 1}.

Let w = u1(RL)v1(RL)u2(RL)v2(LR) . . . un−1(RL)vn−1(LR)un(RL). This word describes
the work of linearly bounded automaton if and only if the following conditions hold:

92

1. |uk| = |vk| = |uk+1 for 1 ≤ k ≤ n− 1,

2. for 1 ≤ k ≤ n− 1, if the m-th letter of uR
k is −−→riwj, then the m-th letter of vk is ←−−rjwx

for some i, j, x ∈ {0, 1},
3. for 1 ≤ k ≤ n − 1, if the m-th letter of vk is ←−−riwj, then the m-th letter of uk+1 is−−→rjwx for some i, j, x ∈ {0, 1},
Now assume that there is a (m,n)-matrix M ∈ M(G) such that Pic(M) is a connected

picture. A typical such picture is shown in Figure 3.3. All the vertical words are of a
form that the have a start and end letter and in between a certain number r of words of
length 2. Thus m = 2r+2. Now we regard the picture that is derived from the horizontal
subword vlLRul+1 for some l, 1 ≤ l ≤ n− 1. In the second row of the columns generated
from LR we find the symbol ai1 with i1 ∈ {0, 1}. In the neighbouring right column the
symbol bi1 has to occur and in the neighbouring left column stands b′i1 . Otherwise the
picture is not connected. This means that the first letter of ul+1 is −−−→ri1wx and the last letter
of vl is ←−−−rywi1 for some x, y ∈ {0, 1}. It is easy to see that the remaining columns contain
in their second rows only v’s. This means that the second condition for simulating a
linearly bounded automaton is satisfied for r = 1. By induction on the rows of the
columns one can analogously prove that this condition holds for any m. Therefore we also
get |ul+1| = |vl|. Analogously, looking on the columns around RL we get that the third
condition is satisfied and |ul| = |vl|, too. Hence the first conditions also holds.

Thus Pic(M) is connected if and only if M corresponds to a run of a linearly bounded
automaton, or equivalently, PM(G) contains a connected picture if and only if the lan-
guage accepted by the linearly bounded automaton is not empty. Since we cannot decide
the emptiness of the language accepted by an linearly bounded automaton, the existence
of a connected picture in PM(G) is undecidable.

ii), iii) and iv) can be shown analogously because, for the Siromoney matrix grammar
considered in part i), a picture is 2-regular or Eulerian or Hamiltonian if and only if it is
connected.

iv) For the Siromoney matrix grammar considered in part i), we change the mapping
to the pictures in such a way that we cancel the lower lines in the pictures of w, y, y′ and
y′′. Then it is easy to see that the generated picture of the new grammar is a tree if the
corresponding picture of the original grammar is connected. 2

Theorem 3.29 It is decidable for regular Siromoney grammars whether or not all picture
of PM(G) are
i) k-regular pictures for k ≥ 1,
ii) edge-colourable by k colours for k ≥ 1.

Proof. i) Obviously, a picture p is 2-regular, if and only if it does not contain a node
with a degree at most 3 or with degree 1 if and only it does not contain the following
subpictures

93

A −−→r0w1
−−→r1w0 RL ←−−r0w1

←−−r1w1 LR −−→r1w0
−−→r0w1 RL E

Figure 3.3: A typical connected picture generated by the Siromoney matrix grammar G
given in the proof of Theorem 3.28; the additionally given angles show the columns and
rows; above the intermediate word is given

Therefore, all pictures of PM(G) are 2-regular if and only if the given pictures are not
subpictures of PM(G). By Theorem 3.17, the 2-regularity of all pictures in PM(G) can
be decided.

Analogously, all pictures of PM(G) are 1-regular if and only if the pictures

94

• • •
•
•
•

• •
•

• •
•

•
• •

•
• •

are not subpictures of PM(G).
Let k ≥ 3. Since no picture is k-regular, there is no grammar such that all generated

pictures are k-regular.

ii) Since a picture is edge-colourable by 1 colour if and only if it is 1-regular, we get
the statement for k = 1 from part i).

A picture is edge-colourable by 2 colours if and only if it does not contain any of the
pictures

Thus we can give a proof analogous to that for 2-regularity.
A picture is edge-colourable by 3 colours if and only if it does not contain the picture

Since any picture is edge-colourable by 4 colours, all pictures generated by a grammar
are edge-colourable by 4 colours. 2

Without proof we add the following result.

Theorem 3.30 It is undecidable for regular Siromoney grammars whether or not all
picture of PM(G) are
i) connected pictures,
ii) Eulerian pictures,
iii) Hamiltonian pictures. 2

95

96

Bibliography

[1] K. Culik II and J. Kari, Digital images. In: [22], Vol. III, 599–616

[2] J. Dassow and F. Hinz, Decision problems and regular chain code picture lan-
guages. Discrete Appl. Math. 45 (1993) 29–49.

[3] F. Drewes, Grammatical Picture Generation. Springer-Verlag, Berlin, 2006.

[4] F. Drewes and H.-J. Kreowski, Picture generation by collage grammars. In:
H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (Eds.), Handbook
of Graph Grammars and Computing by Graph Transformations, Vol. II, World Sci-
entific, Singapore, 1999, 397–457.

[5] S. Ewert and A. P. J. van der Walt, Random context picture grammars. Pub-
licationes Math. 54 (1999) 763–786.

[6] S. Ewert and A. P. J. van der Walt, Generating pictures using random per-
mitting context. Internat. J. Pattern Recognition 12 (1999) 939–950.

[7] H. Freeman, On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers 10 (1961) 260–268.

[8] H. Freeman, Computer processing of line-drawing images. Computer Surveys 6
(1974) 57–97.

[9] D. Giammarresi, Finite state recognazability for two-dimensional languages: a
brief survey. In: J. Dassow, G. Rozenberg and A. Salomaa (Eds.), Develop-
ments in Language Theory II, World Scientific, Singapore, 1997, 299–308.

[10] D. Giammarresi and A. Restivo, Two-dimensional languages. In: [22], 215–267.

[11] A. Habel and H.-J. Kreowski, Collage grammars. In: H. Ehrig, H.-J. Kre-
owski and G. Rozenberg (Eds.), Proc. 4th Internat. Workshop Graph Grammars
and their Application to Computer Science, Lecture Notes in Computer science 532,
Springer-Verlag, Berlin, 1991, 411–329.

[12] G. T. Herman and G. Rozenberg, Developmental Systems and Languages. North-
Holland, Amsterdam, 1975.

[13] F. Hinz and E. Welzl, Regular chain code picture languages with invisible lines.
Techn Report 252, IIG, TU Graz, 1988.

97

[14] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages
and Complexity. Addison-Wesley, Reading, 1979.

[15] K. Inoue and I. Takanami, A survey of two-dimensional automata theory. In:
J. Dassow and J. Kelemen (Eds.), Machines, Languages, and Complexity, Lecture
Notes in Computer Science 381, Springer-Verlag, Berlin, 1989, 72–91.

[16] Ch. Kim, Complexity and decidability for restricted classes of picture languages.
Theor. Comp. Sci. 73 (1990) 295–311.

[17] D. C. Kozen Automata and Computability. Springer-Verlag, New York, 1997.

[18] H. W. Maurer, G. Rozenberg and E. Welzl, Using string languages to describe
picture languages. Inform. Control 54 (1982) 155–185.

[19] P. Pruzinkiewicz, M. Hammel, J. Hanan and R. Mech, Visual models of plant
development. In: [22], Vol. III, 1997, 535–597.

[20] P. Pruzinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

[21] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1980.

[22] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages. Vol. I –
III, Springer-Verlag, Berlin, 1997.

[23] A. Rosenfeld and R. Siromoney, Picture languages - a survey. Languages of
Design 1 (1993) 229–245.

[24] I. H. Sudborough and E. Welzl, Complexity and decidability of chain code
picture languages. Theor. Comp. Sci. 36 (1985) 175–202.

[25] C. Kim, Picture Iteration and Picture Ambiguity. J. Comput. Syst. Sci. 40 (1990)
289–306.

[26] A. Rosenfeld, Isotonic grammars, parallel grammars, and picture grammars. In:
Machine Intelligence 6 (Eds. B. Meltzer and D. Michie), Edinburgh Univ. Press,
1971, 281–294.

[27] A. Rosenfeld, Picture Languages – Formal Models for Picture Recognition. Aca-
demic Press, New York, 1979.

[28] A. Rosenfeld, Array grammars. In: Graph-Grammars and Their Application to
Computer Science; Springer, Berlin, 1986, 67–70.

[29] A. Saoudi, K. Rangarajan and V. R. Dare, Finite images generated by GL-
systems. In: [36], 181–190.

[30] R. Siromoney On equal matrix languages. Inform. Control 14 (1969) 135–151.

98

[31] R. Siromoney, K. G. Subramanian and V. Rajkumar Dare, Infinite arrays
and controlled deterministic table 0L array systems. Theor. Comput. Sci. 33
(1984) 3–11.

[32] R. Stiebe Picture Generation Using Matrix Systems. Proc. Intern. Meeting Young
Computer Scientists, Bratislava, 1990, 251–260

[33] R. Stiebe Picture generation using matrix systems. Journal of Information Pro-
cessing and Cybernetics (EIK) 28 (1992) 311–327.

[34] R. Stiebe, Subimage problems for Siromoney matrix languages. In: Proc. 14. The-
orietag Automaten und formale Sprachen, 2004, Univ. Potsdam, 123–128.

[35] R. Stiebe, Subimage problems for Siromoney matrix languages. Manuscript, 2006.

[36] P. S.-P. Wang (Ed.), Array Grammars, Patterns and Recognizers.World Scientific,
1989.

[37] P. S.-P. Wang, Three-dimensional sequential/parallel universal array grammars
and object pattern analysis. ICPIA (1992) 305–312.

99

