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Chapter 4

Algebraic Properties of Language
Families

In this section we study the behaviour of languages under certain operations. Especially,
we are interested in the question whether or not the application of some operation to
languages of some language family yields a language of that family, again. The result will
be used to present some characterizations of language families by operations. In addition,
we also give a characterization of the set of regular languages by properties of associated
congruence classes.

4.1 Closure Properties of Language Families

The basic definition for the behaviour of language families with respect to operation is
the following one.

Definition 4.1 We say that a family L of languages is closed under the n-ary operation
τ if, for any languages L1, L2, . . . , Ln of L, τ(L1, L2, . . . , Ln) ∈ L.

We first study the closure properties of the families of the Chomsky hierarchy under
set-theoretic operations.

Lemma 4.2 The families L(REG), L(LIN), L(CF), L(CS) and L(RE) are closed under
union.

Proof. Let L1 and L2 are two languages in L(X) with X ∈ {REG,LIN,CF,CS,RE}.
Then there are grammars G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2) of type X
such that L(G1) = L1 and L(G2) = L2). Without loss of generality we assume that
N1 ∩N2 = ∅ (if this should not be the case we rename some nonterminals such that the
required emptiness is obtained). We construct the grammar

G = ({S} ∪N1 ∪N2, T1 ∪ T2, {S → S1, S → S2} ∪ P1 ∪ P2, S),

where S is a new symbol not contained in N1 ∪N2 ∪ T1 ∪ T2. Obviously, G is of type X,
too. Moreover, any derivation has the form

S =⇒ Si
∗

=⇒
Gi

w ∈ L(Gi)

93



94 CHAPTER 4. ALGEBRAIC PROPERTIES OF LANGUAGE FAMILIES

for some i ∈ {1, 2} (because by N1 ∪N2 = ∅ the rules of Pi do not produce nonterminals
of Nj, j 6= i, i. e., we cannot merge the productions of P1 and P2. Thus we can derive only
words and all words of L(G1) ∪ L(G2) = L1 ∪ L2. Therefore L1 ∪ L2 = L(G) ∈ L(X). 2

Lemma 4.3 The families L(REG), L(CS) and L(RE) are closed under intersection. The
families L(LIN) and L(CF) are not closed under intersection.

Proof. L(REG). We have to show that, for two regular languages L1 and L2, their
intersection L1 ∩ L2 is a regular language, too. We only give the proof for the case that
λ /∈ L1 ∩ L2 and leave the modifications for the general case to the reader.

Let
G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2)

be two regular grammars with

L(G1) = L1 and L(G2) = L2.

By Theorem 2.28, we can assume that both grammar are in the normal form, i. e., the
rules have the form A → aB or A → a with nonterminals A, B and terminal a. We
consider the regular grammar

G = (N1 ×N2, T, P, (S1, S2))

with

P = {(A1, B1) → a(A2, B2) : A1 → aA2 ∈ P1, B1 → aB2 ∈ P2}
∪{(A,B) → a : A → a ∈ P1, B → a ∈ P2}.

It is easy to see that a derivation

(S1, S2) =⇒ a1(A1, B1) =⇒ a1a2(A2, B2) =⇒ . . . =⇒ a1a2 . . . an−1(An−1, Bn−1) =⇒ a1a2 . . . an−1an

exists in G if and only derivations

S1 =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an−1an

and

S2 =⇒ a1B1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1Bn−1 =⇒ a1a2 . . . an−1an

exist in G1 and G2, respectively. Therefore w ∈ L(G) holds if and only w ∈ L(G1) and
w ∈ L(G2). Hence

L(G) = L(G1) ∩ L(G2) = L1 ∩ L2.

Since G is a regular grammar, L1 ∩ L2 is a regular languages.

L(RE). Let L1 ∈ L(RE) and L2 ∈ L(RE) be given. By Theorem 3.19, there are
deterministic Turing machines

M1 = (X, Z1, z01, Q1, δ1, Q1) and M2 = (X,Z2, z02, Q2, δ2, Q2)
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with
T (M1) = L1 and T (M2) = L2.

Without loss of generality we can assume that Z1 ∩ Z2 = ∅. We construct a Turing
machine M which works as follows (the formal description is left to the reader). First
the machine replaces any letter x of the input word by (x, x). Then it works as M1 using
only the letters of the first components; thus the input input word is stored in the second
component (if a ∗ is read, then it is handled as (∗, ∗)). If M reaches a state from Q1,
then it replaces all letters (a, b) by their second component b, i. e., the input word is at
the tape, again. Now M starts to work as M2 and stops if a state of Q2 is reached.

According to this work we first check whether the input is accepted by M1 and then
whether the input is in T (M2). Thus M accepts a word W if and only w is accepted by
M1 as well as by M2. Consequently,

T (M) = T (M1) ∩ T (M2) = L1 ∩ L2,

which proves that L1 ∩ L2 ∈ L(RE) by Theorem 3.19.

L(CS). The proof can be given analogously to that for recursively enumerable lan-
guages, but we use linearly bounded automata and Theorem 3.23.

L(LIN) and L(CF). In order to prove the assertion it is sufficient to give two linear
languages which have a non-context-free intersection. We consider the linear grammars

G1 = ({S, A}, {a, b, c}, {S → Sc, S → Ac, A → aAb, A → ab}, S),

G1 = ({S, A}, {a, b, c}, {S → aS, S → aA, A → bAc, A → bc}, S).

It is easy to see that

L(G1) = {anbncm | n ≥ 1, m ≥ 1} and L(G2) = {ambncn | n ≥ 1, m ≥ 1}.
Obviously, L(G1) ∩ L(G2) = {anbncn | n ≥ 1}. By the proof of Theorem 16.13 we know
that L(G1) ∩ L(G2) is not context-free. 2

Lemma 4.4 The families L(REG) and L(CS) are closed under complement. The fami-
lies L(LIN), L(CF) and L(RE) are not closed under complement.

Proof. L(REG). Let L be a regular language. Then there is a deterministic finite
automaton A = (alph(L), Z, z0, F, δ) such that L = T (A). Thus w ∈ L if and only
if δ∗(z0, w) ∈ F . Consequently, w ∈ C(L) if and only if δ∗(z0, w) /∈ F if and only if
δ∗(z0, w) ∈ Z \ F . Thus the automaton A′ = ((alph(L), Z, z0, Z \ F, δ) accepts C(L).
Therefore C(L) is regular.

L(CS). We omit the proof since it requires some knowledge not presented in this book
and is relatively long. We refer to [32] and [17] and the original papers [13], [29].

L(RE). If L(RE) is closed under complement, then any recursively-enumerable lan-
guage is recursive by Theorem 3.10, in contradiction to Theorem 3.11.

L(CF). Let us assume that L(CF) is closed under complement. Let L1 and L2 be two
arbitrary context-free languages. We set

X = alph(L1) ∪ alph(L2), X1 = X \ alph(L1), X2 = X \ alph(L2).
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Let R1 and R2 be the sets of all words over X which contain at least one letter of X1 and
X2, respectively. If Xi = ∅ for some i ∈ {1, 2}, then Ri is the empty set, and therefore Ri

is a regular set. If Xi 6= ∅, then the regular grammar

Gi = ({S, A}, X,
⋃

a∈alph(Li)

{S → aS} ∪
⋃

b∈Xi

{S → bA, S → b} ∪
⋃
x∈X

{A → xA,A → x}, S)

generates Ri (since we can only terminate from S or switch from S to A, if a letter
from Xi is generated). Hence in all cases R1 and R2 are regular languages and therefore
context-free, too. By our assumption and Lemma 4.2, for i ∈ {1, 2},

X∗ \ Li = ((alph(Li))
∗ \ Li) ∪Ri = C(Li) ∪Ri

is a context-free language. Again, by Lemma 4.2,

R = (X∗ \ L1)) ∪ (X∗ \ L2)

is context-free. Now our assumption gives the context-freeness of

L1 ∩ L2 = X∗ \ ((X∗ \ L1) ∪ (X∗ \ L2)) = (alph(R))∗ \R

is a context-free languages, which means that the intersection of arbitrary context-free
languages is context-free. Thus we have a contradiction to Lemma 4.3. Therefore our
assumption is not valid, i. e. L(CF) is not closed under complement.

L(LIN) We repeat the proof for L(CF) (word by word), but replace context-free in all
cases by linear and L(CF) by L(LIN). 2

Lemma 4.5 The families L(REG) and L(CS) are closed under set-theoretic difference.
The families L(LIN), L(CF) and L(RE) are not closed under set-theoretic difference.

Proof. Let X and Y be two languages and V = alph(X) ∪ alph(Y ). Let us assume that
alph(X) \ alph(Y ) is not empty (the easy modifications for alph(X) ⊆ alph(Y ) are left to
the reader). From the proof of Lemma 4.4, we know that V ∗ \ (alph(Y ))∗ is in L(REG)
and therefore in L(CS), too. Because

X \ Y = (V ∗ \ Y ) ∩X = ((V ∗ \ (alph(Y ))∗) ∪ ((alph(Y ))∗ \ Y )) ∩X

= ((V ∗ \ (alph(Y ))∗) ∪ C(Y )) ∩X,

the first assertion follows by Lemmas 4.2 – 4.4.
Since X∗ is a regular language and belongs to all language families under consideration,

the complement is a special case of difference. Thus the second statement of Lemma 4.4
implies the second assertion. 2

We now mention a special case of intersection; we require that the language of the
family under consideration has to intersected with a regular set.

Lemma 4.6 The families L(REG), L(LIN), L(CF), L(CS), and L(RE) are closed un-
der intersection with regular languages.
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Proof. The statement holds trivially for L(REG), L(CS), and L(RE), because any of
these language families is closed by intersection (see Lemma 4.3) and contains all regular
languages (see Theorem 2.37).

In order to prove the statement for L(CF) we construct a pushdown automaton M
which accepts L ∩R for a given context-free language L and a given regular language R.
Let

M1 = (X, Z1, Γ, z0,1, F1, δ1) and A2 = (X,Z2.z0,2, F2, δ2)

be a pushdown automaton and a finite automaton, respectively, such that T (M1) = L
and T (A2) = R. We construct the pushdown automaton

M = (X, Z1 × Z2, Γ, (z0,1, z0,2), F1 × F2, δ)

where

((z′1, z
′
2), R, β) ∈ δ((z1, z2), a, γ) if (z′1, β) ∈ δ1(z1, a, γ) and δ2(z2, a) = z′2,

((z′1, z2), N, β) ∈ δ((z1, z2), a, γ) if (z′1, β) ∈ δ1(z1, a, γ).

By definition M behaves on the first component of the state and the pushdown tape as
M1 and on the second component of the state as A2 (where a letter is only read by A2,
if M1 moves to the right). Hence M accepts a word w if and only if w is accepted by
M1 as well as by A2. Thus T (M) = L ∩R.

For the family of linear languages, we only notice that the construction of M from
M1 gives a 1-turn pushdown automaton if M1 is a 1-turn pushdown automaton. 2

We now study the algebraically motivated operations concatenation and Kleene closure
and those operations related to homomorphisms.

Lemma 4.7 The families L(REG), L(CF), L(CS), and L(RE) are closed under con-
catenation. L(LIN) is not closed under concatenation.

Proof. L(CF). Again, we start with two context-free grammars

G1 = (N1, T, P1, S1) and G2 = (N2, T, P2, S2)

with N1 ∩N2 = ∅ and show that the grammar

G = (N1 ∪N2 ∪ {S}, T, P1 ∪ P2 ∪ {S → S1S2}, S)

generates L(G1)
cdotL(G2). It is sufficient to mention that – up to the order of the applications of rules –
any derivation in G has the form

S =⇒ S1S2
∗

=⇒ w1S2
∗

=⇒ w1w2

where, for i ∈ {1, 2}, Si
∗

=⇒ wi is a derivation in Gi (i. e., the derivation only uses rules
of Pi). Since G is a context-free grammar, L(G1)
cdotL(G2) is a context-free language.

L(CS) and L(RE). We repeat the proof for L(CF) where we suppose without loss of
generality that the grammars are in the Kuroda normal form (see Theorem 2.19. This
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ensures that the derivations in G1 and G2 cannot be influenced by the contexts of the
other part. Furthermore, we have to take care of the empty word in case of L(CS), which
requires to represent the concatenation as a union by languages without the empty word
and the language only consisting of the empty word; e. g., if λ ∈ L(G1) and λ ∈ L(G2),
then

L(G1) · L(G2) = ((L(G1) \ {λ}) · (L(G2) \ {λ})) ∪ (L(G1) \ {λ}) ∪ (L(G2) \ {λ}) ∪ {λ}.
The details are left to the reader.

L(REG). The above proof (for L(CF)) does not work for regular languages since the
newly introduced rule S → S1S2 has not the required form.

Let G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2) be regular grammars such that
L(G1) = L1, L(G2) = L2 and N1 ∩N2 = ∅. Then we construct the grammar

G = (N1 ∪N2, T, P ′
1 ∪ P2, S1)

where

P ′
1 = {A → wB : A → wB ∈ P1, B ∈ N1} ∪ {A → wS2 : A → w ∈ P1, w ∈ T ∗}.

According to this construction, all derivations in G have the form

S1
∗

=⇒ w′A =⇒ w′wS2
∗

=⇒ w′ww2

where
S1

∗
=⇒ w′A =⇒ w′w = w1 and S2

∗
=⇒ w2

are derivations in G1 and G2, respectively. Hence

L(G) = {w1w2 : w1 ∈ L(G1), w2 ∈ L(G2)} = L(G1) · L(G2).

L(LIN) The method used for L(REG) does not work since the derivation of the first
grammar can end somewhere in the middle of the word and not at the end as in the case
of regular grammars.

By Example 2.5, L = {anbn | n ≥ 1} is a linear language. However, the language
L · L = {anbnambm | n ≥ 1, m ≥ 1} is not linear as we have shown in the proof of
Theorem 2.34. 2

Lemma 4.8 The families L(REG), L(CF), L(CS), and L(RE) are closed under (posi-
tive) Kleene closure. L(LIN) is not closed under (positive) Kleene closure.

Proof. We first prove the statement for positive Kleene closure.

L(CF). Let L be a context-free language. Let G = (N, T, P, S) be a context-free
grammar which generates L. We set

G′ = (N ∪ {S ′}, T, P ∪ {S ′ → SS ′, S ′ → S}, S ′)
(where S ′ is an additional symbol, again). Up to the order of the application of the rules,
any derivation in G′ has the form

S ′ =⇒ SS ′
∗

=⇒ w1S
′ =⇒ w1SS ′

∗
=⇒ w1w2S

′ =⇒ w1w2SS ′ =⇒ ...

=⇒ w1w2 . . . wn−1S
′ =⇒ w1w2 . . . wn−1S

∗
=⇒ w1w2 . . . wn−1wn,



4.1. CLOSURE PROPERTIES OF LANGUAGE FAMILIES 99

where, for 1 ≤ i ≤ n, each derivation S
∗

=⇒ wi uses only rules of P . Thus we have
wi ∈ L(G) = L for 1 ≤ i ≤ n. Hence w1w2 . . . wn ∈ Ln. It is obvious that any word
w ∈ Ln and only words of Lm with m ≥ 1 can be generated. Therefore

L(G′) =
⋃
n≥1

Ln = L+,

which proves the context-freeness of L+.

L(CS) and L(RE). Let L be a language of L(X), X ∈ {CS,RE}. Then L can be
generated by a grammar G = (N, T, P, S) in Kuroda normal form (see Theorem 2.19).
We set

G′ = (N ∪ {S ′, S ′′}, T, P ∪ P ′, S ′)

where P ′ consists of the rules

S ′ → S, S ′ → SS ′′,

xS ′′ → xSS ′′, xS ′′ → xS for x ∈ T.

By these it is ensured that the subderivations starting from S can not influence each other
by context (since a new derivation can only be started if the preceding one has already
produced the last terminal letter). Now we get L(G′) = L+ as above. The details of the
proof are left to the reader.

L(REG). Let G = (N, T, V, P, S) be a regular grammar with L(G) = L. We construct
the regular grammar G′ = (N, T, P ′, S) where P ′ is obtained by adding all rules of the
forms

A → wS for A → w ∈ P, w ∈ T ∗

to P . Then the derivations of G′ have the form

S
∗

=⇒ w′
1A1 =⇒ w′

1w
′′
1S

∗
=⇒ w′

1w
′′
2w

′
2A2 =⇒ w′

1w
′′
1w

′
2w

′′
2S

∗
=⇒ w′

1w
′′
1 . . . w′

n−1w
′′
n−1S

∗
=⇒ w′

1w
′′
1 . . . w′

n−1w
′′
n−1wn,

where w′
iw

′′
i ∈ L(G) for 1 ≤ i ≤ n − 1 and wn ∈ L(G). Now L(G′) = L+ can easily be

proved.

Kleene closure. If λ ∈ L, then L∗ = L+ and we can use the above constructions. If
λ /∈ L, then L∗ = L+ ∪ {λ}; because a grammar with the only rule S → λ, generates the
language which only consists of the empty word, the assertion follows by the above result
for L∗ and Lemma 4.2.

L(LIN). We consider the linear language L(G2) = {anbn | n ≥ 1} from Example 2.5.
It is easy to see that

L(G2)
+ = {an1bn1an2bn2 . . . antbnt | t ≥ 1, ni ≥ 1, 1 ≤ i ≤ t}.

Let us assume that L(G2)
+ is linear. Because R = {apbqarbs | p, q, r, s ≥ 1} is regular

(the verification is left to the reader), then

L(G2)
+ ∩R = {anbnambm | n,m ≥ 1}
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is also linear by Lemma 4.6. However, as an application of the pumping lemma for
linear languages we have shown that L(G2)

+ ∩ R is not linear. This contradiction shows
that our above assumption is wrong, i. e., L(G2)

+ is not a linear languages. Thus we have
shown the non-closure of the family of linear languages under positive Kleene closure. The
analogous statement for the Kleene closure follows as above taking into consideration that
L(G2)

∗ ∩R = L(G2)
+ ∩R. 2

Lemma 4.9 The families L(REG), L(LIN), L(CF), and L(RE) are closed under homo-
morphisms.

Proof. Let h be homomorphism which maps T ∗ to Y ∗.
L(CF). Let L be a context-free language. Then there is a context-free grammar

G = (N, T, P, S) in Chomsky normal form such that L(G) = L (see Theorems 2.26).
Therefore all rules are of the form A → BC or A → a with A,B, C ∈ N and a ∈ T .
Moreover, we can arrange the order of the applications of rules such that any derivation
has the form

S
∗

=⇒ A1A2 . . . Ak =⇒ a1A2A3 . . . Ak =⇒ a1a2A3A4 . . . Ak =⇒ . . . =⇒ a1a2 . . . ak

(where we apply only rules of the form A → BC in the subderivation S
∗

=⇒ A1A2 . . . Ak.
We now construct the grammar G′ = (N, Y, P ′, S) where P ′ is obtained from P by a
replacement of any rule of the form A → a ∈ P by A → h(a). Then it follows that –
without loss of generality – the derivations in G′ have the form

S
∗

=⇒ A1A2 . . . Ak =⇒ h(a1)A2A3 . . . Ak =⇒ h(a1)h(a2)A3A4 . . . Ak =⇒ . . .

=⇒ h(a1)h(a2) . . . h(ak) = h(a1a2 . . . ak).

Thus we have w ∈ L(G) if and only if h(w) ∈ L(G′) and therefore L(G′) = h(L(G)) =
h(L). Furthermore, G′ is a context-free grammar. Hence L(CF) is closed under homo-
morphisms.

L(RE). We repeat the proof for L(CF) but use the Kuroda normal form instead of
the Chomsky normal form.

L(LIN). Let L be a linear grammar. Then there is a linear grammar G = (N, T, P, S)
generating L. Moreover, any derivation in G has the form

S → w1A1v1 =⇒ w1w2A2v2v1 =⇒ . . . =⇒ w1w2 . . . wkAkvkvk−1 . . . v1

=⇒ w1w2 . . . wkuvkvk−1 . . . v1

where the rules S → w1A1v1, Ai → wi+1Ai+1vi+1 for 1 ≤ i ≤ k − 1, and Ak → u are
applied.

We now define the grammar G = (N, Y, P ′, S) by

P ′ = {A → h(w)Bh(v) | A → wBv ∈ P} ∪ {A → h(w) | A → w ∈ P}.
Any derivation in G′ has the form

S → h(w1)A1h(v1) =⇒ h(w1)h(w2)A2h(v2)h(v1)

=⇒ . . . =⇒ h(w1)h(w2) . . . h(wk)Akh(vk)h(vk−1) . . . h(v1)

=⇒ h(w1)h(w2) . . . h(wk)h(u)h(vk)h(vk−1) . . . h(v1)

= h(w1w2 . . . wkuvkvk−1 . . . v1).
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Again, we have z ∈ L(G) if and only if h(z) ∈ L(G′) and therefore L(G′) = h(L(G)) =
h(L). The assertion follows because G′ is linear.

L(REG). The construction given in the proof for L(LIN) gives a regular grammar G′,
if G is regular. 2

We have not given the closure property of L(CS) under homomorphisms. This will be
added in Chapter 5.

Lemma 4.10 The families L(REG), L(LIN), L(CF), L(CS), and L(RE) are closed
under inverse homomorphisms.

Proof. L(REG). Let L be a regular language. Then there is a deterministic finite
automata A = (X, Z, z0, F, δ) such that T (A) = L. Now let h : Y ∗ → X∗ be a homomor-
phism. Then a1a2 . . . an ∈ h−1(L), ai ∈ Y for 1 ≤ i ≤ n if and only if h(a1a2 . . . an) =
h(a1)h(a2) . . . h(an) ∈ L. We construct the automaton A′ = (Y, Z, z0, F, δ′) by setting

δ′(z, a) = δ∗(z, h(a)) for a ∈ Y.

By definition of δ′, we immediately have

δ′(z0, a1a2 . . . an) = δ(z0, h(a1)h(a2) . . . h(an) ∈ F.

Therefore a1a2 . . . an ∈ T (A′) if and only if h(a1)h(a2) . . . h(an) ∈ T (A′). This implies
that A′ accepts h−1(T (A)) = h−1(L). Hence h−1(L) is regular.

L(CF). Let L be a context-free language and M = (X, Z, Γ, z0, F, δ) be a pushdown
automaton. Moreover, let h : Y ∗ → X∗ be a homomorphism. For any letter a ∈ Y with
h(a) = b1b2 . . . bra , we introduce new symbols (a, i), 1 ≤ i ≤ ra + 1. Let Z ′ be the set of
all new symbols. Then we consider the pushdown automaton

M′ = (Y, {(z, z) | z ∈ Z} ∪ (Z × Z ′), z0, {(z, z) | z ∈ F}, δ′),

where δ′ is defined as follows:

δ′((z, z), a, #) = {(z, (a, 1)), λ)} for z ∈ Z, a ∈ Y,

δ′((z, z), a, γ) = {(z, (a, 1)), γ)} for z ∈ Z, a ∈ Y, γ ∈ Γ,

δ′((z, (a, i)), λ, γ) = {(z′, (a, i + 1)), β) | (z′, β) ∈ δ(z, bi, γ)}
for z ∈ Z, a ∈ Y, 1 ≤ i ≤ ra, γ ∈ Γ ∪ {#},

δ′((z, (a, i)), λ, γ) = {(z′, (a, i)), β) | (z′, β) ∈ δ(z, λ, γ)}
for z ∈ Z, a ∈ Y, 1 ≤ i ≤ ra, γ ∈ Γ ∪ {#},

δ′((z, (a, ra+1)), λ, γ) = {((z, z), γ)} for z ∈ Z, a ∈ Y, γ ∈ Γ,

δ′((z, (a, ra+1)), λ, #) = {(z, z), λ)} for z ∈ Z, a ∈ Y,

After reading a letter a in state (z, z), we change to (z, (a, 1)) and simulate the work
of M on h(a) = b1b2 . . . bra by changing the first component according to M and mov-
ing to (a, i + 1) if bi is ”read”. The (z′, ara+1) says that the work on h(a) is simulated
and we enter (z′, z′). Therefore the pushdown automaton M′ accepts a1a2 . . . an if and
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only if we obtain (q, q) for some q ∈ F on the input a1a2 . . . an if and only the simu-
lation on h(a1)h(a2) . . . h(an) leads to q ∈ F . Thus a1a2 . . . an ∈ T (M′) if and only if
h(a1)h(a2) . . . h(an) ∈ T )M = L if and only if a1a2 . . . an ∈ h−1(L).

We omit the proofs for L(LIN), L(CS), and L(RE) which can be given analogously,
i. e., the automaton for h−1(L) simulates the work of the automaton for L. 2

The proof of the following theorem is left to the reader (see Exercise ???).

Lemma 4.11 The families L(REG), L(LIN), L(CF), L(CS), and L(RE) are closed un-
der reversal. 2

We summarize the closure properties of the families of the Chomsky hierarchy in the
table given in Figure 4.1 where a + or – in the meet of the column associated with a
family L and the row associated with an operation τ means that L is closed or not closed
under τ , respectively.

L(RE) L(CS) L(CF) L(LIN) L(REG)
union + + + + +
intersection + + – – +
intersection with regular sets + + + + +
complement – + – – +
product + + + – +
(positive) Kleene closure + + + – +
homomorphisms + – + + +
non-erasing homomorphisms + + + + +
inverse homomorphisms + + + + +
reversal + + + + +

Figure 4.1: Table of closure properties

We now show that a family of languages which is closed under certain operations is
also closed under some further operations. In order to shorten the statements we give the
following notation.

Definition 4.12 A family L of languages is called an abstract family of languages (ab-
breviated by AFL) if

– it contains at least one non-empty language,

– it is closed under union, product, positive Kleene closure, non-erasing homomor-
phisms, inverse homomorphisms and intersections with regular languages.

The family L is called a full AFL if, in addition, it is closed under (arbitrary) homomor-
phisms.

By Figure 4.1, L(REG), L(CF), L(CS), and L(RE) are AFLs; L(REG), L(CF), and
L(RE) are full AFLs; L(LIN) is not an abstract family of languages.

Lemma 4.13 Any full AFL is closed under Kleene closure.
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Proof. Since L∗ = L+ ∪ {λ} and any full AFL is closed under positive Kleene closure
and union, it is sufficient to show that any full AFL contains {λ}.

Let L be an AFL. We first show that {λ} ∈ L. By defition, L contains a non-empty
language K. If K = {λ}, then the assertion holds. If K 6= {λ}, then K contains a non-
empty word z. We define the homomorphism h : (alph(K))∗ → (alph(K))∗ by h(a) = λ
for all a ∈ alph(K). Then

{λ} = h(K ∩ {w}).
Because L is closed under intersections with regular sets and homomorphisms, we obtain
{λ} ∈ L. 2

Theorem 4.14 Any AFL is closed under set-theoretic subtraction of regular languages.

Proof. Let L be an AFL. For a language L ⊆ X∗ from L and a regular set R ⊆ X∗,
L \R = L∩ (X∗ \R). Since the complement of a regular set is regular, too (see Theorem
4.4), L \ R is an intersection of a languages in L with a regular set. Thus L \ R ∈ L by
the closure properties required for an AFL. 2

Theorem 4.15 Any full AFL is closed under left and right quotients by regular sets,
i. e., for any language L of the AFL L and any regular set R, the quotients Dl(L,R) and
Dr(L,R) belong to L.

Proof. We only give the proof for the left quotient; the proof for the right quotient is
analogous.

Let L be an AFL, L a language in L, and R a regular set. Furthermore, let

X = alph(L) ∪ alph(R) and X ′ = {a′ | a ∈ X}.
We define the homomorphisms

h : X∗ → X∗, h1 : (X ∪X ′)∗ → X∗ and h2 : (X ∪X ′)∗ → X∗

by
h(a) = a′, h1(a

′) = a, h1(a) = a, h2(a
′) = λ, h2(a) = a for a ∈ X.

Additionally, we consider the set

Q = h(R)(alph(L))∗.

By the closure of L(REG) under homomorphisms and concatenation (see Theorems 4.7
and 4.9), Q is regular. Because

h2(h
−1
1 (L) ∩Q) = h2({w′v | w′ ∈ h(R), v ∈ (alph(L))∗, wv ∈ L})

= h2({w′v | w ∈ R, v ∈ (alph(L))∗, wv ∈ L})
= {h2(w

′)h2(v) | w ∈ R, v ∈ (alph(L))∗, wv ∈ L}
= {v | wv ∈ L for some w ∈ R},

we have
Dl(L,R) = h2(h

−1
1 (L) ∩Q).

By the closure properties of an AFL, we obtain Dl(L,R) ∈ L. 2
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Theorem 4.16 Any full AFL is closed under substitutions by regular sets.

Proof. Let L be an AFL, L ⊆ X∗ a language of L and τ : X∗ → Y ∗ a substitution
such that τ(a) is a regular set for any a ∈ X. Let X = {a1, a2, . . . , an} and τ(ai) = Ri ∈
L(REG) for 1 ≤ i ≤ n. We define

X ′ = {a′ | a ∈ X},
h1 : (X ′ ∪ Y )∗ → X∗ by h1(x

′) = x for x ∈ X and h1(y) = λ for y ∈ Y,

h2 : (X ′ ∪ Y )∗ → Y ∗ by h2(x
′) = λ for x ∈ X and h2(y) = y for y ∈ Y,

R =
n⋃

i=1

a′iRi.

Then we get

h−1
1 (L) = {u0x

′
1u1x

′
2u2 . . . x′rur | x1x2 . . . xr ∈ L, ui ∈ Y ∗ for 1 ≤ i ≤ r},

h−1
1 (L) ∩R = {x′1u1x

′
2u2 . . . x′rur | x1x2 . . . xr ∈ L, ui ∈ τ(xi) for 1 ≤ i ≤ r},

h2(h
−1
1 (L) ∩R) = {u1u2 . . . ur | x1x2 . . . xr ∈ L, ui ∈ τ(xi) for 1 ≤ i ≤ r},

and finally,

τ(L) = h2(h
−1
1 (L) ∩R).

By the closure properties required for a full AFL, we obtain τ(L) ∈ L. 2

4.2 Algebraic Characterizations of Language Fami-

lies

4.2.1 Characterizations of Language Families by Operations

The aim of this section is to present some characterizations of language families by alge-
braic means. We start with characterizations by closure properties under certain opera-
tions and containments of very special languages.

Definition 4.17 Regular expressions over an alphabet X are inductively defined as fol-
lows:

1. ∅, λ and x with x ∈ X are regular expressions.

2. If R1, R2 and R are regular expressions, then (R1 + R2), (R1 ·R2) and R∗ are also
regular expressions.

With any regular expression we associate a regular language.

Definition 4.18 For a regular expression U over the alphabet X, the associated set M(U)
is inductively defined by the following settings:

1. M(∅) = ∅, M(λ) = {λ} uand M(x) = {x} for x ∈ X,
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2. If R1, R2 and R are regular expressions, then

M((R1 + R2)) = M(R1) ∪M(R2),

M((R1 ·R2)) = M(R1) ·M(R2),

M(R∗) = (M(R))∗ .

Example 4.19 Let X = {a, b, c}. By condition 1. of Definition 4.17,

R0 = λ, R1 = a, R2 = b, R3 = c

are regular expressions over X. By condition 2. of Definition 4.17, the following constructs
are also regular expressions:

R′
1 = (R1 ·R1) = (a · a) ,

R′′
1 = (R′

1 ·R1) = ((a · a) · a) ,

R′
2 = R∗

2 = b∗ ,

R′′
2 = (R′

2 + R′′
1) = (b∗ + ((a · a) · a))) ,

R′
3 = R∗

3 = c∗ ,

R′′
3 = (R3 ·R′

3) = (c · c∗) ,

R4 = (R′′
2 ·R′′

3) = ((b∗ + ((a · a) · a))) · (c · c∗)),
R5 = (R0 + R4) = (λ + ((b∗ + ((a · a) · a))) · (c · c∗))) .

According to Definition 4.18 we obtain the following associated sets (where obvious sim-
plifications are done):

M(R0) = {λ}, M(R1) = {a}, M(R2) = {b}, M(R3) = {c},
M(R′

1) = = M((R1 ·R1)) = {a} · {a} = {a2} ,

M(R′′
1) = M((R′

1 ·R1)) = {a2} · {a} = {a3} ,

M(R′
2) = M(R∗

2) = {b}∗ = {bm : m ≥ 0} ,

M(R′′
2) = M((R′

2 + R′′
1)) = {bm : m ≥ 0} ∪ {a3} ,

M(R′
3) = M(R∗

3) = {c}∗ = {cn : n ≥ 0} ,

M(R′′
3) = M((R3 ·R′

3)) = {c}{cn : n ≥ 0} = {cn : c ≥ 1} ,

M(R4) = M((R′′
2 ·R′′

3)) = ({bm : m ≥ 0} ∪ {a3}) · {cn : n ≥ 1}
= {bmcn : m ≥ 0, n ≥ 1} ∪ {a3cn : n ≥ 3} ,

M(R5) = M((R0 + R4)) = {λ} ∪ ({bmcn : m ≥ 0, n ≥ 1} ∪ {a3cn : n ≥ 3})
= {λ} ∪ {bmcn : m ≥ 0, n ≥ 1} ∪ {a3cn : n ≥ 3}.

If U = ((. . . ((R1 + R2) + R3) + . . . ) + Rn), then to shorten the notation we write

U =
n∑

i=1

Ri .

Obviously,

M(U) =
n⋃

i=1

M(Ri) .

In an analogous way we use sums and unions over certain sets of indexes.
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Theorem 4.20 A language L is regular if and only if there is a regular expression R
such that M(R) = L.

Proof. ⇐= ) We show inductively that, for any regular expression U , the associated set
M(U) is regular.

If U is a regular expression by condition 1. of Definition 4.17, then all associated sets
M(∅) = ∅, M(λ) = {λ} and M(x) = {x} with x ∈ X are finite and therefore regular (see
Exercise ???).

Now let U be a regular expression, which is obtained from regular expressions R1, R2,
and R according to condition 2. of Definition 4.17, and let M(R1), M(R2), and M(R) be
the sets associated with R1, R2, and R, respectively. By induction hypotheses, M(R1),
M(R2), and M(R) are regular. If U = (R1 + R2), then M(U) = M(R1) ∪ M(R2). By
Theorem 4.2, M(U) is regular. If U = (R1 · R2) or U = R∗, then the associated sets
M(U) = M(R1) · M(R2) or M(U) = (M(R))∗, respectively, so sind nach den are also
regular by Theorems 4.7 and 4.8,respectively.

=⇒ ) Let L be a regular language. Then there is a finite deterministic automaton
A = (X, Z, z0, F, δ) with T (A) = L. Without loss of generality we can assume that

Z = {0, 1, 2, . . . r} and z0 = 0

for some r ≥ 0. For i, j ∈ Z and 0 ≤ k ≤ r + 1, by Lk
i,j we denote the set of all words w

satisfying the following two conditions: Eigenschaften:
(a) δ(i, w) = j,
(b) for any u 6= λ with w = uu′ and |u| < |w|, we have δ(i, u) < k.

Obviously,

L = T (A) =
⋃
j∈F

Lr+1
0,j . (4.1)

We now prove that, for any set Lk
i,j, i, j ∈ Z, 0 ≤ k ≤ r + 1, there is a regular expression

Rk
i,j with M(Rk

i,j) = Lk
i,j. The proof will be given by induction on k.

Let k = 0. For i 6= j, by definition, L0
i,j consists of all words w, which directly

transform the state i into state j, because by condition (b) no intermediate states occur.
Thus w is a word of length 1.Therefore

L0
i,j = {x : x ∈ X, δ(i, x) = j}.

This can be written as
L0

i,j =
⋃
x∈X

δ(i,x)=j

{x}.

Thus we also have
L0

i,j = M(
∑
x∈X

δ(i,x)=j

x) =
⋃
x∈X

δ(i,x)=j

{x},

which proves our assertion. If i = j, in addition to the words of length 1 which transform
i into i, the empty word is in L0

i,i. Hence

L0
i,j = M(λ +

∑
x∈X

δ(i,x)=i

x) = {λ} ∪
⋃
x∈X

δ(i,x)=j

{x}
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is regular.
Let k ≥ 1 and let us assume (by induction hypotheses) that, for all sets Ls

i,j with
s < k, there is a regular expression Rs

i,j such that Ls
i,j = M(Rs

i,j). We first show that

Lk
i,j = Lk−1

i,k−1(L
k−1
k−1,k−1)

∗Lk−1
k−1,j ∪ Lk−1

i,j . (4.2)

Let w = x1x2 . . . xn be a word of Lk
i,j. For 1 ≤ p ≤ n− 1, we set

zp = δ(i, x1x2 . . . xp).

If zp < k − 1 for 1 ≤ p ≤ n− 1, then w is in Lk−1
i,j , too. Thus we get w ∈ Lk−1

i,j .
If there exist integers t ≥ 1 and 1 ≤ p1 ≤ p2 ≤ · · · ≤ pt ≤ n− 1 such that

zp1 = zp2 = · · · = zpt = k − 1 and zp < k − 1 for p /∈ {p1, p2, . . . , pt},
then we have

δ(i, x1x2 . . . xp1) = k − 1,

δ(k − 1, xpq+1xpq+2 . . . xpq+1) = k − 1 for 1 ≤ q ≤ t− 1,

δ(k − 1, xptxpt+1 . . . xn) = j.

Furthermore, k−1 is not an intermediate state in each of these transformations. Therefore
we obtain

x1x2 . . . xp1 ∈ Lk−1
i,k−1,

xpqxpq+1xpq+2 . . . xpq+1 ∈ Lk−1
k−1,k−1 für 1 ≤ q ≤ t− 1,

xptxpt+1xpt+2 . . . xn ∈ Lk−1
k−1,j.

and
w = x1 . . . xp1 . . . xp2 ...xpt . . . xn ∈ Lk−1

i,k−1(L
k−1
k−1,k−1)

∗Lk−1
k−1,j.

Consequently,
Lk

i,j ⊆ Lk−1
i,k−1(L

k−1
k−1,k−1)

∗Lk−1
k−1,j ∪ Lk−1

i,j .

The converse inclusion and thus the equality in (4.2) follow by analogous arguments.
The equation (4.2) yields immediately

Lk
i,j = M(Rk−1

i,k−1)M(Rk−1
k−1,k−1)

∗M(Rk−1
k−1,j) ∪M(Lk−1

i,j )

= M((((Rk−1
i,k−1 · [Rk−1

k−1,k−1]
∗) ·Rk−1

k−1,j) + Rk−1
i,j )) ,

which proves that, any set Lk
i,j can be described by a regular expression Rk

i,j.
If we take into consideration the relation

L =
⋃
j∈F

Lr+1
0,j = M(

∑
j∈F

Rr+1
0,j )

which follows from (4.1), then the second implication of our statement is shown. 2

We present another formulation of Theorem 4.20 where we use immediately the oper-
ations instead of the regular expressions.



108 CHAPTER 4. ALGEBRAIC PROPERTIES OF LANGUAGE FAMILIES

Theorem 4.21 A language L over the alphabet X is regular if and only if it can be
generated by an iterated application of union, product, and Kleene closure from the sets
∅, {λ} and {x} for x ∈ X. 2

Theorem 4.20 (or equivalently, Theorem 4.21) was first shown by the American math-
ematician Stephen Cole Kleene1 in the paper [16], and therefore it is often called
Kleene’s Theorem. We want to mention that in the original paper essentially events in
nerve nets are characterized by union, product, and Kleene closure, and a relation to
automata is only mentioned. Thus the paper gives a very early relation between biology
and formal languages. Further examples of such a relation are discussed in Chapters ??,
??, and ??.

We conclude the considerations concerning Kleene’s Theorem by an example.

Example 4.22 We consider the finite automaton A of Example 3.43 and construct for
the language accepted by A the representation by union, product, and Kleene closure. To
simplify the notation we write i instead of zi. We obtain

T (A) = L4
0,2

= L3
0,3(L

3
3,3)

∗L3
3,2 ∪ L3

0,2

= L3
0,2(wegen L3

3,2 = ∅)
= L2

0,2(L
2
2,2)

∗L2
2,2 ∪ L2

0,2

= L2
0,2(L

2
2,2)

∗(wegen λ ∈ L2
0,2)

= (L1
0,1(L

1
1,1)

∗L1
1,2 ∪ L1

0,2)(L
1
2,1(L

1
1,1)

∗L1
1,2 ∪ L1

2,2)
∗

= L1
0,1{a} · (L1

2,1{a})∗wegen L1
1,2 = {a}, L1

1,1 = L1
0,2 = L1

2,2 = ∅)
= (L0

0,0(L
0
0,0)

∗L0
0,1 ∪ L0

0,1){a} · ((L0
2,0(L

0
0,0)

∗L0
0,1 ∪ L0

2,1){a})∗
= ({λ, c}{λ, c}∗{a} ∪ {a}){a} · (({c}{λ, c}∗{a}){a})∗,

which finally yields the representation

T (A) = ((((((λ + c) · (λ + c)∗) · a) + a) · a) · (((c · (λ + c)∗) · a) · a∗)). (4.3)

In Example 3.43 we have shown that

T (A) = {cn1aacn2aa . . . cnkaa : k ≥ 1, n1 ≥ 0, ni ≥ 1, 2 ≤ i ≤ k}.

Because
{x}∗ = {xn : n ≥ 0} and {x}+ = {xn : n ≥ 1} = {x}{x}∗,

we have also the representation

T (A) = {c}∗{a}{a}({c}{c}∗{a}{a})∗. (4.4)

Since the representations of T (A) given in (4.3) and (4.4) are different, this example
shows that the representation and therefore the regular expression for a regular set are
not uniquely determined.

1born in 1909, died in 1994)
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We now construct a regular grammar which generates T (A). We start with the repre-
sentation given in (4.4). Obviously, for all grammar given in this construction the terminal
alphabet T is the input alphabet {a, b, c} of A.

We first construct grammars, which generate the necessary seven sets consisting of a
single word. Moreover, we use the notation in such a way that the alphabets of nonter-
minals are disjunct since this was supposed in the constructions of grammars generating
the union and product. Thus we start with

Gi = ({Si}, T, {Si → c}, Si) für i ∈ {1, 4, 5}
Gj = ({Sj}, T, {Sj → a}, Sj) für i ∈ {2, 3, 6, 7}

which generate

L(Gi) = {c} for i ∈ {1, 4, 5} and L(Gj) = {a} for i ∈ {2, 3, 6, 7}.
Therefore

T (A) = L(G1)
∗L(G2)L(G3)(L(G4)L(G5)

∗L(G6)L(G7))
∗.

We now follow the constructions given in the proofs of the Lemmas 4.7 and 4.8. The
following table gives the generated language, the rules and the axiom (the nonterminals
can be seen from the rules and the terminal set is {a, b, c}):

L(G1)
∗ = {a}∗ S ′1 → λ, S ′1 → S1, S1 → cS1, S1 → c S ′1

L(G1)
∗L(G2) S ′1 → S2, S

′
1 → S1, S1 → cS1, S1 → cS2, S ′1

S2 → a
L(G1)

∗L(G2)L(G3) S ′1 → S2, S
′
1 → S1, S1 → cS1, S1 → cS2, S ′1

S2 → cS3, S3 → c
L(G5)

∗ S ′5 → λ, S ′5 → S5, S5 → cS5, S5 → c S ′5
L(G4)L(G5)

∗ S4 → cS ′5, S
′
5 → λ, S ′5 → S5, S5 → cS5, S4

S5 → c
L(G4)L(G5)

∗L(G6)L(G7) S4 → cS ′5, S
′
5 → S6, S

′
5 → S5, S5 → cS5, S4

S5 → cS6, S6 → aS7, S7 → a
(L(G4)L(G5)

∗L(G6)L(G7))
∗ S ′4 → λ, S ′4 → S4, S4 → cS ′5, S

′
5 → S6, S ′4

S ′5 → S5, S5 → cS5, S5 → cS6, S6 → aS7,
S7 → a

T (A) S ′1 → S2, S
′
1 → S1, S1 → cS1, S1 → cS2, S ′1

S2 → cS3, S3 → cS ′4, S
′
4 → λ, S ′4 → S4,

S4 → cS ′5, S
′
5 → S6, S

′
5 → S5, S5 → cS5,

S5 → cS6, S6 → aS7, S7 → a

We now present a further characterization of the family of regular languages by op-
erations, more precisely we show that L(REG) is the only minimal abstract family of
languages (with respect to inclusion).

Theorem 4.23 For any AFL L, we have L(REG) ⊆ L.

Proof. Let L be a full AFL, and let R ⊆ X∗ be an arbitrary regular set.
By the first condition of Definition 4.12, L contains a non-empty language L. Let

Y = alph(L) and w be a word from L. Because the finite language {w} is regular, we
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get L ∩ {w} = {w} ∈ L. For each a ∈ X, we define the homomorphism ha : X∗ → Y ∗

by ha(a) = w and ha(b) = aw for b ∈ Y , b 6= a. Then h−1
a ({w} = {a}. By the

closure properties required for an AFL, {a} ∈ L for any a ∈ X. Moreover, using the
homomorphism h : X∗ → X∗ with h(a) = λ for any a ∈ X, we get h({a}) = {λ} ∈
L. Furthermore, for a, b ∈ X with a 6= b, {a} ∩ {b} = ∅. Therefore the empty set
belongs to L since {a} ∈ L and {b} ∈ L(REG). Thus all sets associated with the basic
regular expression over X belong to L. Hence, by Theorem 4.21, R can be obtained by
applications of union, product and Kleene closure. Since any AFL is closed under union,
product and Kleene closure, we get R ∈ cL. 2

Corollary 4.24 The family L(REG) is the smallest full AFL (with respect to inclusion).
2

We now present some characterizations of other language families by (iterated) appli-
cations operations to some languages of certain language families.

Theorem 4.25 For any recursively enumerable language L, there are two context-free
languages L1 and L2 and a homomorphism such that L = h(L1 ∩ L2).

Proof. Let L be a recursively enumerable language. Let G′ = (N, T, P, S) be a grammar
such that L(G) = L. We construct the grammar G = (N, T, P∪{S → S}, S). It is obvious
that L(G) = L also holds. Moreover, G has the property that any word w ∈ L can be
generated by a derivation of odd length. This follows from the fact that a derivation D
of w of even length can be transformed in a derivation of odd length as follows: we start
with S → S and perform then D.

Let T ′ = {a′ | a ∈ T} be a set of primed versions of letters of T . Let c be an additional
letter not in N ∪T ∪T ′. Furthermore, let g : (N ∪T )∗ → (N ∪T ′)∗ be the homomorphism
given by g(A) = A for A ∈ N , g(a) = a′ for a ∈ T .

We consider the languages

U1 = {g(yRuRxR) c g(xvy) | u → v ∈ P ∪ {S → S}},
U2 = {g(yRuRxR) c xvy | u → v ∈ P ∪ {S → S}},
U3 = {g(xuy) c g(yRvRxR) | u → v ∈ P ∪ {S → S}}.

We note that h(wR) c h(w′) is in U1 if and only if w =⇒ w′ holds in G. Moreover,
h(wR) cw′ is in U2 as well as h(w) c h((w′)R) is in U3 if and only if w =⇒ w′ holds in G.

Now we define

L1 = (U1{c})∗U2 and L2 = {Sc}(U3{c})∗T ∗.

Then a word

g(w0) c g(w1) c g(w2) c g(w3) c . . . c g(w2n) cw2n+1

is in L1 if and only if wR
2i =⇒ w2i+1 for 0 ≤ i ≤ n and

S c g(w1) c g(w2) c g(w3) c g(w4) c . . . c g(w2n−1) c g(w2n) cw2n+1
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is in L2 if and only if w2i+1 =⇒ wR
2i+2 for 0 ≤ i ≤ n− 1 and w2n+1 is in T ∗. Thus a word

g(w0) c g(w1) c g(w2) c g(w3) c . . . c g(w2n) cw2n+1

is in the intersection L1 ∩ L2 if and only if

g(w0) = S, w2n+1 ∈ T ∗, wR
2i =⇒ w2i+1 for 0 ≤ i ≤ n,w2i+1 =⇒ wR

2i+2 for 0 ≤ i ≤ n− 1.

Hence there is a derivation

S =⇒ w1 =⇒ wR
2 =⇒ w3 =⇒ wR

4 =⇒ . . . =⇒ w2n−1 =⇒ wR
2n =⇒ w2n+1 ∈ T ∗

in G. Therefore w2n+1 ∈ L(G) = L.
Conversely, if

S =⇒ v1 =⇒ v2 =⇒ v3 =⇒ v4 =⇒ . . . =⇒ v2n−1 =⇒ v2n =⇒ v2n+1 ∈ T ∗

is a derivation in G (remember that, without loss of generality, it has odd length), then
the words

S c g(v1) c g(vR
2 ) c g(v3) c . . . c g(vR

2n) c v2n+1

is in the intersection of L1 and L2.
Let now h : (N ∪ T ′ ∪ T ∪ {c})∗ → T ∗ be the homomorphism given by h(a) = a for

a ∈ T and h(X) = λ for X ∈ N ∪ T ′ ∪ {c}. Then the application of h to L1 ∪ L2 cancels
all letters which are not in T , i. e. the word behind the last c remains. Thus, by the above
considerations, we get exactly the words of L.

It remains to show that L1 and L2 are context-free. By the closure properties of the
family of context-free languages it is sufficient to show that U1, U2 and U3 are context-free.

The context-free grammar H = ({A,A′, A′′}, N ∪ T ′, P ′, A), where

P = {Y → XY X | Y ∈ {A,A′}, X ∈ N ∪ T ′} ∪ {A′ → c}
∪ {A → uRA′v | u → v ∈ P ∪ {S → S},

generates U1 since any derivation has the form

A =⇒ x1Ax1 =⇒∗ x1x2 . . . xnAxnxn−1 . . . x2x1

=⇒ x1x2 . . . xnuRAvxnxn−1 . . . x2x1

=⇒ x1x2 . . . xnuRy1A
′y1vxnxn−1 . . . x2x1

...

=⇒ x1x2 . . . xnuRy1y2 . . . ymA′ymym−1 . . . y1vxnxn−1 . . . x2x1

=⇒ x1x2 . . . xnuRy1y2 . . . ymcymym−1 . . . y1vxnxn−1 . . . x2x1.

It is left to the reader to construct analogous context-free grammars for U2 and U3. 2

Theorem 4.26 For any recursively enumerable language L, there are context-free lan-
guages L1, L2, L3, and L4 such that

L = {v | uv ∈ L1 for some u ∈ L2} and L = {u | uv ∈ L1 for some v ∈ L2}.
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Proof. Let L be a recursively enumerable language. Let G = (N, T, P, S) be a grammar
such that L(G) = L. Without loss of generality, we assume that S → S is in P in order
to ensure that each word of L has a derivation of length at most 2.We now consider the
two languages

L1 = {wn cwn−1 c . . . c w1 ccw′
1 cw′

2 . . . c w′
n−1cccw

′
n |

n ≥ 2, wi = yR
i uR

i xR
i , w′

i = xiviyi, xi ∈ (N ∪ T )∗, yi ∈ (N ∪ T )∗,

ui → vi ∈ P, 1 ≤ i ≤ n, w′
n ∈ T ∗}

(by definition, wR
i =⇒ wi holds in G) and

L2 = {zR
mczR

m−1c . . . czR
1 cSccz1cz2 . . . czm−1czmccc | m ≥ 1, zi =∈ (N ∪ T )∗, 1 ≤ i ≤ n}.

Assume that w ∈ L1 has a decomposition w = uv with u ∈ L2. Then we get

w = zR
m c zR

m−1 c . . . c zR
1 c S cc z1 c z2 . . . c zmcccw′

m+1, (4.5)

u = zR
m c zR

m−1 c . . . c zR
1 c S cc z1 c z2 . . . c zmccc, (4.6)

v = w′
n (4.7)

with the additional relations S =⇒ z1, zi =⇒ zi+1 for 1 ≤ i ≤ m − 1 (since (zR
i )R = zi,

zm =⇒ w′
m+1, and w′

m+1 ∈ T ∗. Therefore

S =⇒ z1 =⇒ z2 =⇒ . . . =⇒ zm =⇒ w′
m+1 (4.8)

is a terminating derivation in G, i. e., w′
m+1 ∈ L(G) = L. Therefore the set

L′ = {v | uv ∈ L1 for some u ∈ L2}

is contained in L.

Conversely, each terminating derivation (4.8) can be transformed into words w ∈ L1,
u ∈ L2, and v with (4.5), (4.6), and (4.7) which implies that L ⊆ L′.

Thus the first relation of the statement is shown.

If L is a recursively enumerable language, then LR ∈ L(RE) also holds. Then there
are languages L1 and L2 such that

LR = {v | uv ∈ L1 and u ∈ L2}.

Hence

L = {vR | uv ∈ L1 and u ∈ L2}
= {vR | vRuR ∈ LR

1 , uR ∈ LR
2 }.

If we choose L3 = LR
1 and L4 = LR

2 we get the desired second relation of the statement.

Since L(CF) is closed under reversal, it remains to prove that L1 and L2 are context-
free. We present context-free grammars G1 and G2 which generate L1 and L2, respectively,
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as can be seen easily. We set

G1 = ({S,A, B, C}, N ∪ T ∪ {c}, P1, S),

P1 = {S → aSa | a ∈ T} ∪ {S → uRAv | u → v ∈ P, v ∈ T ∗}
∪ {A → aAa | a ∈ T} ∪ {A → cBccc}
∪ {B → aBa | a ∈ T} ∪ {B → uRCv | u → v ∈ P}
∪ {C → aCa | a ∈ T} ∪ {C → cBc, C → cc},

G2 = ({S ′, A′, B′}, N ∪ T ∪ {c}, P2, S ′),

P2 = {S ′ → A′ccc, A′ → cB′c, B′ → cB′c, B′ → cScc} ∪ {A′ → aA′a | a ∈ T}
∪ {B′ → aB′a | a ∈ T}

2

Theorem 4.27 For any recursively enumerable language L ⊂ V ∗, there is a context-
sensitive language L′ and letters c1 and c2 not contained in V such that L′ ⊆ L{c1}{c2}∗
and, for any w ∈ L, there is a number i ≥ 1 such that wc1c

i
2 ∈ L′.

Proof. Let L be a recursively enumerable language, and let G = (N, T, P, S) be a phrase
structure grammar generating L. We construct the monotone grammar

G′ = (N ∪ {C, S ′}, T ∪ {c1, c2}, P ′, S ′)

where P ′ consists of all rules of the following forms:
– S ′ → Sc1

(this rule introduces the start symbol of G and the additional symbol c1),
– α → β where α → β ∈ P and |α| ≤ |β|,

α → βCp where α → β ∈ P and |α| − |β| = p > 0
(these monotone rules simulate the rules of P ),

– Ca → aC for a ∈ N ∪ T ∪ {c1}
(by these rules, C can be shifted to the right),

– C → c2

(terminating rules for C).
By the explanations added to the rules, it is obvious that v ∈ L(G′) if and only if
v = cr1

2 w1c
r2
2 w2 . . . crk

2 wkc
s
2 where ri ≥ 0 for 1 ≤ i ≤ k, s ≥ 0 and w1w2 . . . wn = wc1 for

some w ∈ L. Since L(G) ∈ L(CS) and L(CS) is closed under intersection (with regular
sets), L′ = L(G′)∩ T ∗{c1}{c2}∗ is a context-sensitive language, too. It is easy to see that
L′ has the properties required in the statement. 2

4.2.2 Characterizations of Regular Language Families by Con-
gruence Relations

Before we present a further characterization of regular languages, we recall some notions
on equivalence and congruence relations.

A binary relation R on a set M is a subset of M ×M . Instead of (a, b) ∈ R we often
write aRb.
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A binary relation ∼ It is called an equivalence relation if it satisfies the following three
properties:

– for all a ∈ M , a ∼ a (reflexivity),
– for all a, b ∈ M , a ∼ b implies b ∼ a (symmetry),
– for all a, b, c ∈ M , a ∼ b and b ∼ c imply a ∼ c (transitivity).

For any element a ∈ M and any equivalence relation ∼ on M , we define the equivalence
class

K∼(a) = {b | b ∈ M, a ∼ b}.
A subset M ′ of M is called an equivalence class of the equivalence relation ∼ on M
if M ′ = K∼(a) for some a ∈ M . It is well-known that the equivalence classes of an
equivalence relation form a partition of the set M (i. e., they are non-empty sets and
pairwise disjunct, and their union is M).

The index of an equivalence relation ∼ is the cardinality of the set of its equivalence
classes and is denoted by Ind(∼). An equivalence relation ∼ is said to be of finite index
if Ind(∼) is finite.

Let the set M be equipped with an operation ◦. An equivalence relation ∼ on M is
called a congruence if, for all a, b, c ∈ M , a ∼ b implies a ◦ c ∼ b ◦ c. If ∼ is a congruence,
then equivalence is preserved if the operation is applied.

An equivalence relation ∼ on M is called a refinement of a set R ⊂ M if, for all a, b ∈ R
with a ∼ b, we have a ∈ R if and only if b ∈ R. This means that a ∈ R implies that all
elements equivalent to a belong to R, too. Thus any equivalence class of an element of R
is a subset of R. By this fact, the notation refinement of R is justified.

Let R be a subset of M . An equivalence relation is called an R-relation if it is a
congruence relation of finite index and a refinement of R.

Example 4.28 Let A = (X,Z, z0, δ, F ) be a finite automaton and R = T (A). Without
loss of generality we assume that each state of Z is accessible from the initial state, i. e.,
for any z ∈ Z there is a word x ∈ X∗ such that δ∗(z0, x) = z (if this is not the case we
cancel all states which are not accessible). We define on X∗ the relation ∼A by

x ∼A y if and only if δ∗(z0, x) = δ∗(z0, y).

Obviously, ∼A is an equivalence relation. We show that ∼A is an R-relation.
Let x ∼A y. By definition of ∼A, δ∗(z0, x) = δ∗(z0, y). Thus we get

δ∗(z0, xw) = δ(δ∗(z0, x), w) = δ(δ∗(z0, y), w) = δ∗(z0, yw)

and therefore xw ∼A yw for any w ∈ X∗, which proves that ∼A is a congruence.
Again, let x ∼A y. Moreover, let x ∈ R. Then δ∗(z0, x) = δ∗(z0, y) und δ∗(z0, x) ∈ F .

Hence δ∗(z0, y) ∈ F , which implies y ∈ R. Analogously, y ∈ R implies x ∈ R. Thus ∼A
is a refinement of R.

Let x ∈ X∗. Furthermore, let δ∗(z0, x) = z. Then, for the equivalence class K∼A(x)
of x ∈ X∗, we obtain the following relations

K∼A(x) = {y | x ∼A y}
= {y | δ∗(z0, x) = δ∗(z0, y)}
= {y | δ∗(z0, y) = z}.
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Moreover,

{y | δ∗(z0, y) = z} = {y | δ∗(z0, y) = δ∗(z0, x)}
= {y | y ∼A x}
= K∼A(x).

Therefore there is a one-to-one function from the equivalence classes of ∼A to the states
of A. Hence the number of states and the number of equivalence classes coincide. Since
the number of states is finite, the index of ∼A is finite, too.

Example 4.29 For a language R ⊆ X∗ we define the relation ∼R as follows: x ∼R y
holds if and only if, for all words w ∈ X∗, the word xw is in R if and only if yw is in R.

We prove that ∼R is a congruence which refines R.
Let x ∼R y, a ∈ X und w ∈ X∗. Then aw ∈ X∗ and , by definition of ∼R, xaw ∈ R

if and only if yaw ∈ R. Since w can be arbitrarily chosen, we get xa ∼R ya. Hence ∼R is
a congruence.

If we choose w = λ, by definition of ∼R, x ∼R y implies that x ∈ R if and only if
y ∈ R. Therefore ∼R is a refinement of R.

We note that ∼R has not necessarily a finite index. To see this we consider

R = {anbn | n ≥ 1}
and two words ak und a` with k 6= `. Because akbk ∈ R and a`bk /∈ R, a` and ak are not
equivalent. Thus there are at most as many equivalence classes as powers of a and thus
as many as natural numbers. Thus the index of ∼R is infinite.

We now present the characterization of regular sets. It was first shown by J. Myhill
in [23] and A. Nerode2 in [24], and therefore it is often called Myhill-Nerode theorem.

Theorem 4.30 The following three statements are equivalent for a language R ⊆ X∗.
i) R is regular.
ii) There is an R-relation.
iii) The relation ∼R (of Example 4.29) has finite index.

Proof. i) =⇒ ii). If R is a regular language, then there is a deterministic finite automaton
A such that R = T (A) (see Theorem 3.48). Then we construct the relation ∼A according
to Example 4.28. By Example 4.28, ∼A is an R-relation.

ii) =⇒ iii). By supposition there is an R-relation ∼ on X∗ which has finite index. We
now prove that Ind(∼R) ≤ Ind(∼).

Let x ∼ y and w ∈ X∗. Then xw ∼ yw because ∼ is a congruence. Furthermore,
since ∼ is an R-relation, we get xw ∈ R if and only if yw ∈ R. By definition of ∼R, we
get x ∼R y. Thus we have shown that x ∼ y implies x ∼R y. Therefore

{y | y ∼ x} ⊆ {y | y ∼R x}.
Hence any equivalence class of ∼ is contained in an equivalence class of ∼R which implies
Ind(∼R) ≤ Ind(∼). Because ∼ is of finite index, ∼R is of finite index,too.

2John R. Myhill (1923–1987) and Anil Nerode (∗1932), both North-American mathematicians
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iii) =⇒ i). We construct an automaton where the finitely many equivalence classes
of ∼R are taken as states and the input a ∈ X transforms an equivalence class K∼R

(x),
x ∈ X∗, into the equivalence class K∼R

(xa). Formerly, we set

A = (X, {K∼R
(x) | x ∈ X∗}, K∼R

(λ), δ, {K∼R
(y) | y ∈ R})

where
δ(K∼R

(x), a) = K∼R
(xa).

We first note that the definition of A is correct since ∼R is an R-relation of finite index
(the set of states is finite, and K∼R

(x) = K∼R
(y) implies K∼R

(xa) = K∼R
(ya) because

∼R is a congruence, i. e., K∼R
(x) = K∼R

(y) or equivalently x ∼R y implies xa ∼ ya which
is equivalent to K∼R

(xa) = K∼R
(ya)). By induction on the length of w, it is easy to show

that δ∗(K∼R
(λ), x) = K∼R

(x) holds for all x ∈ X∗. Thus we get

T (A) = {x | δ∗(KR(λ), x) ∈ {KR(y) | y ∈ R}} = {x | KR(x) ∈ {KR(y) | y ∈ R}} = R.

Consequently, R is regular. 2

Finally, we mention that in the part ii) =⇒ iii) of the proof we have shown the following
corollary.

Corollary 4.31 Let R be a regular language. Then Ind(∼) ≥ Ind(∼R) holds for any
R-relation ∼. 2



Chapter 5

Decision Problems for Formal
Languages

In this section we ask whether or not a given grammar or given grammars have a certain
property. First of all we are interested whether it is decidable that the grammars have
the property. If the affirmative answer is positive, we also estimate the complexity of the
decision procedure.

One of the basic questions in the theory of formal languages is the membership problem
which can be stated as follows.

Membership problem:
Given: a grammar G = (N, T, P, S) and a word w ∈ T ∗

Question: Does w ∈ L(G) hold?

The membership problem occurs very natural in programming languages. If the grammar
G describes a programming languages, then the words w under consideration are written
programs, and we ask whether or not the written program is syntactically correct. There-
fore the membership problem has to be solved in the parsing process and the compilation
with respect to a programming language. We note that we do not discuss the semantical
correctness of the program in the context of the membership problem.

Obviously, the given version of the membership problem assumes that the language
L under consideration is given by a grammar, i. e., L = L(G). We know from Chapter 3
that languages can also be obtained as the accepted set of words of some automaton.
Hence we also have the following formulation of the membership problem.

Membership problem:
Given: an automaton A with input set X and a word w ∈ X∗

Question: Does w ∈ T (A) hold?

If we are only interested in the question whether or not the membership of a word of
a language L is decidable, then it is not of importance which formulation we use, because
we have seen in Chapter 3 that we can algorithmically transform a given grammar into an
automaton and vice versa. Therefore if we study the status of decidability, then we shall
use that description which is the most appropriate (where we prefer the version based on
grammars). However, if we are interested in the complexity of the deciding procedure,
then it is essential which description of the language is given.

117
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An analogous situation holds if we consider different types of grammars which are able
to generate the same family of languages, e. g., context-sensitive and monotone grammars.

Besides the membership problem we study the following problems in this section,
where we present only the grammatical version of the formulation.

Emptiness problem:
Given: a grammar G = (N, T, P, S)
Question: Is L(G) the empty language?

Finiteness problem:
Given: a grammar G = (N, T, P, S)
Question: Is L(G) a finite language?

Equivalence problem:
Given: two grammars G = (N, T, P, S) and G′ = (N ′, T, P ′, S ′)
Question: Does L(G) = L(G′) hold?

The given formulations are very general since they do not restrict the type of the grammar
(or of the automaton). In the sequel we discuss the problems for grammars of special types,
e. g., for regular or context-free grammars. This means that the given grammars are of
the type under consideration.

We start with two statements on the decidability of the membership problem for
arbitrary and context-sensitive (or equivalently monotone) grammars.

Theorem 5.1 The membership problem for (arbitrary) phase structure grammars is un-
decidable.

Proof. Assume that the membership problem for arbitrary grammars is decidable. Let a
Turing machine M be given. Without loss of generality we can assume that M halts on
an input word w if and only if w is accepted (see Lemma 3.8). From M we can construct
a phrase structure grammar G such that L(G) = T (M) (see Lemma 3.12. Therefore M
halts on w if and only if w ∈ L(G). Since we can decide w ∈ L(G) by assumption, we
can decide whether or not M halts on w. This contradicts Theorem 3.31.

Therefore our assumption is false, i. e., the membership problem for arbitrary gram-
mars is undecidable. 2

Theorem 5.2 The membership problem for context-sensitive or monotone grammars is
decidable.

Proof. We only give the proof for monotone grammars since any context-sensitive
grammar is monotone.

Let a monotone grammar G = (N, T, P, S) and a word w ∈ T ∗ be given. If w = λ,
we have only to check whether or not S → λ belongs to P , because λ ∈ L(G) if and only
if S → λ ∈ P by the definition of monotone grammars. Thus in the remaining proof we
assume that w 6= λ.

Let

S = w0 =⇒ w1 =⇒ w2 =⇒ ... =⇒ wn = w
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be a derivation of w in G. If wi = wj for two words wi and wj with i < j, then

S = w0 =⇒ w1 =⇒ w2 =⇒ ... =⇒ wi =⇒ wj+1 =⇒ wj+2 =⇒ ... =⇒ wn = w

is also a derivation of w in G. Thus we can assume that there is a derivation of w in G
such that no intermediate sentential form occurs more than once. Because |wi−1| > |wi|
is impossible in a monotone grammar and there are at most #(V )k words of length k
over V = N ∪ T , in any derivation starting with wi of length k we obtain a word longer
than wi after at most #(V )k steps. Thus there is a derivation of w which has at most

the length |w|#(V )|w|+1. Since there are at most #(P )|w|#(V )|w|+1
derivations of length

|w|#(V )|w|+1, we can check all derivations of this length (without a repetition of sentential
forms) whether or not they lead to the given word w. 2

The procedure given in the proof to decide whether or not w ∈ L(G) holds has double
exponential time complexity in |w| (since the number of derivation to be checked) is double
exponential in |w|) and exponential space complexity (because the number of sentential
forms which have to be stored to ensure that no sentential form occurs two times in a
derivation is exponential in worst case). Presently, no algorithm with a space complexity
lower than exponential is known.

By Theorem 5.2, monotone language are recursive. Moreover, any recursive function
is recursively enumerable by Definition 3.9 and Theorem 3.19. Taking into consideration
Theorem 3.11, we can finish our results on the Chomsky hierarchy and settle the last
properness of the inclusions in Theorem 2.37.

Theorem 5.3 L(CS) ⊂ L(RE). 2

We are now also in position to add the closure property of L(CS) under homomor-
phisms.

Lemma 5.4 L(CS) is not closed under arbitrary homomorphisms, but under non-erasing
homomorphisms.

Proof. In order to prove the closure under non-erasing homomorphisms we repeat the
proof for L(CF) (see proof of Theorem 4.9) using the Kuroda normal form instead of the
Chomsky normal form. The newly introduced rules A → h(a) are allowed since h(a) 6= λ.

Let L be a language in L(RE) \ L(CS). Then there is a grammar G = (N, T, P, S)
in Kuroda normal form such that L(G) = L. We consider the grammar G′ = (N, T ∪
{c}, P ′, S) where P ′ is constructed from P by a replacement of any rule of the form
A → λ ∈ P by A → c. Then G′ is a monotone grammar and therefore L(G′) ∈ L(CS).
The language L(G′) differs from L(G) that in some words the additional letter c occurs.
Obviously, h(L(G′) = L(G) for the homomorphism h with h(c) = λ and h(a) = a for
a ∈ T . If L(CS) is closed under arbitrary homomorphisms, we get that h(L(G′) = L(G) =
L ∈ L(CS) in contrast to our choice of L. 2

Obviously, since the membership problem for monotone grammars is decidable and
any context-free or regular grammar can be transformed into a monotone context-free or
monotone regular grammar without a change of the generated language (one has to elim-
inate erasing rules), the membership problems for context-free and regular grammars are
also decidable. However, for context-free and regular grammars, we can give much faster
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decision procedures, more precisely, there are algorithms to decide the membership prob-
lem for context-free and regular grammars which are of cubic or linear time complexity
in the length of the word under consideration.

Theorem 5.5 i) The membership problem for a given context-free grammar G = (N, T, P, S)
in Chomsky normal form and a word w ∈ T ∗ can be decided in time O(#(P ) · |w|3}).

ii) The membership problem for a given context-free grammar G = (N, T, P, S) and a
word w ∈ T ∗ can be decided in time O(k(G)2 · |w|3).
Proof. i) Let a context-free grammar G = (N, T, P, S) in Chomsky normal form and a
word w = a1a2 . . . an over T of length n be given. We construct inductively sets Vi,j for
0 ≤ i < j ≤ n. First we set

Vi−1,i = {A | A ∈ N, A → ai ∈ P}. (5.1)

If the sets Vi,k and Vk,j for i < k < j are already defined, we set

Vi,j = {A | A ∈ N,A → BC ∈ P,B ∈ Vi,k, C ∈ Vk,ji < k < j}. (5.2)

The set Vi,j can be constructed by (5.2) in at most #(P ) · n steps since there are at most
n possible values k and for each k one has to go through all rules of P . Since we have to
construct n(n+1)

2
sets, the construction of all sets Vi,j, 0 ≤ i < j ≤ n, can be done in time

at most #(P )n2(n+1)
2

.
We now prove by induction on the difference i− j that

Vi,j = {A | A ∈ N, A
∗

=⇒ ai+1ai+2 . . . aj}. (5.3)

For j − i = 1, (5.3) holds by our setting (5.1).
Let A ∈ Vi,j and j − i ≤ 2. By (5.2), there are nonterminals B ∈ Vi,k and C ∈ Vk,j

with A → BC ∈ P and k − i < j − i and j − k < j − i. By induction hypothesis,

B
∗

=⇒ ai+1ai+2 . . . ak und C
∗

=⇒ ak+1ak+2 . . . aj.

Therefore we obtain

A =⇒ BC
∗

=⇒ ai+1ai+2 . . . akC
∗

=⇒ ai+1ai+2 . . . akak+1ak+2 . . . aj.

Conversely, let A
∗

=⇒ ai+1ai+2 . . . aj. Because G is in Chomsky normal form, there are
nonterminals B and C and an integer k with i < k < j such that

A → BC ∈ P, B
∗

=⇒ ai+1ai+2 . . . ak, C
∗

=⇒ ak+1ak+2 . . . aj.

By induction hypothesis, we have B ∈ Vi,k and C ∈ Vk,j. By (5.2), A ∈ Vi,j.
Hence (5.3) is shown.

From (5.3), we obtain immediately S
∗

=⇒ a1a2 . . . an = w if and only if S ∈ V0,n. Thus
w ∈ L(G) and S ∈ V0,n are equivalent. Thus, to decide whether or not w ∈ L(G), it is
sufficient to construct the sets Vi,j, 0 ≤ i < j ≤ n, and to check whether or not S ∈ V0,n.
Therefore w ∈ L(G) can be decided in time O(#(P ) · |w|3) by the above estimation for
the construction of the sets Vi,j.
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ii) Let G = (N, T, P, S) be a context-free grammar. We construct a context-free
grammar G′ = (N ′, T, P ′, S ′) in Chomsky normal form from G such that L(G) = L(G′).
G′ can be constructed in time O(k(G)2) and satisfies #(P ′) ≤ k(G′) ∈ O(k(G)2) by
Theorem 2.26. Now the result follows from i). 2

The algorithm presented in the preceding proof was independently given by J. Cocke,
D. H. Younger, and T. Kasami1 in the papers [4], [33], and [15]. Therefore it is often
called Cocke-Younger-Kasami algorithm. We illustrate the algorithm by an example.

Example 5.6 Let the context-free grammar

G = ({S, T, U}, {a, b}, P, S)

with

P = {S → ST, T → TU, T → TT, U → TS, S → a, T → a, U → b}
be given. We first look whether or not the word w = aabaa belongs to L(G). we have to
determine the associated sets Vi,j, where 0 ≤ i < j ≤ 5. We get

V0,1 = {A | A → a ∈ P} = {S, T},
V1,2 = {A | A → a ∈ P} = {S, T},
V2,3 = {A | A → b ∈ P} = {U},
V0,2 = {A | A → BC ∈ P, B ∈ V0,1, C ∈ V1,2} = {S, T, U},
V1,3 = {A | A → BC ∈ P, B ∈ V1,2, C ∈ V2,3} = {T},
V0,3 = {A | A → BC ∈ P, B ∈ V0,1, C ∈ V1,3}

∪ {A′ | A′ → B′C ′ ∈ P, B′ ∈ V0,2, C
′ ∈ V2,3}

= {S, T} ∪ {T} = {S, T}.

The remaining sets can be seen from the following table where the ith symbol of w is
given in the meet of the row i and column i and the set Vi,j is given in the meet of row i
and column j and instead of the sets only their elements are given.

0 1 2 3 4 5
0 S, T S, T, U S, T S, T, U S, T, U
1 a S, T T T, U T, U
2 a U ∅ ∅
3 b S, T S, T, U
4 a S, T
5 a

Because S ∈ V0,5, w = aabaa ∈ L(G).

For v = abaaa we get the following table.

1John Cocke (1925–2002)and Daniel H. Younger, both North-American computer scientists;
Tadao Kasami (1930-2007), Japanese scientist worked in information theory and theory of codes
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0 1 2 3 4 5
0 S, T T T, U T, U T, U
1 a U ∅ ∅ ∅
2 b S, T S, T, U S, T, U
3 a S, T S, T, U
4 a S, T
5 a

and therefore v /∈ L(G) by S /∈ V0,5.

The construction of the sets Vi,j shows a certain analogy to the multiplication of
matrices since in both cases the new element is obtained by combining the elements
of the corresponding rows and columns. A detailed investigation of this analogy leads
to an improvement of the Cocke-Younger-Kasami algorithm. Since the multiplication of
matrices of type (n, n) can be done in time O(nlog2(7)) by Strassen’s algorithm, L. Valiant
(see [30] gave an algorithm for the membership problem which works in time O(|w|log2(7))
(if the grammar is fixed and therefore its size can be considered as a constant).

For regular languages, we can considerably decrease the complexity.

Theorem 5.7 For a regular grammar G = (N, T, P, S) and a word w ∈ T ∗, it is decidable
in time O(k(G)2 · |w|) whether or not w ∈ L(G) holds.

Proof. First we construct from G a regular grammar G′ = (N ′, T, P ′, S ′) which satisfies
L(G′) = L(G) and only contains rules of the form A → aB and A → a with A,B ∈ N ′

and a ∈ T according to the proof of Theorem 2.28. This transformation can be done in
time O(k(G)2) . Moreover, we have #(N ′) ∈ O(k(G)) and #(P ′) ∈ O(k(G)).

Let w = a1a2 . . . an. We set M0 = {S} and

Mi = {A | B → aiA für ein B ∈ Mi−1}

for 1 ≤ i ≤ n − 1. The determination of Mi from Mi−1, 1 ≤ i ≤ n − 1, can be done
in time O(#(N ′)#(P ′)) since we have to go through all rules of P ′ for each nonterminal

in Mi−1. It is easy to see that A ∈ Mi if and only if S
∗

=⇒ a1a2 . . . aiA. Now we check
whether or not Mn−1 contains a nonterminal A such that A → an ∈ P ′. Again, we need
time O(#(N ′)#(P ′)) for this check. If such a nonterminal exists, we have a derivation

S
∗

=⇒ a1a2 . . . an−1A =⇒ a1a2 . . . an−1an = w,

i. e., we have w ∈ L(G′) = L(G). If such a nonterminal does not exist we cannot generate
an from an element of Mn−1 which means that w /∈ L(G′) = L(G). Combining all the
estimations we get an algorithm to decide w ∈ L(G) with time complexity in O(k(G)2|w|).
2

We now discuss the decidability status of the remaining decision problems.

Theorem 5.8 The emptiness and finiteness problems are undecidable for arbitrary phrase
structure grammars and monotone (or context-sensitive) grammars.
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Proof. i) We start with the undecidability of the emptiness problem for arbitrary phrase
structure grammars

Let G be an arbitrary phrase structure grammars and w be an arbitrary word over
the terminal set of G. Then {w} is a regular language. By Theorem 4.6, there is a phrase
structure grammar G′ such that L(G′) = L(G) ∩ {w}. Moreover, since all proofs of the
closure properties are constructive, G′ can be constructed from G and w. Obviously,

L(G′) =

{ {w} if w ∈ L(G)
∅ otherwise

.

Therefore L(G′) is empty if and only if w is not contained in L(G). Thus the decidability
of the emptiness problem implies the decidability of the membership problem. Since the
latter problem is undecidable by Theorem 5.1, the emptiness problem is undecidable, too.

ii) We now consider the emptiness problem for monotone grammars. Let G = (N, T, P, S)
be an arbitrary phrase structure grammar, again. We construct the grammar G′ =
(N ′, T, P ′, S ′) in Kuroda normal form with L(G′) = L(G). Let P ′ = P1 ∪ P2 where
P1 contains all rules of the forms A → BC, A → B, AB → CD and A → a with
A,B, C, D ∈ N ′ and a ∈ T , and P2 contains all rules of the form A → λ with A ∈ λ. We
consider the grammar

G′′ = (N ′, T ∪ {$}, P1 ∪ {A → $ | A → λ ∈ P2}, S ′.
Obviously, G′′ is a monotone grammar. Furthermore, for any word w ∈ L(G′), there is a
word w′ = $n1w1$

n2w2 . . . $nkwk$
nk+1 ∈ L(G′′) where k ≥ 1, ni ≥ 0 for 1 ≤ i ≤ k +1, wj ∈

T ∗ for 0 ≤ j ≤ k, and w1w2 . . . wk = w. Conversely, if a word v = $n1v1$
n2v2 . . . $nkvk$

nk+1

is in L(G′′) for some k ≥ 1, ni ≥ 0 for 1 ≤ i ≤ k + 1, and vj ∈ T ∗ for 0 ≤ j ≤ k, then
v1v2 . . . vk is a word from L(G′). Thus L(G′′) is empty if and only if L(G′′) is empty.
Therefore the decidability of the emptiness problem for monotone grammars implies the
decidability of the emptiness problem for arbitrary grammars. By part i) of this proof,
the emptiness problem for monotone grammars is undecidable.

iii) Let G = (N, T, P, S) be a (monotone) grammar. Let a be a letter of T . Then
{a}∗ is regular language. By the proof of Theorem 4.7, we can construct a (monotone)
grammar G′ such that L(G′) = L(G) ·{a}∗. It is easy to see that L(G′) is finite if and only
if L(G′) is empty if and only if L(G) is empty. Hence the decidability of the finiteness
problem for (monotone) grammars implies the decidability of the emptiness problem for
(monotone) grammars. By i) and ii) of this proof, the finiteness problem for (monotone)
grammars is undecidable, too. 2

Theorem 5.9 i) For a context-free grammar G = (N, T, P, S), it is decidable in time
O(k(G)2) whether or not L(G) is empty.

ii) For a context-free grammar G = (N, T, P, S), it is decidable in time O(k(G)2)
whether or not L(G) is finite.

Proof. i) First we construct a grammar G′ = (N, T, P ′, S) where P ′ is obtained from P
by a cancellation of all terminal symbols. Obviously, A can generate a terminal word in
G if and only if A can generate the empty word in G′. Now we determine the set M of
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all nonterminals generating the empty word as we have done this in the proof of Lemma
2.22 which can be done in O(k(G)2). Because L(G) is non-empty if and only if there is
a word of T ∗ which can be generated from S in G if and only if S generates the empty
word in G′, we have only to check whether S ∈ M holds. This requires at most a time
O(k(G)).

ii) First we determine as in part i) the set M of all nonterminals which derive at least
one terminal word. Then we construct the sets

Q0 = {S},
Qi+1 = {B | A → xBy ∈ P for some A ∈ Qi} ∪Qi for i ≥ 0,

Q =
⋃
i≥0

Qi.

It is easy to see that Qi = Qi+1 implies Qi = Qk for all k ≥ 0. Moreover, Q#(N) = Q#(N)+1

since we add in each step at least one nonterminal or get Qi = Qi+1 for some i ≤ #(N).
Therefore Q = Q#(N). Now as in the proof of Lemma 2.22 we can show that Q can be
constructed in time O(k(G)2). Furthermore, it can easily be shown by induction on i

that Qi contains all nonterminals A such that there is a derivation S
∗

=⇒ uAv of length
i. Consequently, Q consists of all nonterminals which occur in some sentential form.

Let N ′′ = Q ∪ M and P ′′ be the set of all rules which contain only terminals and
nonterminals of N ′′. It is clear that G′′ = (N ′′, T, P ′′, S) also generates L(G) because
nonterminals of A ∈ N \M cannot be terminated and letters from N \ Q cannot occur
in sentential forms derivable from S. Obviously, k(G′) ≤ k(G). Now we construct from
G′′′ the corresponding grammar G′′′ = (N ′′′, T, P ′′′, S) in Chomsky normal form. This
requires O(k(G′)2) = O(k(G)2) (see Theorem 2.26). Obviously, L(G) = L(G′′′), and
therefore L(G) is finite if and only if L(G′′′) is finite. From G′′′ we construct the directed
graph H = (N ′′, E) where E is defined as follows: (A,B) ∈ E if and only if there is a rule
A → BC or A → CB for some C ∈ N ′′′ in P ′′′. We prove that L(G′′′) is infinite if and
only if there are a nonterminal A and a path from A to A of length n ≥ 1.

Assume that H contains a path from A to A of length n ≥ 1. By the definition of edges
in H, this path is associated with a derivation A

∗
=⇒ w1Aw2 with w1w2 6= λ. Because

each nonterminal of N ′′′ can generate a terminal word and occurs in some sentential form
of G′′′ (this property of G′′ is preserved by the transformation to the Chomsky normal
form), for any n ≥ 0, there is a derivation

S
∗

=⇒ u1Au2
∗

=⇒ u1w1Aw2u2
∗

=⇒ u1w
2
1Aw2

2u2
∗

=⇒ . . .
∗

=⇒ u1w
n
1 Awn

2 u2
∗

=⇒ u′1(w
′
1)

nv(w′
2)

nu′2

where
u1

∗
=⇒ u′1, u2

∗
=⇒ u′2, w1

∗
=⇒ w′

1, w2
∗

=⇒ w′
2, and A

∗
=⇒ v

are terminating derivations. Therefore L(G′′′) is infinite.

If L(G′′′) is infinite, then there exist a nonterminal A with a derivation A
∗

=⇒ w1Aw2

with w1w2 6= λ (since otherwise there is only a finite number of derivations in G′′′ and
therefore L(G) is finite). Then the graph H contains a path from A to A of length n ≥ 1.

The existence of a path from some node A to A can be checked by breadth-first-search
or depth-first-search in time O(#(N ′′′) + #(E)) and therefore in time O(k(G)2). Thus
the finiteness of L(G′′′) (and hence that of L(G)) can be checked in time O(k(G)2). 2
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Finally we consider the equivalence problem.

Theorem 5.10 The equivalence problem is undecidable for context-free grammars.

Proof. By Theorem 3.32, it is sufficient to show that the decidability of the equivalence
problem for context-free grammars implies the decidability of the Post Correspondence
Problem.

Let U = {(u1, v1), (u2, v2), . . . , (un, vn)} be a set of pairs where ui, vi ∈ T ∗ for 1 ≤ i ≤
n. We consider the context-free grammars

G1 = (N, T ∪ {c}, P, S) and G2 = (N ∪ {S ′, S ′′}, T ∪ {c}, P ∪ P ′, S ′)

with

N = {S, Su, Sr, Sl},
P = {Su → c, Sl → c, Sr → c} ∪ {S → xSuy | x, y ∈ T, x 6= y}

∪ {Su → xSuy | x, y ∈ T}
∪

⋃
x∈T

{S → xSx, S → xSl, S → Srx, Sl → xSl, Sr → Srx},

P ′ = {S ′ → S, S ′ → S ′′} ∪
n⋃

i=1

{S ′′ → uiS
′′vR

i , S ′′ → uicv
R
i }.

The languages generated by these grammars are

L(G1) = {αcβR | α, β ∈ T+, α 6= β}
and

L(G2) = L(G1) ∪ {ui1ui2 . . . uikcvikvik−1
. . . vi1 | k ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ k}. (5.4)

This can be seen as follows. All non-terminal sentential forms of G1 have one of the
following forms:

αSβR mit |α| = |β|, α = β,

αSuβ
R mit |α| = |β|, α 6= β,

αSrβ
R mit |α| < |β|,

αSlβ
R mit |α| > |β|.

Because a derivation can only terminate if one of the rules Su → c or Sr → c or Sl → c is
applied, it is clear that L(G1) contains only words of the form αcβR with α 6= β. It is easy
to see that all words of this form can be obtained. From the axiom of G2, we generate
S or S ′′. From S the words of L(G1) are generated. Starting with S ′′ we can only apply
the rules of the form S ′′ → uiS

′′vR
i or S ′′ → uicv

R
i with 1 ≤ i ≤ n, i. e., we generate a

certain ui to the left and the reversal of the corresponding vi to the right. Consequently,
we get from S ′′ words of the form ui1ui2 . . . uikcvikvik−1

. . . vi1 where k ≥ 1, 1 ≤ ij ≤ n,
1 ≤ j ≤ k. Now (5.4) follows.

Furthermore, L(G1) = L(G2) if and only if S ′′ generates no word αcαR for some
α ∈ T ∗. Therefore, L(G1) = L(G2) if and only if the Post Correspondence Problem for
U has no solution. 2
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Theorem 5.11 Given two regular grammars G1 = (N1, T, P1, S1) and G2 = (N2, T, P2, S2),
it is decidable in time O(k4), where k = max{k(G1), k(G2)}, whether or not L(G1) =
L(G2).

Proof. Obviously, L(G1) = L(G2) if and only if (L(G1)\L(G2))∪ (L(G2)\L(G1)) =. By
the constructions given in Section 4.1, we can construct a regular grammar G such that

L(G) = (L(G1) \ L(G2)) ∪ (L(G2) \ L(G1)),

and we have to check whether L(G) is empty. According to the Exercises ??? and ??? G
can be constructed in time O(k2) and k(G) ∈ O(k2). Taking into consideration Theorem
5.9 i), we get the statement. 2


