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Chapter 1

Fundamentals

In this chapter, we recall some notions, notations, and facts concerning sets, words, lan-
guages as sets of words, matrices and their eigenvalues, linear difference equations, graphs,
and intuitive algorithms. which will be used in the book. Sometimes we illustrate the
notions by examples, especially if the notions are used very often in the sequel and are
basic for the understanding of the theory of formal languages. All facts are given without
proofs; for proofs and further detailed information we refer to the textbooks [9], [19], [6],
[8], [2], [5], [22].

1.1 Sets and Multisets of Words

We assume that the reader is familiar with set theory. Here we only give some notation.

If a set A is contained in a set B, then we write A ⊆ B. If the inclusion is proper, we
write A ⊂ B. By #(M) we denote the cardinality of M .

By N we designate the set of all positive integers, i. e., N = {1, 2, . . . }. N0 denotes the
set of all non-negative integers, i. e., N0 = N ∪ {0} = {0, 1, 2, . . . }.

A permutation p of the set M = {1, 2, . . . , n} is a one-to-one mapping of M onto itself.
Obviously, p can be given as (p(1), p(2), . . . , p(n)). Two elements p(i) and p(j) of p form
an inversion if p(i) > p(j) and i < j. By I(p) we denote the number of inversions of p.

An alphabet is a non-empty finite set. Its elements are called letters. Obviously, the
usual set of all (small) latin letters {a, b, c, . . . , x, y, z} is an alphabet as well as the set
U = {a, b, c, γ, |, •} where only the first four elements are letters in the usual sense. A word
(over an alphabet V ) is a finite sequence of letters (of V ). A word is written as the simple
juxtaposition of its letters in the order of the sequence. According to these settings, the
order of the letters in a word is very important; for example ab and ba are different words
(the first letters are different and thus the sequences are different). Moreover, in contrast
to words in daily life, words in the above sense do not have necessarily a meaning as can
be seen from the words

w1 = acbaa, w2 = γ|• aa and w3 = •|• .

7



8 CHAPTER 1. FUNDAMENTALS

over U . By λ we denote the empty word which contains no letter.1 By V ∗ (and V +,
respectively) we designate the set of all (non-empty) words over V .

The product (concatenation) of words is defined as the juxtaposition of the words. For
example, we have

w1 · w2 = acbaaγ|• aa, w1 · w3 = acbaa•|• and w3 · w1 = •|• acbaa.

From these example we immediately see that the product is not a commutative operation.
Obviously, the product is an associative operation on V ∗ and λ is the unit element with
respect to the product, i. e.,

(v1 · v2) · v3 = v1 · (v2 · v3) for all words v1, v2, v3,

v · λ = λ · v = v for all words v.

Thus from the algebraic point of view (V ∗, ·) is a monoid and (V ∗, ·) is an associative
semigroup. More precisely, V + is freely generated by the elements of V since the repre-
sentation of a word as a product of elements of V is unique. As in arithmetics we shall
mostly omit the · and simply write vw instead of v · w. Furthermore, multiple products
of the same word will be written as powers, i. e., instead of x · x · . . . · x︸ ︷︷ ︸

n times

we write xn.

We say that v is a subword of w iff w = x1vx2 for some x1, x2 ∈ V ∗. The word v is
called a prefix of w iff w = vx for some x ∈ V ∗, and v is called a suffix of w iff w = xv for
some x ∈ V ∗. Continuing our example, we see that

– acb, cb, ba, cba, a, and aa are subwords of w1,
– λ, γ, γ|, γ|•, γ|• a, and γ|• aa are the prefixes of w2, and
– λ, a, aa, baa, cbaa, and acbaa are the suffixes of w1.
For a alphabet V , a subset W of V and a word w ∈ V ∗, by #W (w) we denote the

number of occurrences of letters from W in w. If W consists of a single letter, then
we write #a(w) instead of #{a}(w). The length |w| of a word w over V is defined as
|w| = ∑

a∈V #a(w). For example,

#a(w1) = 3, #b(w1) = #c(w1) = 1, #•(w1) = #|(w1) = 0, |w1| = 5,

#{a,b,c}(w2) = 2, #{a,|,γ}(w2) = 4,

#a(w3) = #c(w3) = #γ(w3) = 0, #•(w3) = 2, #|(w3) = 1, |w3| = 3.

Let V = {a1, a2, . . . , an} where a1, a2, . . . , an is a fixed order of the elements of V .
Then

ΨV (w) = (#a1(w), #a2(w), . . . , #an(w))

is the Parikh vector of the word w ∈ V ∗. Using the order in which the elements of U are
given above, we get

πU(w1) = (3, 1, 1, 0, 0, 0), πU(w2) = (2, 0, 0, 1, 1, 1) and πU(w3) = (0, 0, 0, 0, 1, 2).

1It is very often important to have such a word. For example, the application of the operation, which
deletes all as in a word over the alphabet {a, b}, maps the word ababba onto bbb, and we get the λ from
aaa; without the empty word, no image of aaa would be defined. The reader may note the analogy
between of empty word and the empty set which occurs naturally as the intersection of disjunct sets.
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If the alphabet V = {a1, a2, . . . , an} is equipped with an order ≺ (i. e., without loss of
generality, a1 ≺ a2 ≺ · · · ≺ an, then we extend the order to an order on V ∗, which we
call lexicographic order as follows. For two words u ∈ V ∗ and v ∈ V ∗, we set u ≺ v if and
only if

– |u| < |v| or
– |u| = |v|, u = zxu′ and v = zyv′ for some word z ∈ V ∗ and some x, y ∈ with x ≺ y. 2

It is easy to see that, for the alphabet {a, b} with a ≺ b, we get

λ ≺ a ≺ b ≺ aa ≺ ab ≺ ba ≺ bb ≺ aaa ≺ aab ≺ aba ≺ abb ≺ baa ≺ . . .

Throughout the book we shall often use primed or indexed versions of the letters of
an alphabet. That means that, with an alphabet V , we associate the alphabets

V ′ = {a′ | a ∈ V } or V (i) = {a(i) | a ∈ V }
where all letters are primed versions or versions with the upper index i. If w = a1a2 . . . an,
aj ∈ V for 1 ≤ j ≤ n, is a word over V , then we define the corresponding words w′ over

V ′ and w(i) over V (i) by w′ = a′1a
′
2 . . . a′n and w(i) = a

(i)
1 a

(i)
2 . . . a

(i)
n , respectively. In the

same way we define the corresponding words in case double primes, double indices, etc.
A language over V is a subset of V ∗. Given a language L, we denote the set of letters

occurring in the words of L by alph(L). Obviously alph(L) is the smallest alphabet V (with
respect to inclusion) such that L ⊆ V ∗. The set alph(L) is called the alphabet of L. For a
language L over the alphabet X, we define the characteristic function ϕL,X : X∗ → {0, 1}
by

ϕL,X(w) =

{
1 for w ∈ L
0 for w ∈ X∗ \ L

.

If the alphabet X is known from the context, we simply write ϕL instead of ϕL,X .
For a language L ⊆ V +, we set

πV (L) = {πV (w) | w ∈ L}.
Since languages are sets, union, intersection and set-theoretic difference of two lan-

guages are defined in the usual way. Essentially, this also holds for complement; we have
only to say which set is taken as universe. We set C(L) = L = alph(L)∗ \L, i. e., we take
the set of all words over the alphabet of L as the universal set.

We now introduce some algebraic operations for languages.
For two languages L and K we define their concatenation as

L ·K = {wv | w ∈ L, v ∈ K} .

and the Kleene closure L∗ (of L) by

L0 = {λ} ,

Li+1 = Li · L for i ≥ 0 ,

L∗ =
⋃
i≥0

Li .

2We note the the order used in lexicons, dictionaries etc. differs from the lexicographic order defined
above since we first order by length. If we would not do so, then we would start with λ, a, aa, aaa,
. . . (i. e., with an infinite sequence of words containing only as, which makes no sense. However, since
in practice there is no word containing more than three equal letters in succession, in lexicons it is not
necessary to order first by length.
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The positive Kleene closure is defined by

L+ =
⋃
i≥1

Li .

For
L1 = {ab, ac} and L2 = {abna : n ≥ 1},

we get

L1 · L2 = L2
1 = {abab, abac, acab, acac},

L1 · L2 = {ababna : n ≥ 1} ∪ {acabna : n ≥ 1},
L3

2 = {abiaabjaabka : i ≥ 1, j ≥ 1, k ≥ 1},
L∗1 = {ax1ax2 . . . axr : r ≥ 1, xi ∈ {b, c}, 1 ≤ i ≤ r} ∪ {λ},
L+

2 = {abs1aabs2a . . . absta : t ≥ 1, sj ≥ 1, 1 ≤ j ≤ t}.

From the algebraic point of view, L+ is the smallest set which contains L and is closed
with respect to the product of words, i. e., L+ is the smallest semigroup containing L.
Analogously, L∗ is the smallest monoid containing L.

We note that, by definition, L∗ = L+ ∪ L0 = L+ ∪ {λ} always holds, whereas L+ =
L∗ \ {λ} only holds, if λ /∈ L.

Let us consider the special case where L only consists of the letters of an alphabet X.
Then for any non-negative integer n, Ln consists of all words of length n over X. Thus
L∗ and L+ are the sets of all words over X and all non-empty words over X, respectively.
This gives a justification for the notation we introduced in the very beginning.

Let X and Y be two alphabets. A homomorphism h : X∗ → Y ∗ is a mapping where

h(wv) = h(w)h(v) for any two words w, v ∈ X∗ . (1.1)

From (1.1) and w = w · λ for all w ∈ X∗, we immediately obtain h(w) = h(w)h(λ) for
all w ∈ X∗, which implies h(λ) = λ. Obviously, a homomorphism can be given by the
images h(a) of the letters a ∈ X; an extension to words by

h(a1a2 . . . an) = h(a1)h(a2) . . . h(an)

follows from the homomorphism property (1.1).
A homomorphism h : X∗ → Y ∗ is called non-erasing if h(a) 6= λ for all a ∈ X.
We extend the homomorphism to languages by

h(L) = {h(w) | w ∈ L} .

If h is a homomorphism, then the inverse homomorphism h−1 applied to a language
K ⊆ Y ∗ is defined by

h−1(K) = {w | w ∈ X∗, h(w) ∈ K} .

Let the homomorphisms h1 and h2 mapping {a, b}∗ to {a, b, c}∗ be given by

h1(a) = ab, h1(b) = bb and h2(a) = ac, h2(b) = λ.
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Obviously, h1 is non-erasing. We get

h1(abba) = abbbbbab, h1(bab) = bbabbb, h2(abba) = acac), h2(bab) = ac

and

h1({an | n ≥ 0} ∪ {bn | n ≥ 0}) = {(ab)n | n ≥ 0} ∪ {b2n | n ≥ 0},
h2({an | n ≥ 0} ∪ {bn | n ≥ 0}) = {(ac)n | n ≥ 0}

(the powers of b only give the empty word),

h1({anbn | n ≥ 1}) = {(ab)nb2n | n ≥ 1},
h2({anbn | n ≥ 1}) = {(ac)n | n ≥ 1},
h−1

1 ({abn | n ≥ 1}) = {abn | n ≥ 0},
h−1

2 ({ac, acac}) = {biabj | i ≥ 0, j ≥ 0} ∪ {brabsabt | r ≥ 0, s ≥ 0, t ≥ 0},
h−1

1 ({anbn | n ≥ 1}) = {a},
h−1

2 ({anbn | n ≥ 1}) = ∅.

For any homomorphism h and any letter a, h(a) is a uniquely determined word. We
extend the notion by dropping this property.

A mapping σ : X∗ → 2Y ∗ is called a substitution if the following relations hold:

σ(λ) = {λ} ,

σ(xy) = σ(x)σ(y) for x, y ∈ X∗ .

In order to define a substitution it is sufficient to give the sets σ(a) for any letter a ∈ X.
Then we can determine σ(a1a2 . . . an) for a word a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n by

σ(a1a2 . . . an) = σ(a1)σ(a2) . . . σ(an)

which is a generalization of the second relation in the definition of a substitution. More-
over, for a language L ⊂ X∗, we set

σ(L) =
⋃
x∈L

σ(x) .

For the substitutions σ1 and σ2 from {a, b}∗ in {a, b}∗ given by

σ1(a) = {a2}, σ1(b) = {ab} and σ2(a) = {a, a2}, σ2(b) = {b, b2},

we obtain

σ1({aba, aa}) = {a2aba2, a2a2} = {a3ba2, a4},
σ2({aba, aa}) = {aba, a2ba, aba2, a2ba2, ab2a, a2b2a, ab2a2, a2b2a2, aa, a2a, aa2, a2a2}

= {aba, a2ba, aba2, a2ba2, ab2a, a2b2a, ab2a2, a2b2a2, a2, a3, a4}.

Let L be a family of languages. A substitution σ : X∗ → Y ∗ is called a substitution
by sets of L, if σ(a) ∈ L holds for any a ∈ X.
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If a substitution σ maps X∗ to X∗, then we can apply σ to σ(L), again, i. e., we can
iterate the application of σ. Formally, this is defined by

σ0(x) = {x} ,

σn+1(x) = σ(σn(x)) for n ≥ 1.

For a word w = a1a2 . . . an with n ≥ 0 and ai ∈ V for 1 ≤ i ≤ n, we set wR =
anan−1 . . . a1. The word wR is called the mirror image or reversal of w. It is obvious that
λR = λ and (w1w2)

R = wR
2 wR

1 for any two words w1 and w2. For a language L, we set
LR = {wR | w ∈ L}.

The concatenation or product of two words u and v gives the word uv. In arithmetics,
the inverse operation is the quotient. An analog would be to consider v as the left quotient
of uv and u and u as the right quotient of uv and v. Therefore cancellation of prefixes or
suffixes can be regarded as the analog of the quotient. We give the notion for sets. For
two languages L and L′, we define the right and left quotient by

Dl(L,L′) = {v | uv ∈ L for some u ∈ L′}

and

Dr(L,L′) = {u | uv ∈ L for some v ∈ L′},
respectively. For example, for

L = {anbn | n ≥ 1} and L′ = {an | n ≥ 1},

we get

Dl(L,L′) = {ambn | m ≥ 0, n ≥ 1, n ≥ m} and Dr(L,L′) = ∅.

A multiset M over V is a mapping of V ∗ into the set N0 of non-negative integers.
M(x) is called the multiplicity of x. The cardinality and the length of a multiset M are
defined as

#(M) =
∑
x∈V ∗

M(x) and l(M) =
∑
x∈V ∗

M(x)|x| .

A multiset M is called finite iff there is a finite subset U of V ∗ such that M(x) = 0 for
x /∈ U . Then its cardinality is the sum of the multiplicities of the elements of U . A finite
multiset M can be represented as a “set” where M contains M(x) occurrences of x. Thus
a finite multiset M in this representation consists of #(M) elements. For example, the
multiset M over V = {a, b} with M(a) = M(b) = M(aba) = 1, M(ab) = M(ba) = 2
and M(x) = 0 in all other cases can be represented as M = [a, b, ab, ab, ba, ba, aba]3.
Obviously, as for sets, the order of the elements in the multiset M is not fixed and can
be changed without changing the multiset. For a multiset M = [w1, w2, . . . , wn] (in such
a representation) we have l(M) = |w1w2 . . . wn|. Moreover, for a multiset M over V and
a ∈ V , we set #a(M) = #a(w1w2 . . . wn).

3We use the brackets [ and ] instead of { and } in order to distinguish multisets from sets.
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1.2 Polynomials and Linear Algebra

A function p : R→ R is called a polynomial (over the real numbers) if

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x + a0, (1.2)

for some n ∈ N0 and ai ∈ R for 0 ≤ i ≤ n. The number n is called the degree of n, and
the reals ai are called the coefficients of p.

A (complex) number α is called a root of a polynomial p if p(α) = 0. If p is a polynomial
with m different roots αi, 1 ≤ i ≤ m, then there are natural numbers ti ∈ N, 1 ≤ i ≤ m,
such that

p(x) = (x− α1)
t1 · (x− α2)

t2 · · · · · (x− αm)tm and n1 + n2 + · · ·+ nm = n.

For 1 ≤ i ≤ m, the number ti is called the multiplicity of the root αi.

Theorem 1.1 Let anxn + an−1x
n−1 + an−2x

n−2 + · · ·+ a2x
2 + a1x+ a0 be a polynomial of

degree n with the roots αi of multiplicity ti, 1 ≤ i ≤ s, and
∑s

i=1 ti = n. Then the linear
difference equation

anf(m + n) + an−1f(m + n− 1) + · · ·+ a2f(m + 2) + a1f(m + 1)x + a0f(m) = 0

for m ≥ 0 has the solution

f(m) =
s∑

i=1

(βi,0 + βi,1m + βi,2m
2 + . . . βi,ti−1m

ti−1)αm
i

with certain constants βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1. 2

A (m,n)-matrix M is a scheme of m ·n (real) numbers ai,j, 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The scheme consists of m rows where the i-th row consists of the elements ai,1, ai,2, . . . , ai,n,
1 ≤ i ≤ m. Equivalently, it is given by n columns where the j-th column is built by the
numbers a1,j, a2,j, . . . , am,j, 1 ≤ j ≤ n. Thus we get

M =




a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

. . . . . . .
am,1 am,2 am,3 . . . am,n




We write M = (ai,j)m,n and omit the index m,n if the size of the matrix is known from
the context. The numbers ai,j are called coefficients of the matrix M .

Obviously, row vectors are (1, n)-matrices and column vectors are (m, 1)-matrices. A
matrix is called a square matrix, if it is an (n, n)-matrix for some n. Let En,n be the
square (n, n)-matrix with ai,i = 1 for 1 ≤ i ≤ n and aj,k = 0 for j 6= k (again, we omit
the index if the size is understood by the context); En,n is called the unity matrix. By O
we denote the zero matrix where all entries are the real number 0.

Let M1 = (ai,j)m,n and M2 = (bk,l)r,s be two matrices, and let d be a (real) number.
Then the product d ·M1 is defined by

d ·M1 = (d · ai,j)m,n .
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The sum M1 + M2 is defined iff m = r and n = s by setting

M1 + M2 = (ai,j + bi,j)m,n .

The product M1 ·M2 is defined iff n = r by setting

M1 ·M2 = (
n∑

j=1

ai,jbj,l)m,s . (1.3)

The transposed matrix (M1)
T is formed by interchanging the rows and columns, i. e.,

(M1)
T = (aj,i)n,m .

The determinant of an (n, n)-matrix M is defined by

det(M) =
∑

p=(i1,i2,...,in)

(−1)I(p)a1,i1a2,i2 . . . an,in

where the sum is taken over all permutations of 1, 2, . . . , n. By definition, det maps
matrices to reals.

The characteristic polynomial χA(x) of a (square) (n, n)-matrix A is defined as

χA(x) = det(A− xE) = anxn + an−1x
n−1 + an−2x

n−2 + · · ·+ a2x
2 + a1x + a0 .

We note that an = (−1)n and a0 = det(A).
A complex number µ is called an eigenvalue of the square matrix A iff det(A−µE) = 0,

i. e., iff µ is a root of χA.
The following theorem is named after the English mathematicians Cayley4 and

Hamilton5.

Theorem 1.2 For any square matrix A, χA(A) = O. 2

If we give a complete writing of the characteristic polynomial χA(A), then this means

χA(A) = anA
n + an−1A

n−1 + an−2A
n−2 + · · ·+ a2A

2 + a1A + a0E = O .

1.3 Graph Theory

A directed graph is a pair G = (V,E) where V is a finite non-empty set and E is a subset
of V ×V \{(v, v) | v ∈ V }. The elements of V are called vertices or nodes; the elements of
E are called edges. We note that, by our definition, a graph does not contain loops, i. e.,
edges connecting a node u with itselves, and no multiple edges since E is a set instead of
a multiset.

A directed graph H = (U,F ) is called a subgraph of the directed graph G = (V, E), if
U is a subset of V and F is the restriction of E to U × U .

4Arthur Cayley, 1821–1895
5William Rowan Hamilton, 1805–1865
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A graphic representation of a graph can be given as follows: We interpret the vertices
as ”small” circles in a plane, and we draw a (directed) line from u to v if there is an edge
(u, v).

A directed path from a node u to a node v is a sequence u0, u2, . . . , un, n ≥ 0, of nodes
such that u = u0, un = v and (ui, ui+1) ∈ E for 0 ≤ i ≤ n− 1. If there is a path from u
to v, we say that u and v are connected in G. By n = 0, we ensure that u is connected
with u. The non-negative number n is called the length of the path.

A directed graph is called a directed tree, if there is no edge u such that there is a path
of length n ≥ 1 from u to u.

A task which has to be solved very often is the determination of all nodes which are
connected with a given node u in a given graph G. Two algorithms to solve this problem
are depth-first-search(G,u) and breadth-first-search(G,u), where all nodes connected with
u are marked, which can be given by

1. Mark u.

2. For all nodes w with (u,w) ∈ E such that w is not marked, do depth-first-search(G,w).

and

1. Mark u and put u in a queue Q.

2. While Q is not empty, do the following steps:

(a) Cancel the first element w of Q.

(b) For all nodes z with (w, z) ∈ E such that z is not marked, mark z and put z
into the queue Q.

respectively. It is easy to see that both algorithm do a finite number of steps for each
node and each edge of the graph. Hence we have

tdepth−first−search(G,u) ∈ O(#(V ) + #(E)) and tbreadth−first−search(G,u) ∈ O(#(V ) + #(E)).

In many applications of graph, the edges describe a connection between the nodes
which has no direction. Therefore undirected graphs have also been introduced.

A undirected graph is a pair G = (V,E) where V is a finite non-empty set and E is
a set of two-element subsets of V . The elements of V and E are also called nodes and
edges. Instead of an directed edges (u, v) we have sets {u, v} in an undirected graph.

The notions of a subgraph, of a path and of a tree can easily be transferred to undi-
rected graphs.

Let G = (V,E) be an undirected graph. The degree d(u) of a node u is the number of
nodes v such that {u, v} ∈ E.

We define some special undirected graphs.

– An undirected graph G = (V, E) is called k-regular if and only if all nodes of V have
the degree k, i. e., d(u) = k for all u ∈ V .

– An undirected graph G = (V, E) is called regular if and only if it is k-regular for
some k.

– A 2-regular graph G = (V, E) is also called a simple closed curve.

– An undirected graph G = (V, E) is called a simple curve, if all its nodes have a
degree at most 2.

– An undirected graph G = (V, E) is called Eulerian if there is a path of length #(E)
which contains any edge of E.
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– An undirected graph G = (V,E) is called Hamiltonian, if there is a path without
repetitions of length #(V )− 1.

– An undirected graph G = (V,E) is called edge-colourable by k colours, if there is
a mapping from E to {1, 2 . . . , k} such that, for any nodes three nodes u, v1, v2 ∈
V with {u, v1} ∈ E and {u, v2} ∈ E, {u, v1} and {u, v2}are mapped to different
numbers.

– An undirected graph G = (V, E) is called bipartite, if there is a partition of V into
two sets V1 and V2 (i. e., V = V1 ∪ V2 and V1 ∩ V2 = ∅) such that, for any edge
{u, v} ∈ E, {u, v} /∈ V1 and {u, v} /∈ V2, i. e., any edge connects an element of V1

with an element of V2.
The following facts are known.
– A graph G = (V,E) is Eulerian if and only if

– all nodes of V have an even degree or
– there are two nodes u and v in V such that u and v have an odd degree and

all nodes of V different from u and v have even degree.
– A graph G = (V, E) is Hamiltonian if and only if it contains a subgraph H which is

a simple curve and contains all nodes of G.
– A graph is bipartite if and only if it is edge-colourable with two colours.

1.4 Intuitive Algorithms

An intuitive algorithm
– transforms input data in output data,
– consists of a finite sequence of commands such that

– there is a uniquely determined command which has to be performed first,
– after the execution of a command there is a uniquely determined command which

has performed next, or the algorithm stops.
We define the running time tA(w) of an algorithm A on an input w as the number of
commands (or steps) performed by the algorithm on input w. Therefore, we assume
that a command can be executed in one time unit. This is not satisfied in reality; for
instance, the multiplication of two integers requires much more time than the addition
of two integers. Moreover, the exact running time of single commands depends on the
implementation of the commands, the used data structures etc. However, if c is the
maximal running time of the execution of a single command, then the realistic running
time of A on w is bounded by c · tA(w). Thus tA(w) can be considered as a useful
approximation of the real running time, and it is independent of the special features of
implementation.

Now let M and M ′ be two sets. Moreover, let k : M → R and k′ : M ′ → R be
two functions which associate with each element of M and M ′, respectively, a size of the
element. Furthermore, let A be an algorithm which transforms an element m ∈ M into
an element A(m) ∈ M ′. Then we set

tA(n) = max{tA(m) | m ∈ M, k(m) = n}
and

uA(n) = max{k′(A(m)) | m ∈ M, k(m) = n.}
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tA(n) and uA(n) give the maximal running time and the maximal size obtained from
element of M with size n. Since we do not require that there is an element of size n for
any n, tA and uA are not defined for all natural numbers.

As an example, let us consider the sets

M = {(A,B) | A and B are (m, m)-matrices, m ∈ N}

and
M ′ = {A | A is an (m,m)-matrix, m ∈ N}.

If A and B are (m,m)-matrices for some are m ∈ N, then we set

k((A,B)) = 2m2 and k′(A) = m2,

i. e., we take the number of numbers contained in the matrices as the size. Let A be the
algorithm which computes the product A · B = A((A, B) according to (1.3). Obviously,
A transforms inputs from M into outputs of M ′.

Let A and B be two m,m)-matrices. Then k′(A((A,B)) = m. Since the calculation
of one element of A · B requires m multiplications and m − 1 additions of numbers and
we have to compute m2 elements, we get tA((A,B)) = (2m − 1)m2. We note that, for
a given n, the running time and the size of the product are identical for all pairs (A,B)
with k((A,B)) = n (i. e., A and B are (m,m)-matrices with n = 2m2). Thus we have

tA(n) = max{tA((A,B)) | A and B are (m,m)-matrices and n = 2m2}
= max{2m3 −m2 | n = 2m2}

=
n

3
2√
2
− n

2

and

uA(n) = max{k′(A((A,B)) | A and B are (m,m)-matrices and n = 2m2} = m2 =
n

2
.

In most cases it is very hard to determine the functions tA and uA and it is sufficient
to give upper bounds for these functions which can be considered as good approximations.
Formally, for a function f : N→ N, we set

O(f) = {g | g : N→ N, there are a real number c > 0 and an n0 ∈ N
such that g(n) ≤ c · f(n) for all n ≥ n0}.

Intuitively, the set O(f) consists of all functions which differ from f by a multiplicative
factor. Therefore, in many cases, it is sufficient to use functions f and g instead of the
exact functions tA and uA such that tA ∈ O(f) and uA ∈ O(g).

Thus in the sequel, for short, we use the formulation that the algorithms works in
time O(f(k(m)) and that k′(A(m)) ∈ O(g(k(m)). This can be done since n = k(m) and
k′(A(m)) ≤ u(n).

If the size depends on some parameters, then we take into considerations functions f
and g which also depend on these parameters.




