
Prof. Dr. Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

G R A M M A T I C A L

P I C T U R E

G E N E R A T I O N

Manuscript

Magdeburg, April 2011 – July 2011

Contents

Introduction 1

1 Basics of Formal Language Theory 5

1.1 Phrase Structure Grammars . 5

1.2 Lindenmayer Systems . 11

1.3 Hierarchies and Closure Properties . 13

1.4 Turing Machines, Decidability and Complexity 20

2 Chain Code Picture Languages 25

2.1 Chain Code Pictures . 25

2.2 Hierarchy of Chain Code Picture Languages 33

2.3 Decision Problems for
Chain Code Picture Languages . 37

2.3.1 Classical Decision Problems . 37

2.3.2 Decidability of Properties Related to Subpictures 47

2.3.3 Decidability of ”Geometric” Properties 50

2.3.4 Stripe Languages . 54

2.4 Some Generalizations . 60

2.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars 62

2.5.1 Definitions and some Theoretical Considerations 62

2.5.2 Applications for Simulations of Plant Developments 67

2.5.3 Space-Filling Curves . 69

2.5.4 Kolam Pictures . 72

3 Siromoney Matrix Grammars 75

3.1 Definitions and Examples . 77

3.2 Hierarchies of Siromoney Matrix Languages 82

3.3 Decision Problems for Siromoney Matrix Grammars 85

3.3.1 Classical Problems . 85

3.3.2 Decision Problems related to Submatrices and Subpictures 90

3.3.3 Decidability of geometric properties 95

4 Collage Grammars 101

4.1 Collage Grammars . 103

4.2 Collage Grammars with Chain Code Pictures as Parts 114

3

Bibliography 119

4

100

Chapter 4

Collage Grammars

The two type of picture generating grammars, chain code picture grammar and Siromoney
matrix grammar, have in common, that the grammar generate an object, a word or
a matrix, and the object is transformed into a picture. In this chapter we consider
collage grammars which work on pictures itself, i.e., we consider a special type of enriched
pictures, where the enrichment allows the adding of pictures into pictures. This idea is a
generalization of graph grammars where the derivation process consists in the replacement
of edges/hyperedges by graphs. We illustrate the graph grammars by some examples
without going into the detail, i.e., we omit formal definitions.

In this chapter, the nodes of a graph will be represented by a bullet bullet associated
with the label/name of the node in the neighbourhood of the bullet, an edge (x, y) is
given by a line connecting the bullets associated with x and y, and if an edge is labelled,
the label is given above or below the line.

We start with graph grammars where an edge is replaced by a graph. Obviously, we
have to know which edge has to be replaced by a graph according to a rule, however,
it is also necessary to add some information, how the graph which replaces the edge is
embedded in the graph where the replacement occurs. If we only replace an edge, we need
two nodes of the graph which replaces the edge which are identified with the nodes of the
replaced edge.

Thus the rules are of the following form: the left hand side is an edge e labelled by a
nonterminal N and two nodes m1 and m1, and the right hand side is a graph G = (V, E)
with unlabelled edges and/or edges labelled by a nonterminal and two distinguished nodes
n1 and n2. A derivation step from a graph H1 = (V1, E1) to a graph H2 = (V2, E2) consists
in the cancellation of the edge e in a graph H1, a renaming of all nodes of V such that the
nodes of V and the nodes of H1 have no name in common, n′1 and n′2 are the names of
the distinguished nodes of G, and an identification of m1 with n′1 and of m2 with n′2, i.e.,
V2 = (V1 \ {m1, m2})∪ V and E2 is the set of edges (x, y) ∈ E1 with x, y ∈ V1 \ {m1, m2},
(n′i, y) with (mi, y) ∈ E1, y ∈ V1 \{m1, m2} and 1 ≤ i ≤ 2 (which exist already in H1) and
all edges of E2. The language generated by a graph grammar consists of all graph with
only unlabelled edges which can be obtained from a given initial graph by some derivation
steps.

Let us consider the graph grammar given by the initial graph H which consists of an
edge labelled by N and the two rules

101

• •
m1 m2

N
-

• •

• •

n1 n2

N and • •
m1 m2

N
-

• •

• •

n1 n2

.

Omitting the labels/names of the nodes, we get the following derivation

• •N =⇒
• •
• •N

=⇒
• •
• •
• •N

=⇒
• •
• •
• •
• •N

=⇒ ... =⇒

...
...

• •
• •
• •
• •
• •
• •

which is unique up to the length. Thus the generated graph language consists of towers
of squares of a arbitrary height ≥ 1.

Our next examples also starts with the same initial graph and has the rules

����	
�• N ����	
�• −→ ����	
�• N ����	
�• and ����	
�• N ����	
�• −→ ����	
�• ����	
�• .

We get the derivation

����	
�• N ����	
�• =⇒ ����	
�• N ����	
�• =⇒ ����	
�• //
N ����	
�• =⇒ ����	
�•

N

����	
�• =⇒ . . . =⇒ ����	
�•
... ����	
�•

and hence the language consisting of all graphs with two nodes and an n-fold edge, where
n ≥ 2.

By the above explanation the application of a rule consists in a deletion of one edge
and the adding of right hand side of a rule which is connected with the current graph only
by two nodes. In order to get more general situations we extend the concept to hyperedge
replacement, i.e., a hyperedge which is a set of edges is cancelled and the right hand side
is connected via all nodes of the hyperedge. In the sequel, in drawings we ”connect” the
label of the hyperedge with the edges belonging to the hyperedge by a small arrow. As
an example we consider the the following rules

• •

• •
m1 m2

m3 m4

N� -
6

?

−→

�
�

�

@
@

@

@
@

@

�
�

�

•

•

•

•

•

•

•

•
n1 n2

n3 n4

N� -6

?
and

• •

• •
m1 m2

m3 m4

N� -
6

?

−→

�
�

�

@
@

@

@
@

@

�
�

�

•

•

•

•

•

•

•

•
n1 n2

n3 n4

.

Starting from the graph on the left hand side of the rules we get derivations of the form

102

=⇒
��

@@

@@

��
=⇒

�
�

�

@
@

@

@
@

@

�
�

�
=⇒

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

=⇒∗

�
�

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

.

...

...

4.1 Collage Grammars

We come to the definition of the basic concept of this chapter. We discuss only the
two-dimensional case, but it is easy to extend the notion to higher dimensions.

The set of finite sequences of pairs real numbers or in geometrical terms of points of
the R2 is denoted by (R2)∗.

The process of replacement according to a rule in a graph grammar uses the identifi-
cation of the nodes of a hyperedge with the distinguished nodes of the replacing graph.
Since we now consider geometrical objects in R2, additionally, we have to take into con-
sideration the size of the objects and their position in the plane. Thus the hyperedges
have to be positioned in the plane by their nodes which are points, and the object used
for replacement has to have some distinguished points which can be identified with the
nodes of the hyperedges. Therefore, the identification requires a mapping which maps the
points of the hyperedge to the distinguished points. We shall restrict the set of possible
mappings to the set of affine two-dimensional mappings.

Definition 4.1 A decorated collage over a set Lab of labels is a quintuple

C = (part, pin, E, att, lab),

where

• part is a finite set of geometrical objects in R2,

• pin ∈ (R2)∗ and |pin| ≥ 2,

• E is a set of hyperedges,

• att is a mapping which maps each e ∈ E to an element att(e) ∈ (R2)∗ of length at
least 2, and

• lab is a mapping which maps each e ∈ E to an element lab(e) ∈ Lab.

A collage is a decorated collage with an empty set of hyperedges, i. e., it has the form
(part, pin, ∅, ∅, ∅). A collage is mostly only denoted by (part, pin).

For a decorated collage C = (part, pin, E, att, lab) the picture of C, denoted by pic(C),
is the set part.

103

We omit a formal definition of a ”geometrical object”. In this paper we allow finite
parts of curves, lines, polygons consisting of its borderlines only or polygons consisting of
all their inner points (including the borderlines), etc. For other purposes other objects
can be considered.

The letters of pin are called the pin points of C. They are the distinguished points of
C which are identified if C replaces a hyperedge. The elements of att(e), e ∈ E, are called
attachment points and give the points which are used for identification, if e is replaced.
The mapping lab gives the label of the hyperedges. We note that, by definition, there are
no real edges which build the hyperedges; a hyperedge consists of its attachment points
only (or - as drawn in examples - by edges from the label to the attachment points).

Figure 4.1: A decorated collage

An example of a decorated collage is given in Figure 4.1. Its set part consists of a
complete circle, i. e., the points of the circle line and all its interior points, a complete small
square, a triangle (without interior points), and a rectangle. The sequence pin consists
of three points, denoted by 1 (a corner of the rectangle), 2 (a corner of the triangle), and
3 (a corner of the square). The collage contains two hyperedges e1 and e2 labelled by A
and B, respectively. The mapping att is given by broken lines from A to the three points
of att(e1) and from B to the two points of att(e2).

In order to define the derivation step, we first introduce rules for collages and then
the application of such rules.

Definition 4.2 A context-free rule for collages over a set Lab of labels is a pair (A, C)
where N ∈ Lab and C is a decorated collage over Lab.

As usual we write A → C instead of (A, C).

Definition 4.3 Let C1 = (part1, pin1, E1, att1, lab1) and C2 = (part2, pin2, E2, att2, lab2)
be two decorated collages. Moreover, let e be an element of E1 with lab(e) = A, and let
A → C with C = (part, pin, E, att, lab) be a context-free rule for collages. Then we say
that C2 is obtained or derived from C1 by application of A → C, written as C1 =⇒ C2, if
the following conditions hold:
— there is an affine mapping t such that t(pin) = att1(e),
— part2 = part1 ∪ t(part),
— pin2 = pin1,
— E2 is the disjoint union of E1 \ {e} and E,
— att2(e

′) = att1(e
′) for e′ ∈ E1 \ {e} and att2(e

′) = t(att(e′)) for e′ ∈ E,
— lab2(e

′) = lab1(e
′) for e′ ∈ E1 \ {e} and lab2(e

′) = lab(e′) for e′ ∈ E.

104

Intuitively, the application of a rule A → C with C = (part, pin, E, att, lab) replaces a
hyperedge e labelled by A in a decorated collage C1 by the image of part under an affine
transformation which maps the pin point of C to the attachment points of the hyperedge.
Moreover, the attachment points of the resulting decorated collage C2 are those from
hyperedges of C1 which are different from e and the images of the attachment points of
C under the affine transformation.

Definition 4.4 i) A context-free collage grammar is a triple G = (Lab, P, Z) where Lab
is a set of labels, P is a finite set of context-free rules for collages, and Z is an initial
decorated collage.

ii) The collage language generated by a context-free collage grammar G is defined as

Lcol(G) = {pic(C) | Z =⇒∗ C, C is a collage}

where =⇒∗ denotes the reflexive and transitive closure of =⇒.

We present some examples.

Example 4.5 We consider the context-free collage grammar

G1 = ({S}, {S → C1, S → C2, S → (∅, ∅, ∅, ∅, ∅}, Z)

with

Z =

• •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

, C1 =

• •

• •
1 2

34

◦ •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

, C2 =

• •

• •
1 2

34

• ◦

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

(the initial decorated collage is a hyperedge where its attachment points form a square;
the right hand sides of the first two rules are a ”face” with an open eye and a closed eye,
which differ by the positions of the closed and open eyes, the right hand side of the third
rule is the empty collage). A typical derivation is given by

• •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

=⇒
◦ •

• •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

=⇒
◦ •

• ◦
• •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

=⇒
◦ •

• ◦

• ◦
• •

• •

S

�
�

@
@

�
�

@
@

1 2

3
4

=⇒
◦ •

• ◦

• ◦

105

The language L(G1) generated by the collage grammar G1 consists of ”towers” of n
”faces”, n ≥ 0.

Example 4.6 Let the collage grammar G2 = ({A, B}, P, Z) with the initial decorated
collage

Z =
• •

• •
A

���

HHH
���

HHH

1 2

34

and the set P consisting of the following three rules (where we write A → C1|C2 instead
of A → C1, A → C2)

A →
• •

1 2

34

• •

• •
B

���

H
HH

�
��

HHH

1 2

34

and B →
• •

1 2

34

• •

• •
B

���

H
HH

�
��

HHH

1 2

34

• •

• •1 2

34

be given. A typical derivation is

• •

• •
A

�
��

HHH
���

H
HH

1 2

34
=⇒

• •

• •
B

���

H
HH

�
��

HHH

1 2

34

=⇒

• •

• •
B

���

HHH
���

HHH

1 2

34

=⇒

• •

• •
B

���

HHH
���

HHH

1 2

34

=⇒

It is easy to see that the language generated by G2 is the set of all picture consisting
of three parallel vertical lines of length n, n ≥ 2, in distance 1 and two unit lines which
connect the first vertical lines above and the second and third vertical line below. Therefore
the generated pictures can be described as chain code pictures by the words unrdnrun,
n ≥ 2.

Example 4.7 We consider the context-free collage grammar G3 = ({S}, P, Z) where the
initial decorated collage and the productions are given in the following line.

In Figure 4.2 we see the decorated collages generated in one and two derivations steps,
respectively, and the picture generated by fifty steps. The language consists of ”spirals”
similar to that shown in the right part of Figure 4.2

106

Figure 4.2: Some decorated collages generated by the grammar of Example 4.7

Figure 4.3: Initial decorated collage and productions of the grammar of Example 4.8

Example 4.8 Let the context-free collage grammar G4 = ({S}, P, Z) be given, where the
initial decorated collage Z and the elements of P are presented in the upper and lower row
of Figure 4.3 The second rule produces a ”black” triangle, i. e., all its inner points belong
generated picture. The first rule can be interpreted as follows: a equal-sided triangle is
divided into four equal-sided triangles (where the sides have half length of the original
triangle); the three small triangles which have a corner in common with the original one
correspond to the hyperedges and the triangle in the middle will remain empty whereas the
other three can be divided further or turned to ”black”. In Figure 4.4 we present some of
the generated pictures which are called Sierpiński triangles.

We call a context-free collage grammar linear , if the initial decorated collage and all
right hand sides of productions contain at least one hyperedge.

The context-free collage grammars of Examples 4.5, 4.6, and 4.7 are linear.

We present some basic properties of context-free collage grammars. We start with the
decidability of the emptiness problem for context-free collage grammars.

107

Figure 4.4: Some Sierpiński triangles

Theorem 4.9 For a context-free collage grammar, it is decidable whether or not Lcol(G)
is empty.

Proof. We give a proof which is analogous to the word case.
Let the context-free collage grammar G = (Lab, P, (part, pin, E, att, lab)) be given.

We define
M0 = {(A, pin′) | A → (part′, pin′, ∅, ∅, ∅) ∈ P}.

Obviously, M0 contains all labels A such that the occurrence of a hyperedge e labelled by A
can be replaced in one step by a collage, i. e., by a terminal element, if pin can be mapped
to att(e). Moreover, for i ≥ 1, we define Mi as the set of all pairs (A, pin′′), where (A, pin′′)
in Mi−1 or there is a rule A → (part′′, pin′′, E ′′, att′′, lab′′) such that, for any e ∈ E ′′, there
are (A′, pin′) ∈ Mi−1 and a affine mapping t with lab′′(e) = A′ and t(pin′) = att′′(e). This
means that we can obtain a collage from A after some steps. The first component of a
pair (A, pin) in some Mi is taken from the finite set of labels; the second component is a
sequence of pin points of a right hand side of a collage rule in P , i. e, it is from a finite set,
too. Hence there is an index i such that Mi = Mi+1 = Mi+2 = . . . Now it follows that
Lcol(G) is not empty if and only if for each e ∈ E there are (A′, pin′) ∈ Mi and a affine
mapping t with lab(e) = A′ and t(pin′) = att(e), i.e., from Z we can derive a collage. 2

Let C = (part, pin, E, att, lab) be a decorated collage. By #(C) we denote the number
of geometrical objects which build part and call it the size of C. The following theorem
states that the sets of sizes of collages of infinite collage languages have no arbitrarily
large gaps.

Theorem 4.10 Let G = (Lab, P, Z) be a context-free collage grammar such that

M = {#(C) | Z =⇒∗ C, C ia a collage}

is an infinite set. Then is a natural number c such that, for any natural number m, M
has an non-empty intersection with {m, m + 1, . . . ,m + c}.

Proof. Let the context-free collage grammar G = (Lab, P, Z) be given. We define
derivation trees as in the case of context-free word grammars. Then the inner nodes
correspond to hyperedges. With an inner node we associate a pair (A, pin) if the hyperedge
is labelled by A and we apply a collage rule A → (part, pin, E, att, lab) to the hyperedge.

We say that a derivation tree t is small, if the following conditions hold:

• There is no proper subtree t′ of t such that the roots of t and t′ are associated with
the same pair.

• All proper subtrees of t are small.

108

Intuitively, this means that there is no subtree t′ of t such that t′ contains a proper subtree
t′′ such that the roots of t′ and t′′ are associated with the same pair.

We define T as the set of non-small derivation trees t according to G such that all
proper subtrees of t are small. By definition, there is a node in t different from the root
which is associated with the pair which is associated with the root. Obviously, the set T
is finite. Let c be the maximal size of the yield of trees from T .

By the assumption, for any m there is a collage C in Lcol(G) with a size at least m+c.
Let t be the derivation tree of C. Then it contains a proper subtree of T whose root is
associated with (A, pin) and one of its inner nodes is also associated with (A, pin) and
induces a small subtree (see the left part of Figure 4.5 where we only give the label).
Then, for the corresponding hyperedges e and e′, we have s(pin) = att(e) and s′(pin) =

�
�
�
�
�
�
�
�
�
�
��@

@
@

@
@

@
@

@
@

@
@@�

�
�

�
�

�@
@

@
@

@
@

A

�
�

�@
@

@

A

�
�
�
�
�
�
�
�
�
�
��@

@
@

@
@

@
@

@
@

@
@@�

�
�

�
�

�@
@

@
@

@
@

A

Figure 4.5: Substitution of a subtree of T

att′(e′) for some affine mappings s and s′. Therefore we can replace the tree of T by
its small subtree and obtain a valid derivation (see the right part of Figure 4.5 which
gives C1. Obviously, #(C) and #(C1) differ at most by c. We continue this process
until we get a tree whose yield has a size mat most c. Thus we get a sequence of collage
C = C0, C1, C2, . . . Ck with |#(Ci)−#(Ci−1| ≤ c and #(Ck) ≤ c. Obviously, there is an
i, 0 ≤ i ≤ k, such that #(Ci) ∈ {m,m + 1, . . . ,m + c}. 2

We now consider a special geometric property and show that it is decidable whether
or not all pictures or at least one picture generated by a context-free collage grammar
have this property.

We say that a picture p of a collage C = (part, pin) contains a ball , if there is a point
(x, y) ∈ R2 and a real number r > 0 such that all points (x′, y′) ∈ R2 with a distance ≤ r
to (x, y) belong to an element of part.

We mention that a picture of a collage C = (part, pin) contains a ball if and only if
there is an element of part which contains a ball. Hen

Theorem 4.11 For a context-free collage grammar G it is decidable whether or not
i) Lcol(G) contains a picture which contains a ball,
ii) any picture of Lcol(G) contains a ball.

Proof. Let the context-free collage grammar G = (Lab, P, Z) be given. Obviously, if Z
contains a ball, then any generated decorated collage and hence all pictures of Lcol(G)
contain a ball.

109

Therefore we assume that Z does not contain a ball.

A picture p ∈ Lcol(G) contains a ball if there is a derivation Z =⇒∗ C =⇒ C ′ =⇒∗ C ′′

with pic(C ′′) = p such that C does not contain a ball and C ′ contains a ball. Hence the
rule applied to C has the form A → B where B contains a ball.

i) In the proof of Theorem 4.9 we have constructed a set Mi containing those labels
(with pin points) from which a collage can be generated. We modify this construction
to get a set M of labels (with pin points) from which collages containing a ball can be
generated.

In addition to the pairs (A, pin), we consider also triples (A, pin, +). The third compo-
nent announces whether we can generate a collage containing a ball. We set (A, pin, +) ∈
M ′

0 if and only if (A, pin) ∈ M0, i. e., there is a rule A → (part, pin, ∅, ∅, ∅)) ∈ P , and part
contains a ball. (A, pin, +) ∈ M ′

i if and only if there is a rule A → (part, pin, E, att, lab)
such that

• part contains a ball and, for all e ∈ E, there is a pair (A′′, pin′′) ∈ Mi such that
lab(e) = A′′ and t′(pin′′) = att(e) for some affine mapping t′, or

• there is an edge e ∈ E and (A′pin′, +) ∈
⋃i−1

i=0 M ′
i with lab(e) = A′, t(pin′) = att(e)

for some affine mapping t and, for all edges e′ ∈ E \ {e}, there is a pair (A′′, pin′′) ∈
Mi such that lab(e′) = A′′ and t′(pin′′) = att(e′) for some affine mapping t′.

It is easy to see that we can generate a collage with ball starting with some rule
A → (part, pin, E, att, lab)) if and only if (A, pin, +) in M ′

i for some i. Moreover, M =⋃
i≥0 M ′

i is finite and can be constructed (we construct in succession the sets M ′
i and stop

if M ′
j \

⋃j−1
i=0 M ′

i is empty, i. e., no new element which can generate a ball is obtained.

Now we check whether the following situation holds for Z = (part, pin, E, att, lab):
there is an edge e ∈ E and (A′pin′, +) ∈

⋃i−1
i=0 M ′

i with lab(e) = A′, t(pin′) = att(e) for
some affine mapping t and, for all edges e′ ∈ E \ {e}, there is a pair (A′′, pin′′) ∈ Mi such
that lab(e′) = A′′ and t′(pin′′) = att(e′) for some affine mapping t′. If the answer is yes,
then we can generate a picture containing a ball. Otherwise no picture with ball can be
generated.

ii) Again, we modify the proof for the decidability of the emptiness problem. We use
triples (A, pin,−) where the third component announces that a collage without ball can
be generated. More formally, we define M ′′

0 as the set of triples (A, pin,−) where rule
A → (part, pin, ∅, ∅, ∅)) ∈ P exists such that part contains no ball. For i ≥ 1, M ′′

i is the
set of all triples (A, pin,−) such that

• (A, pin,−) is in M ′′
i−1 or

• there is a rule A → (part, pin, E, att, lab) ∈ P where part contains no ball and, for
all e ∈ E, there is a pair (A′, pin′) ∈ M ′′

i−1 such that lab(e) = A′ and t(pin′) = att(e)
for some affine mapping t.

This ensures that a derivation starting with a rule A → (part, pin, E, att, lab) ∈ P and
(A, pin,−) ∈ Mi for some i, i ≥ 0, can generate a collage without ball.

Obviously, there is an j such that Mj = Mj+1 = Mj+2 = . . .

110

Therefore Lcol(G) contains a collage without ball if and only if the following condition
holds for Z = (part, pin, E, att, lab): for all edges e ∈ E, there is a pair (A, pin) ∈ Mj

such that lab(e) = A and t(pin) = att(e) for some affine mapping t. 2

We now consider the extension to context-sensitive collage rules and grammars.

Definition 4.12 i) A context-sensitive collage rule is a pair (L, R), where L is a decorated
collage with a single hyperedge, i.e., L = (partL, pinL, EL, attL, labL) with EL = {e} for
some hyperedge e, and R = (partR, pinR, ER, attR, labR) is a decorated collage. Again, we
write L → R instead of (L, R).

ii) The application of a context-sensitive collage rule L → R to a decorated collage
C = (partC , pinC , EC , attC , labC) is only possible if there is an hyperedge e′ ∈ EC with
labC(e′) = labL(e) and there is an affine mapping t with t(attL(e)) = attC(e) and such
that t(partL) ⊂ partC, and there is an affine mapping t′ with t′(pinR) = attL(e).

The application results in a decorated collage grammar C ′ which is obtained by applying
the context-free free collage rule labL(e) → R to C with the mapping t ◦ t′. We then write
C =⇒ C ′.

iii) A context-sensitive collage grammar is a triple G = (Lab, P, Z), where Lab is a
finite set of labels, Z is a decorated collage over Lab, P is a finite set of context-sensitive
collage rules L → R where L and R are decorated collages over Lab.

iv) The collage language generated by a context-sensitive collage grammar is defined
by

Lcol(G) = {pic(C) | Z =⇒∗ C, C is a collage}

where =⇒∗ denotes the reflexive and transitive closure of =⇒.

We regard the following example. Let G5 = ({S, A,B}, P, Z) be the context-sensitive
collage grammar with

Z =

• •

• •
S

��

@@ ��

@@
1
2 3

4

and the productions given in Figure 4.6 (the attachment points and pin points are given
by numbers in roman and italics, respectively)

A typical derivation according to G5 is given in Figure 4.7.

It is easy to see that Lcol(G5) consists of all lower triangles of angles If we
consider each angle as one geometrical element, for any picture p of Lcol(G5), there is a
number n such that p has n(n+1)/2 geometrical elements. By Theorem 4.10, it is easy to
see that Lcol(G5) cannot be generated by a context-free collage grammar. Thus we have
the following theorem.

Theorem 4.13 There is a collage language generated by a context-sensitive collage gram-
mar, which cannot be generated by a context-free collage grammar. 2

111

• •

• •
S

��

@@ ��

@@
1
2 3

4
→
• •

• •
A

��

@@ ��

@@
1
2 3

4

1

2 3

4
•

•
S

��

@@ ��

@@
1
2 3

4
• •

• •
B

��

@@ ��

@@
1
2 3

4

1

2 3

4

• •

• •
A

��

@@ ��

@@
1
2 3

4
→
• •

• •

1

2 3

4

• •
A

��

@@ ��

@@
1
2 3

4

• •

• •
B

��

@@ ��

@@
1
2 3

4
→
• •

• •

1

2 3

4

• •
B

��

@@ ��

@@
1
2 3

4

• •

• •
B

��

@@ ��

@@
1
2 3

4

→
• •

• •

1
2 3

4

• •

• •
C

��

@@ ��

@@
1
2 3

4

→
• •

• •

1
2 3

4

Figure 4.6: Rules of the context-sensitive collage grammar G5

112

• •

• •
S

��

@@ ��

@@
1
2 3

4 =⇒∗

• •

• •
B

��

@@ ��

@@
1
2 3

4
• •

• •
B

��

@@ ��

@@
1
2 3

4
• •

• •
C

��

@@ ��

@@
1
2 3

4 =⇒∗

• •

• •
B

��

@@ ��

@@
1
2 3

4

• •

• •
B

��

@@ ��

@@
1
2 3

4

• •

• •
C

��

@@ ��

@@
1
2 3

4

=⇒∗

• •

• •
B

��

@@ ��

@@
1
2 3

4

• •

• •
B

��

@@ ��

@@
1
2 3

4

• •

• •
C

��

@@ ��

@@
1
2 3

4

=⇒∗

Figure 4.7: Typical derivation according to G5

113

4.2 Collage Grammars with Chain Code Pictures as

Parts

As one can see from the Examples 4.5, 4.7, and 4.8, collage grammars can generate
pictures which cannot be generated by chain code picture grammars (and Siromoney
matrix grammars) because such grammars generate only pictures consisting of a finite
set of unit lines in the grid Z2. Therefore we restrict collage grammars in such a way
that they also generate only chain code pictures. This allows us to do a more precise
comparison of chain code picture grammars and collage grammars.

The restriction to objects of Z2 requires a restriction to special affine transformations,
too, since arbitrary affine transformations can map a point of Z2 to a point not contained
in Z2. Therefore we restrict in this paper to translations which map Z2 onto Z2.

Definition 4.14 i) A decorated collage (part, pin, E, att, lab) is called a decorated chain
code collage (decorated cc-collage, for short), if part is a finite set of unit lines of the grid
Z2, pin and att(e) for all e ∈ E belong to (Z2)∗

ii) A context-free collage grammar G = (Lab, P, Z) is called a chain code collage
grammar (cc-collage grammar, for short), if Z and all right hand sides of rules of P are
decorated cc-collages.

Example 4.6 gives an example for a cc-grammar if we interpret the parts consisting of
unit lines (in distance 1.

Above we noticed that there are collage languages which are not chain code picture
languages. But as example we mentioned collage languages which contain objects which
cannot be described by chain codes. We now strengthen the above remark to collage
languages which contain only chain code pictures.

Lemma 4.15 There is a linear cc-collage grammar G such that Lcol(G) /∈ CCP(CF).

Proof. We consider the linear cc-collage grammar G2 of Example 4.6. We have shown
in Example 4.6 that it generates L2 = bccp(L′

2) with L2 = {unrdnrun | n ≥ 2}.
Let us assume that L2 is generated by a context-free chain code picture grammar

G = (N, π, P, S). Since G has to generate an infinite set of words, there is a derivation

S =⇒∗ vAv′ =⇒∗ vxAyv′ =⇒∗ vxwyv′ ∈ π∗.

Let sh(vxwyv′) = (p1, p2) and sh(x) = (q1, q2). Note that −3 ≤ p1 ≤ 3 because the width
of the pictures is 3. Since we also have the derivations

S =⇒∗ vAv′ =⇒∗ uxAyv =⇒∗ uxnAynv =⇒∗ uxnwynv ∈ π∗

with n ≥ 2, we get q1 = 0 (otherwise sh(uxnwynv) = sh(uxwyv) = (p1 + (n − 1)q1, p2 +
(n − 1)q2) where 3 ≤ p1 + (n − 1)q1 ≤ 3 is not satisfied). Analogously, if q2 6= 0, then
we obtain pictures where the vertical lines have different length. Thus sh(x) = (0, 0).
Analogously, we can prove that sh(y) = (0, 0). Therefore G is a normal grammar (see
Definition 2.17. Then bccp(G) is finite by Corollary 2.20. However, this contradicts the
fact that L2 contains infinitely many pictures. 2

114

We mention that L2 can be generated by the regular extended chain code picture
grammar G′

2 = ({S, A}{u, d, r, l, ↑, ↓}, P, S) with

P = {S → u ↑ r ↓ dru ↑ ll ↓ A, A → u ↑ r ↓ d ↑ r ↓ u ↑ ll ↓ A, A → urd ↑ r ↓ u}

Lemma 4.16 There is a chain code picture language L ∈ CCP(LIN) such that L cannot
be generated by a context-free cc-collage grammar.

Proof. We do not give a complete proof; we only illustrate the idea.
The linear chain code picture grammar

G = ({S}, π, {S → urSrd, S → urd}, S

generates the language L of all pictures of the form

which are described by words (ur)nurd(rd)n.
Let us assume that there is a context-free cc-collage grammar G′ generating L. Let

n be sufficiently large and consider the picture p = bccp((ur)nurd(rd)n). We consider a
derivation tree t for p. Using the arguments of the proof of Theorem 4.10 we can substitute
a subtree tree t′ of t by a smaller subtree t′′. However, the size of the geometrical figures
is changed by the substitution. Therefore the picture obtained by the substitution does
not only consist of unit lines. This contradicts the structure of the pictures in L. 2

We give now two lemmas which relate extended chain code picture grammars and
cc-collage grammars.

Lemma 4.17 For any regular extended chain code picture grammars G, a linear cc-
collage grammar G′ with bccp(G) = Lcol(G

′) can be constructed. 2

Proof. We only give the proof for regular chain code picture grammars (since we only
need it for this case in the sequel). The generalization to extended regular chain code
picture grammars is left to the reader.

Let G = (N, π, P, S) be given where all productions of P are of the A → wB or A → w
with A, B ∈ N and w ∈ π∗. Let

Q = {sh(w) | A → wB ∈ P or A → w ∈ P}.

With a word wB with dccp(w) = ((0, 0), p, z) and q ∈ Q, we associate the decorated
collages col(wB, q) = (p, (0, 0)z, {e}, att, lab) with att(e) = z(z + q) and lab(e) = B.
Moreover with a word wB with dccp(w) = ((0, 0), p, z), we associate the decorated collage
col(w) = (p, (0, 0)z, ∅, ßemptyset, ∅).

We construct the linear cc-collage grammar G′ = (N ∪ {S ′}, P ′, Z) where

115

• Z = (∅, ∅, {e}, att, lab) with att(e) = (0, 0)(1, 1) and lab(e) = S ′

• all rules S ′ → (∅, (0, 0)(1, 1), {e}, att, lab) with att(e) = (0, 0)q and lab(e) = S are
in P ′,

• for any rule A → wB ∈ P and any q ∈ Q, the collage rule A → col(wB, q) belongs
to P ′,

• for any rule A → w, the collage rule A → col(w) belongs to P ′.

It is easy to prove by induction on the length of the derivations that

• A =⇒ w ∈ π∗ implies A′ =⇒ col(w) where A′ is the decorated collage consisting of
a single hyperedge with label A and attachment point which allow the application
of A → col(w),

• A =⇒x B =⇒∗ w ∈ π∗ in G implies A′ =⇒ col(xB) =⇒∗ dccp(w) in G′ where A′ is
the decorated collage consisting of a single hyperedge with label A and attachment
point which allow the application of A → col(w, B, q) (note that this does not
depend on q since the attachment points of A′ have to fit to the pin points of
col(wB, q) which only depend on w).

Taking into consideration that the rules applicable to Z generate exactly decorated col-
lages which consist of a single hyperedge labelled by S a attachment point which allow
the start of a derivation, it follows that bccp(G) ⊆ Lcol(G

′).
Conversely, we prove by induction on the length of a derivation that A′ =⇒∗ C with

a collage C in G′ (where A′ corresponds to A as in the first part of the proof) implies
A → w with dccp(w) = pic(C). From this we get Lcol(G

′) ⊆ dccp(G).
Both shown inclusions yield Lcol(G

′) = dccp(G). 2

Analogously, one can show the following statement.

Lemma 4.18 For any linear cc-collage grammar G’, there is e regular extended chain
code picture grammar G′ such that Lcol(G) = bccp(G). 2

The Lemmas 4.17 and 4.18 allows us to transfer some statements from regular (ex-
tended) chain code picture grammars/languages to (cc-collage) grammars/languages.

Theorem 4.19 The equivalence problem

Given: collage grammars G1 and G2

Question: Does Lcol(G) = Lcol(G2) hold?

is undecidable for linear cc-collage grammar (hence for context-free collage grammar, too).

Proof. Assume that the equivalence problem is decidable for linear cc-collage grammars.
Let two regular chain code picture grammars G1 and G2 be given. We construct the

linear cc-collage grammars G′
1 and G′

2 with bccp(G1) = Lcol(G
′
1) and bccp(G1) = Lcol(G

′
1).

Obviously, G1 and G2 are (picture) equivalent if and only if G′
1 and G′

2 are equivalent.
Hence our assumption implies the decidability of the equivalence problem for regular chain
code picture grammars. This contradicts Theorem 2.23. 2

Using the same proof idea and Theorem 2.29, we can show the following statement.

116

Theorem 4.20 It is undecidable whether or not a linear cc-collage grammar generates
(a) a simple curve,
(b) a closed simple curve,
(c) a regular picture, (d) an Eulerian picture,
(e) a Hamiltonian picture,
(f) a tree. 2

117

118

Bibliography

[1] K. Culik II and J. Kari, Digital images. In: [22], Vol. III, 599–616

[2] J. Dassow and F. Hinz, Decision problems and regular chain code picture lan-
guages. Discrete Appl. Math. 45 (1993) 29–49.

[3] F. Drewes, Grammatical Picture Generation. Springer-Verlag, Berlin, 2006.

[4] F. Drewes and H.-J. Kreowski, Picture generation by collage grammars. In:
H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozenberg (Eds.), Handbook
of Graph Grammars and Computing by Graph Transformations, Vol. II, World Sci-
entific, Singapore, 1999, 397–457.

[5] S. Ewert and A. P. J. van der Walt, Random context picture grammars. Pub-
licationes Math. 54 (1999) 763–786.

[6] S. Ewert and A. P. J. van der Walt, Generating pictures using random per-
mitting context. Internat. J. Pattern Recognition 12 (1999) 939–950.

[7] H. Freeman, On the encoding of arbitrary geometric configurations. IRE Transac-
tions on Electronic Computers 10 (1961) 260–268.

[8] H. Freeman, Computer processing of line-drawing images. Computer Surveys 6
(1974) 57–97.

[9] D. Giammarresi, Finite state recognazability for two-dimensional languages: a
brief survey. In: J. Dassow, G. Rozenberg and A. Salomaa (Eds.), Develop-
ments in Language Theory II, World Scientific, Singapore, 1997, 299–308.

[10] D. Giammarresi and A. Restivo, Two-dimensional languages. In: [22], 215–267.

[11] A. Habel and H.-J. Kreowski, Collage grammars. In: H. Ehrig, H.-J. Kre-
owski and G. Rozenberg (Eds.), Proc. 4th Internat. Workshop Graph Grammars
and their Application to Computer Science, Lecture Notes in Computer science 532,
Springer-Verlag, Berlin, 1991, 411–329.

[12] G. T. Herman and G. Rozenberg, Developmental Systems and Languages. North-
Holland, Amsterdam, 1975.

[13] F. Hinz and E. Welzl, Regular chain code picture languages with invisible lines.
Techn Report 252, IIG, TU Graz, 1988.

119

[14] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages
and Complexity. Addison-Wesley, Reading, 1979.

[15] K. Inoue and I. Takanami, A survey of two-dimensional automata theory. In:
J. Dassow and J. Kelemen (Eds.), Machines, Languages, and Complexity, Lecture
Notes in Computer Science 381, Springer-Verlag, Berlin, 1989, 72–91.

[16] Ch. Kim, Complexity and decidability for restricted classes of picture languages.
Theor. Comp. Sci. 73 (1990) 295–311.

[17] D. C. Kozen Automata and Computability. Springer-Verlag, New York, 1997.

[18] H. W. Maurer, G. Rozenberg and E. Welzl, Using string languages to describe
picture languages. Inform. Control 54 (1982) 155–185.

[19] P. Pruzinkiewicz, M. Hammel, J. Hanan and R. Mech, Visual models of plant
development. In: [22], Vol. III, 1997, 535–597.

[20] P. Pruzinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

[21] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Aca-
demic Press, New York, 1980.

[22] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages. Vol. I –
III, Springer-Verlag, Berlin, 1997.

[23] A. Rosenfeld and R. Siromoney, Picture languages - a survey. Languages of
Design 1 (1993) 229–245.

[24] I. H. Sudborough and E. Welzl, Complexity and decidability of chain code
picture languages. Theor. Comp. Sci. 36 (1985) 175–202.

[25] C. Kim, Picture Iteration and Picture Ambiguity. J. Comput. Syst. Sci. 40 (1990)
289–306.

[26] A. Rosenfeld, Isotonic grammars, parallel grammars, and picture grammars. In:
Machine Intelligence 6 (Eds. B. Meltzer and D. Michie), Edinburgh Univ. Press,
1971, 281–294.

[27] A. Rosenfeld, Picture Languages – Formal Models for Picture Recognition. Aca-
demic Press, New York, 1979.

[28] A. Rosenfeld, Array grammars. In: Graph-Grammars and Their Application to
Computer Science; Springer, Berlin, 1986, 67–70.

[29] A. Saoudi, K. Rangarajan and V. R. Dare, Finite images generated by GL-
systems. In: [36], 181–190.

[30] R. Siromoney On equal matrix languages. Inform. Control 14 (1969) 135–151.

120

[31] R. Siromoney, K. G. Subramanian and V. Rajkumar Dare, Infinite arrays
and controlled deterministic table 0L array systems. Theor. Comput. Sci. 33
(1984) 3–11.

[32] R. Stiebe Picture Generation Using Matrix Systems. Proc. Intern. Meeting Young
Computer Scientists, Bratislava, 1990, 251–260

[33] R. Stiebe Picture generation using matrix systems. Journal of Information Pro-
cessing and Cybernetics (EIK) 28 (1992) 311–327.

[34] R. Stiebe, Subimage problems for Siromoney matrix languages. In: Proc. 14. The-
orietag Automaten und formale Sprachen, 2004, Univ. Potsdam, 123–128.

[35] R. Stiebe, Subimage problems for Siromoney matrix languages. Manuscript, 2006.

[36] P. S.-P. Wang (Ed.), Array Grammars, Patterns and Recognizers.World Scientific,
1989.

[37] P. S.-P. Wang, Three-dimensional sequential/parallel universal array grammars
and object pattern analysis. ICPIA (1992) 305–312.

121

