

Contents

1 Fundamentals 7
1.1 Sets and Multisets of Words . 7
1.2 Polynomials and Linear Algebra . 13
1.3 Graph Theory . 14
1.4 Intuitive Algorithms . 16

A SEQUENTIAL GRAMMARS 19

2 Basic Families of Grammars and Languages 21
2.1 Definitions and Examples . 21
2.2 Normal forms . 32
2.3 Iteration Theorems . 48

B Formal Languages and Linguistics 133

8 Some Extensions of Context-Free Grammars 135
8.1 Families of Weakly Context-Sensitive Grammars 135
8.2 Index Grammars . 135
8.3 Tree-Adjoining Grammars . 135
8.4 Head Grammars . 135
8.5 Comparison of Generative Power . 135

9 Contextual Grammars and Languages 137
9.1 Basic Families of Contextual Languages . 137
9.2 Maximally Locally Contextual Grammars 137

10 Restart Automata 139

D Formal Languages and Pictures 225

14 Chain Code Picture Languages 227
14.1 Chain Code Pictures . 227
14.2 Hierarchy of Chain Code Picture Languages 235
14.3 Decision Problem for Chain Code Picture Languages 239

14.3.1 Classical Decision Problems . 239
14.3.2 Decidability of Properties Related to Subpictures 249
14.3.3 Decidability of ”Geometric” Properties 252

5

6 CONTENTS

14.3.4 Stripe Languages . 255
14.4 Some Generalizations . 261
14.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars 263

14.5.1 Definitions and some Theoretical Considerations 263
14.5.2 Applications for Simulations of Plant Developments 267
14.5.3 Space-Filling Curves . 269
14.5.4 Kolam Pictures . 272

15 Siromoney Matrix Grammars and Languages 275
15.1 Definitions and Examples . 277
15.2 Hierarchies of Siromoney Matrix Languages 282
15.3 Hierarchies of Siromoney Matrix Languages 282
15.4 Decision Problems for Siromoney Matrix Languages 285

15.4.1 Classical Problems . 285
15.4.2 Decision Problems related to Submatrices and Subpictures 290
15.4.3 Decidability of geometric properties 294

16 Collage Grammars 301
16.1 Collage Grammars . 303
16.2 Collage Grammars with Chain Code Pictures as Parts 312

Bibliography 317

PART A

SEQUENTIAL GRAMMARS

Chapter 2

Basic Families of Grammars and
Languages

2.1 Definitions and Examples

Any natural languages is based on some grammar, which contains the rules by which
syntactically correct sentences of the language can be built. For instance, a sentence can
consist of a noun phrase (subject) and a verb phrase (predicate) or of a noun phrase
(subject), verb phrase (predicate) and a noun phrase (object); a noun phrase can be built
by a determiner and a noun; a verb phrase can consist of a verb and an adverb. In a
formalized way, we can describe these rules by

(a) (sentence) → (noun phrase) (verb phrase),
(b) (sentence) → (noun phrase) (verb phrase) (noun phrase),
(c) (noun phrase) → (determiner) (noun),
(d) (verb prase) → (verb) (adverb).

Moreover, the parts of speech (noun, verb, etc.) have to be replaced by words of this
type. Thus we also have rules of the following forms.

(e1) (noun) → dog, (e2) (noun) → banana,
(f1) (determiner) → the, (f2) (determiner) → a,
(g1) (verb) → goes, (g2) (verb) → sings,
(h) (adverb) → slowly.

By a successive application of such rules, the correct sentences of a natural language are
constructed. For instance, by an application of (a), (d), (g1), (h), (c), (e1), and (f1) in
this order, we get

(sentence) =⇒ (noun phrase) (verb phrase)
=⇒ (noun phrase) (verb) (adverb)
=⇒ (noun phrase) goes (adverb)
=⇒ (noun phrase) goes slowly
=⇒ (determiner) (noun) goes slowly
=⇒ (determiner) dog goes slowly
=⇒ the dog goes slowly

21

22 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

which is a sentence of the English languages. However, we mention that that the rules
cover only the syntax of a languages and not the semantics. Thus we are able to obtain

(sentence) =⇒ . . . =⇒ a banana sings slowly

by the use of (a), (d), (g2), (h), (c), (e2), and (f2), which is a syntactically correct sentence
but semantical nonsense.

The situation is analogous with respect to programming languages. Here the manual
of a programming languages contains the rules by which programs, subprograms or parts
of programs can be built. As an example we give some rules from PASCAL which describe
real numbers (where our notation is analogous to that used above for natural languages
and differs from the usual notation for programming languages; the symbol | divides
existing possibilities for replacements; {X} denotes an arbitrary non-empty sequence of
elements which can be taken for X).

(unsigned real)→ (unsigned integer).(digit){digit} | (unsigned integer)E(scale
factor)
(unsigned integer) → (digit) | (digit){digit}
(scale factor) → (unsigned integer) | (sign) (unsigned integer)
(digit) → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
(sign) → + | –

By applications of these rules we get

(unsigned real) =⇒ (unsigned integer)E(scale factor)
=⇒ (digit){digit}E(scale factor)
=⇒ 3{digit}E(scale factor)
=⇒ 314E(scale factor)
=⇒ 314E(sign)(unsigned integer)
=⇒ 314E–(unsigned integer)
=⇒ 314E–(digit)
=⇒ 314E–2

which gives the real number 3.14 (the well-known approximation for π).

We notice that the definition of natural and programming languages have the following
in common:

– Essentially, the given rules describe a replacement. The objects given at the left
hand side are replaced by the right hand side.

– There are some objects which are replaced (e. g. (noun phrase), (verb), (unsigned
real), (digit)), and there are objects which are not changed by the replacements,
i. e., they are terminal characters (e. g. the words of natural language or the digits
0,1,. . . ,9 and the signs + and –.

– The generation of sentences and programs starts with fixed objects (sentence) and
(program) and ends if only unreplaceable objects are existing.

We now give a formalization of the intuitive ideas used in the description and/or gen-
eration of natural and programming languages from their grammars. We shall use letters
of an alphabet as objects. Then the generated sentences or programs or subprograms are

2.1. DEFINITIONS AND EXAMPLES 23

words over an alphabet which contains as letters words of the English language or basic
commands of the programming language as if, while and digits, respectively.

In order to restrict the possibilities to choose the basic alphabet, in the sequel we
assume that all considered alphabets are finite subsets of a fixed infinite set of countable
cardinality.

Definition 2.1 A phrase structure grammar (or short grammar) is a quadruple

G = (N, T, P, S)

where
– N and T are finite, disjoint alphabets, whose union is denoted by V ,
– P is a finite subset of (V ∗ \ T ∗)× V ∗, and
– S is an element of N .

The elements of N are called nonterminals (or variables). (noun phrase) and (un-
signed real) are typical examples of nonterminals if we consider natural or programming
languages. The elements of T are terminals. In the sequel we mostly use capital Latin
letters to denote nonterminal and small Latin letters for the notation of terminals; in both
cases we use indexed version of such letters, too. The elements of P are called rules or
productions. Usually, we write a pair (α, β) of P as α → β, since this notation reflects the
idea that application of rules are replacements (see next definition). The distinguished
symbol S ∈ N is called the axiom or start word of the grammar.

Definition 2.2 Let G = (N, T, P, S) be a phrase structure grammar as in Definition 2.1.
We say that the word γ ∈ V + directly derives the word γ′ ∈ V ∗ (written as γ =⇒ γ′), if

γ = γ1αγ2, γ′ = γ1βγ2, α −→ β ∈ P

for some γ1, γ2 ∈ V ∗.

According to Definition 2.2 γ′ is obtained from γ if the subword of α of γ is replaced
by β, where the rule α → β exists in P . Therefore the productions of P state which
replacements are allowed. We also say that γ′ is directly generated from γ. The transfor-
mation from γ to γ′ is called a direct derivation step, too. If we want to emphasize the
rule p = α → β which is applied in the derivation step, we write

γ =⇒
p

γ′.

By =⇒ a binary relation on V ∗ is defined. As usual we can build the reflexive and
transitive closure

∗
=⇒ of =⇒, i. e.,

γ
∗

=⇒ γ′

if and only if there are a natural number n ≥ 0 and words δ0, δ1, δ2, . . . , δn−1, δn such
that

γ = δ0 =⇒ δ1 =⇒ δ2 =⇒ . . . =⇒ δn−1 =⇒ δn = γ′

(in case n = 0 we have γ′ = γ, and in case n = 1 we have γ =⇒ γ′). Thus γ
∗

=⇒ γ′ if and
only if γ′ is obtained from γ by iterated applications of (not necessarily identical) rules

24 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

of P . If γ
∗

=⇒ γ′, then we say that γ derives or generates γ′ (in some derivation steps).

If we want to mention which production are used to get a derivation γ
∗

=⇒ γ′, we write
γ =⇒

q
γ′ where q is the sequence of productions used in the derivation.

If a derivation γ
∗

=⇒ γ′ consists of n direct derivation steps, then we say that the
derivation has the length n and write sometimes γ

n
=⇒ γ′.

A word w ∈ V ∗ is called sentential form of G, if S
∗

=⇒ w, i. e., if w can be obtained
by applications of rules of P from the axiom S.

Definition 2.3 For a phrase structure grammar G = (N, T, P, S) as in Definition 2.1,
we define the language L(G) generated by G by

L(G) = {w | w ∈ T ∗ and S
∗

=⇒ w}.
According to this definition the language generated by G = (N, T, P, S) consists of all

sentential forms of G which only contain terminal letters. Moreover, this definition shows
that it is necessary to give the letter S as a component in the grammar because only
those words belong to the language which can be generated from S. Furthermore, by this
definition it is clear why the elements of N and T are called nonterminals and terminals,
respectively; the nonterminals do not occur in the words of the generated language, but
they are necessary to perform the derivations; the terminals have a final character since
they cannot be replaced and form the alphabet for the generated language.

We present some examples.

Example 2.4 We consider the phrase structure grammar

G1 = ({S, A,B}, {a, b}, {p1, p2, p3, p4, p5}, S)

with

p1 = S → AB, p2 = A → aA, p3 = A → λ, p4 = B → Bb, p5 = B → λ.

We first prove that any sentential form of G1 has one of the following forms:

S, anABbm, anAbm, anBbm, anbm with n ≥ 0 and m ≥ 0. (2.1)

Obviously, the statement holds for the axiom S and the only word AB (n = m = 0) which
can directly be derived from S. We consider a word of the form anABbm. Then we have
the following derivations:

anABbm =⇒
p2

anaABbm, anABbm =⇒
p3

anλBbm,

anABbm =⇒
p4

anABbbm, anABbm =⇒
p5

anAλbm.

Thus, from anABbm, we obtain only the words

an+1ABbm, anBbm, anABbm+1, anAbm

which all have the form given in (2.1). Analogously, it is easy to prove that all words
derivable from anAbm and anBbm have the form given in (2.1). Since we cannot apply a
rule to a word of the form anbm, we have proved the above statement.

2.1. DEFINITIONS AND EXAMPLES 25

We now show that all words of the forms given in (2.1) are sentential forms of G1.
With exception of anAbm this assertion follows from the derivation

S =⇒
p1

AB =⇒ aAB =⇒ aaAB =⇒ . . . =⇒ an−1AB︸ ︷︷ ︸
(n−1) applications of p2

=⇒
p2

anAB =⇒ anABb =⇒ anABb2 =⇒ . . . =⇒ anAbm︸ ︷︷ ︸
m applications of p4

=⇒
p3

anBbm =⇒
p5

anbm.

Moreover, anAbm is obtained by an analogous derivation where we change the order of
applications of p3 and p5.

Since the language generated by G1 only contains words over the terminal alphabet
{a, b}, it consists of all words of {a, b}∗ which have a form given in (2.1). Consequently,

L(G1) = {anbm | n ≥ 0, m ≥ 0}.
Example 2.5 Let

G2 = ({S}, {a, b}, {S → aSb, S → ab}, S).

By induction we now show that a word w can be derived by n derivation steps, n ≥ 1 if
and only if w = anSbn or w = anbn.

Obviously, the statement holds for n = 1 because we can generate only aSb and ab by
an application of S → aSb and S → ab, respectively.

Let us assume that w is obtained by n derivation steps. By definition, there is a word
v which can be derived by n− 1 steps such that v =⇒ w by an application of a rule. By
induction hypothesis, v = an−1Sbn−1 or v = an−1bn−1. Since we cannot apply a rule to
an−1bn−1, we get v = an−1Sbn−1. By application of the two rules of the grammar to v we
derive an−1aSbbn−1 = anSbn and an−1abbn−1 = anbn. Thus our assertion is shown.

Since any word of L(G2) contains only terminal letters and can be generated by a
certain number of derivation steps, we obtain

L(G2) = {anbn | n ≥ 1}.
Example 2.6 We consider the phrase structure grammar

G3 = ({S, A}, {a, b}, {S → λ, S → aS, S → Sb}, S).

As in Example 2.4 we show that the set of sentential form consists of all words of the form
anSbm or anbm with n ≥ 1 and m ≥ 1 (or we prove as in Example 2.5 that by k derivation
steps, k ≥ 1, we can derive exactly the words anSbm, an−1bm, anbm−1 with n + m = k).
Then

L(G3) = {anbm | n ≥ 0, m ≥ 0}
follows immediately.

Example 2.7 Let the phrase structure grammar

G4 = ({S, A}, {a, b}, {S → λ, S → aS, S → a, S → A,A → bA,A → b}, S)

26 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

be given. Essentially, in Figure 2.1 all possible derivation in the grammar G4 are given,
where the arrows to the right correspond to an application of S → aS or A → bA, the
downwards arrows correspond to applications of S → A or A → b, and the upwards and
leftupwards arrows correspond to applications of S → a and S → λ, respectively. Now it
is easy to see that we get

L(G4) = {anbm | n ≥ 0, m ≥ 0}.

A formal proof as in the preceding examples is left to the reader.

Example 2.8 We consider the phrase structure grammar

G5 = ({S, A, B, B′, B′′}, {a, b, c}, {p1, p2, p3, p4, p5, p6, p7, p8}, S)

with

p1 = S → ABA, p2 = AB → aAbB′, p3 = AB → abB′′, p4 = B′b → bB′,
p5 = B′′b → bB′′, p6 = B′A → BAc, p7 = B′′A → c, p8 = bB → Bb.

We determine L(G5) by an analysis of all possible derivation.
For n ≥ 0, let wn = anABbnAcn.
We first discuss the case n ≥ 2. There are only the rules p2 and p3 which can be

applied to wn.
Case 1: Application of p2. We obtain the word an+1AbB′bnAcn. Now only p4 is

applicable, and the application of this rule yields an+1AbbB′bn−1Acn, i. e., we have moved
B′ to the right by one position. Again, only p4 is applicable, which results in a further
movement of B′ to the right by one position. This situation remains until we have derived
the word an+1Abn+1B′Acn. Now we can only apply p6, which gives an+1Abn+1BAcn+1.
Now only p8 can be applied which yields a move of B to the left by one position. Again,
only this movement is possible until we obtain an+1ABbn+1Acn+1 = wn+1.

Case 2: Application of p3. We obtain the word an+1bB′′bnAcn. Now only p5 is appli-
cable, i. e., we have to move B′′ to the right by one position. This situation remains until
we get an+1bn+1B′′Acn. We can only apply p7 and obtain the terminal word an+1bn+1cn+1.

Analogously, we have only the following derivations starting from w0 and w1:

w0
∗

=⇒ w1, w0
∗

=⇒ abc, w1
∗

=⇒ w2, w1
∗

=⇒ a2b2c2.

Because S =⇒ w0 is the only derivation from S, we get

L(G5) = {anbncn | n ≥ 1}.

Example 2.9 Let the phrase structure grammar

G6 = ({S, A,B,B′, B′′}, {a, b, c}, {p0, p1, p2, p3, p4, p5, p6, p7, p8}, S)

with

p0 = S → abc, p1 = S −→ aABbA, p2 = AB −→ aAbB′,
p3 = AB −→ abB′′, p4 = B′b −→ bB′, p5 = B′′b −→ bB′′,
p6 = B′A −→ BAc, p7 = B′′A −→ cc, p8 = bB −→ Bb

2.1. DEFINITIONS AND EXAMPLES 27

λ a aa aaa aaaa a5 a6 · · ·

S

KS

+3

®¶

Zb>>>>>>>

>>>>>>>

aS

KS

+3

®¶

\dAAAAAAAA

AAAAAAAA

aaS

KS

+3

®¶

^f EEEEEEEE

EEEEEEEE

aaaS

KS

+3

®¶

_g HHHHHHHHH

HHHHHHHHH

a4S

KS

+3

®¶

`h JJJJJJJJJ

JJJJJJJJJ

a5S

KS

+3

®¶

ai JJJJJJJJJJ

JJJJJJJJJJ

· · ·

a5A +3

®¶

· · ·

a5b · · ·

a4A +3

®¶

a4bA +3

®¶

· · ·

a4b a4bb · · ·

a3A +3

®¶

a3bA +3

®¶

a3b2A +3

®¶

· · ·

a3b a3b2 a3b3 · · ·

aaA +3

®¶

aabA +3

®¶

aabbA +3

®¶

aab3A +3

®¶

· · ·

aab aabb aab3 aab4 · · ·

aA +3

®¶

abA +3

®¶

ab2A +3

®¶

ab3A +3

®¶

ab4A +3

®¶

· · ·

ab ab2 ab3 ab4 ab5 · · ·

A +3

®¶

bA +3

®¶

bbA +3

®¶

bbbA +3

®¶

b4A +3

®¶

b5A +3

®¶

· · ·

b bb bbb b4 b5 b6 · · ·

Figure 2.1: Derivations in Example 2.7

be given. As in the preceding example, we can show that

L(G6) = {anbncn | n ≥ 1}.
Example 2.10 We regard the phrase structure grammar

G7 = ({S}, {x, y, z, +,−, ·, :, (,)}, P, S)

28 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

with

P = {S −→ (S+S), S −→ (S−S), S −→ (S·S), S −→ (S : S), S −→ x, S −→ y, S −→ z}.

We show that L(G7) consists of all correctly bracketed arithmetic expression over the
variables x, y, z (where we do not use precedence rules for the operations, which means
that no brackets can be omitted, and do also not omit the most outer brackets).

As a first step we prove that any sentential form of G7 is a correctly bracketed ex-
pression over the variables S, x, y, z. This follows easily by induction on the number of
derivation steps since the axiom is a correct arithmetic expression and any replacement
of S in a correctly bracketed expression by x, y, z or (S ◦ S), ◦ ∈ {+,−, ·, :} gives a cor-
rectly bracketed expression, again. Thus the languages L(G7) can only contain correctly
bracketed arithmetic expressions over {x, y, z}.

We now show that all correctly bracketed expressions can be generated by G7. We
give a proof by induction on the number n of steps in the construction of arithmetic
expressions. By no step of construction (n = 0), we can only obtain the basic arithmetic
expressions, i. e., the variables x, y, z. Obviously, these can be generated by application
of the rules S → x, S → y and S → z. Thus x, y, z ∈ L(G7). Let n ≥ 1, and let
w be an arithmetic expression which can be obtained in n steps of construction. Then
w = (w1 ◦w2) where ◦ ∈ {+,−, ·, :} and w1 and w2 are arithmetic expressions. Moreover,
w1 and w2 can be constructed by at most n− 1 steps. By induction hypothesis, there are
derivations

S
∗

=⇒ w1 and S
∗

=⇒ w2.

Thus we also have the derivation

S =⇒ (S ◦ S)
∗

=⇒ (w1 ◦ S)
∗

=⇒ (w1 ◦ w2) = w.

Therefore w ∈ L(G7) is shown.

We now introduce some special types of grammars.

Definition 2.11 A grammar G = (N, T, P, S) is called
i) monotone, if |α| ≤ |β| holds for all rules α → β of P with the possible exception of

S → λ if S does not occur on the right side of any production of P .
ii) context-sensitive, if all rules of P are of the form uAv → uwv with u ∈ V ∗, v ∈ V ∗,

A ∈ N , and w ∈ V + with the possible exception of S → λ if S does not occur on
the right side of any production of P .

iii) context-free, if all rules of P are of the form A → w with A ∈ N and w ∈ V ∗.
iv) linear, if all rules of P are of the form A → uBv or A → w with A, B ∈ N and

u, v, w ∈ T ∗.
v) regular, if all rules of P are of the form A → wB or A → w with A,B ∈ N and

w ∈ T ∗.

The monotone grammars have – apart from the exceptional case – the property that,
for any derivation step γ =⇒ γ′, the length of the derived word γ′ is not smaller than
the length of γ, i. e., the derivation relation =⇒ is monotone with respect to the length.
Therefore these grammars are called monotone.

2.1. DEFINITIONS AND EXAMPLES 29

By the application of a rule uAv → uwv of a context-sensitive grammar, we only
replace the nonterminal A by the word w, however, this replacement is only allowed if u
and v are left and right of A, respectively, in the sentential form. Thus the replacement
requires the context u to the left and v to the right of A. This justifies the name context-
sensitive.

In a context-free grammar, the application of the rule A → w also consists in the
replacement of A by w, however, this can be done independent of the context of A. Note
that A is not free of context, but the replacement does not depend of the context.

Linear and regular grammars are special cases of context-free grammars since the right
hand side of a rule has a restricted form. In a linear (and regular) grammar, any sentential
form contains at most one nonterminal. In a regular grammar, this nonterminal is the
last letter of the sentential form.

Since the empty word can occur on the right hand side of a production of a context-
free or linear or regular grammar, it is obvious that the empty word can be generated
by grammars of these types. The exceptional case in the definition of monotone and
context-sensitive grammars ensures that we can also generate the empty word in such
grammars.

Essentially, the classification of grammars given in Definition 2.11 was introduced by
Noam Chomsky1, but he used the terms type-0, type-1, type-2 and type-3 grammars
for arbitrary, context-sensitive, context-free and regular grammars, respectively.

Let us determine the type of the grammars given in the examples 2.4 – 2.10 above.
The grammar G1 is not monotone and not context-sensitive since its set of rules

contains the rule p3 = A → λ. It is not linear and not regular by the rule p1 = S → AB.
Obviously, G1 is context-free.

The grammar G2 is monotone, context-sensitive (one has to take u = v = λ for all
rules), context-free and linear, but it is not regular by the rule S → aSb.

The grammar G3 is not monotone and not context-sensitive because it has the rules
S → λ and S → aS. It is context-free and linear. But G3 is not a regular grammar by
the rule S → Sb.

The grammar G4 is regular, linear and context-free, but it is not monotone and not
context-sensitive.

The grammar G5 has none of the properties given in Definition 2.11. The grammar
G6 is monotone, but it is neither context-sensitive nor context-free nor linear nor regular.

Finally, the grammar G7 is context-free, context-sensitive and monotone, however, it
is not a linear grammar and not a regular grammar.

From Definition 2.11, it follows immediately that

– any context-sensitive grammar is monotone (because |uAv| ≤ |uwv| since w is not
the empty word),

– any regular grammar is linear grammar,

– any linear grammar is a context-free grammar.

Definition 2.12 A language L is called a monotone (context-sensitive, context-free, lin-
ear, and regular, respectively), if there exists a monotone (context-sensitive, context-free,
linear, and regular, respectively) grammar G such that L = L(G) holds.

1linguist, computer scientist and philosopher, born in 1928 in Philadelphia (U.S.A.)

30 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

According to Definition 2.12, the language L = {anbn | n ≥ 1} is a linear language
because, by Example 2.5, L = L(G2) and G2 is a linear grammar.

The language L′ = {anbm | n ≥ 0, m ≥ 0} is a context-free language since, by Example
2.6, L′ = L(G3) and G3 is a context-free grammar. Although G3 is not a regular grammar,
we cannot say that L′ is not a regular language; the grammar G4 is regular and generates
L′ (see Example 2.7), i. e., L′ is a regular language, too.

Analogously, L′′ = {anbncn | n ≥ 0 is generated by the non-monotone grammar G5

(see Example 2.8), but nevertheless L′′ is a monotone language since it is also generated
by the monotone grammar G6 (see Example 2.9).

By L(MON), L(CS), L(CF), L(LIN) and L(REG) we denote the families of all mono-
tone, context-sensitive, context-free, linear, and regular languages, respectively. The fam-
ily of all languages which can be generated by (arbitrary) phrase structure grammars is
designated by L(RE). The languages in L(RE) are called recursively enumerable.2

Lemma 2.13 Let X and Y be two types of grammars. If any grammar of type X is also
a grammar of type Y , then L(X) ⊆ L(Y).

Proof. We have to prove that any language L ∈ L(X) belongs to L(Y).
Let L ∈ L(X). Then there is a grammar G of type X such that L = L(G). By

supposition, G is also a grammar of type Y and L = L(G) is in L(Y), too. 2

The following statement is a direct consequence of Lemma 2.13 and the remark above
on the relation between the regular, linear, context-free, context-sensitive, and monotone
grammars.

Lemma 2.14 L(CS) ⊆ L(MON) ⊆ L(RE) and L(REG) ⊆ L(LIN) ⊆ L(CF) ⊆ L(RE).

In the following two sections we discuss, whether the inclusions of Lemma 2.14 are
proper, and add a relation between the families of context-free and context-sensitive
languages.

In order to describe the derivation of a word in a context-free grammar a tree is often
associated with the derivation. The tree is called derivation tree of the derivation. The
(inductive) construction of the tree is done in such a way that the root of the tree is the
axiom and the leaves of the tree yield the sentential form if they are read from left to
right. We describe the tree as a graph, i. e., as a pair (K, E) where K is the set of nodes
and E is the set of edges.

Let a context-free grammar G = (N, T, P, S) be given, and let A
∗

=⇒ w be a derivation
of length n.

If n = 0, then no derivation step is done and we have w = S. The derivation tree
is given as ({S}, ∅), i. e., it is the graph which has only a single node S and no edge.
Therefore S is root as well as leaf.

Let n = 1. Then the derivation has the form S =⇒ w, where the rule S −→ w is
applied. Let w = x1x2 . . . xm with xi ∈ N ∪T , 1 ≤ i ≤ m. Then we set t = (K,E), where
K consists of the symbols S, x1, x2, . . . , xm and E consists of the edges (S, xi), 1 ≤ i ≤ m.
Thus S is the root and x1, x2, . . . , xm are the leaves of t. We arrange the edges in such
way that reading the leaves from left to right gives the word w = x1x2 . . . xm.

2The justification for this term will be given in Subsection ??.

2.1. DEFINITIONS AND EXAMPLES 31

Let n ≥ 2. Then there is a derivation

S
∗

=⇒ u = y1y2 . . . ysAz1z2 . . . zr =⇒ y1y2 . . . ysx1x2 . . . xmz1z2 . . . zr = w,

where xi, yj, zk ∈ N∪T for 1 ≤ i ≤ m, 0 ≤ j ≤ s, 0 ≤ k ≤ r and the rule A → x1x2 . . . xm

is applied in the last direct derivation step. The derivation S =⇒∗ u has the length n− 1
and the derivation tree t′ = (K ′, E ′) associated with u has the root S and its leaves yield
u if they are read from left to right We construct the derivation tree t = (K,E) of w by
the settings

K = K ′ ∪ {x1, x2, . . . , xm} and E = E ′ ∪ {(A, xi) | 1 ≤ i ≤ m},
where we arrange the new edges such that the reading of their leaves from left to right
yields x1x2 . . . xm.

As an illustration we give the derivation tree of the word (((x+ y)− z)+ (x : y)), that
is generated by the context-free grammar G6 given in Example 2.10. Below the tree we
write the leaves for illustrating that we obtain the sentential form under consideration if
we read the leaves from left to right.

S

dddddddddddddddddddddddddddddddddd

pppppppppp

NNNNNNNNNN

VVVVVVVVVVVVVVVVVVVV

(S

hhhhhhhhhhhhhhhhhhhhh

qqqqqqqqqq

33
33

3

DD
DD

DD
D + S

zz
zz

zz
z

®®
®®
®

33
33

3

DD
DD

DD
D)

(S

zz
zz

zz
z

®®
®®
®

33
33

3

DD
DD

DD
D − S) (S : S)

(S + S) z x y

x y

(((x + y) − z) + (x : y))

We note that a derivation tree for a sentential form of a monotone or context-sensitive
grammar does not exist since the tree structure only allows that one nonterminal is at
the left hand side of a production.

Finally, in this section, we introduce a measure k(G) for the size of a phrase structure
grammar G = (N, T, P, S). Intuitively, we consider the (N, T, P, S) as a word over the
alphabet consisting of the symbols of N and T and the technical symbols (,), {, },→ and
the comma and take the length of the word as the size of the grammar. Obviously, we
need one pair of brackets (parenthesis), three pairs of braces, three commas separating
the four components of a grammar, #(N) symbols of N and #(N)− 1 commas between
the symbols for the description of N , similarly, 2#(T)− 1 letters for the description of T ,
#(P) times the arrow →, #(P)− 1 commas separating the rules,

∑
α→β∈P |αβ| symbols

to write down the right hand and left hand sides of the rules (note that the empty word on
a left hand side of a rule is not counted), and finally one letter for the axiom. Therefore,

k(G) = 9 + 2#(N) + 2#(T) + 2#(P) +
∑

α→β∈P

|αβ|.

32 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

For example, we have

k(G1) = 40, k(G2) = 26, k(G3) = 30, and k(G5) = 76.

2.2 Normal forms

In this section we show that, for the grammars of the types introduced in the preceding
section, there exist normal forms, i. e., grammars of this type with further restrictions to
the rules. The term normal form is justified by the following property of grammars in
normal form. Any language which can be generated by grammars of a certain type can
also be generated by grammars of this type in normal form. In addition to the existence,
we show that the normal forms can effectively constructed from given grammars.

In the computations of the running time of such an construction we assume that that
the following problems can be solved in one step: deciding whether an element belongs
to a certain set, adding an new element to a set, deciding whether a symbol occurs in a
word, deciding whether a rule has a certain form. Thus we are independent of the data
structure which is used for the representation of the set, the word etc. If somebody wants
to have more precise complexities, it is necessary to use the precise time to perform the
above mentioned problems according to the used data structure. However, we note that
the precise values are at most linear in the size of the grammar.

In the sequel we shall often use the normal forms as a technical tool (in proofs we
can restrict to grammars in normal form). In this section, by the normal forms, we add
further containments of the language families introduced in the preceding section.

Lemma 2.15 For any phrase structure grammar G = (N, T, P, S), a grammar G′ =
(N ′, T, P ′, S) can be constructed in time O(k(G)) such that

– all rules of P ′ have the form α → β with α ∈ (N ′)+ and β ∈ (N ′)∗ or A → a with
A ∈ N ′ and a ∈ T ,

– L(G′) = L(G), and

– k(G′) ∈ O(k(G)).

Moreover, if G is a monotone or context-sensitive or context-free grammar, then G′ also
is monotone or context-sensitive or context-free, respectively.

Proof. For any terminal a, let a′ be a new symbol which is not in N ∪T such that a′ 6= b′

for different terminals a and b. We set

N ′ = N ∪ {a′ | a ∈ T}.

If w = x1x2 . . . xn is a word of V ∗, xi ∈ V for 1 ≤ i ≤ n, then we set w′ = y1y2 . . . yn

where

yi =

{
xi for xi ∈ N
x′i for xi ∈ T

for 1 ≤ i ≤ n. We construct the grammar G′ = (N ′, T, P ′, S) with

P ′ = {α′ −→ β′ : α −→ β ∈ P} ∪ {a′ −→ a : a ∈ T}.

2.2. NORMAL FORMS 33

Since we add #(T) new nonterminals and #(T) new rules (each of them consisting of
four symbols (including the separating comma), it is obvious that k(G′) ≤ 5 · k(G).

Obviously, the adding of nonterminals and rules requires less than 4 · k(G) steps.
Moreover, the change of the rules of G to those of G′ requires only the change from a to
a′ for all occurrences of all a ∈ T . Thus it can be done in at most 2 · k(G) steps. Hence
the construction of G′ can be done in a time O(k(G)) and k(G′) ∈ O(k(G)) holds.

We now prove that L(G′) = L(G).
Let w ∈ L(G). Then there is a derivation

S = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn = w

in G. According to the construction of P ′, there is a derivation

S = w′
0 =⇒ w′

1 =⇒ w′
2 =⇒ . . . w′

n = w′ = v0 =⇒ v1 =⇒ v2 =⇒ . . . =⇒ vm = w

in G′ where, for 0 ≤ i ≤ n − 1, we use the production α′ → β′ in the derivation step
w′

i =⇒ w′
i+1, if α → β is applied in the derivation step wi =⇒ wi+1 and, for 0 ≤ j ≤ m−1,

we apply rules of the form a′ → a in the derivation steps vj =⇒ vj+1, i. e., we replace
all primed letters in w′ by their unprimed version. Thus we get w ∈ L(G′) which proves
L(G) ⊆ L(G′).

Let now x ∈ L(G′). Then there is derivation S
∗

=⇒ x in G′. We change the order
of the application of rules in this derivation in such a way that we first apply only rules
of the form α′ → β′ and finally only rules of the form a′ → a, i. e., we postpone the
applications of rules a′ → a until we have already applied all rules α′ → β′. Since after an
application of the form a′ → a, the generated a cannot be involved in the application of
other rules of P ′, this change of the order does not change the language. Therefore there
is a derivation

S = x′0 =⇒ x′1 =⇒ x′2 =⇒ . . . =⇒ x′r = x′ = y0 =⇒ y1 =⇒ y2 =⇒ . . . =⇒ ys = x

in G′ where, for with xi ∈ (N ′)∗ where, for 0 ≤ i ≤ r− 1, x′i+1 ∈ (N ′)∗ and the derivation
step x′i → x′i+1 is obtained by an application of a rule of the form α′ → β′ , and for
1 ≤ j ≤ s, we apply a rule of the form a′ → a to get yj → yj+1. Then we have the
derivation

S = x0 =⇒ x1 =⇒ x2 =⇒ . . . =⇒ xn = x

in G. Therefore L(G′) ⊆ L(G).
From the shown inclusions, we get L(G′) = L(G).

By the construction a rule α → β of P with |α| ≤ |β| is transformed into a production
α′ −→ β′ with |α′| ≤ |β′| because |α| = |α′| and |β| = |β′|. Thus monotonicity is preserved
by the construction. Furthermore, a rule uAv → uwv is transformed into u′Av′ → u′w′v′.
Therefore context-sensitivity and context-freeness are also preserved. 2

We want to illustrate our constructions by an example. For this purpose, we consider
the phrase structure grammar

G8 = ({S, A, B, C}, {a, b}, {S → AB, AB → CAB, CA → aC, CB → b}, S).

34 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

It is easy to see that L(G8) = {anb | n ≥ 1}. Following the construction in the proof of
Lemma 2.15 we get the grammar

G
(1)
8 = ({S, A, B, C, a′, b′}, {a, b}, P ′

8, S)

with
P

(1)
8 = {S → AB, AB → CAB, CA → a′C, CB → b′, a′ → a, b′ → b}.

We now give a result which tells us that the essential difference between arbitrary
phrase structure grammars and monotone grammars is given by the existence of erasing
rules X → lambda (where X is a nonterminal).

Lemma 2.16 For any phrase structure grammar G = (N, T, P, S), a grammar G =
(N ′, T, P ′, S) can be constructed in a time O(k(G)) such that

– any rule of P ′ has the form α → β with α ∈ (N ′)+, β ∈ (N ′)+ and |α| ≤ |β| or
A → a or A → λ with A ∈ N ′ and a ∈ T and

– L(G′) = L(G), and
– k(G′) ∈ O(k(G)).

Proof. Let G = (N, T, P, S) be a phrase structure grammar. Then we first construct the
phrase structure grammar G′′ = (N ′′, T, P ′′, S) as in the proof of Lemma 2.15. We build
the phrase structure grammar G′ = (N ′, T, P ′, S) where

– N ′ = N ′′ ∪ {D} where D is a new symbol, and
– P ′ is obtained from P ′′ by replacing any rule α → β ∈ P ′′ with |α| > |β| by the rule

α → βD|α|−|β| and adding the new rule D → λ.
Obviously, all rules of P ′ have the required form. Thus it remains to show that

L(G′) = L(G) holds. In order to see this, we mention that the change of the rule (from
α → β to α → βD|α|−|β| does not change the generated language because the additional
letters D are cancelled by applying D → λ and there are no other rules for D. Thus we
have L(G) ⊆ L(G′). By an analogous argument the reverse change does also not change
the language, i. e., L(G′) ⊆ L(G).

Since we only add one new nonterminal and one new rule consisting of two symbols
and |αβD|α|−|β|| = 2|α| ≤ 2|αβ| for each new rule α → βD|α|−|β|, it is obvious, that
k(G′) ≤ 2k(G′′). To perform the transformation from G′′ to G′, we need at most 2k(G′′)
steps. By Lemma 2.15, the construction of G′ from G can be done in time O(k(G)) and
k(G′) ∈ O(k(G)). 2

If we apply this construction to our grammar G
(1)
8 constructed above, then we get

G
(2)
8 = ({S,A, B, C,D, a′, b′, D}, {a, b}, P ′′

8 , S)

with

P
(2)
8 = {S → AB, AB → CAB, CA → a′C, CB → b′D, a′ → a, b′ → b, D → λ}.

We say that a phrase structure grammar G = (N, T, P, S) is of order n, if |α| ≤ n and
|β| ≤ n for any rule α → β of P . We show that we can restrict the order of grammars to
two.

2.2. NORMAL FORMS 35

Lemma 2.17 Let n ≥ 3. For any phrase structure grammar G = (N, T, P, S) of order
n such that any rule of P has the form α → β with α ∈ N+, β ∈ N+ and |α| ≤ |β| or
A → a or A → λ with A ∈ N and a ∈ T , a phrase structure grammar G′ of order n− 1
can be constructed such that L(G′) = L(G). Moreover, if G is monotone, then G′ is a
monotone grammar, too.

Proof. Let G = (N, T, P, S) be a phrase structure grammar of order n where any rule of
P has the form α → β with α ∈ N+, β ∈ N+ and |α| ≤ |β| or A → a or A → λ with
A ∈ N ′ and a ∈ T . We divide P into three subsets

P1 = {α → β | α → β ∈ P, |α| ≤ 2, |β| ≤ 2},
P2 = {α → β | α → β ∈ P, |α| ≥ 2, |β| ≥ 3},
P3 = {α → β | α → β ∈ P, |α| = 1, |β| ≥ 3}.

Obviously, P = P1 ∪ P2 ∪ P3.
We construct a phrase structure G′ = (N ′, T, P ′, S) as follows: If p is a rule in P2,

then it has the form ABα′ → CDEβ′ with α′ ∈ N∗ and β′ ∈ N∗ and we set

Np = {Ap, Bp} and Pp = {AB → ApBp, Ap → C, Bpα
′ → DEβ′}

where Ap und Bp are additional symbols (not occurring in N and satisfying {Ap, Bp} ∩
{Aq, Bq} = ∅ for different rules p and q of P2). If p is a rule in P3, then it has the form
A → CDEβ′ with β′ ∈ N∗ and we put

Np = {Bp} and Pp = {A → CBp, Bp → DEβ′} (2.2)

where Ap und Bp are additional symbols, again. We now set

N ′ = N ∪
⋃

p∈P2∪P3

Np and P ′ = P1 ∪
⋃

p∈P2∪P3

Pp .

It is easy to see that G′ is of order n− 1 and that monotonicity is preserved.

We first prove that L(G) ⊆ L(G′). This follows easily from the fact that any produc-
tion of P1 can be applied in both grammars, a derivation step γ1ABα′γ2 =⇒ γ1CDEβ′γ2

according to an application of p = ABα → CDEβ′ ∈ P2 in G can be simulated in G′ by
the three step derivation

γ1ABα′γ2 =⇒ γ1ApBpα
′γ2 =⇒ γ1CBpα

′γ2 =⇒ γ1CDEβγ2

using the rules of Pp in the given order, and a derivation step γ1Aγ2 =⇒ γ1CDEβ′γ2

using p = Aα → CDEβ′ ∈ P3 in G can be simulated in G′ by the three step derivation

γ1Aα′γ2 =⇒ γ1ApBpα
′γ2 =⇒ γ1CBpα

′γ2 =⇒ γ1CDEβγ2.

Thus any derivation in G can be transformed into a derivation in G′.

In order to prove the converse inclusion we consider a derivation of w ∈ L(G′) in G′

which contains an application of AB → ApBp for some rule p = ABα′ → CDEβ′ ∈ P2

36 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

(note that the other two rules of Pp can only be applied if AB → ApBP was already
applied earlier in the derivation). This derivation has the form

S
∗

=⇒ γ1ABα′γ2 =⇒ γ1ApBpα
′γ2 =⇒

q1
γ′1ApBpα

′γ′2

=⇒ γ′1CBpα
′γ′2 =⇒

q2
γ′′1Bpα

′γ′′2 =⇒ γ′′1DEβ′γ′′2
∗

=⇒ w ∈ T ∗, (2.3)

where
– q1 is the sequence of productions applied after the application of AB → ApBp and

before the application of Ap → C and which realize γ1
∗

=⇒ γ′1 and γ2
∗

=⇒ γ′2, and

– q2 is the sequence of productions realizing γ′1C
∗

=⇒ γ′′1 and γ′2
∗

=⇒ γ′′2 ,
or

S
∗

=⇒ γ1ABα′γ2 =⇒ γ1ApBpα
′γ2 =⇒

q′1
γ′1ApBpα

′γ′2

=⇒ γ′1ApDEβ′α′γ′2 =⇒
q′2

γ′′1Apγ
′′
2 =⇒ γ′′1Cγ′′2

∗
=⇒ w ∈ T ∗, (2.4)

where
– q′1 is the sequence of productions realizing γ1

∗
=⇒ γ′1 and γ2

∗
=⇒ γ′2, and

– q2 is the sequence of productions realizing γ′1
∗

=⇒ γ′′1 and DEβ′γ′2
∗

=⇒ γ′′2 .
For (2.3), there is a derivation

S
∗

=⇒ γ1ABα′γ2 =⇒ γ1CDEβ′γ2 =⇒
q1

γ′1CDEβ′γ′2

=⇒
q2

γ′′1DEβ′γ′′2
∗

=⇒ w ∈ T ∗,

which – essentially – is obtained from (2.3) by replacing one application of the rules of
Pp by an application of p = ABα′ → CDEβ ∈ P . Analogously, we can show that, in
case of (2.4), we can also replace the application of Pp by p. Moreover, this also holds
for the application of some Pq with q ∈ P3. Thus, for r ∈ P2 ∪ P3, in succession we can
replace all applications of Pr by r, i.e., we obtain a derivation of w which only consists of
applications of P . Thus w ∈ L(G). This implies L(G′) ⊆ L(G). 2

We continue our example. From G
(2)
8 we obtain

G
(3)
8 = ({A,B,C,D, a′, b′, D, , A′, B′}, {a, b}, P (3)

8 , S)

with

P
(3)
8 = {S → AB, AB → ApB

′
p, Ap → C, B′

p → AB, CA → a′C,

CB → b′D, a′ → a, b′ → b, D → λ}
The grammars of order two have a special name.

Definition 2.18 i) A phrase structure grammar G = (N, T, P, S) is in Kuroda normal
form3 if all its productions have one of the following forms:

A → B, A → BC, AB → CD, A → a, or A → λ with A,B, C,D ∈ N and a ∈ T.

3named after the japanese linguist Sige-Yuki Kuroda (1934–2009) who introduced the normal form
in [18]

2.2. NORMAL FORMS 37

ii) A monotone grammar G = (N, T, P, S) is called to be in Kuroda normal form if all its
productions have one of the following forms:

A → B, A → BC, AB → CD, or A → a with A,B,C,D ∈ N and a ∈ T

with the possible exception of S → λ if S does not occur on the right side of any production
of P .

Note that the grammar G
(3)
8 is a phrase structure grammar in Kuroda normal form.

We now prove that grammars in Kuroda normal form are sufficient to generate all
languages.

Theorem 2.19 For any phrase structure grammar G, there can be constructed a phrase
structure grammar G in Kuroda normal form such that L(G) = L(G). Moreover, if G is
monotone, then G is a monotone grammar, too.

Proof. Let G be a phrase structure grammar. We construct in succession a grammar
G′ according to Lemma 2.15, from G′ a grammar G′′ according to Lemma 2.16. Then G′′

satisfies the suppositions of Lemma 2.17.
Let G′′ be of order n. If n = 2, then G′′ is in Kuroda normal form and we choose

G = G′′. If n ≥ 3, we can construct G′′′ of order n− 1 from G′′ according to Lemma 2.17.
It is easy to see that G′′′ satisfies the suppositions of Lemma 2.17, again. Therefore we
can iterate the process until we get a grammar of order 2 which we take as G.

If G is monotone, then we can omit the construction of G′′ according to Lemma 2.16
since the properties obtained by that constructions are already satisfied by the monotone
grammar G′. 2

We now use the Kuroda normal form to prove that any monotone grammar can be
converted into a context-sensitive grammar such that both grammars generate the same
language.

Lemma 2.20 For any monotone grammar G, there is a context-sensitive grammar G′

such that L(G′) = L(G).

Proof. Let G be a monotone grammar. By the lemmas given above, there is a monotone
grammar G′′ in Kuroda normal form such that L(G′′) = L(G). Let us assume that
P ′′ = P1 ∪ P2 where P1 contains all rules of the form A → B, A → BC and A → a and
P2 contains all rules of the form AB → CD (where A,B,C, D ∈ N ′′ and a ∈ T).

We now construct G′′ = (N ′′, T, P1 ∪ P ′
2, S) by the following procedure. For any rule

p = AB → CD ∈ P2, we set

Rp = {AB → ApB, ApB → ApB
′
p, ApB

′
p → CB′

p, CBp → CD},

where Ap and Bp are new nonterminal symbols (i. e., Ap, B
′
p /∈ N ′′, Ap 6= B′

p, Ap 6=
Ap′ , Ap 6= B′

p′ , and B′
p 6= B′

p′ for all p, p′ ∈ P2, p 6= p′). We define P ′
2 as the union of all

sets Rp with p ∈ P2 and N ′ as the union of N ′′ and all newly introduced letters Ap, B′
p

with p ∈ P2.
By construction G′ is a context-sensitive grammar since the rules of Rp replace only one

letter and context is not changed. Thus it remains to prove that L(G′) = L(G′′) = L(G)

38 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

holds. The proof can be given analogously to the proof of Lemma 2.17. But since the
proof is technical more involved we omit a complete formal proof. 2

By Lemma 2.20, we obtain immediately that L(MON) ⊆ L(CS) which gives with
Lemma 2.14 the equality of the families of monotone and context-sensitive languages.

Theorem 2.21 L(MON) = L(CS). 2

If we start with a context-free grammars, then the above constructions to get the
Kuroda normal form lead to a context-free grammar where all rules have the form

A → B, A → BC, A → a, A → λ, (2.5)

where A,B,C are nonterminals and a is from the set of terminals. We now prove that
also rules of the form A → B (which are called chain rules) and A → λ (which are called
erasing rules) can be eliminated if we allow the exception which is used for monotone and
context-sensitive grammars.

Lemma 2.22 For any context-free grammar G = (N, T, P, S) of order n, we can con-
struct a context-free grammar G′ = (N ′, T, P ′, S ′) in time O(2nk(G) + k(G)2) such that

i) P ′ contains no rule of the form A → λ with A 6= S ′,
ii) |w|S′ = 0 for all rules A → w of P ,
iii) L(G′) = L(G), and
iv) k(G′) ≤ 2nk(G).

Proof. Let G = (N, T, P, S) be a context free grammar. We first construct a context-free
grammar G′′ = (N ′′, T, P ′′, S ′) which satisfies the conditions ii) and iii). For this purpose
we add a new nonterminal S ′ to N , i. e., we set N ′′ = N ∪ {S ′}, and define the set of
rules by P ′′ = P ∪ {S ′ → S}. Then ii) holds by construction and iii) is valid since all

derivations in G′′ have the form S ′ =⇒ S
∗

=⇒ w where S
∗

=⇒ w is a derivation in G.

Let
M = {A | A ∈ N ′′, A

∗
=⇒ λ}.

With any rule
q′′ = A −→ v1A1v2A2 . . . vmAmvm+1 (2.6)

with
m ≥ 0, A1, A2, . . . , Am ∈ N ′′, v1, v2, . . . , vm+1 ∈ T ∗

we associate the set Pq′′ of all rules of the form

A −→ v1X1v2X2 . . . vmXmvm+1 6= λ

where

Xi = Ai for Ai /∈ M and Xi ∈ {Ai, λ} for Ai ∈ M for 1 ≤ i ≤ m.

We note that Pq′′ = {q′′} if the right hand side of q′′ is a non-empty terminal word. By
definition, Pq′′ does not contain a rule of the form Y → λ. Therefore it is not possible to
generate the empty word by rules of Pq′′ . Hence we set

P =

{ {S ′ −→ λ} if S ′ ∈ M
∅ otherwise

.

2.2. NORMAL FORMS 39

Moreover, we define G′ = (N ′, T, P ′, S ′) by

N ′ = N ′′ and P ′ = P ∪
⋃

q′′∈P ′′
Pp′′ .

We mention that the property ii) is preserved and that P ′ satisfies condition i). We now
prove that iii) is also valid. Clearly, it is sufficient to prove that L(G′) = L(G′′).

First, by induction on the number of derivation steps, we prove that, for any nonter-
minal A and any word x ∈ T+, A

∗
=⇒

G′′
x implies A

∗
=⇒

G′
x.

Let n = 1. In both grammars A =⇒ x is valid if we apply the rule A → x, x ∈ T+.
This rule exist in P ′′ as well as in P ′. Thus the induction basis is shown.

Let x be derived from A in n steps, n ≥ 2. Then we have a derivation

A =⇒
G′′

v1A1v2A2 . . . vmAmvm+1
∗

=⇒
G′′

v1x1v2x2 . . . vmxmvm+1 = x,

where, for 1 ≤ i ≤ m, the derivation Ai
∗

=⇒
G′′

xi consist of less than n steps. We distinguish
two cases for each i, 1 ≤ i ≤ n.

Case 1. xi 6= λ. Then we set Xi = Ai and have a derivation Xi
∗

=⇒
G′

xi by induction
hypothesis.

Case 2. xi = λ. Then we get Ai ∈ M and we set Xi = λ.
By definition of P ′, we have the rule A → v1X1v2X2 . . . vmXmvm+1 in P ′ and the

derivation
A =⇒

G′
v1X1v2X2 . . . vmXmvm+1

∗
=⇒

G′
v1x1v2x2 . . . vmxmvm+1

in G′, where we use Xi = λ for xi = λ and the derivation Xi
∗

=⇒
G′

xi for xi 6= λ.

If we take the statement for A = S, we obtain that any word of L(G′′) different from
the empty word can be generated by G′. Therefore we have L(G′′) \ {λ} ⊆ L(G′) \ {λ}.
By the choice of P , λ ∈ L(G′′) if and only if λ ∈ L(G′). Thus L(G′′) ⊆ L(G′).

We now prove – by induction, again – that the converse implication also holds, i. e.,
for any terminating derivation A

∗
=⇒

G′
y in G′, there is a terminating derivation A

∗
=⇒

G′′
y

in G′′.
The induction basis can be shown as above.
Let A

∗
=⇒

G′
y be a derivation with n steps, n ≥ 2. Then

A =⇒ v1X1v2X2 . . . vmXmvm+1
∗

=⇒
G′

v1x1v2x2 . . . vmxmvm+1,

where xi = λ for Xi = λ and Xi
∗

=⇒
G′

xi is a derivation in G′ with less than n derivation
steps for Xi 6= λ. By the construction of A → v1X1v2X2 . . . vmXmvm+1 in P ′, we have

– for Xi = λ, Ai ∈ M and thus a derivation Ai
∗

=⇒
G′′

λ = xi in G′′,

– for Xi 6= λ, a derivation Xi = Ai
∗

=⇒
G′′

xi in G′′ by induction hypothesis.
Hence we have the derivation

A =⇒
G′′

v1A1v2A2 . . . vmAmvm+1
∗

=⇒
G′

v1x2v2x2 . . . vmxmvm+1

in G′′. Now we prove as above that L(G′) ⊆ L(G′′).
By a combination of the two shown inclusions we get L(G′) = L(G′′).

40 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

The statement iv) follows by the following facts. We add one nonterminal S ′ and at
most two rules (S ′ → S and S ′ → λ). Moreover, let q′′ be a rule as given in (2.6) with s
occurrences of nonterminals of M on the right hand side. Then Pq′′ consists of 2s rules,
and each rule of Pq′′ has smaller length than q′′. Since s is bounded by the degree of the
grammar, it is easy to see that k(G′) ≤ 2nk(G) (the reader should verify this fact in the
case that M = ∅, too).

Obviously, the construction of G′ from G can be done in at most 2nk(G) steps, too.

To complete the proof we have to show that there is an algorithm which determines
M and works in a time O(k(G)2).

We put

M0 = ∅ and P0 = P

and, for i ≥ 1,

Mi = Mi−1 ∪ {A | A ∈ N ′′, A → λ ∈ Pi−1},
Pi = {A → w1w2 . . . wn+1 | A → w1A1w2A2 . . . wnAnwn+1 ∈ Pi−1

n ≥ 0, wj ∈ (N ′′ \Mi)
∗ for 1 ≤ j ≤ n + 1, Aj ∈ Mi for 1 ≤ j ≤ n}.

We first show by induction that Mi ⊆ M for i ≥ 0. For i = 0 and i = 1 the statement
is obvious. For A ∈ Mi, i ≥ 2, by definition of Mi, there is a rule A → A1A2 . . . An with
Aj ∈ Mi−1 for 1 ≤ j ≤ n. Since Aj ∈ M by induction hypothesis, we have a derivation

A =⇒ A1A2 . . . An
∗

=⇒ λA2A3 . . . An
∗

=⇒ λλA3 . . . An
∗

=⇒ λn = λ,

which implies A ∈ M .

Let A ∈ M . We consider a derivation A
∗

=⇒ λ. None of the sentential forms of this
derivation contains a terminal. Thus all sentential forms are words over N ′′. By a change
of the order of the applications of the rules we can get a derivation

A = w0
∗

=⇒ w1
∗

=⇒ w2
∗

=⇒ . . .
∗

=⇒ wm = λ

where, for 0 ≤ j ≤ m− 1, any subderivation wj
∗

=⇒ wj+1 consist in a replacement of any
nonterminal occurring in Wi according to a rule. Then all nonterminals which occur in
wm−1 are replaced by λ, i. e., wm−1 ∈ M+

1 . Furthermore, any nonterminal A occurring in
wm−2 is replaced by a non-empty word over M1 or by λ. Hence A ∈ M2 or A ∈ M1. Since
M1 ⊆ M2 by definition, A ∈ M2, and consequently, wm−2 ∈ M+

2 . Continuing in this way,
we get wm−3 ∈ M+

3 , wm−4 ∈ M+
4 and finally A = w0 = wm−m ∈ Mm. Hence any element

of M is contained in some Mi, i ≥ 1.

Taking into consideration Mi ≤ M for i ≥ 1, we get

M =
⋃
i≥0

Mi.

According to the definitions, Mi = Mi+1 implies Pi = Pi+1 and then we obtain

Mi = Mi+1 = Mi+2 = . . . and Pi = Pi+1 = Pi+2 = . . .

2.2. NORMAL FORMS 41

Let #(N ′′) = t. Then #(M) ≤ t. Because Mi ⊆ Mi+1 for i ≥ 0, we obtain Mt = Mt+1

and therefore
Mt =

⋃
i≥0

Mi = M.

The construction M0 and P0 requires #(P) + 1 steps. Moreover, to construct Mi

requires to look on all rules of Pi−1 and to add at most #(N) elements to Mi−1. The
construction of Pi requires some cancellations of letters in rules of P and can therefore
be performed in at most k(G) steps. Because we stop with Mt, the construction of M
requires at most the time #(P) + 1 + #(N) · (#(P) + #(N) + k(G)) ≤ 2 · k(G)2. 2

We illustrate the construction by an example, again. We consider the context-free
grammar

G9 = ({S, A, B}, {a, b}, {S → SA, S → λ, A → aAb, A → B, B → λ}, S).

We note that

L(G9) = {an1bn1an2bn2 . . . ankbnk : k ≥ 0, ni ≥ 0, 1 ≤ i ≤ k}
since the first two rules generate an arbitrary number of A’s and any A produces a word
anbn, n ≥ 0. We get

N ′′ = N ∪ {S ′} = {S, A,B, S ′},
P ′′ = {S ′ → S, S → SA, S → λ,A → aAb,A → B, B → λ}
M0 = ∅ and P0 = P ′′ ,

M1 = {S, B} and P1 = {S ′ → λ, S → A, S → λ,A → aAb,A → λ,B → λ} ,

M2 = {S, B, S ′, A} = N ′′

N ′ = N ′′ = {S ′, S, A,B},
P = {S ′ → λ},
P ′ = P ∪ {S ′ → S, S → SA, S → A, S → S, A → aAb,A → ab, A → B}

{S ′ → λ, S ′ → S, S → SA, S → A, S → S, A → aAb,A → ab, A → B}.
We note that P ′ contains some superfluous rules. Since the application of S → S does
not change the sentential form and there is no rule with left hand side B, we can omit
the rules S → S and A → B. Thus we get the grammar

G′
9 = ({S ′, S, A}, {a, b}, {S ′ → λ, S ′ → S, S → SA, S → A,A → aAb,A → ab}, S ′).

It is obvious, that all rules of the grammar G′ constructed in (the proof of) Lemma 2.22
– perhaps with exception of S ′ → λ – are of the form A → w with a non-empty word w.
Thus these rules are monotone. Moreover, by construction (see condition ii), S ′ does not
occur on the right hand side of rules of P ′. Consequently, any G′ is a monotone grammar.
Thus we can reformulate Lemma 2.22 as follows: For any context-free grammar G, there
is a monotone grammar G′ such that L(G′) = L(G). By Lemma 2.13, we obtain the
following statement.

Theorem 2.23 L(CF) ⊆ L(MON). 2

42 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

If we combine Lemma 2.14, Theorem 2.21 and Theorem 2.23 we get the hierarchy

L(REG) ⊆ L(LIN) ⊆ L(CF) ⊆ L(MON) = L(CS) ⊆ L(RE) (2.7)

Thus it remains to discuss the properness of the inclusions which will be done in the
following section concerning the first three inclusions and in Chapter ?? for the last one.
For the corresponding proofs we need further normal form results.

Lemma 2.24 For any context-free grammar G = (N, T, P, S) of order n, a context-free
grammar G′ = (N, T, P ′, S) can be constructed in time O(n · k(G)2) such that

– P ′ contains no rules of the form A → B with A ∈ N and B ∈ N and
– L(G′) = L(G), and
– k(G′) ∈ O(n · k(G)2).

Proof. For a nonterminal A ∈ N , we set

MA = {B | B =⇒ C1 =⇒ C2 =⇒ . . . Ck =⇒ A, A, B, C1, C2, . . . , Ck ∈ N, k ≥ 0} ∪ {A}

(note that A ∈ MA by definition). For any rule p = A → w with w /∈ N , we set

Pp = {B → w | B ∈ MA},

i. e., we replace a derivation

B =⇒ C1 =⇒ C2 =⇒ . . . =⇒ Ck = A =⇒ w

by the rule B → w. We define

P ′ =
⋃
p∈P

Pp.

Obviously, G′ = (N, T, P ′, S) satisfies all conditions required in the assertion. The validity
of L(G′) = L(G) can be shown analogously to the proof of Lemma 2.22.

Obviously, for any rule p = A → w, the added rules of Pp contribute (|w|+ 3)#(MA)
to the length of the description of G′. Since we have to consider at most #(P) rules,
#(MA) ≤ #(N) for all A ∈ N and |w| ≤ n for all rules A → w ∈ P , we get k(G′) ∈
O(n · k(G)2).

Thus G′ can be written in time O(n · k(G)2) and to determine the time of the con-
struction we have to add the time needed to construct the sets MA for all A ∈ N .

We construct the graph H = (N,E), where the nonterminals are the nodes and there
is an edge from B to C if and only if there is a rule C → B in P . Obviously, H has at
most #(P) edges. Then it is easy to determine MA for a given A by depth first search or
breadth first search in time O(#(N) + #(P)) and hence in O(k(G)).

Since we have to determine the sets MA for all A ∈ N , the construction of the sets
MA can be done in time O(k(G)2). 2

We apply the construction given in the proof of Lemma 2.24 to G′
9 constructed above.

We obtain
MS′ = {S ′}, MS = {S, S ′} and MA = {A, S, S ′}

2.2. NORMAL FORMS 43

and thus

PS′→λ = {S ′ → λ} ,

PS→SA = {S → SA, S ′ → SA} ,

PA→aAb = {A → aAb, S → aAb, S ′ → aAb} ,

PA→ab = {A → ab, S → ab, S ′ → ab}

and finally G′′
9 = ({S ′, S, A}, {a, b}, P ′′

9 , S ′) with

P ′′
9 = {S ′ → λ, S → SA, S ′ → SA, A → aAb, S → aAb, S ′ → aAb,

A → ab, S → ab, S ′ → ab}.

If we combine all the constructions of normal forms of context-free grammars, then we
obtain a context-free grammar which contains only rules of the form A → BC or A → a
with nonterminals A,B,C and a from the set of terminals since we have removed the
chain rules and erasing rules from the allowed rules in (2.5).

Definition 2.25 A context-free grammar G = (N, T, P, S) is in Chomsky normal form
if all rules of P have the form A → BC or A → a, where A,B, C are from the set of
nonterminals and a is from the set of terminals, with the possible exception of S → λ if
S does not occur on the right side of any production of P

The remark before Definition 2.25 can be be reformulated as follows.

Theorem 2.26 For any context-free grammar G, a context-free grammar G′ in Chomsky
normal form can be constructed in a time O(k(G)2) such that L(G′) = L(G) and k(G′) ∈
O(k(G)2).

Proof. By applying the constructions of the Lemmas 2.15 – 2.17, we construct a context-
free grammar G′′ of order 2, i.e., all rules have the forms given in (2.5). Since we start
with a context-free grammar, we have to apply only (2.2). Thus a rule A → B1B2 . . . Bn

is transformed into the rules

A → B1C1, C1 → B2C2, . . . , Cn−2 → Bn−2Cn−1, Cn−1 → Bn−1Bn

. Thus we get k(G′′) ∈ O(k(G)) and the transformation can be done in a time O(k(G)).

Now we apply Lemma 2.22 to G′′ and eliminated all erasing rules. Because G′′ has
order 2, the obtained grammar G′′′ can be constructed in time O(k(G′′)2) = O(k(G)2)
and has size in O(k(G′′)) = O(k(G)).

Finally we construct G′ by eliminating the chain rules according to Lemma 2.24.
Again, since G′′′ has order 2, G′ is constructed in time O(k(G)2) and satisfies k(G′) ∈
O(k(G)2). 2

In order to get G′′
9 in Chomsky normal form we have to transform the rules containing

terminals in their right hand sides and to shorten the lengths of the right hand side of
some rules. This can be done by the constructions given in the Lemmas 2.15 and 2.17,

44 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

which gives in succession the following sets of productions

{S ′ → λ, S → SA, S ′ → SA,A → a′Ab′, S → a′Ab′, S ′ → a′Ab′,

A → a′b′, S → a′b′, S ′ → a′b′, a′ → a, b′ → b}
{S ′ → λ, S → SA, S ′ → SA,A → a′A1, A1 → Ab′, S → a′A2, A2 → Ab′,

S ′ → a′A3, A3 → Ab′, A → a′b′, S → a′b′, S ′ → a′b′, a′ → a, b′ → b}.

The reader may verify that it is not necessary to use three different letters A1, A2 and A3

(they are different by construction since they belong to different rules).
The normal forms given above do not exist for linear and regular grammars since they

need at least a rule A → BC with nonterminals A,B, C if the generated contains at least
one word of length ≥ 2 and such rules are not allowed in linear and regular grammars.
Thus we now present normal forms for linear and regular grammars.

Theorem 2.27 For any linear grammar G = (N, T, P, S), a linear grammar G′ =
(N ′, T, P ′, S ′) can be constructed in time O(k(G)2) such that

– P ′ contains only rules of the forms A → aB or A → Ba or A → a with A,B ∈ N ′

and a ∈ T with the possible exception S ′ → λ if S ′ does not occur on the right side
of any production of P ′, and

– L(G′) = L(G), and

– k(G′) ∈ O(k(G)2).

Proof. Let G = (N, T, P, S) be a linear grammar. Let P1 be the set of all rules of P of
the form A → uBv with |uv| ≥ 2 and A → w with |w| ≥ 2. Note that all rules of P not
contained in P1 have the form

A → aB or A → Ba or A → B or A → a or A → λ (2.8)

with A,B ∈ N and a ∈ T .
For any rule p = A → a1a2 . . . anBb1b2 . . . bm ∈ P1 with n ≥ 1 and m ≥ 1, ai ∈ T for

1 ≤ i ≤ n and bj ∈ T for 1 ≤ j ≤ m, we introduce new nonterminals

Ap,1, Ap,2, . . . , Ap,n−1, Bp,1, Bp,2, . . . , Bp,m

and new rules

A → a1Ap,1, Ap,1 → a2Ap,2, Ap,2 → Ap,3, . . . , Ap,n−2 → an−1Ap,n−1, Ap,n−1 → anBp,m,

Bp,m → bp,m−1bm, Bp,m−1 → Bp,m−2bm−1, . . . , Bp,2 → Bp,1b2, Bp,1 → Ba1.

Let Np and Pp be the sets of new nonterminals and new rules, respectively, associated
with p. If n = 0 and m ≥ 2 or n ≥ 2 and m = 0, we modify the construction of Np and
Pp by taking Bp,m = A or Bp,m = B.

For any rule q = A → a1a2 . . . an ∈ P1 with n ≥ 2 and ai ∈ T for 1 ≤ i ≤ n, let

Nq = {Aq,1, Aq,2, . . . , Aq,n−1},
Pq = {A → a1Aq,1, Aq,1 → a2Aq,2, . . . , Aq,n−1 → an−1Aq,n−1, Aq,n−1 → an}.

2.2. NORMAL FORMS 45

We now construct the grammar G′′ = (N ′′, T, P ′′, S) with

N ′′ = N ∪
⋃

p∈P1

Np, P ′′ = (P \ P1) ∪
⋃

p∈P1

Pp.

Clearly, all productions in P ′′ have the form given in (2.8).
By the construction it is easy to see that k(G′′) ∈ O(k(G)) and the construction can

be done in time O(k(G)).
Let p = A → a1a2 . . . anBb1b2 . . . bm ∈ P1, n ≥ 0, m ≥ 0, n + m ≥ 2, ai ∈ T for

1 ≤ i ≤ n and bj ∈ T for 1 ≤ j ≤ m, and let

xAy =⇒ xa1a2 . . . anBb1b2 . . . bmy (2.9)

be a derivation step in G obtained by an application of p. Then

xAy =⇒ xa1Ap,1y =⇒ xa1a2Ap,2y =⇒ . . . =⇒ xa1 . . . an−1Ap,ny (2.10)

=⇒ xa1 . . . anBp,my =⇒ xa1 . . . anBp,m−1b1y =⇒ . . . =⇒ xa1 . . . anBp,1b2 . . . bmy

=⇒ xa1 . . . anBb1b2 . . . bmy

is a derivation in G′′ by applications of the rules of Pp in the order given above.
Analogously, if q = A → a1a2 . . . an ∈ P2, ai ∈ T for 1 ≤ i ≤ n, and

xAy =⇒ xa1a2 . . . any (2.11)

is a derivation step in G according to q, then

xAy =⇒ xa1Aq,1y =⇒ xa1a2Aq,2y =⇒ . . . =⇒ xa1a2 . . . an−1Aq,n−1y =⇒ xa1a2 . . . any
(2.12)

is a derivation in G′′.
Let

S = A0 =⇒ u1A1v1 =⇒ u1u2A2v2v1 =⇒ . . .

=⇒ u1u2 . . . urArvrvr−1 . . . v1 =⇒ u1u2 . . . urwvrvr−1 . . . v1 (2.13)

be a derivation of a terminal word in G. If we replace any derivation step in (2.13)
which is done by an application of a rule of P1, i. e., it is of type (2.9) or (2.11), by the
corresponding derivation (2.10) or (2.12), respectively, and do not change derivation steps
according to rules of P \ P1, then we obtain a derivation

S = A0
∗

=⇒ u1A1v1
∗

=⇒ u1u2A2v2v1
∗

=⇒ . . .
∗

=⇒ u1u2 . . . urArvrvr−1 . . . v1
∗

=⇒ u1u2 . . . urwvrvr−1 . . . v1 (2.14)

in G′′. Thus L(G) ⊆ L(G′′).
Conversely, if we have a sentential form xAv of G′ and apply a rule of Pp for some

p ∈ P1, then it is the rule A → a1Ap,1 if n ≥ 1 or A → Bp,m−1bm if n = 0 and have to
apply the rules in the order given above, i. e., we get a derivation of the form (2.10) or
(2.12). Thus, any derivation in G′′ is of the form (2.14) where Ai−1 → uiAivi is a rule in
G.

46 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

Furthermore, if we replace in (2.14) any subderivation xi−1Ai−1yi−1
∗

=⇒ xi−1uiAi−1viyi−1

of the form (2.10) and xrAryr
∗

=⇒ xrwyi−1 of the form (2.12) by its corresponding
derivation step (2.9) or (2.11), respectively, we obtain a derivation (2.13) in G. Hence
L(G′′) ⊆ L(G), too.

Consequently, L(G′′) = L(G).
Now we eliminate all rules of the forms A → λ and A → B (such rules are in P \P1) by

the constructions given in the proofs of Lemmas 2.22 and 2.24. It is easy to see that these
constructions preserve the linearity of the grammar. Let G′ = (N ′, T, P ′, S ′) be the linear
grammar which we obtain by these constructions. Then all rules of P ′ are of the form
A → aB or A → Ba or A → a with A,B ∈ N ′ and a ∈ T with the possible exception
S ′ → λ if S ′ does not occur on the right side of any production of P ′. Moreover, as in the
proofs of Lemmas 2.22 and 2.24, we can show that L(G′) = L(G′′) = L(G).

As in the proof of Theorem 2.26 we get k(G′) ∈ O(k(G)2) and G′ can be constructed
in time O(k(G)2). 2

Theorem 2.28 For any regular grammar G = (N, T, P, S), a regular grammar G′ =
(N ′, T, P ′, S ′) can be constructed in time O(k(G2)) such that

– P ′ contains only rules of the forms A → aB or A → a with A,B ∈ N ′ and a ∈ T
with the possible exception S → λ if S does not occur on the right side of any
production of P ′, and

– L(G′) = L(G), and
– k(G′) ∈ O(k(G)2)

Proof. The proof can be given by applying the construction given in the proof of Lemma
2.27 for the special case of regular rules. 2

By the construction the regular grammar

G10 = ({S}, {a, b, c}, {p, q, r}, S) with p = S → abS, q = S → acS, r = S → abc

generating the language

L(G10) = {ax1ax2 . . . axnabc | n ≥ 0, xi ∈ {a, b} for 1 ≤ i ≤ n}

is transformed in the normal form grammar

G′
10 = {S, Ap,1, Aq,1, Ar,1, Ar,2}, {a, b, c}, P, S

with

P = {S → aAp,1, Ap,1 → bS, S → aAq,1, Aq,1 → cS, S → aAr,1, Ar,1 → bAr,2, Ar,2 → c}.

In all the normal forms we have given hitherto we have made a restriction of the
allowed rules. In context-free grammars one can also consider a restriction concerning the
position where the rule is applied.

Definition 2.29 Let G = (N, T, P, S) be a context-free grammar. A derivation step
γ =⇒ γ′ is called leftmost if

2.2. NORMAL FORMS 47

– γ = αAβ with α ∈ T ∗, A ∈ N and β ∈ (N ∪ T)∗,
– γ′ = αwβ for some rule A → w ∈ P .

In case of a leftmost derivation we write γ =⇒
l

γ′.
The language accepted by G by leftmost derivations is

Ll(G) = {w | w ∈ T ∗, S
∗

=⇒
l

w},

where
∗

=⇒
l

is the reflexive and transitive closure of =⇒
l

.

By Definition 2.29, in leftmost derivation we replace the leftmost occurence of a nonter-
minal in the current sentential form. The following result states that leftmost derivations
can be considered as a normal form with respect to the position where we apply the rules.

Theorem 2.30 For any context-free grammar G, L(G) = Ll(G).

Proof. We prove the following statement by induction on the length of the derivations:
For any w ∈ T ∗,

z
∗

=⇒ w if and only if z
∗

=⇒
l

w (2.15)

If the number of derivation steps is one, then z contains exactly one nonterminal A
and a rule A → v with v ∈ T ∗ is applied. Therefore the only possible derivation is a
leftmost one.

Now let z = αAβ with α ∈ T ∗, and let z
∗

=⇒ w be done by n direct derivation steps.
We have to apply in a certain derivation step a rule A → v to A. Let β

∗
=⇒ β′ be the

derivation which is performed before the use of A → v. Then we have the derivation

αAβ
∗

=⇒ αAβ′ =⇒ αvβ′
∗

=⇒ w.

Then there also is a derivation

αAβ
∗

=⇒ αvβ =⇒ αvβ′ ∗
=⇒ w.

Obviously, the derivation vβ
∗

=⇒ vβ′ ∗
=⇒ w can be done in n− 1 direct derivation steps.

By induction assumption we know that there is a leftmost derivation vβ′ ∗
=⇒

l
w. Hence

we have the leftmost derivation z = αAβ =⇒
l

αvβ
∗

=⇒
l

w.

Thus, for any derivation z
∗

=⇒ w, there is a leftmost derivation z
∗

=⇒
l

w. The converse
direction also holds, because any leftmost derivation is a (usual) derivation. Therefore
(2.15) holds.

As a special case of (2.15) we get S
∗

=⇒ w if and only if S
∗

=⇒
l

w which proves L(G) =
Ll(G). 2

Let w1Aw2Bw3 be a sentential form of a context-free G with rules A → x and B → y.
Then the existence of a derivation

w1Aw2Bw3 =⇒ w1xw2Bw3
∗

=⇒ w′
1xw′

2Bw′
3 =⇒ w′

1xw′
2yw′

3,

where w1
∗

=⇒ w′
1, w2

∗
=⇒ w′

2, and w3
∗

=⇒ w′
3 are certain derivations according to the

grammar, implies the existence of the derivation

w1Aw2Bw3 =⇒ w1Aw2yw3
∗

=⇒ w′
1Aw′

2yw′
3 =⇒ w′

1xw′
2yw′

3.

48 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

This means that we change the order of the application of rules without a change of the
generated language. Especially, we also generate L(G), if we apply in any derivation step
a rule to the leftmost nonterminal symbol in the current sentential form. This proves
Theorem 2.30, again, but in a little bit more informal way.

2.3 Iteration Theorems

The aim of this section is to prove that the inclusions L(REG) ⊆ L(LIN) ⊆ L(CF) ⊆
L(MON) are proper. For this purpose, for example with respect to the first inclusion
we have to give a language L which is linear, but not regular. In order to show the
linearity it is sufficient to give a linear grammar generating L. The problematic part is to
verify that L is not regular, i. e., by definition, we have to prove that no regular grammar
generates L. This is a hard task since there are infinitely many regular grammars. Thus
we give a property which ensures that a regular language, which contains a certain word
z, also contains some further words related to z. Now it is sufficient to give a linear
language which does not have this property.

Theorem 2.31 Let L be a regular language. Then there is a constant k (depending on
L) such that, for any word z with |z| ≥ k there are words u, v, w with

i) z = uvw,
ii) |uv| ≤ k, |v| > 0, and
iii) uviw ∈ L for all i ≥ 0.

Proof. By Theorem 2.28, there is a regular grammar G = (N, T, P, S) such that L = L(G)
and P contains only productions of the form A −→ aB and A −→ a with A,B ∈ N and
a ∈ T . We set k = #(N) + 1. The possible exceptional rule S −→ λ is only used to
generate the empty word; and therefore we can ignore this rule since we only interested
in words of length at most k, and we have chosen k ≥ 1.

By the form of the rules of P , for any word z = a1a2 . . . an with ai ∈ T for 1 ≤ i ≤ n
and n ≥ k, there is a derivation

S = A0 =⇒ a1A1 =⇒ a1a2A2 =⇒ a1a2a3A3 =⇒ . . .

=⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an−1an = z. (2.16)

By the choice of k, the set {A0, A1, A2, . . . , Ak} contains at least one nonterminal twice.
Let A = Ai = Aj with that 0 ≤ i < j ≤ k. We set

u = a1a2 . . . ai, v = ai+1ai+2 . . . aj and w = aj+1aj+2 . . . an.

It is obvious that the conditions i) and ii) are satisfied.
The derivation (2.16) can be written in the form

S = A0
∗

=⇒ uA
∗

=⇒ uvA
∗

=⇒ uvw = z,

and, for i ≥ 2 and i = 0, we also have the derivations

S = A0
∗

=⇒ uA
∗

=⇒ uvA
∗

=⇒ uvvA
∗

=⇒ uvvvA
∗

=⇒ . . .
∗

=⇒ uviA
∗

=⇒ uviw ∈ T ∗

2.3. ITERATION THEOREMS 49

and

S
∗

=⇒ uA
∗

=⇒ uw ∈ T ∗,

respectively. Therefore uviw ∈ L(G) = L für i ≥ 0, which proves our assertion. 2

Theorem 2.31 is called iteration theorem for regular languages since its proof is based
on the iteration of some subderivation. Sometimes it is also called pumping lemma/theorem
for regular languages because the subword v of z is ”pumped”.

We now apply Theorem 2.31 to show the existence of a language in L(LIN)\L(REG).
We consider the language

L = L(G2) = {anbn | n ≥ 1},

where G2 is the linear grammar given in Example 2.5. Thus L ∈ L(LIN).
Let us assume that L is regular. By Theorem 2.31, there is a constant k such that

the properties given in Theorem 2.31 hold. Let z = akbk. Since |z| > k, there exists
a partition z = uvw such that |uv| ≤ k, v 6= λ and uviw ∈ L for all i ≥ 0. By the
first two mentioned properties, v = ar for some r ≥ 1 and u = as for some s ≥ 0 and
w = ak−r−sbk. Now we have uv2w ∈ L by the iteration theorem. But by the structure
of the words in L (the number of occurrences of a equals the number of occurrences
of b), uv2w = asa2rak−r−sbk = ak+rbk /∈ L. The obtained contradiction justifies that our
assumption does not hold, i. e., L is not regular.

From the existence of L and Lemma 2.14, we get immediately the following fact.

Theorem 2.32 The family L(REG) is properly included in L(LIN). 2

We give a iteration theorem or pumping lemma for linear languages and use it to prove
L(LIN) ⊂ L(CF).

Theorem 2.33 Let L be a linear language. Then there exists a constant k (depending
on L) such that, for any word z ∈ L with |z| ≥ k, there exist words u, v, w, x, y with

i) z = uvwxy,

ii) |uvxy| ≤ k, |vx| > 0, and

iii) uviwxiy ∈ L for all i ≥ 0.

Proof. Let L be a linear language. By Theorem 2.27, there is a linear grammar G =
(N, T, P, S) such that L = L(G) and each rule has the form A → uBv or A → w with
|uv| = |w| = 1 (again, the exception S → λ is not of interest for us). We set

k = #(N) + 1.

Let z ∈ L and |z| ≥ k. Let n be the number of direct derivation steps to obtain z from S.
Then n ≥ k since each step adds at most one terminal letters. Thus there is a derivation

S = A0 =⇒ u1A1v1 =⇒ u1u2A2v2v1 =⇒ . . . =⇒ u1u2 . . . uk1Ak1vk1vk1−1 . . . v1

∗
=⇒ u1u2 . . . uk1uk1+1 . . . un−1An−1vn−1vn−2 . . . vk1 . . . v1

=⇒ u1u2 . . . uk1uk1+1 . . . un−1z
′vn−1vn−2 . . . vk1 . . . v1 = z.

50 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

Because N contains k − 1 nonterminals, there are integers i and j with 0 ≤ i < j ≤ k1

and Ai = Aj. Then we set

u = u1u2 . . . ui, y = vivi−1 . . . v1,

v = ui+1ui+2 . . . uj, x = vjvj−1 . . . vi+1,

w = uj+1uj+2 . . . un−1z
′vn−1vn−2 . . . vj+1.

Then we have

|uvxy| = |u1u2 . . . ujvjvj−1 . . . v1| ≤ k and z = uvwxy.

Therefore i) and ii) are satisfied. Moreover, we have the derivations

S
∗

=⇒ uAiy
∗

=⇒ uvAjxy = uvAixy
∗

=⇒ uvvAjxxy = uvvAixxy
∗

=⇒ uviAjx
iy = uviwxiy,

which proves iii). 2

Theorem 2.34 The family L(LIN) is properly included in L(CF).

Proof. Since the inclusion is known by (2.7), it is sufficient to show that the inclusion is
strict.

We consider the context-free grammar

G = ({S, A}, {a, b}, {S → AA, A → aAb, A → ab}, S).

It is easy to see that
L(G) = {anbnambm | n ≥ 1, m ≥ 1}. (2.17)

Clearly, L(G) ∈ L(CF). We show that L(G) /∈ L(LIN).
Let us assume that L(G) is a linear language. Let k be the constant which exist by

Theorem 2.33. We consider the word z = a2kb2ka2kb2k ∈ L(G) of length 8k > k. By
Theorem 2.33, there exist a partition z = uvwxy such that |uvxy| ≤ k and uviwxiy ∈
L(G) for i ≥ 0. By |uvxy| ≤ k, the words u and v only contain the letter a and y and
x only contain the letter b, i. e., we have u = ar, v = at, x = bp and y = bq for certain
integers r, t, p, q and z = arata2k−r−tb2ka2kb2k−p−qbpbq. Thus, for i = 2,

z′ = ara2ta2k−r−tb2ka2kb2k−p−qb2pbq = a2k+tb2ka2kb2k+p ∈ L(G). (2.18)

By Theorem 2.33, in addition, t > 0 or p > 0 because vx 6= λ. This implies z′ =
a2k+tb2ka2kb2k+p /∈ L(G) by the structure of the words in L(G) (see (2.17)) which contra-
dicts (2.18). 2

We now present the iteration theorem/pumping lemma for context-free languages.

Theorem 2.35 Let L be a context-free language. Then there is a constant k (depending
on L) such that, for any word z ∈ L with |z| ≥ k there are words u, v, w, x, y with

i) z = uvwxy,
ii) |vwx| ≤ k, |v|+ |x| > 0, and

2.3. ITERATION THEOREMS 51

iii) uviwxiy ∈ L for all i ≥ 0.

Proof. Let L be a context-free language. By Theorem 2.26, L = L(G) for some context-
free grammar G = (N, T, P, S) in Chomsky normal form. Let n = #(N). We set k = 2n.

Let A =⇒∗ s ∈ T ∗ be a derivation with an associated derivation tree of depth m. We
first prove by induction on the depth m that |s| < 2m gilt.

m = 1. Then the derivation consists of a single step. By the definition of the Chomsky
normal form, the derivation step is an application of a rule of the form A → a for some
a ∈ T or A → λ (if A is the axiom). Thus s = λ oder s = a which immediately gives
|s| ≤ 1 < 2 = 21. Thus the induction base is shown.

Let A
∗

=⇒ w be a derivation with a derivation tree t of depth m ≥ 2. By the Chomsky
normal form, t has the form

A

B C

t1 t2

s1 s2

¢
¢
¢
¢¢

A
A

A
AA

¢
¢
¢
¢¢

A
A

A
AA

©©©©©

HHHHH

where t1 and t2 are derivation trees with a depth at most m− 1 and s1s2 = s holds. By
induction hypothesis

|s| = |s1|+ |s2| < 2m−1 + 2m−1 = 2m,

which finishes the proof of the assertion.
We use this statement on derivation trees for words z ∈ L with |z| ≥ k. We obtain that

the derivation tree t′ associated with a derivation of z has a depth m ≥ n + 1 according
to the choice of k. Therefore t′ has the form shown in Figure 2.2.

Because m − 1 ≥ n, there is a nonterminal which occurs twice in the sequence
S, A1, A2, . . . , Am−1. Let A be this nonterminal. Then t′ has the form shown in Fig-
ure 2.3.

Since G is in Chomsky normal form, vx 6= λ. Furthermore, without loss of generality
we can assume that |vwx| ≤ k, because otherwise there is a path in the derivation tree

associated with A
∗

=⇒ vwx which contains a certain nonterminal A′ at least two times
and we can choose A′ instead A. Thus the conditions i) and ii) are shown.

From t we can see that we have the derivations

S
∗

=⇒ uAy, A
∗

=⇒ vAx, A
∗

=⇒ w.

Hence we also have the derivation

S
∗

=⇒ uAy
∗

=⇒ uvAxy
∗

=⇒ uvvAxxy
∗

=⇒ uvvvAxxxy
∗

=⇒ . . .
∗

=⇒ uviAxiy
∗

=⇒ uviwxiy

for i ≥ 0 (if i = 1, then the given word z is derived). Because this derivation yield a word
from T ∗, we obtain uviwxiy ∈ L(G) = L for i ≥ 0, which proves condition iii). 2

52 CHAPTER 2. BASIC FAMILIES OF GRAMMARS AND LANGUAGES

z

a

Am−1

...

A2

A1

S

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

Figure 2.2: Derivation tree of height m

u v w x y

A

...

A

...

S

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

¡
¡

¡
¡

¡¡

@
@

@
@

@@

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

@
@

@
@

@
@

@
@

@
@

@
@@

Figure 2.3: Derivation tree with two occurrences of A

Theorem 2.36 The family L(CF) is properly included in L(CS).

Proof. Since the inclusion is known by (2.7), it is sufficient to show that the inclusion is
strict.

We prove that L = {anbncn | n ≥ 1} ∈ L(MON) \ L(CF). By Example 2.9, L ∈
L(MON).

Let us assume that L is a context-free language. By Theorem 2.35, there is a constant
k and a partition of z = akbkck = uvwxy with the properties ii) and iii) of Theorem 2.35.
We discuss only the case that v 6= λ; the considerations for v = λ and x 6= λ are analogous

2.3. ITERATION THEOREMS 53

and left to the reader.
We distinguish the following cases (by |vwx| ≤ k, all possible cases are regarded):
Case 1. v = arbs with r ≥ 1, s ≥ 0. By |vwx| ≤ k, the word vwx contains no

occurrence of c. Thus uv2wx2y contains at least k + r > k occurrences of the letter a, but
only k occurrences of the letter c. Therefore uv2wx2y /∈ {anbncn | n ≥ 1} in contrast to
property iii) of Theorem 2.35.

Case 2. v = bsct with s ≥ 1, t ≥ 0. Then vwx contains no occurrence of a, and hence
we have #a(uv2wx2y) = k and #b(uv2wx2y) ≥ k + s > k, which leads to a contradiction
as in Case 1.

Case 3. v = ct with t ≥ 1. Again, vwx contains no occurrence of a, and we get
#(uv2wx2y) = k and #(uv2wx2y) ≥ k + t > k, which leads to a contradiction, again. 2

We combine (2.7) and the Theorems 2.32, 2.34, and 16.13 and get immediately the
following result.

Theorem 2.37 L(REG) ⊂ L(LIN) ⊂ L(CF) ⊂ L(CS) = L(MON) ⊆ L(RE). 2

Thus to obtain a final result it remains to discuss the properness of the inclusion
L(MON) ⊆ L(RE). This will be done in Chapter ??.

