

Contents

1 Fundamentals 7
1.1 Sets and Multisets of Words . 7
1.2 Polynomials and Linear Algebra . 13
1.3 Graph Theory . 14
1.4 Intuitive Algorithms . 16

A SEQUENTIAL GRAMMARS 19

2 Basic Families of Grammars and Languages 21
2.1 Definitions and Examples . 21
2.2 Normal forms . 32
2.3 Iteration Theorems . 48

3 Languages as Accepted Sets of Words 55
3.1 Turing Machines versus Phrase Structure Grammars 55

3.1.1 Turing Machines and Their Accepted Languages 55
3.1.2 Nondeterministic Turing Machines and Their Accepted Languages . 64
3.1.3 A Short Introduction to Computability and Complexity 71

3.2 Finite Automata versus Regular Grammars 78
3.3 Push-Down Automata versus Context-Free Languages 85

B Formal Languages and Linguistics 133

8 Some Extensions of Context-Free Grammars 135
8.1 Families of Weakly Context-Sensitive Grammars 135
8.2 Index Grammars . 135
8.3 Tree-Adjoining Grammars . 135
8.4 Head Grammars . 135
8.5 Comparison of Generative Power . 135

9 Contextual Grammars and Languages 137
9.1 Basic Families of Contextual Languages . 137
9.2 Maximally Locally Contextual Grammars 137

10 Restart Automata 139

D Formal Languages and Pictures 225

5

6 CONTENTS

14 Chain Code Picture Languages 227
14.1 Chain Code Pictures . 227
14.2 Hierarchy of Chain Code Picture Languages 235
14.3 Decision Problem for Chain Code Picture Languages 239

14.3.1 Classical Decision Problems . 239
14.3.2 Decidability of Properties Related to Subpictures 249
14.3.3 Decidability of ”Geometric” Properties 252
14.3.4 Stripe Languages . 255

14.4 Some Generalizations . 261
14.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars 263

14.5.1 Definitions and some Theoretical Considerations 263
14.5.2 Applications for Simulations of Plant Developments 267
14.5.3 Space-Filling Curves . 269
14.5.4 Kolam Pictures . 272

15 Siromoney Matrix Grammars and Languages 275
15.1 Definitions and Examples . 277
15.2 Hierarchies of Siromoney Matrix Languages 282
15.3 Hierarchies of Siromoney Matrix Languages 282
15.4 Decision Problems for Siromoney Matrix Languages 285

15.4.1 Classical Problems . 285
15.4.2 Decision Problems related to Submatrices and Subpictures 290
15.4.3 Decidability of geometric properties 294

16 Collage Grammars 301
16.1 Collage Grammars . 303
16.2 Collage Grammars with Chain Code Pictures as Parts 312

Bibliography 317

Chapter 3

Languages as Accepted Sets of
Words

In the preceding chapter we have defined languages as sets of words generated by gram-
mars. This means that we have considered a mechanism which produces the words of the
languages. In this chapter we will go the other way around. We define devices which, for
a given word, tell whether the word belongs to a language. A little bit more precise we
associate with any such device a set of words for which the device gives a positive answer.

3.1 Turing Machines versus Phrase Structure Gram-

mars

3.1.1 Turing Machines and Their Accepted Languages

The first question is to define the device. we aim at a very simple device. We only require
that it changes the contents of storage cells in dependence on the information it has. The
contents of a storage cell is a letter of some word, and the operations performed by the
device is a simple change of the letter and a move to another storage cell. Formally, we
get the following notion which was first introduced and investigated by Alan Turing1

in 1935.

Definition 3.1 A Turing machine is a sextuple

M = (X, Z, z0, Q, F, δ),

with
– the alphabet X of input symbols,
– the alphabet Z of states,
– the initial state z0 ∈ Z,
– the set Q of halting states, where ∅ ⊆ Q ⊆ Z,

11912 – 1954, English logician, mathematician, and cryptoanalyst, worked in Princeton (USA) and
Cambridge (England), during World War II involved in the decoding of the Enigma, invented mathemat-
ical methods in biology

55

56 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

– the set F of accepting states, where ∅ ⊆ F ⊆ Q, and
– the transition function δ : (Z \Q)× (X ∪{∗}) → Z × (X ∪{∗})×{R, L,N}, where

the blank symbol ∗ is not a symbol from X.

The states of Q \ F are called rejecting states.
To justify the notion ”machine” we give the following interpretation. A Turing machine

consists of
– a control box, which at any moment is in a certain state which represents the

information stored by the machine,
– a tape, which is unbounded to the right and to the left and is divided into cells

where any cell contains a letter of X or the blank symbol, and at any moment only
a finite number of cells contains a letter of X,

– a read/write head, which can read the symbol in a square and can overwrite a
symbol.

At any moment, the machine is in some state z ∈ Z \Q and the head scans some symbol
x ∈ X ∪ {∗} in some cell. Figure 3.1 gives an illustration of an Turing machine.

control unit
z ∈ Z

?read/write head

· · · ∗ ∗ a b b a ∗ ∗ · · · tape

Figure 3.1: Turing machine

Thus the situation of a Turing machine is given by its current state, by the word (or
the words) over X on the tape, and the position, where the head is. We formalize this
intuitive idea by the following definition.

Definition 3.2 Let M be a Turing machine as in Definition 3.1. A configuration K of
the Turing machine M is a triple

K = (w1, z, w2),

where w1 and w2 are words over X ∪ {∗} and z ∈ Z.
A configuration is called initial if w1 = λ and z = z0.
A configuration is called halting if z ∈ Q.
A configuration is called accepting if z ∈ F .

The interpretation of a configuration (w1, z, w2) is as follows: The machine is in state
z, the word w1w2 is written on the tape (and all remaining cells are filled with the blank
symbol ∗), and the head is above the first letter of w2. We note that any configuration

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 57

describes a unique situation of the machine, but a given situation can be described by
an infinite number of configurations. For instance, any of the configurations (λ, z, ab),
(∗, z, ab) und (∗∗, z, ab∗) describes the situation, where the Turing machine is in state z,
ab stands on the tape, and the read/write head is above a. It is easy to see that one gets
a unique configuration for each situation if one requires that the first letter of w1w2 is ∗
and the head is above the first letter or the first letter of w1w2 is contained in X and the
last letter of w1w2 is ∗ and the head is above the last letter or the last letter of w1w2 is
contained in X.

An initial configuration is given if the Turing machine is in its initial state z0 and the
head is above the first letter.

A halting configuration is characterised by the requirement that the machine is in an
halting state of Q.

The machine works as follows. If the Turing machine is in the state z ∈ Z \ Q, the
head scans the symbol x ∈ X ∪ {∗}, and δ(z, x) = (z′, x′, r) holds, then the machine
changes its current state z to z′, overwrites the read symbol x by x′ and moves the head
in direction r ∈ {R,L, N}, where R and L stand for a move to right and left neighbouring
cell, respectively, and N stands for no move. Formally, we get the following definition.

Definition 3.3 Let M be a Turing machine as in Definition 3.1. Let K1 = (w1, z, w2)
und K2 = (v1, z

′, v2) be two configurations of M. We say that M transforms K1 in K2

(written as K1 |= K2), if one of the following conditions is satisfied:

v1 = w1, w2 = xu, v2 = x′u, δ(z, x) = (z′, x′, N)

or
w1 = v, v1 = vx′, w2 = xu, v2 = u, δ(z, x) = (z′, x′, R)

or
w1 = vy, v1 = v, w2 = xu, v2 = yx′u, δ(z, x) = (z′, x′, L)

for some x, x′, y ∈ X ∪ {∗} und u, v ∈ (X ∪ {∗})∗.
The reflexive and transitive closure of |= is denoted by |=∗.

We note that the machine cannot perform a working step if it is in a halting configu-
ration because δ is not defined for halting states.

Definition 3.4 Let M = (X,Z, z0, Q, F, δ, F) be a Turing machine as in Definition 3.1.
The language T (M) accepted by M is defined by

T (M) = {w : w ∈ X∗, (λ, z0, w) |=∗ (v1, q, v2) für ein q ∈ F}.
According to Definition 3.4 the language T (M) consists of all words w such that M

starting in the initial configuration (λ, z0, w) (i. e., the word w is written on the tape)
finally reaches a halting configuration with an accepting state. We say that the words of
T (M) are accepted by M. If a word w is not accepted, then exactly one of the following
situations occurs: the machine stops in an rejecting state or it does not halt (i. e., it does
not enter a halting state and works infinitely in time).

We now consider some examples. Thereby we shall present the function δ by a table
where we write the value δ(z, x) in the meet of the column associated with z ∈ Z \Q and
the row associated with the symbol x ∈ X ∪ {∗}.

58 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

Example 3.5 Let

M1 = ({a, b}, {z0, q, q
′, za, z

′
a, zb, z

′
b}, z0, {q, q′}, {q}, δ)

be a Turing machine where δ is given by

δ z0 za zb z′a z′b
∗ (q′, ∗, N) (z′a, ∗, N) (z′b, b, N) (z′a, ∗, N) (z′b, ∗, N)
a (za, a, R) (za, a, R) (zb, a, R) (q, ∗, N) (q′, ∗, N)
b (zb, b, R) (za, b, R) (zb, b, R) (q′, ∗, N) (q, ∗, N).

Let abba be written on the tape. Then we get the following sequence of configurations.

(λ, z0, abba) |= (a, za, bba) |= (ab, za, ba) |= (abb, za, a) = (abb, za, a∗)
|= (abba, za, ∗) |= (abb, z′a, a) |= (abb, q, ∗).

Consequently, abba ∈ T (M1).
If we start with baba on the tape, we obtain

(λ, z0, baba) |= (b, zb, aba) |= (ba, zb, ba) |= (bab, zb, a) |= (baba, zb, ∗)
|= (bab, z′b, a) |= (bab, q′, ∗)

and thus baba /∈ T (M).
In general, the Turing machine M1 starts in state z0 and reads the letter x ∈ X. Then

it remembers the read letter in the state zx. Now it moves the read/write head to the
right until it scans the first letter ∗ preserving the state zx and therefore remembering
the first letter. Now it moves the head to the left and scans the last letter in state z′x. If
the last letter is x, then it enters state q and accepts. If the last letter is different from
x, then q′ is the new state and the input word is rejected. If the tape contains the empty
word (i. e., all cells are filled with ∗), then the rejecting state q′ is obtained. Therefore

T (M1) = {x1x2 . . . xn | n ≥ 1, xi ∈ {a, b} for 1 ≤ i ≤ n, x1 = xn}.
Example 3.6 We consider the Turing machine

M2 = ({a, b}, {z0, z1, q}, z0, {q}, {q}, δ)
with δ given by

δ z0 z1

∗ (z0, ∗, N) (q, ∗, N)
a (z1, a, R) (z0, a, R)
b (z1, b, R) (z0, b, R).

For abb und abba, we get

(λ, z0, abb) |= (a, z1, bb) |= (ab, z0, b) |= (abb, z1, ∗) |= (abb, q, ∗)
and

(λ, z0, abba) |= (a, z1, bba) |= (ab, z0, ba) |= (abb, z1, b)

|= (abba, z0, ∗) |= (abba, z0, ∗) |= (abba, z0, ∗) |= . . .

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 59

(i. e., the configuration (abba, z0, ∗) is not changed by M2 and therefore M2 does not
halt). Therefore

aab ∈ T (M2) and abba /∈ T (M2).

It is easy to see that M2 moves its head from left to right, is in state z0 or z2 if it has read
a word of even or odd length, respectively. If M2 has read the complete word it enters
the accepting q from z1 and does not change the configuration if it is in state z0. Hence

T (M2) = {w | w ∈ {a, b}∗, |w| is odd}.

Example 3.7 We construct a Turing machine which accepts the non-context-free lan-
guage {anbncn | n ≥ 1}. The intuitive idea is as follows: First the machine moves from
left to right over the word and checks whether the input word has the form anbmcr with
n ≥ 1, m ≥ 1 and r ≥ 1. We use the states za, zb and zc for this procedure; scanning the
first a we enter za which is not changed as long as we read as on the tape, then we change
to zb if we read a b and so on. Then it checks that the number of as and bs and cs is equal
to each other. For this it goes back to the beginning of the word (by state z1) and cancels
one a, one b and one c if it moves to the end, again, using states z2 (no cancellation is
done), z′a (one a is cancelled), z′b and z′c. This is repeated as long as a distinction in the
number of occurrences of letters is noticed or all letters are cancelled. There are some
problems in the procedure. If the cancellation is done by writing a blank symbol ∗ on the
tape, we have no knowledge anymore where the first and the last letter occurs since the
letter ∗ also occurs inside the word. Hence the cancellation will be done by a writing of
a new symbol d on the tape. Formally we obtain the following Turing machine

M3 = {a, b, c, d}, {z0, z1, z2, za, zb, zc, z
′
a, z

′
b, z

′
c, q, q

′}, z0, {q, q′}, {q}, δ)

with accepting state q and rejecting state q′ and the transition function δ given by the
tables

z0 z1 z2 za zb zc

∗ (q′, ∗, N) (z2, ∗, R) (q, ∗, N) (q′, ∗, N) (q′, ∗, N) (z1, ∗, L)
a (za, a, R) (z1, a, L) (z′a, d, R) (za, a, R) (q′, ∗, N) (q′, ∗, N)
b (q′, ∗, N) (z1, b, L) (q′, ∗, N) (zb, b, R) (zb, b, R) (q′, ∗, N)
c (q′, ∗, N) (z1, c, L) (q′, ∗, N) (q′, ∗, N) (zc, c, R) (zc, c, R)
d (q′, ∗, N) (z1, d, L) (q′, ∗, N) (q′, ∗, N) (q′, ∗, N) (q′, ∗, N)

and

z′a z′b z′c
∗ (q′, ∗, N) (q′, ∗, N) (z1, ∗, L)
a (z′a, a, R)
b (z′b, d, R) (z′b, b, R)
c (q′, ∗, N) (z′c, d, R) (z′c, c, R)
d (z′a, d, R) (z′b, d, R)

We did not fill the second table completely, some entrances are empty. The reader can
easily verify that the corresponding situation (e. g. scanning a in state z′c) cannot occur
and therefore any entrance can be done without effecting the work of the Turing machine.

60 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

From Example 3.6 we can see that it is not necessary to have rejecting states, and in
all examples we have only used one accepting state. We now prove that both properties
can be assumed without loss of generality.

Lemma 3.8 For any Turing machine M, there is a Turing machine M′ with only one
halting state which is accepting (and thus without rejecting states) such that T (M) =
T (M′).

Proof. Let M = (X, Z, z0, Q, F, δ) be a Turing machine. We construct from M the
Turing machine M′ = (X, Z ′, z0, {q′}, {q′}; δ′) where

Z ′ = Z ∪ {q′} with q′ /∈ Z,

δ′(z, x) = δ(z, x) for z ∈ Z \Q, x ∈ X ∪ {∗},
δ′(z, x) = (z, x,N) for z ∈ Q \ F, x ∈ X ∪ {∗},
δ′(z, x) = (q, x, N) für z ∈ F, x ∈ X ∪ {∗}, .

According to these settings
– the work of M′ and M coincide as long as no halting state of Q is reached,
– M′ enters an infinite loop, if it reaches an rejecting state of Q,
– if M′ reaches an accepting state, it performs a further step which only changes the

state to q′,
Since rejection is replaced by non-halting, it easily follows that T (M′) = T (M). 2

By Lemma 3.8, the question arises why we have introduced in Definition 3.1 a possible
distinction between halting and accepting states. The proof of Lemma 3.8 is based on a
replacement of rejecting states by a non-halting situation. This idea cannot be used if we
consider other (special) type of Turing machines where we require a halting on any input.
It such cases we need rejecting states (because otherwise all input would be accepted).

If we require halting on any input, then we come to the notion of a recursive set.

Definition 3.9 A language L ⊆ X∗ is called recursiveor decidable, if there is a Turing
machine M = (X, Z, z0, Q, F, δ) which accepts L and halts on any input word of X∗.

We now present a characterization of recursive languages.

Theorem 3.10 A language L ⊆ X∗ is recursive if and only if L as well as X∗ \ L are
accepted by Turing machines.

Proof. Let first L be a recursive language. Then there is a Turing machine M =
(X, Z, z0, Q, F, δ), which accepts L and halts on any input. Obviously, the Turing machine
M′ = (X, Z, z0, Q, Q \ F, δ) accepts if and only if M rejects. Thus T (M′) = X∗ \ L.

Let L and X∗\L be accepted by the Turing machines N and N ′, respectively. Without
loss of generality we assume that N and N ′ are in the normal form given in Lemma 3.8.
We construct the Turing machine N ′′ which works as follows. First N ′′ writes a second
copy of the input word on the tape (both copies are separated by at least one blank
symbol). Then N ′′ simulates N ′ on the input word and N ′ on the second copy (in order
to separate both words it is possible that they have to e shifted on the tape). The single
steps during the simulations are done alternately, i. e. a step simulating N is followed by

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 61

one step simulating N ′. It stops if a halting state of N or N ′ is obtained. The input word
is accepted if and only if a halting state of N is reached. Because w ∈ X or w ∈ X∗ \ L
holds, N ′′ halts on any input word. Moreover, it accepts exactly the words which are
accepted by N . Therefore T (N ′′) = T (N) = L. Hence L is recursive. 2

We now show that the recursive language are a properly special case of languages
which are accepted by Turing machines. This means that the requirement to halt on any
input leads to a proper decrease of the power of the machines.

Theorem 3.11 There is a language which can be accepted by a Turing machine and is
not recursive.

Proof. Intuitive, we show that the set of all pairs (M, w) where M is a Turing machine,
w is an input word for M and M halts on w is not recursive. This means that given
a Turing machine M and an input w for M, we cannot decide whether or not M halts
on input w. However, this requires that any pair (M, w) has to be an input for a fixed
Turing machine which decides the problem. Thus we have to encode Turing machines M
as a word over a fixed alphabet.

Let M = (X, Z, z0, Q, F, δ) be a Turing machine. If we are only interested in accep-
tance, then we can assume without loss of generality that Q = F . Let

X = {x1, x2, . . . , xn}, Z = {z0, z1, . . . , zm}, and Q = F = {zk+1, zk+2, . . . , zm},

for some n ≥ 1 and 0 ≤ k + 1 ≤ l ≤ m. Then Z \ Q = {z0, z1, . . . , zk}. We set x0 = ∗.
Moreover, instead of δ(z, x) = (z′, x′, r) we can use the quintuple (z, x, z′, x′, r) (i. e., we
consider the function δ as a relation). Then δ can be described completely as the set of
all these quintuples δi,j = (zi, xj, z

′
ij, x

′
ij, rij) with 0 ≤ i ≤ k and 0 ≤ j ≤ n. Altogether

we can describe M as the word

{x0, x1, . . . , xn}, {z0, . . . , zm}, {zk+1, . . . , zm}, δ00, . . . , δ0,n, δ10, . . . , δm,n

over the alphabet {x0, x1, . . . , xn, z0, z1, . . . , zm, {, }, (,), , } (the last given symbol of the
alphabet is the comma). For the Turing machine of Example 3.6, we get

{∗, a, b}, {z0, z1, q}, {q}, (z0, ∗, z0, ∗, N), (z0, a, z1, a, R), (z0, b, z1, b, R), (3.1)

(z1, ∗, q, ∗, N), (z1, a, z0, a, R), (z1, b, z0, b, R).

Because the alphabet is different for all Turing machines we use the following encoding
over {0, 1}:

xj → 01j+10 for 0 ≤ j ≤ n,

zi → 01i+102 for 0 ≤ i ≤ k,

R → 0103, L → 01203, N → 01303,

(→ 0104,) → 01204, quad{→ 01304, } → 01404

,→ 0105.

62 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

By this encoding we obtain a description of M as a word over {0, 1}. From (3.1) with
a = x1, b = x2, and q = z2, we yield

01304 010 0105 0120 0105 0130 01404 0105 01304 0102 0105

01202 0105 01302 01404 0105 01304 01302 01404 0105

0104 0102 0105 010 0105 0102 0105 010 0105 01303 01204 0105

0104 0102 0105 0120 0105 01202 0105 0120 0105 0103 01204 0105

0104 0102 0105 0130 0105 01202 0105 0130 0105 0103 01204 0105

0104 01202 0105 010 0105 01302 0105 010 0105 01303 01204 0105

0104 01202 0105 0120 0105 0102 0105 0120 0105 0103 01204 0105

0104 01202 0105 0130 0105 0102 0105 0130 0105 0103 01204

(where the first two rows describe the sets and each of the remaining six lines a quintuple
of the transition function).

Given a Turing machine M, we denote the associated encoding as a word over {0, 1}
by wM. Clearly, given M, then wM uniquely determined. Conversely, if we have a word
over {0, 1} which describes a Turing machine, then we can uniquely reconstruct from w
a Turing machine M such that w = wM.

By S we denote the set of all Turing machines M = (X, Z, z0, Q, Qδ) with the input
set X = {0, 1}, an arbitrary set Z = {z0, z1, . . . , zm}, m ≥ 1, of states and a single halting
state zm which is an accepting one and some transition function δ (by Lemma 3.8 we can
restrict to these machines without loss of generality). If M ∈ S, then its encoding wM
as an word over the input set of M can be used as an input of M.

We now consider the set

U = {w | w ∈ {0, 1}∗, w = wM for some Turing machine M∈ S, w = wM ∈ T (M)}.

We prove that U is not a recursive set by contradiction. Thus let us assume that U is
recursive. Then the complement

C(U) = {w | w ∈ {0, 1}∗, w is not an encoding of a Turing machine of S, or

(w = wM for some Turing machine M∈ S and w = wM /∈ T (M))}

of U is acceptable by some Turing machine N , i. e.,

T (N) = C(U). (3.2)

Obviously, N ∈ S.
Let us assume that wN ∈ T (N). Since wN is the encoding of a Turing machine and

wN ∈ T (N), wN is not in C(U). By (3.2), this gives wN /∈ T (N) in contrast to our
assumption.

Let us assume that wN /∈ T (N). Then by the definition of C(U), we have wN ∈ C(U).
Thus wN ∈ T (N) by (3.2). Again, we have a contradiction to our assumption.

Since we get a contradiction in all possible cases, our assumption that U is recursive
has to be false.

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 63

It remains to prove that U is accepted by a Turing machine K. We only explain the
behaviour of K, a detailed description of K is left to the reader. The machine K scans
the input and checks whether or not it is an encoding of a Turing machine (first it looks
whether or not the word has the right structure, i. e., whether a set of three input symbols
∗, 0, 1, a state set of some size and a singleton set of the halting state is followed by a
sequence of δi,j which are all in encoded form and separated by encoding of comma; then
it checks whether, for every pair of a state z from Z \ Q and an input symbol x, there
is a corresponding quintuple (z, x, z′, x′, r) in encoded form). In the non-affirmative case,
K rejects the input. In the affirmative case, w = wT holds for some Turing machine T .
Now K copies w on the tape and simulates the work of T on the second copies (where
the first copy is used to look which transformation has to be done on the second copy).
K halts if this simulation comes to the halting state of T . Thus K halts if and only if T
halts if and only if w = wT is accepted by T . 2

We now present the first relation between Turing machines and grammars considered
in the preceding chapter.

Lemma 3.12 For any Turing machine M, there is a phrase structure grammar G such
that L(G) = T (M).

Proof. Let the Turing machine M = (X, Z, z0, Q, F, δ) be given. Then w belongs to the
set T (M) if

(λ, z0, w) |=∗ (v1, q, v2) (3.3)

for some accepting state q ∈ F and some words v1 and v2 over X ∪{∗} (the reader should
confirm that v1 and v2 can contain some occurrences of ∗). The intuitive idea for the
grammar which generates T (M) is as follows: first, in some steps, we generate v1qz2 (a
word representing the halting configuration) from which we derive z0w in some steps,
where each step is reverse to the transformation of a configuration into the successor
configuration, and finally from z0w we generate w and check that w ∈ X∗. However, this
idea needs some additional things to be realized. For instance, to derive w from z0w we
have to know that z0 is the first letter of the word. Since a rule α → β can be applied at
any occurrence of α in a word and not only to α in the beginning of the word. Thus we
use additional symbols § and # which are placed in the start and end position of a word
(or in other words § and # are left and right markers). Furthermore, we have to recognize
the unique state z in the word u1zu2 representing the configuration (u1, z, u2). Therefore
we require that X ∩ Z = ∅, ∗, §, # /∈ Z which can be done without loss of generality (if
necessary we can rename the states).

We now give the phrase structure grammar G = (N, T, P, S). We set

N = Z ∪ {§, #, ∗, S, S ′, A, A′, A′′, A′′′},
T = X

and define P as the set of all rules of the following forms:

(i) S −→ §S ′#,

S ′ −→ xS ′, S ′ −→ S ′x for x ∈ X ∪ {∗},
S ′ −→ q für q ∈ F

64 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

(by these rules we realize a derivation S =⇒∗ §v1qv2# which gives a description of a
halting configuration),

(ii) z′ab′ −→ azb for z, z′ ∈ Z ′, a, b, b′ ∈ X ∪ {∗}, δ′(z, b) = (z′, b′, L),

z′b′ −→ zb for z, z′ ∈ Z ′, b, b′ ∈ X ∪ {∗}, δ′(z, b) = (z′, b′, N),

b′z′ −→ zb for z, z′ ∈ Z, b, b′ ∈ X ∪ {∗}, δ′(z, b) = (z′, b′, R)

(by these rules we simulation the transformations of configurations in the opposite di-
rection; for instance we have §v1z

′ab′v2# =⇒ §v1azbv2# if (v1a, z, bv2) |= (v1, z
′, ab′v2)

by δ(z, b) = (z′, b′, L)); using the third type of rules from (ii), we can get a subword z#
which is impossible in a configuration, however, then – as we can see by the construction
of all rules, then no rule is applicable and the derivation is blocked; but if we produce
additional symbol ∗ before # in the first phase of the derivation by rules from (i), the
derivation can be continued),

(iii) z0∗ −→ A,

∗A −→ A,

§A −→ A′′′,

z0x −→ A′′ for x ∈ X,

∗A′ −→ A′,

§A′ −→ A′′,

A′′x −→ xA′′ for x ∈ X,

A′′∗ −→ A′′′,

A′′# −→ λ,

A′′′∗ −→ A′′′,

A′′′# −→ λ

(by these rules we realize derivations § ∗n z0 ∗m # =⇒ λ and § ∗n z0w ∗m # =⇒ w where
w ∈ X+; therefore we obtain the word input word).

By the explanations given to the groups of rules it is easy to see that any derivation
in G has the form

S
∗

=⇒ u1 = §v1qv2#
∗

=⇒ u2 = §z0w#
∗

=⇒ w (3.4)

where any derivation step of the subderivation u1
∗

=⇒ u2 consist in a backwards simulation
of a transformation of configurations.

Thus we have shown that a terminating derivation is of form (3.4) and exists if and
only if (3.3) holds. Therefore w ∈ L(G) if and only if w ∈ T (M). Hence L(G) = T (M).
2

The consequence of Lemma 3.12 is that any language which can be accepted by a
Turing machine is recursively enumerable.

3.1.2 Nondeterministic Turing Machines and Their Accepted
Languages

The aim of this subsection is the proof that any recursively enumerable language is ac-
ceptable by a Turing machine. If we want to give a proof analogously to the proof of

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 65

Lemma 3.12 – the Turing machine simulates the derivation of the grammar backwards
– then there occurs the problem that the process is not deterministic. For example the
derivations abACa =⇒ ababCa and aBbCa =⇒ ababCa are valid by application of the
rules A → ab and B → ba, respectively. Thus the machine has – essentially – to real-
ize ababCa |= abACa and ababCa |= aBbCa which is impossible since any configuration
has a unique successor configuration. In order to have also two or more choices for the
successor configuration (and thus to have a possibility for an analogous proof) we modify
the definition of a Turing machine.

Definition 3.13 A nondeterministic Turing machine is a sixtuple

M = (X, Z, z0, Q, F, τ),

where X,Z, z0, Q und F are specified as in the case of a Turing machine and τ is a
function

τ : (Z \Q)× (X ∪ {∗}) → 2Z×(X∪{∗})×{R,N,L}.

According to this definition τ(z, x), z ∈ Z \ Q, x ∈ X ∪ {∗} is a finite set of triples
(z′, x′, r) with z′ ∈ Z, x′ ∈ X ∪ {∗}, r ∈ {R, L,N}.

The Turing machine defined in Definition 3.1 can be considered as a special case of
the nondeterministic Turing machine of Definition 3.13 where any set τ(z, x), z ∈ Z \Q,
x ∈ X∪{∗}, consist only of the element δ(z, x). Turing machines as presented in Definition
3.1 are sometimes called deterministic Turing machines

We define the configuration of a nondeterministic Turing machine as for a (determin-
istic) Turing machine (see Definition 3.2) and the relation K1 |= K2 for configurations K1

and K2 as in Definition 3.3, where we replace δ(z, x) = (z′, x′, r) by the requirement that
(z′, x′, r) ∈ τ(z, x).

Obviously, according to these settings a configuration K1 has as many successor con-
figurations as the set τ(z, x) has elements.

Definition 3.14 Let M = (X,Z, z0, Q, F, τ) be a nondeterministic Turing machine and
w ∈ X∗. A halting (or accepting) computation path for w is a sequence K0, K1, . . . , Kt,
t ≥ 0, of configurations of M such that

– K0 = (λ, z0, w),
– K0 |= K1 |= · · · |= Kt, and
– Kt is halting configuration (or an accepting configuration, respectively).

The number t is called the length of the computation path.

Note that the notion of a computation path can be used for deterministic Turing
machines, too. In case of deterministic Turing machines, for any word w, there is at most
one computation path for w, whereas there can exist some computation paths for w in
case of nondeterministic Turing machines.

We now define the language accepted by a nondeterministic Turing machine in analogy
to Definition 3.4.

Definition 3.15 Let M = (X, Z, z0, Q, τ, F) be a nondeterministic Turing machine as
in Definition 3.13. The language T (M) accepted by M is defined by

T (M) = {w | w ∈ X∗, there is a computation path for w}.

66 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

According to Definition 3.15, a word w is accepted if there exists a sequence of con-
figurations starting with the initial configuration (λ, z0, w) which ends in an accepting
configuration. However, there can also be a sequence of configurations starting with
(λ, z0, w) and halting in a rejecting configuration or there can be an infinite sequence of
configurations starting with (λ, z0, w). This means that we require the existence of one
computation path for acceptance, and we do not care what is with the other existing
sequences of configurations. Thus, a word v is not accepted if all existing sequences of
configurations starting with (λ, z0, v) do not end or end in a configuration with a rejecting
state.

We give an example.

Example 3.16 We consider the nondeterministic Turing machine

M = ({a, b}, {z0, z
′
0, z

′′
0 , z0,2z1,2, z2, z

′
2, z

′′
2 , z0,3z1,3, z2,3, z3, z

′
3, z

′′
3 , q}, z0, {q}, τ, {q})

where

τ(z0, a) = {(z0, a, R)},
τ(z0, b) = {(z0, b, N)},
τ(z0, ∗) = {(z′0, ∗, L)},
τ(z′0, a) = {(z′0, a, L)},
τ(z′0, ∗) = {(z′′0 , ∗, R)}

(the machine decides checks whether there are only as on the tape; in the non-affirmative
case, it enters a loop),

τ(z′′0 , ∗) = {(z′′o , ∗, N)},
τ(z′′0 , x) = {(z2, x, N), (z3, x,N)} for x ∈ {a, b}

(if there is no letter on the tape, the machine enters a loop, too; otherwise it chooses
nondeterministically one of the two possibilities fixed by the index 2 or 3, respectively),

τ(zi, a) = {(z′i, a, R)} for i ∈ {2, 3},
τ(zi, b) = {(zi, b, R)} for i ∈ {2, 3},
τ(z′i, a) = {(z′′i , a, R)} for i ∈ {2, 3},
τ(z′i, b) = {(z′i, b, R)} for i ∈ {2, 3},
τ(z′′i , x) = {(z′′i , x, R)} for x ∈ {a, b},
τ(zi, ∗) = {(zi, ∗, N)} for i ∈ {2, 3},
τ(z′i, ∗) = {(q, ∗, N)} for i ∈ {2, 3},
τ(z′′i , ∗) = {(z0,i, ∗, L)} for i ∈ {2, 3}

(the machine reads from left to right the word on the tape and checks whether it contains
no a; exactly one a or at least two occurrences of a, which is done by the states zi, z′i und
z′′i ; if there is no a on the tape, the machine goes into a loop and does not halt; if there

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 67

is exactly one a on the tape, it enters the accepting state; if there are at least two as, the
next phase is started),

τ(z0,2, a) = {(z1,2, b, L)},
τ(z1,2, a) = {(z0,2, a, L)},
τ(zj,2, b) = {(zi,2, b, L)} for j ∈ {0, 1}

(the machine scans the word on the tape from the left to the right and alternately it
changes an a into a b or does not change the letter a; thus it reduces the number of
occurrences of a to the half; the number j in the state zj,2 gives the number of the read
symbols a modulo 2),

τ(z0,3, a) = {(z1,2, b, L)},
τ(z1,3, a) = {(z2,3, b, L)},
τ(z2,3, a) = {(z0,3, a, L)},
τ(zj,3, b) = {(zj,3, b, L)} for j ∈ {0, 1, 2}

(analogously, the number of occurrences of a is reduced to the third and the number j in
zj,3 gives the number of the read symbols a modulo 2),

τ(z0,i, ∗) = {(zi, ∗, R)} for i ∈ {2, 3},
τ(zj,i, ∗) = {(zj,i, ∗, N)} for j ∈ {1, 2} , i ∈ {2, 3}

(if the reduction can be done without a remainder, i. e., z0,2 or z0,3 is reached, we iterate
the process and enter a loop in the opposite case such that the machine does not halt).

By the explanations given after the parts of the transition function, it is obvious that
the iterated reductions of the occurrences of a to the half or the third finally lead to a
word on the tape which contains exactly one a and the machine accepts. Thus we get the
set

T (M) = {w : #a(w) = 2n oder #a(w) = 3n for an n ≥ 0}
of accepted words.

We are now in the position to prove the converse of Lemma 3.12 but using nondeter-
ministic Turing machines instead of (deterministic) Turing machines.

Lemma 3.17 For any phrase structure grammar G, there is a nondeterministic Turing
machine M such that T (M) = L(G).

Proof. We give no detailed proof; we only explain the essential idea of the construction.
Let the phrase structure grammar G = (N, T, P, S) be given. We construct the non-

deterministic Turing machine M with the input alphabet N ∪ T ∪ {§} and the following
behaviour on an input word w.

– Phase 1.
Since we want to accept only words over T , M checks first whether w ∈ T ∗ holds.
In the non-affirmative case, M enters a loop (and therefore it does not accept w);
if w ∈ T ∗, M enters the configuration (λ, z1, w), which is the start configuration of
the second phase.

68 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

– Phase 2.
In the second phase M checks first whether only the letter S is on the tape. In
the affirmative case, M halts; if the tape contents is different from S, the machine
enters the configuration (λ, z2, w), which is the start of the third phase.

– Phase 3.
This phase is a simulation of a derivation according G but – as in the proof of
Lemma 3.12 – we reverse the direction, i. e., we simulate the derivation

xuy =⇒ xu′y = w

by the application of the rule u −→ u′ by some transformations resulting in

(λ, z2, w) = (λ, z2, xu′y) |=∗ (λ, z1, xuy).

For this M determines nondeterministically the position in the word w where M
wants to apply the rule p = u −→ u′. This is done by going in the configuration
(x, zp, x

′), where zp marks the begin of the simulation. M checks whether u′ is the
prefix of the word x′. In the non-affirmative case, M enters a loop and does not
accept. If u′ is a prefix of x′, say x′ = u′y, M continues as follows. If |u′|−|u| = m ≥
0, M replaces the prefix u′ by the word u§m, which results in (xu§m, z′p, y). Then y
is shifted m cells to the left which is accompanied by a cancellation of §m and moves
the head to the beginning of the word and enters the state z1. If |u|− |u′| = m′ > 0,
the word y is shifted m′ cells to the right and moves the head to the beginning of
the prefix u′, which yields (x, z′′p , u

′ ∗m′
y. Then M replaces u′∗m′

by u and returns
the head to the begin of the word on the tape and in the state z1. Thus we obtain
the configuration (λ, z1, xuy) from (λ, z2, xu′y). Obviously, we have performed the
simulation of a derivation step in reversed direction.
Now we start Phase 2, again.

Thus any derivation

S =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn−1 =⇒ wn = w

has a corresponding sequence of configurations such that

(λ, z0, wn) |=∗ (λ, z1, wn) |=∗ (λ, z2, wn)

|=∗ (λ, z1, wn−1) |=∗ (λ, z2, wn−1)

|=∗ · · · |=∗ (λ, z1, w2) |=∗ (λ, z2, w2)

|=∗ (λ, z1, w1) |=∗ (λ, z2, w1)

|=∗ (λ, z1, S) |=∗ (λ, q, S).

Furthermore, M can only reach a halting state if M has simulated a derivation since
M in all other case goes into a loop. If any halting state is an accepting one, we get
T (M) = L(G). 2

Lemma 3.12 and Lemma 3.12 are converse to each other because different types of
Turing machines are involved. To get a better relation one needs knowledge on the relation
between the families of languages accepted by deterministic and nondeterministic Turing
machines. The following lemma shows that both these language families coincide.

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 69

Lemma 3.18 A language can be accepted by a (deterministic) Turing machine if and
only if it can be accepted by a nondeterministic Turing machine.

Proof. Obviously, since any (deterministic) Turing machine N = (X, Z, z0, Q, F, δ) can
be interpreted as a nondeterministic Turing machine N ′ = (X,Z, z0, Q, F, τ) by setting
τ(z, x) = {δ(z, x)} and this setting does not change the accepted language, we have that
any language which can be accepted by some (deterministic) Turing machine N can also
be accepted by some nondeterministic Turing machine N ′.

Let M = (X,Z, z0, Q, F, τ) be a n0ndeterministic Turing machine. If M accepts the
word w, then there is a sequence of configurations with the initial configuration (λ, z0, w)
and the halting configuration (v1, q, v2) where q ∈ F . The idea for the construction of a
deterministic Turing machine whichs also accepts T (M) is construct all possible sequences
of configurations for M and to check which of them are accepting. This idea has to be
modified a little bit since there are are non-halting computations by M. Thus we first
consider all configurations which can be obtained by one transition, then all which can
be got by two transitions etc. Since any accepting sequence has finite length we get all of
them in this way.

Let

D = {(z, x, z′, x′, r) | z ∈ Z\Q, z′ ∈ Z, x, x′ ∈ X∪{∗}, r ∈ {R,N, L}, (z′, x′, r) ∈ τ(z, x)}
The set D can be understood as the set of all instructions which it can apply in a trans-
formation of configurations. We introduce an order on the set D (which can be chosen
arbitrarily). This order can be extended to a lexicographic order of the set D∗ of all finite
sequences over D. For an element f of D∗, we denote the successor of f in the lexico-
graphic order by nseq(f). Let K = (w1, z, w2) and d = (z1, x1, z2, x2, r) be an element of
D, then we say that d can be applied to K if and only if z = z1 and x1 is the first letter of
w2. Thus any sequence of configurations such that K1 |= K2 |= · · · |= Kn is accompanied
by a sequence d1d2 . . . dn−1 where, for 1 ≤ i < n, di is applied to Ki to obtain Ki+1.

We now give an informal description of a deterministic Turing machine M′ which
accepts T (M) by describing the behaviour of M′. We start with w on the tape and write
two times the special separator $ in the cells following those where w is written. This
yields w$$ on the tape and represents w and the empty word between the two separators
on the tape. Now let us have the tape contents wf where f is a sequence over D. Then
M performs as given in the following table: M′ writes additionally a copy of w and two
copies of f ′ = nseq(f) on the tape yielding wfw$f ′$f ′$. Then it deletes f$ which gives
wwf ′$f ′$. Now it performs in succession the instructions of f ′ on the first copy of w as
it is done by M and cancels the already used instructions of f ′ obtaining w′$w$$f ′$. If
the obtained state of M is accepted, then M′ also accepts. If the obtained state is not a
halting one or an rejecting state, then we cancel w′$ and the $ before f ′ which results in
w$f ′$ and we repeat the process. Note that it is not sure that any instruction of f ′ can
be applied to the current word w′′ which we get by the already used instructions. Then
we cancel w′′$ and an $ and obtain w$f ′$, too, from which we start the process, again.

It is easy to see that these actions can be performed by a deterministic Turing machine.
Obviously, M′ checks for a word w all possible sequences of instructions and therefore all
sequences of configurations until an accepting sequence is obtained or it does not halt.
Thus T (M′) = T (M). 2

70 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

Summarizing we get the main result of this subsection which relates Turing machines
and phrase structure grammars to each other.

Theorem 3.19 For a language L, the following three statements are equivalent:
i) There is a phrase structure grammar G such that L = L(G).
ii) There is a Turing machine M such that L = T (M).
iii) There is a nondeterministic Turing machine M such that L = T (M). 2

Corollary 3.20 The family of recursive languages is properly contained in the family
L(RE).

Proof. By the Definition 3.9 of recursive languages and Theorem 3.19, any recursive
language is in L(RE). Thus we have that the family of recursive languages is contained
in L(RE). By Theorem 3.11, the inclusion is proper. 2

Let us now consider the case of monotone grammars (or from the point of languages
we can also consider a context-sensitive language). Then the proof of Lemma 3.17 gets
the following ”simplification”: We start with w on the tape and in all subsequent steps
we do not increase the length of the word on the tape since the derivations steps of a
monotone grammar do not decrease the length of the sentential forms and the simulation
takes the opposite direction. Therefore the cells which are scanned by the head during
the work of the Turing machine are only those where letters of w are written in and –
eventually – the cell before and the cell after those containing w (which is necessary, if we
have to look for the beginning and ending of w). Thus |w|+ 2 is a bound for the number
of cells scanned by the machine.

Definition 3.21 A nondeterministic Turing machine is called a linearly bounded au-
tomaton if there is a linear function f : N → N such that, for any input w, the Turing
machine scans at most f(|w|) cells during its work on w.

A linearly bounded automaton is said to be strong, if its linear function f has the form
f(x) = x + 2.

The above considerations can now be reformulated as follows: Any context-sensitive
language can be accepted by a strong linearly bounded automaton. In order to prove the
converse statement we need the following notion and statement.

Let G = (N, T, P, S) be a phrase structure grammar. For a derivation

D : S =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = w

of w ∈ T ∗ in G, we define the workspace of w by D by

WsG(w, d) = max{|wi| | 1 ≤ i ≤ r}
and the workspace of w by

WsG(w) = min{WsG(w, D) | D is a derivation of w in G} .

Theorem 3.22 If G = (N, T, P, S) is a phrase structure grammar and k is a positive
integer such that WsG(w) ≤ k|w| for any w ∈ L(G), then L(G) is a context-sensitive
language. 2

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 71

We omit the very technical and long proof of the Workspace Theorem; we refer to [28]
for a proof.

The Workspace Theorem can be interpreted as follows. Monotone and context-
sensitive grammars do not allow a shortage of the length of the sentential forms. However,
if the shortage is not to large (more precisely, linearly bounded), then a phrase structure
grammar with non-monotone rules also generates only context-sensitive languages.

We are now in the position to present a characterization of context-sensitive languages
in terms of automata/machines.

Theorem 3.23 For a language L, the following three statements are equivalent:

i) The language L is context-sensitive (i. e., L is generated by a context-sensitive or
monotone grammar).

ii) The language L is accepted by a strong linearly bounded automaton.

iii) The language L is accepted by a linearly bounded automaton.

Proof. i) → ii) follows from the considerations given above.
ii) → iii) holds by definition.
iii) → i) Let M a linearly bounded automaton be given. Let f be its associated

function. We look on the proof of Lemma 3.12. First we modify it that it also works for
nondeterministic Turing machines (the easy modifications are left to the reader). Now
we can apply it to M. Then we note that it is sufficient to generate § ∗n v1qv2 ∗m # in
the first of the derivation such that 2 + n + m + |v1zv2| = f(|w|) + 2 which ensures that
all derivation steps can be performed and the length of all sentential forms is bounded
by f(|w|) + 2. Now by the Workspace Theorem 3.22 we get that the constructed phrase
structure grammar generates a context-sensitive language. 2

In the case of Turing machines we have considered deterministic and nondeterministic
variants. For (strong) linearly bounded automata, we have only introduced a nondeter-
ministic one. It is an open question whether or not any context-sensitive language can
be generated by a deterministic (strong) linearly bounded automaton. This problem is
studied since more than 40 years, but no answer is known hitherto.

3.1.3 A Short Introduction to Computability and Complexity

In Subsection 3.1.1, we have introduced the notion of a Turing machine as a device
accepting (recursively enumerable) languages. However, Turing machines can also be
used to compute functions.

Definition 3.24 Let M = (X,Z, z0, Q, F, δ) be a Turing machine. The function fM :
X∗ → (X∪{∗})∗ induced by M is defined as follows: fm(w) = v holds if and only if there
is a sequence of configurations K0, K1, . . . , Kt, t ≥ 0, such that

– K0 = (λ, z0, w),

– K0 |= K1 |= K2 |= ... |= Kt,

– Kt = (v1, q, v2) for some q ∈ Q,

– v1v2 = ∗rv∗s for some v ∈ (X ∪ {∗})∗, r ≥ 0, s ≥ 0 and v = λ or v starts and ends
with a letter of X.

72 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

Intuitively, if we initially write w on the tape and let the Turing machine work until it
reaches a halting state, then the result fM(w) is the word written on the tape which starts
and ends with a letter of X, i. e., we ignore the infinitely many symbols ∗ to the left or
to the right. Note that there is no value fM(w) defined, if M enters no halting states
working on the input word w.

If we consider the Turing machines M1 and M2 from the Examples 3.5 and 3.6, we
get

fM1(aw) = wa for w ∈ {a, b}∗

(note that fM1(λ) is not defined), and

fM2(w) = w for w ∈ {a, b}∗, |w| is odd

(for words of even length fM2 is undefined).
Obviously, considering a Turing machine as a device computing functions, we can

omit the set of accepting states in the tuple specifying the Turing machine, since we are
only interested in the result on the tape if a halting state is reached, independent from
acceptance or rejection by the halting state.

Definition 3.25 Let X1 and X2 be two alphabets. A function f : X∗
1 → X2∗ is called

Turing computable if there is a computing Turing machine M = (X, Z, z0, Q, δ) such that
X1 ∪X2 ⊆ X and

fM(w) =

{
f(w) for w ∈ X∗

1

undefined otherwise
.

Using the notion of a Turing computable function, we get some further characteriza-
tions of the sets of recursively enumerable languages and recursive languages.

Theorem 3.26 A language L is recursively enumerable if and only if L is the domain of
a Turing computable function.

Proof. Let L be a recursively enumerable language. By Theorem 3.19, there is a
(deterministic) Turing machine M such that T (M) = L. By Lemma 3.8, we can assume
that M has exactly one halting state which is accepting. Thus w ∈ L = T (M) holds if
and only if fM(w) is defined. Therefore T (M) is the domain of fM.

Conversely, let L be the domain of the Turing computable function f . Then there is
a computing Turing machine M = (X,Z, z0, Q, δ) such that M halts on w if and only if
f(w) is defined. Therefore, the (accepting) Turing machine (X,Z, z0, Q, Q, δ) accepts L.
Hence L is recursively enumerable by Theorem 3.19. 2

Theorem 3.27 For any non-empty recursively enumerable language L ⊆ X∗, there is a
Turing machine M such that fM : {0, 1, 2, . . . , 9}∗ → X∗, the domain of fM is the set of
decimal representations of elements of N0 (without leading zeros), and the range of fM is
L.

Proof. We only give the idea of the work of M and leave a detailed description to the
reader.

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 73

Let L ⊆ X∗ be a recursively enumerable language. By Theorem 3.19, there is a
deterministic Turing machine M′ which accepts L. Moreover, let u be a fixed element of
L (which exists since L 6= ∅.

First we note that we can define an order on N0 × N0 as follows: (a1, b1) ≺ (a2, b2)
if and only if a1 + b1 < a2 + b2 or a1 + b1 = a2 + b2 and a1 < a2. This means that we
first order according to the sum of the components and if the sums are equal we order
according to the first component. Obviously,

(0, 0) ≺ (0, 1) ≺ (1, 0) ≺ (0, 2) ≺ (1, 1) ≺ (2, 0) ≺ (0, 3) ≺ (1, 2) ≺

Moreover, it is easy to see that there is a Turing machine M1 such that, for a given
number n ∈ mathbbN0, M1 computes the n-th element (a, b) ∈ N0 ×N0 according to the
order ≺.

Furthermore, there is a deterministic Turing machineM2 such that, for a given number
a ∈ mathbbN0, M2 computes the a-th element wa of X∗.

By a composition of M1 and M2 we get a Turing machine M3 which computes (wa, b)
for a given number n. More precisely, one can say that M3 computes the n-th element
of X∗ × N0, which is ordered according to ≺ and the lexicographic order.

We now construct a deterministic Turing machine M which satisfies the requirements
of the statement. Let n ∈ mathbbN0. The machine M first computes (wa, b) as M3 and
copies wa. Then it simulates M′ and computes the configuration of M′ after b steps on
the input wa. If the obtained configuration is an accepting configuration of M′, then M
gives the output wa. Otherwise, M gives the output u.

From the construction it follows that, for any input n, M gives an output which is a
word in L (the accepted word wa or u). Thus the range of fM is a subset of L.

Moreover, if w ∈ L, then M′ accepts w after a certain number of steps, say k steps. If
w is the l-th element of X∗ according to the lexicographic order, then there is a number q
such that M3 computes (w, k) on input q. Then M gives the output w. Hence any word
of L occurs in the range of fM. Hence L is contained in the range of fM. 2

We can rewrite the preceding theorem as follows: For any recursively enumerable
language L, there is a Turing computable function which is a total function and has
domain N0 and range L. This statement justifies the notation “recursively enumerable”.2

Theorem 3.28 A language L is recursively enumerable if and only if L is the range of
a Turing computable function.

Proof. By Theorem 3.27, we have only to prove that the range of a Turing computable
function is a recursively enumerable set.

Let f : X∗ → Y ∗ be a function computed by a Turing machine M. In the proof of
Theorem 3.27 we have defined an order on X∗ × N0. We construct the Turing machine
M′ which works as follows: Let w ∈ Y ∗ be given. The machine M′ computes the pair

2In the beginning of a theory of computability and algorithms, one has considered functions mapping
Nr

0 to Ns
0 (for some numbers r ≥ 1 and s ≥ 1) and has considered partially recursive functions as a model

for computable function. A subset U of N0 was called recursively enumerable, if there is a total partially
recursive function f : N0 → N0 such that the range of f is U . Taking into consideration that partially
recursive functions and Turing computable functions coincide up to a coding of inputs and outputs, the
justification of our notion of recursively enumerable sets follows.

74 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

(λ, 0). Given a pair (v, b), M′ computes the configuration of M after b steps on the input
v. If this is a halting configuration and M has computed w, then M accepts. Otherwise,
it consider the pair (v′, b′) which follows on (v, b).

Obviously, if M accepts a word w, then w is in the range of M. If w is not in the
range of M, then M′ does not enter a halting configurations and performs an infinite
computation. Furthermore, if w is in the range of M, then there is an input word v and
a number b such that M stops after b steps on input v with the result w. Hence any word
of the range of M is accepted. 2

Theorem 3.29 A language L is recursive if and only if the characteristic function of L
is a Turing computable function.

Proof. Let L be a recursive language and let M be a Turing function which stops on
any input and accepts L. We construct the Turing machine M′ as follows: First M′

simulates the work of M. If M enters an accepting configuration, then M′ continues by
a cancellation of all symbols different from ∗ on the tape and writing a 1 on the tape. If
M enters a rejecting configuration, then M′ continues by a cancellation of all symbols
different from ∗ on the tape and writing a 0. Obviously, M′ computes the characteristic
function of L.

Conversely, if M′ computes the characteristic function of L, then we construct M
which enters an accepting state qa if a 1 was computed by M′ and enters a rejecting state
qr if M computes a 0. Thus M stops on any input and accepts L. 2

By Theorem 3.29, decidability of a set means that we have an Turing computable
functions which answers correctly the question whether or not a given element belongs to
a given language or not.

Any language L over some alphabet X can be described by a property characterizing
the elements of L or equivalently L can be given in the form

{x | x has property P},

(e. g. we can take the property that ϕL(x) = 1). Hence in the sequel we shall formulate
the decidability of a language L given by a property P as a problem: Given an instance
(or equivalently an element), decide whether or not it has a given property (which char-
acterises a given language). The decision will be formulated as a question which has the
answer “yes” if and only the instance has the property. Moreover, we shall give the in-
stance and we shall formulate the question without referring directly to a language (i. e.,
a set of words); however, it is easy to present a reformulation which refers to languages.
Furthermore, we shall We give some examples.

Halting Problem for Turing machines
Given: a Turing machine M with input alphabet X and a word w ∈ X∗

Question: Does M halt on the input w?

Using the encoding wM of a Turing machine M given in the proof of Theorem 3.11 a
corresponding formulation as a language is given by

Lhalt = {wM$w | w ∈ X∗, wM ∈ {0, 1}∗ is the encoding of M, w ∈ T (M)},

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 75

where Lhalt is a language over X ∪ {0, 1, $} and $ is a separator.

The

Post Correspondence Problem
Given: natural number n, alphabet X,

pairs (ui, vi) with ui, vi ∈ X∗ for 1 ≤ i ≤ n
Question: Does there exist a natural number k and a sequence i1i2 . . . ik of

natural numbers with 1 ≤ ij ≤ n for 1 ≤ j ≤ k such that

ui1ui2 . . . uik = vi1vi2 . . . vik

holds?

has the language description

LPost = {(u1$v1)(u2$v2) . . . (un$vn) | n ∈ N, ui, vi ∈ X∗ for 1 ≤ i ≤ n,

there is a sequence i1i2 . . . ik with 1 ≤ ij ≤ n for 1 ≤ j ≤ k

such that ui1ui2 . . . uik = vi1vi2 . . . vik}
over the alphabet X ∪ {$, (,)}.

We now consider the

Hamiltonian Path Problem
Given: a graph G = (V, E) and two nodes v and v′ from V
Question: Is there is a path containing each node exactly once and

starting in v and ending in v′?

Let V = {v1, v2, . . . , vn} and E = {(vi1 , vj1), (vi2 , vj2), . . . , (vim , vjm)}. We consider the
alphabet consisting of V , the separator $ which is used instead of the comma, and the
brackets (and). Then the Hamiltonian path problem can be described as

LHam = {v1$v2$. . . vn$(vi1$vj1)$(vi2$vj2)$. . . $(vim$vjm)vv′ | there is a path

v, u1, u2, . . . , un−2, v
′ such that {v1, v2, . . . , vn} = {v, v′, u1, u2, . . . , un−2}}.

Definition 3.30 We say that a problem is decidable if the corresponding language is
decidable (or equivalently, recursive).

Concerning the first two problems we have the following status of decidability.

Theorem 3.31 The halting problem for Turing machines is undecidable.

Proof. It is easy to show that the decidability of the halting problem implies the
decidability of the language U given in the proof of Theorem 3.11. However, in the proof
of Theorem 3.11, it was shown that U is not decidable. 2

Theorem 3.32 The Post correspondence problem for alphabets with at least two letters
is undecidable. 2

For a proof of Theorem 3.32, we refer to [12].
We now present some notions from complexity theory.

76 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

Definition 3.33 i) Let L ⊂ X∗ be a recursive language, and let t : N→ N be a function.
We say that L can be decided in time t, if there is a Turing machine M with T (M) = L
such that, for any input w ∈ X∗, the halting computation path for w has a length bounded
by t(|w|).

ii) Let L be a recursively enumerable language, and let t : N → N be a function.
We say that L is nondeterministically accepted in time t, if there is a nondeterministic
Turing machine M with T (M) = L such that, for any word w ∈ L, there is an accepting
computation path for w with a length bounded by t(|w|).

iii) Let f be a Turing computable function, and let t : N → N be a function. We
say that f can be computed in time t, if there is a deterministic Turing machine M with
fM = f such that, for any w in the domain of f , the halting computation path for w has
a length bounded by t(|w|).

iv) Let L be recursive language or a recursively enumerable language, and let f be a
Turing computable function. We say that L can be decided in polynomial time or L can
be nondeterministically accepted in polynomial time and f can be computed in polynomial
time, if there is a polynomial p such that L can be decided in time p or nondeterministically
accepted in time p and f can be computed in time p, respectively.

Definition 3.34 i) By P we denote the set of all recursive languages which can be decided
in polynomial time.

ii) By NP we denote the set of all recursively enumerable languages which can be
nondeterministically accepted in polynomial time.

Obviously,
P ⊆ NP . (3.5)

It is an open question – one of the most important open questions in theoretical computer
science – whether this inclusion is proper or whether equality holds. Nowadays, the
conjecture in the community is that the inclusion is proper.

Intuitively, we have equality if the hardest languages in NP can be decided in poly-
nomial time. We now formalize this approach.

Definition 3.35 Let L1 ⊆ X∗
1 and L2 ⊆ X∗

2 be two languages.
i) We say that L1 can be transformed to L2, if there is a Turing computable function

f which maps X∗
1 onto X∗

2 such that w ∈ L1 if and only if f(w) ∈ L2.
ii) We say that L1 can be polynomially transformed to L2, if the function f can be

computed in polynomial time.

Lemma 3.36 If L1 can be polynomially transformed to L2 ∈ P (or L2 ∈ NP), then
L1 ∈ P (or L1 ∈ NP , respectively).

Proof. We give the proof for languages in P.
Let w ∈ X∗

1 be given. We first compute f(w) where f is the Turing computable
function which polynomially transforms L1 to L2. Then we decide whether f(w) ∈ L2.
By assumption both steps can be done in polynomial time. Because w ∈ L1 if and only
if f(w) ∈ L2, it is easy to see that L1 can be decided in polynomial time. 2

By the proof of Lemma 3.36, the decidability of L1 cannot be more complex than the
the decidability of L2.

3.1. TURING MACHINES VERSUS PHRASE STRUCTURE GRAMMARS 77

Definition 3.37 i) A language L is called NP -complete, if
– L ∈ NP ,
– any language L ∈ NP can be polynomially transformed to L.
ii) We say that a problem is NP -complete, if the corresponding language is NP -

complete.

By the above remark, intuitively, the NP -complete languages are the hardest lan-
guages with respect to their decidability in the set NP .

The importance of NP -complete languages comes from the following statement.

Theorem 3.38 The following three statements are equivalent.
i) P = NP .
ii) L ∈ P for any NP -complete language L.
iii) L ∈ P for some NP -complete language L.

Proof. i) =⇒ ii) Let L be a NP -complete language. By Definition 3.37, we get L ∈ NP .
By our assumption P = NP , we have L ∈ P.

ii) =⇒ iii) holds trivially.
iii) =⇒ i). Let L be a NP -complete language, and let L′ be a language in NP . By

Definition 3.37. L′ can be polynomially transformed to L. By our assumption iii) and
Lemma 3.36, we get L′ ∈ P. Thus any language of NP is in P. Hence NP ⊆ P. Together
with (3.5), we get the statement i). 2

Finally we give some examples of NP -complete problems which will be used in the
sequel. For the proofs of the NP -completeness we refer to [7].

Theorem 3.39 The

Satisfiability Problem SAT of Propositional Calculus
Given: a formulae A of propositional calculus in conjunctive normal form
Question: Does there exist an assignment of A such that A will get the value “true”.

is NP -complete. 2

Theorem 3.40 The

Restricted Satisfiability Problem 3− SAT of Propositional Calculus
Given: a formulae A of propositional calculus in conjunctive normal form,

where each disjunction contains exactly three literals
Question: Does there exist an assignment of A such that A will get the value “true”.

is NP -complete. 2

Theorem 3.41 The Hamilton path problem is NP -complete. 2

We mention that a lot of NP -complete problems is known from very different fields,
e. g. from number theory, graph theory, elementary combinatorics, theory of data bases.
Although some of them look very easy on the first view, scientist were not able to find
polynomial algorithms for their decision (which would imply P = NP) or to prove that
no polynomial algorithm exists (which would show P ⊂ NP).

78 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

3.2 Finite Automata versus Regular Grammars

In the preceding section we have given a characterization of the families of recursively
enumerable languages and context-sensitive languages by means of Turing machines and
linearly bounded automata, respectively. The aim of this section is the presentation of an
analogous characterization of the family of regular languages. We start with the definition
of the corresponding type of automata/machines.

Definition 3.42 i) A finite automaton is a quintuple

A = (X, Z, z0, F, δ),

where
– X and Z are alphabets,
– z0 ∈ Z and F ⊆ Z, and
– δ : (Z ×X) → Z is a function.
ii) The extension δ∗ of δ to the domain Z ×X∗ is defined by

δ∗(z, λ) = z for z ∈ Z,

δ∗(z, wx) = δ(δ∗(z, w), x) for z ∈ Z,w ∈ X∗, x ∈ X.

iii) The language T (A) accepted by A is defined as

T (A) = {w : w ∈ X∗, δ∗(z0, w) ∈ F}.

As in the case of Turing machines, the elements of X and Z are called input symbols
and states, respectively; z0 is the initial state, and F is the set of accepting states; δ is
also called transition function.

The function δ∗(z, w) gives the state which is entered after reading the word w and
starting in z. This follows by induction on the length of the word. the setting δ∗(z, λ) = z
ensures that no change of the state is done if no symbol is read. For x ∈ X, we have
δ∗(z, x) = δ(δ∗(z, λ), x) = δ(z, x) which proves that reading of one symbol gives the new
state according to the transition function. Let z′ be the state obtained by reading of w
starting in z. If we read the word wx for some x ∈ X, then δ∗(z, wx) = δ(δ∗(z, w), x) =
δ(z′, x) and thus δ∗(z, w) is the state in which the automaton is after reading wx. Therefore
a word w is accepted by a finite automaton if it is in an accepting state after reading the
word.

The behaviour of a finite automaton can be interpreted as follows: A finite automaton
reads the input on a tape from left to right and changes its state according to its transition
function in dependence of the read symbol and the current state. It starts in its initial
states. A word is accepted if after reading the complete input word the finite automaton
is in an accepting state.

By this interpretation, the finite automaton can be considered as a Turing machine
with the following restrictions. The read/write head moves only to the right. It halts if it
reads the first ∗ right of the input word, i. e., if it has read the complete input word, and
accepts, if it is in an accepting state. Therefore halting states can be omitted since the
halting is performed after reading the word. Furthermore, we can omit the writing of a

3.2. FINITE AUTOMATA VERSUS REGULAR GRAMMARS 79

symbol in the cell which is scanned, because the head is always moved to the right, and
therefore the automaton will never see the written symbol which is left from the head.
Therefore, the writing has no influence on the acceptance.

In order to describe a finite automaton A according to its definition it is necessary
to give the sets X, Z and F , the state z0 and the transition function δ. We shall also
use a description by means of a directed graph G = (Z, E) with labelled edges. The set
of nodes coincides with the set of states, and there is a directed edge (z, z′ from z to z′

labelled by x ∈ X if and only if δ(z, x) = z′. We distinguish the initial state by an arrow
directed to the node z0 and mark the accepting states by two circles (instead of one circle
for the other states). In this description δ(z, x1x2 . . . xn) with xi ∈ X for 1 ≤ i ≤ n holds
if and only if there is a path from z to z′ where the labels of the edges of the path are
x1, x2, . . . , xn. Therefore a word x1x2 . . . xn with xi ∈ X for 1 ≤ i ≤ n is accepted if and
only if there is a path from the initial state z0 to an accepting state where the labels of
the edges of the path are x1, x2, . . . , xn.

Let us consider some examples.

Example 3.43 Let the finite automaton A = (X, Z, z0, F, δ) be given by

X = {a, b, c}
Z = {z0, z1, z2, z3},
F = {z2},

δ(z, x) =

z1 for z = z0, x = a
z2 for z = z1, x = a
z0 for z ∈ {z0, z2}, x = c
z3 otherwise

.

The representation of A by a directed graph is shown in Figure 3.2.

GFED@ABCz0
a //

b

ÃÃ@
@@

@@
@@

@@
@@

@@
@@

@@
@

c

&& GFED@ABCz1
a //

b,c

²²

GFED@ABC?>=<89:;z2

c

xx

a,b

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
>>~~~~~~~~

GFED@ABCz3

a,b,c

UU

Figure 3.2: Automaton A

We determine the set of words accepted by A. We always use in our argumentation the
representation ofA by its components; however, the read is asked to follow the explanation
also in the description by Figure 3.2.

We first note that, by δ(z3, x) = z3 for all x ∈ X, the automaton cannot leave the
state z3. Therefore, if A enters z3 after reading some word w, then no prolongation of
w, i. e., no word wv can be accepted. Because δ(z, b) = z3 for all z ∈ Z, the automaton



80 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

enters z3 if a b is read. Consequently, the accepted words do not contain the letter b.
Furthermore, we mention that

– the state z0 is not changed as long as we read only only cs (or formally δ(z0, c
n−1) =

z0 for n ≥ 0),

– if A is in state z0 and reads an a, it has to read a second a (since the reading of b
or c in state z1 lead to state z3), after reading both as, the automaton A is in state
z2,

– if A is in state z2, it only avoids z3 by reading a c which results in A in state z0.
Therefore T (A) consists of all words where a certain number of cs is always followed by
aa and no b is present. Formally we get

T (A) = {cn1aacn2aa . . . cnkaa : k ≥ 1, n1 ≥ 0, ni ≥ 1 für 1 ≤ i ≤ k}.

Example 3.44 We consider the finite automaton

B = ({a, b}, {z0, za, z
′
a, z

′
b}, {z′a, z′b}, δ)

with

δ(z0, x) = zx, δ(zx, x) = z′x, δ(zx, y) = zx, δ(z′x, x) = z′x, δ(z′x, y) = zx

for x, y ∈ {a, b}, x 6= y. A graphical representation of B is given in Figure 3.3.

GFED@ABCza
a //

b

&& ONMLHIJKGFED@ABCz′a

b

ÄÄ
a¥¥

// GFED@ABCz0

a

99rrrrrrrrrrrrrr

b
%%LLLLLLLLLLLLLL

GFED@ABCzb

a

77
b

//ONMLHIJKGFED@ABCz′b
a

__
b

ZZ

Figure 3.3: Automaton B

Since δ(zx, u), δ(z′x, u) ∈ {zx, z
′
x} for any input symbol u and any x ∈ {a, b} we do not

leave the set of states {zx, z
′
x}, x ∈ {a, b}, if the automaton B has entered it. Reading a

or b as the first letter, B goes into {za, z
′
a} or {zb, z

′
b}. Furthermore, the finite automaton

B is in state z′x, if the last read letter is x. Thus the first and last letter of an accepted
word have to coincide. Therefore we have

T (B) = {xzx | x ∈ {a, b}, z ∈ {a, b}∗}.

Example 3.45 We want to determine a finite automaton A such that

T (A) = {anbm : n ≥ 1,m ≥ 2}



3.2. FINITE AUTOMATA VERSUS REGULAR GRAMMARS 81

holds.3

Obviously, we can choose X = {a, b} for the input alphabet. Moreover, we use states
in order to count the number of letters a and b which are read already. The following
states reflect the following situations:

– z1 – the automaton reads at least one a and no b,

– z2 – the automaton reads at least one a and exactly one b,

– z3 – the automaton reads at least one a and at least two bs.

In addition, we have to ensure that, for an accepted word, the first letter is a and no a is
read, if the finite automaton has already read a b. A finite automaton satisfying all this
requirements is presented in Figure 3.4.

// GFED@ABCz0

b

&&LLLLLLLLLLLLLLLLLLLLLLLLL
a // GFED@ABCz1

b //

a

&& GFED@ABC?>=<89:;z2
b

//

a

¦¦










GFED@ABC?>=<89:;z2

a

xxrrrrrrrrrrrrrrrrrrrrrrrrr

b

xx

GFED@ABCz4

a,b

UU

Figure 3.4: A finite automaton accepting {anbm : n ≥ 1,m ≥ 2}

We also define a nondeterministic variant of the finite automaton. We follow the same
line as in the case of Turing machines, i. e., the transition function maps on a set of states
in stead of a single state.

Definition 3.46 i) A nondeterministic finite automaton is a quintuple A = (X, Z, z0, F, δ),
where X, Z, z0, F are specified as Definition 3.42 and δ is a function which maps Z ×X
in the set 2Z of subsets of Z.

ii) We define the extension δ∗ of δ as follows:

– We set δ∗(z, λ) = {z} for z ∈ Z.

– For w ∈ X∗, x ∈ X and z ∈ Z, z′ ∈ δ∗(z, wx) if and only if there is a state
z′′ ∈ δ∗(z, w) such that z′ ∈ δ(z′′, x).

iii) The language T (A) accepted by the nondeterministic finite automaton A is defined
as

T (A) = {w : δ∗(z0, w) ∩ F 6= ∅}.
Again, a finite automaton A = (X,Z, z0, F, δ) can be considered as a special case of

the nondeterministic finite automaton A′ = (X, Z, z0, F, δ′) by taking δ′(z, x) = {δ(z, x)}.
Then it is easy to show by induction on the length of the word that, for any Z ∈ Z and
w ∈ X∗, (δ′)∗(z, xw) coincides with the single element set {δ(z, w)}. Consequently, A and
A′ accept the same language.

3Here we do not discuss the question whether or not there is a finite automaton at all which accepts
that language; but it will generally be solved in this subsection.



82 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

We now prove the equivalence of (deterministic) finite automata and nondeterministic
finite automata with respect to their acceptance power which we have shown for Turing
machines in Lemma 3.18.

Theorem 3.47 For a language L, the following two statements are equivalent:
i) L is accepted by a (deterministic) finite automaton.
ii) L is accepted by a nondeterministic finite automaton.

Proof. i) ⇒ ii) follows immediately by the remarks given above that a (deterministic)
finite automaton can be considered as a special nondeterministic finite automaton.

ii)⇒ i). Let A = (X,Z, z0, F, δ) be a nondeterministic finite automaton. We construct
the (deterministic) finite automaton A′ = (X, Z ′, z′0, F

′, δ′) by setting

Z ′ = {U : U ⊆ Z},
z′0 = {z0},
F ′ = {U : U ∈ Z ′, U ∩ F 6= ∅},

δ′(U, x) = ∪z∈Uδ(z, x).

By induction on the length of the word we show

(δ′)∗({z0}, w) = δ∗(z0, w) (3.6)

f0r all words w ∈ X∗.
For w = λ, we obtain (3.6) directly from the definition of the transition functions.

Thus the induction basis is done.
Let w = w′x. By the induction assumption (δ′)∗({z0}, w′) = δ∗(z0, w

′), we get

(δ′)∗({z0}, w′x) = δ′((δ′)∗({z0}, w′), x) = δ′(δ∗(z0, w
′), x) = ∪z∈δ∗(z0,w′)δ(z, x) = δ∗(z0, w

′x).

Therefore (δ′)∗({z0}, w) = δ∗(z0, w), and the induction step has been proved, too.
Let now w ∈ T (A). Then δ∗(z0, w)∩F 6= ∅. By definition of F ′, we get δ∗(z0, w) ∈ F ′.

By (3.6), we have (δ′)∗({z0}, w) ∈ F ′, which proves that w ∈ T (A′) also holds.
By inverting the arguments, we obtain that w ∈ T (A′) implies w ∈ T (A). Hence

T (A) = T (A′) is shown. 2

We now present the main result of this section which shows the regular grammars
generate the same languages as deterministic and nondeterministic finite automata accept.

Theorem 3.48 For a language L, the following three statements are equivalent:
i) L is regular.
ii) L is accepted by a nondeterministic finite automaton.
iii) L is accepted by a (deterministic) finite automaton.

Proof. i) ⇒ ii). We first prove the statement for the case that L does not contain the
empty word.

Let G = (N, T, P, S) be a regular grammar such that L(G) = L. According to
Theorem 2.28, we can assume without loss of generality that all rules of P have the form



3.2. FINITE AUTOMATA VERSUS REGULAR GRAMMARS 83

A → xB or A → x with A,B ∈ N, x ∈ T . We start with the construction of a regular
grammar G′ = (N ′, T, P ′, S) with

N ′ = N ∪ {$},
P ′ = {A → xB : A → xB ∈ P} ∪ {A → x$ : A → x ∈ P} ∪ {$ → λ},

where $ is an additional symbol ($ /∈ N ∪ T ). Since the terminating derivations in G and
G′ have the forms

S =⇒∗ wA =⇒ wa

and
S =⇒∗ wA =⇒ wa$ =⇒ wa,

respectively, it is easy to see that L(G) = L(G′) = L.
We now construct a nondeterministic finite automaton A such that T (A) = L. This

proves the assertion.
To do this we set A = (T, N ′, S, {$}, δ), where the transition function δ is defined by

δ(A, x) = {B : A → xB ∈ P}.
By induction on the length of the words, we prove the following statement (*).

(*) A derivation A =⇒∗ x1x2 . . . xnB exists in G′ if and only if
B ∈ δ(A, x1x2 . . . xn) holds.

The induction basis (n = 1) holds by definition of δ.
Let A =⇒ x1x2 . . . xn−1B

′ =⇒ x1x2 . . . xn−1xnB be a derivation in G′. By induction
assumption and definition of δ, we have B′ ∈ δ(A, x1x2 . . . xn−1) and B ∈ δ(B′, xn).
Therefore B ∈ δ(A, x1x2 . . . xn−1xn) is valid.

Conversely, if B ∈ δ(A, x1x2 . . . xn), then there is a state B′ (i. e., a nonterminal B′)
such that B ∈ δ(B′, xn) and B′ ∈ δ(A, x1x2 . . . xn−1). By induction assumption, there is
a derivation A =⇒∗ x1x2 . . . xn−1B

′ in G′. Moreover, by the definition of δ, B′ =⇒ xnB
holds. Therefore there is a derivation A =⇒∗ x1x2 . . . xn−1B

′ =⇒ x1x2 . . . xn−1xnB in G′.
Thus the induction step also holds.
We consider a word w ∈ L(G′). Then there is a derivation S =⇒∗ w$ =⇒ w in G′.

According to the assertion (*) shown above, $ ∈ δ(S, w) and hence w ∈ T (A).
Conversely, w ∈ T (A) or equivalently $ ∈ δ(S, w) implies the existence of a derivation

S =⇒∗ w$ in G′ by (*), and taking into consideration $ → λ ∈ P ′ we get S =⇒∗ w or
equivalently w ∈ L(G′).

Combining these facts we obtain T (A) = L(G′). Since L = L(G) = L(G′), we have
proved that T (A) = L.

If λ ∈ L, we modify the construction as follows. The regular grammar in the normal
form of Theorem 2.28 contains additionally the rule S → λ and S does not occur on the
right hand side of a rule of P . We add this additional rule to P ′, too. Since this rule is
only responsible for the generation of the empty word, we have also to add S to the set
of accepting states of A. Now we can repeat the above argumentation.

ii) ⇒ iii) is valid by Theorem 3.47.



84 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

iii) ⇒ i). Let a be a deterministic finite automaton A = (X, Z, z0, F, δ). We construct
the regular grammar G = (Z,X, P, z0) with

P = {z → az′ : z′ ∈ δ(z, a)} ∪ {z → λ : z ∈ F}.
As in the first part of this proof we can show that z ∈ δ(z0, w) for some z ∈ F if and only
if there is a derivation z0 =⇒∗ wz =⇒ w in G, which implies T (A) = L(G). 2

We illustrate the constructions given in the proofs of Theorems 3.47 and 3.48 by two
examples.

Example 3.49 We consider the grammar

G = ({S,A, B}, {a, b}, P, S)

with P consisting of the rules

S → λ, S → aA, S → a, S → b, S → bB,A → a,

A → b, A → aA,A → bB, B → bB,B → bB,B → b.

First we construct the associated grammar

G′ = ({S, A,B, $}, {a, b}, P ′, S)

with

P ′ = {S → λ, S → aA, S → a$, S → b$, S → bB,A → a$,

A → b$, A → aA,A → bB, B → bB,B → b$, $ → λ}.
The nondeterministic finite automaton B accepting L(G) is then given by

B = ({a, b}, {S, A, B, $}, S, {S, $}, δ)
with

δ(S, a) = δ(A, a) = {A, $},
δ(S, b) = δ(A, b) = δ(B, b) = {B, $},
δ(B, a) = δ($, a) = δ($, b) = ∅.

Finally, we construct the (deterministic) finite automaton B′, which accepts the same set
as B. Following the construction given in the proof of Theorem 3.47, the set of states Z
of B′ is given by all subsets of {S, A, B, $} and the set F of accepting states is defined as
all subsets which contain S or $. Thus we get

B′ = ({a, b}, Z, {S}, F, δ),

where δ is given by

δ′({S}, a) = δ′({A}, a) = δ′({S,A}, a) = δ′({S, B}, a) = δ′({A,B}, a)

= δ′({S, A,B}, a) = {A, $},
δ′({B}, a) = δ′(∅, a) = δ′(∅, b) = ∅,
δ′({S}, b) = δ′({A}, b) = δ′({B}, b) = δ′({S,A}, b) = δ′({S, B}, b)

= δ′({A,B}, b) = δ′({S, A,B}, b) = {B, $},
δ′(U ∪ {$}, x) = δ′(U, x) ∪ {§} for U ⊆ {S,A, B}, x ∈ {a, b}.



3.3. PUSH-DOWN AUTOMATA VERSUS CONTEXT-FREE LANGUAGES 85

Example 3.50 In the preceding example, for a given regular grammar G, we have con-
structed a (nondeterministic) finite automaton which accepts L(G). Here we are interested
in the opposite direction. We present a regular grammar G which generates the set of
words accepted by the finite automaton A of Example 3.43. According to the construction
in the proof (part iii)) of Theorem 3.48, we obtain

G = ({z0, z1, z2, z3}, {a, b, c}, P, z0)

with

P = {z0 → az1, z0 → bz3, z0 → cz0, z1 → az2, z1 → bz3, z1 → cz3,

z2 → az3, z2 → bz3, z2 → cz0, z3 → az3, z3 → bz3, z3 → cz3}.

3.3 Push-Down Automata versus Context-Free Lan-

guages

In the two preceding sections we have presented characterizations of recursively enu-
merable, context-sensitive, and regular languages by Turing machines, linearly bounded
automata, and finite automata, respectively. In this section we give an analogous charac-
terization of context-free languages by a further device. Essentially finite automata cannot
accept the context-free, but not regular languages {anbn : n ≥ 1} or {wcwR : w ∈ {a, b}∗}
because by means of a finite set of states we cannot remember the length or the structure
of the word already read. In order to accept such languages we have to add a possibility
to store information on the subword which has already been read. We use a work tape in
addition to the input tape.

If we do not pose some restrictions to the work tape, then we can copy the input word
from the input tape on work tape and then we work on this input word as in case of a
Turing machine. Thus then we can obviously accept all languages which can be accepted
by Turing machines, i. e., all recursively enumerable languages. However, we are looking
for a device which only accepts context-free languages. Therefore we have to restrict the
use of the work tape.

We consider the following restrictions:

• The symbol of the input can be read only from left to right, i. e., moves of the read
head to the right are forbidden (however, in contrast to finite automata we allow
that the head remains positioned on a cell for some time, which allows changes of
the work tape without reading a symbol).

• A cell of the work tape contains the special symbol #. This symbol cannot be
overwritten; thus it remains all the time of working in the cell. The read/write head
of the work tape cannot move to the right of the cell marked with #. Therefore the
work tape can be considered as a one sided infinite tape which is only infinite to the
left.

• The work tape is handle like the data structure Keller. This means that we can
change only the left most symbol of the tape and that we can add letters only to



86 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

the left. Thus the symbols right from the left most symbol can only be involved in
the work if all symbol left from it have been changed and finally cancelled. This
type of work is also called last in - first out or abbreviated by LIFO).

The work tape is also called push-down tape.

This intuitive idea is graphically shown in Figure 3.5.

x1 x2
. . . xk−1 xk xk+1

. . . xn−1 xn

input tape
?

?

control unit

z

γ1 γ2
. . . γr−1 γr # work or push-down tape

(bounded to the right)

Figure 3.5: Schematic representation of a push-down automaton

We now give the formal definition of our new variant of automata.

Definition 3.51 A push-down automaton is a sixtuple

M = (X,Z, Γ, z0, F, δ)

with

– X is an input alphabet,

– Z is a finite set of states, - Γ is the alphabet of push-down symbols which can be
written on the push-down tape, - z0 ∈ Z is the initial state and F ⊆ Z is the set of
accepting states,
- δ is a function which maps Z × X × (Γ ∪ {#}) into the set of finite subsets of
Z × {R, N} × Γ∗ where # /∈ Γ, R and N are additional symbols.

Definition 3.52 Let M = (X,Z, Γ, z0, F, δ) be a push-down automaton as in Defini-
tion 3.51.

A configuration K of the push-down automaton M is a triple (w, z, α#), where w ∈
X∗, z ∈ Z and α ∈ Γ∗.

The transformation from a configuration K1 to the (successor) configuration K2 (de-
noted by K1 |= K2, again) is defined as follows: For x ∈ X, v ∈ X∗, z ∈ Z, z′ ∈ Z, γ ∈
Γ, β ∈ Γ∗, α ∈ Γ∗, we set



3.3. PUSH-DOWN AUTOMATA VERSUS CONTEXT-FREE LANGUAGES 87

(xv, z, γα#) |= (v, z′, βα#), for (z′, R, β) ∈ δ(z, x, γ),
(xv, z, γα#) |= (xv, z′, βα#), for (z′, N, β) ∈ δ(z, x, γ),
(xv, z, #) |= (v, z′, β#), for (z′, R, β) ∈ δ(z, x, #),
(xv, z, #) |= (xv, z′, β#), for (z′, N, β) ∈ δ(z, x, #).

Given a configuration K = (w, z, α#), w is the suffix of the input word which is not
read up that moment, z is the current state, α is the word on the push-down tape.

Intuitively, in dependence of the state which the push-down automaton is in at some
moment, the symbol it reads on the input tape and the first symbol of the push-down
tape a new state is determined, the push-down tape is changed by a replacement of its
first letter by a word. More precisely, we have:

• (z′, R, β) ∈ δ(z, x, γ) means that the push-down automaton, which is in state z,
reads the symbol x on the input tape, and has γ as the first symbol on the push-
down tape, enters the state z′, moves the head of the input tape one position to the
right, and replaces γ by the word β,

• (z′, N, β) ∈ δ(z, x, γ) means that the that the push-down automaton, which is in
state z, reads the symbol x on the input tape, and has γ as the first symbol on the
push-down tape, enters the state z′, does not move the head of the input tape4, and
replaces γ by the word β,

• (z′, R, β) ∈ δ(z, x, #) means that the push-down automaton, which is in state z,
reads the symbol x on the input tape, and has only # written on the push-down
tape, enters the state z′, moves the head of the input tape one position to the right,
and writes word β left from # on the push-down tape,

• (z′, N, β) ∈ δ(z, x, #) means that the push-down automaton, which is in state z,
reads the symbol x on the input tape, and has only # written on the push-down
tape, enters the state z′, does not move the head of the input tape, and writes word
β left from # on the push-down tape.

In all cases the read/write head of the push-down tape is positioned to the left most (or
first) symbol on the push-down tape.

By |=∗ we denote the reflexive and transitive closure of the relation |=.

Definition 3.53 Let M be a push-down automaton as in Definition 3.51. The language
accepted by M is defined as

T (M) = {w : (w, z0, #) |=∗ (λ, q, #) for some q ∈ F}.

According to this definition, a word w is accepted, if
– in the beginning of its work the push-down automaton starts in z0, has w on its

input tape and has an empty push-down tape (i. e., the push-down tape contains
only #),

4In some textbooks the move of the head of the input tape is interpreted in a different way: the symbol
on the input tape is only read if it moves to the right, otherwise the automaton does not read the symbol.



88 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

– after reading w completely it is in an accepting state and has an empty push-down
tape.

(Obviously, one can consider other variants of acceptance; for instance one can only ask
for an accepting state independent from the content of the push-down tape or one can
require that the push-down tape is empty, but one does not care on the state. One can
prove that the change of the acceptance condition does not change the set of acceptable
languages.)

Example 3.54 We consider the push-down automaton M = (X,Z, Γ, z0, F, δ) with

X = {a, b}, Γ = {a}, Z = {z0, z1, z2}, F = {z1},
δ(z0, a, #) = {(z0, R, aa)}, δ(z0, a, a) = {(z0, R, aaa)},
δ(z0, b, a) = {(z1, R, λ)}, δ(q, b, a) = {(z1, R, λ)}

and
δ(z, x, γ) = {(z2, R, γ)}

in all remaining cases. Then, for the input words aabbbb und aba, we obtain the following
sequences of configurations:

(aabbbb, z0, #) |= (abbbb, z0, aa#) |= (bbbb, z0, aaaa#) |= (bbb, z1, aaa#)

|= (bb, z1, aa#) |= (b, z1, a#) |= (λ, z1, #)

and
(aba, z0, #) |= (ba, z0, aa#) |= (a, z1, a#) |= (λ, z2, #).

Thus we have aabbbb ∈ T (M) and aba /∈ T (M).
It is easy to see that,
– if M is in state z0, reads an a on the input tape and an a or # as first letter of the

push-down tape, then it writes in addition two letters on the push-down tape,
– if M reads the first b on the input tape, it enters state z1 and any reading of b is

accompanied by the cancellation of the leftmost a of the push-down tape,
– in all other situations, M enters z2 and remains in this state.

.
Because we two as on the push-down tape if we read one a is, and we cancel only one

a if we read a b, we the number of bs we read has to be the double of the number os as
we read in order to obtain an empty push-down tape. Hence we get

T (M) = {anb2n : n ≥ 1}.

Essentially, the intuitive idea which M follows can be described as follows: The struc-
ture of some part of the input word is stored on the push-down tape during the reading
of this part, and then the remaining part is compared with the stored part if it is read.

An essentially different idea for the construction of a push-down automaton accepting
L = {anb2n : n ≥ 1} is based on a simulation of a derivation of a grammar generating
L and a comparison of the obtained word on the push-down tape with the input word.
However, there is a problem in the realization of this idea, because in a derivation we can
replace nonterminals in arbitrary position of the current sentential form whereas we can



3.3. PUSH-DOWN AUTOMATA VERSUS CONTEXT-FREE LANGUAGES 89

only change the leftmost symbol of the push-down tape. This problem can be solved by
a restriction to leftmost derivations (see Definition 2.29) and a comparison of the input
word and the sentential form, if the leftmost symbol of the sentential form is a terminal
one.

In order to give a push-down automaton which realizes the above mentioned idea, we
need a context-free grammar which generates L. Such a grammar is

G = ({S}, {a, b}, {S → aSbb, S → abb}, S).

Then we get the push-down automaton

M′ = ({a, b}, {z′0, z′1, z′2}, {S, a, b}, z′0, {z′1}, δ′)

with
δ′(z′0, x, #) = {(z′1, N, S)} for x ∈ {a, b}

(we initialize the push-down tape with the start symbol S of G, which is the first sentential
form of any derivation),

δ′(z′1, x, S) = {(z′1, N, aSbb), (z′1, N, abb)} for x ∈ {a, b}

(we simulate the application of a rule for S on the push-down tape, i. e., we replace the
leftmost symbol S on the push-down tape by a right hand side of a rule with left hand
side S),

δ′(z′1, x, x) = {(z′1, R, λ)} for x ∈ {a, b}
(we compare the first symbol of the push-down tape with the letter read on the input
tape) and

δ′(z, x, γ) = {(z′2, R, λ)}
in all remaining cases. For the above considered input words aabbbb and aba we obtain
as possible sequences of configurations

(aabbbb, z′0, #) |= (aabbbb, z′1, S#) |= (aabbbb, z′1, aSbb#) |= (abbbb, z′1, Sbb#)

|= (abbbb, z′1, abbbb#) |= (bbbb, z′1, bbbb#) |= (bbb, z′1, bbb#)

|= (bb, z′1, bb#) |= (b, z′1, b#) |= (λ, z′1, #)

and

(aba, z′0, #) |= (aba, z′1, S#) |= (aba, z′1, abb#) |= (ba, z′1, bb#) |= (a, z′1, b#) |= (λ, z′2, #).

However, we have to mention that we have only give one possible sequence of configura-
tions; there are further ones since there are further possible derivations. It is easy to see
that, for aba in all cases we get finally (λ, z′2, #), too.

Let Sb2n# be written on the push-down tape (for n = 0 we get this situation from
initial configuration (w, z0, #) by the first step M′). Now the application of S → aSbb or
S → abb is simulated on the push-down tape which yields aSb2(n+1)# or ab2(n+1)# on the
push-down tape. In the former case we compare a with the scanned symbol of the input
tape. If the comparison is affirmative, we get Sb2(n+1)#, i. e., a word of the same form



90 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

as we started from); if the comparison is not affirmative, then we enter state z′2 and the
word will not be accepted. In the latter case, we have to compare the (remaining) word
of the input tape with ab2n+1 and accept or we enter z′2.

Therefore an input word is accepted if and only if it coincides with a terminal sentential
form of G. Hence T (M) = L(G) = L.

The idea presented in the second part of Example 3.54 can be generalized to an
arbitrary context-free grammar. This leads to the following lemma.

Lemma 3.55 For any context-free language L, there is a push-down automaton M such
that T (M) = L.

Proof. Let λ /∈ L. Then there is a context-free grammar G which contains only rules
A → v with v 6= λ and satisfies L(G) = L. From G, we construct the push-down
automaton

M = (T, {z0, z1, z2}, N ′ ∪ T, z0, {z1}, δ)
with

δ(z0, x, #) = {(z1, N, S)} for x ∈ T,

δ(z1, x, A) = {(z1, N, v) : A → v ∈ P} for x ∈ T,

δ(z1, x, x) = {(z1, R, λ)} for x ∈ T

and
δ(z, x, γ) = {(z2, R, λ)}

in all remaining cases.

First we note that – besides the initial configuration – the push-down automaton is
in state z1 or z2. If M is in state z2, the state is not changed by the transition function.
Because z2 is not an accepting state, we can accept the input, if the state z2 is entered
sometimes. Thus we investigate which configurations with state z1 can be obtained. We
show that

(w1w2, z0, #) |=∗ (w2, z1, v#) (3.7)

holds if and only if there is a leftmost derivation

S =⇒∗ w1v (3.8)

in G. If we choose w1 = w, w2 = λ, v = λ, we get that we can obtain the accepting
configuration (λ, z1, #) if and only if there is a leftmost derivation S =⇒∗ w. Thus
a word is accepted if and only it can be generated by a leftmost derivation in G. By
Theorem 2.30, we have T (M) = Ll(G) = L(G) = L, which proves the lemma.

(3.7) → (3.8). We use induction on the length of the word w1 which is already read.
For w1 = λ,w2 = w, v = S the assertion is valid since starting from the initial configura-
tion (w, z0, #) we can only come to the configuration (w, z1, S#) by one transformation
and S =⇒∗ S is a leftmost derivation (with zero derivation steps).

Let now (w1w2, z0, #) |=∗ (w2, z1, v#) be a transformation such that w2 6= λ (we need
an input word which is longer than w1 to perform the induction step) and there is a

leftmost derivation S
∗

=⇒
l

w1v. We distinguish three cases:



3.3. PUSH-DOWN AUTOMATA VERSUS CONTEXT-FREE LANGUAGES 91

Case 1. v = av′ for some a ∈ T . If we also have w2 = aw′
2, then

(w1aw′
2, z0, #) |=∗ (aw′

2, z1, av′#) |= (w′
2, z1, v

′#)

and
S

∗
=⇒

l
w1v = w1av′

are valid which proves the assertion for the longer word w1a. If w2 = bw′
2 for some b ∈ T

with a 6= b or w2 is the empty word, then M moves in state z2 and we cannot accept.
Case 2. v = Av′ for some A ∈ N . Furthermore, let A → Xx be a rule of P . Then

we get by a simulation of this rule

(w2, z1, Av′#) |= (w2, z1, Xxv′#).

If X ∈ T , we obtain the situation discussed in Case 1. If X ∈ N , we continue by simulation
until we simulate a rule where the first letter of the right hand side is a terminal, which
to Case 1, again.

Case 3. v = λ. Since w2 6= λ, the push-down automaton enters z2.

(3.8) → (3.7). We give a proof by induction on the length of the derivation in (3.8).
For n = 0, the assertion by choosing w1 = λ,w2 = w, the only initial transformation

(w2, z0, #) |= (w2, z1, S#) and the fact that only S can be generated in zero derivation
steps.

Assume that the statement is already shown for n ≥ 0. Let now

S
∗

=⇒
l

w1Au =⇒
l

w1v1Bv2u

be a leftmost derivation of length n + 1, where the last step is an application of the rule
A → v1Bv2 or A → v1 with v1 ∈ T ∗, B ∈ N , v2 ∈ (N ∪ T )∗ (the nonterminal has to be
present since otherwise the derivation has not length n+1). Because we consider leftmost
derivation, we have w1 ∈ T ∗. By induction assumption, we get

(w1w2, z0, #) |=∗ (w2, z1, Au#).

By the definition of M, we obtain

(w2, z1, Au#) |= (w2, z1, v1Bv2u#) or (w2, z1, Au#) |= (w2, z1, v1u#).

If w2 = v1w3 for some w3, this leads to

(v1w3, z1, v1Bv2u#) |=∗ (w3, z1, Bv2u#) or (v1w3, z1, u#) |=∗ (w3, z1, Bv2u#).

By a combination of these relations we yield

(w1v1w3, z0, #) |=∗ (w3, z1, Bv2u#) or (w1v1w3, z0, #) |=∗ (w3, z1, u#).

In the former case, we have the wanted relation. In the latter case,
– if u is a terminal word and w3 = u, we get

(w1v1w3, z0#) |=∗ (w3, z1, u#) |=∗ (λ, z1, #)

and thus the assertion,



92 CHAPTER 3. LANGUAGES AS ACCEPTED SETS OF WORDS

– if u is a terminal word and w3 6= u, M enters z2,
– if u contains a nonterminal C and there is a word p ∈ T ∗ such that w3 = pCw4 and

u = pCu′, we get

(w1v1w3, z0#) |=∗ (pCw4, z1, pCu′#) |=∗ (w4, z1, u
′#)

and thus the statement,
– if u contains a nonterminal C and there is no p ∈ T ∗ such that w3 = pCw4 and

u = pCu′, M enters z2.
Thus, for all accepted words, the statement holds for derivations of length n + 1, too.

If λ ∈ L, we have the additional rule S → λ. Thus it is sufficient to add z0 to the set
of accepted states in the above construction to ensure the acceptance of λ. By the proof
given above, by z1 we accept all words of L(G) \ {λ}. Consequently, L is accepted. 2

The converse statement of Lemma 3.55 also holds.

Lemma 3.56 For any push-down automaton M, there is a context-free grammar such
that L(G) = T (M).

Proof. ???? 2

If we combine the two preceding lemmas we get the main result of this section.

Theorem 3.57 For a language L, the following two statements are equivalent:
i) The language L is context-free (i. e., L is generated by a context-free grammar).
ii) The language L is accepted by a push-down automaton.


