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Chapter 11

Lindenmayer Systems

11.1 The Basic Model – 0L Systems

11.1.1 Two Biological Examples

We start with two biological examples describing the development of an alga and a moss.
In Figure 11.1 the first 10 stages of the development of a red alga is shown.
Any small part represents a cell; thus stage a) is formed by one cell; stage b) consists

of two cells and stage c) of four cells. Starting with stage d) we see a branching structure
of the alga. Thus the first problem consists in the description of the branching structure.
We choose a word over the alphabet consisting of the letters c, ( and ). c represents a cell
and ( and ) are used to describe the branching. If we have a word cr(cs)ct, then the central
part of the alga is given by crct and the subword cs describes a branch. By this method
we do not distinguish between branches to the left or to the right etc. Furthermore, we
can iterate the process, i. e., if we have a word cn(cr(cs)ct)cm, then crct is a branch of cncm

and cs is a branch of the branch crct.
Then we can describe the stages given in Figure 11.1 as follows:

a) c
b) cc
c) cccc
d) cc(c)cccc
e) cc(cc)cc(c)cccc
f) cc(ccc)cc(cc)cc(c)cccc
g) cc(cccc)cc(ccc)cc(cc)cc(c)cccc
h) cc(ccccc)cc(cccc)cc(ccc)cc(cc)cc(c)cccc
i) cc(cccccc)cc(ccccc)cc(cccc)cc(cccc)cc(cc)cc(c)cccc
j) cc(ccccccc)cc(cccccc)cc(ccccc)cc(cc(c)cccc)cc(cccc)cc(cc)cc(c)cccc

The development from stage a) to stage b) can be considered as a division of the cell
c resulting in cc. If we apply this division to both cells of stage b), again, then we get the
four cells of stage c). But now we cannot continue in this way by two reasons: Stage d)
does not consist of eight cells (which would be obtained from the division of four cells) and
we cannot model the branching which occurs in stage d). In order to solve this problem
one can introduce more rules for the cells, or one makes a further differentiation of the

143



144 CHAPTER 11. LINDENMAYER SYSTEMS

a)

b)

c)

d)

e)
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j)

Figure 11.1: First stages of the development of a red alga

cell by introducing some states of the cell and different rules for different states.
We use the second approach and distinguish 10 states of cell c which we denote by the

digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

of the decimal system. Moreover, we consider the rules

0 → 10 1 → 32 2 → 3(4) 3 → 3 4 → 56
5 → 37 6 → 58 7 → 3(9) 8 → 50 9 → 39

for the states where the left hand side gives the state a of the cell and the right hand
side gives the part which is obtained from a in one step of the development. The rules
for 0 and 1 can be interpreted as divisions of one cell into two cells; the rules for 2 and 7
can be considered as the starting of a branch. The rule 3 → 3 can be omitted because it
says that c in state 3 is not changed in the sequel. However, if we want to describe the
development, then we have to tell what happens with each cell at every moment. Thus
we add 3 → 3 in order to know what happens to cells in state 3.
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Then we obtain the following description of the first stages of the development of the
red alga and one sees that this corresponds to the stages given in Figure 11.1:

a) 4
b) 56
c) 3758
d) 33(9)3750
e) 33(39)33(9)3710
f) 33(339)33(39)33(9)3210
g) 33(3339)33(339)33(39)33(4)3210
h) 33(33339)33(3339)33(339)33(56)33(4)3210
i) 33(333339)33(33339)33(3339)33(3758)33(56)33(4)3210
j) 33(3333339)33(333339)33(33339)33(33(9)3750)33(3758)33(56)33(4)3210

We now consider the moss Phascum cuspidatum. A typical leaf of Phascum cuspida-
tum is shown in Figure 11.2. It consists of three types of cells: cells of type I are at the
top of the leaf, cells of type II are along the margin of the leaf, and cells of type III form
the inner part of the leaf.

Figure 11.2: Leaf of the moss Phascum cuspidatum

The development of Phascum cuspidatum was already considered in 1845 by the Swiss
biologist Carl Wilhelm von Nägeli (1817–1891). He noticed that, essentially, we have
the developmental rules

I → I + II, II → II + II and II → II + III

and the rule III → III which says that cells of type III are not changed in the devel-
opmental process. However, as in the first example, in order to be precise one has to
distinguish different states of the cells, because e. g.
– cells of type II do not changed according to one of the rules above in every step,
– cells of type I are changed in every step, however, they produce the cells of type II
alternately to the right and to the left.

We describe a leaf as a square where the upper left corner corresponds to the top of
the leaf. We use cells of type Ii and IIr

i where the lower index i is a number and reflects
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the ”age” of the cell and the upper index r ∈ {o, l} gives the margin where l stands for
the left margin and o for the upper margin).
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Figure 11.3: Rules for the development of the moss Phascum cuspidatum

Figure 11.3 gives the more detailed rules and in Figure 11.4 the first stages of the
development according to these rules starting with a single cell of type I are shown. It is
easy to see that the last stage corresponds to the leaf given in Figure 11.2.

11.1.2 Definitions and Examples

Looking on the examples presented in the preceding subsection we see that a formalization
of them has to take into consideration the following aspects:

• in one step all cells or at least some of them are changed according to the rules
in parallel, i. e., the rewriting is not a sequential process as in the case of phrase
structure grammars,

• in order to describe an organism we have to take into consideration all cells, in-
dependent of the fact whether there exist rules for the cells or the cells do not
change in the further development, i. e., we do not distinguish between terminals
and nonterminals as in phrase structure grammars.

We now introduce Lindenmayer systems as a new type of rewriting systems. We restrict
to the case of words for simplicity. For approaches to multidimensional systems we refer
to Section VI.5 of [27], [3] and parallel graph grammars (e. g., [14]). Moreover, we mention
that by the method used in the description of the development of some red alga we are
able to cover some multidimensional cases as branching structures by means of (linear)
words.

Definition 11.1 A Lindenmayer system without interaction (0L system, for short) is a
triple G = (V, P, ω) where
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Figure 11.4: First stages of the development of the moss Phascum cuspidatum

– V is an alphabet,
– P is a finite complete set of productions over V , i. e., P is a finite subset of V +×V ∗

and, for any a ∈ V , there is a word wa such that (a, wa) ∈ P ,
– ω ∈ V +.

The elements of the alphabet represent the cells.
Any production of P is a description of a developmental rule. As usual, instead of

(a, w) in P we write a → w. Note that by the completeness condition we require that, for
any letter or any cell, there is a developmental rule. Thus we have taken the rules 3 → 3
and III → III to describe the development of the red alga and Phascum cuspidatum
in the preceding subsection which reflect that the cells are not changed in the further
development. However, the set of rules for the red alga is not complete since we have no
rules for the letters ( and ) which are used to model branches. In order to get a complete
set one has to add (→ ( and ) →) which are clear from the biological motivation since
the places of branchings do not move during the development.
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The word ω represents the organism which we have in the first stage of the develop-
ment. We call it the start word of the system. Obviously, it is not necessary that we start
with a cell which requires that the start element has to be a (non-empty) word.

We now define the derivation process in a 0L system.

Definition 11.2 Let G = (V, P, ω) be a 0L system. For two words x ∈ V + and y ∈ V ∗,
we say that x directly derives y in G, written as x =⇒G y, or x =⇒ y if G is clear from
the context, if and only if the following conditions are satisfied:

– x = x1x2 . . . xn, where xi ∈ V for 1 ≤ i ≤ n,
– y = y1y2 . . . yn,
– xi → yi ∈ P for 1 ≤ i ≤ n.

Moreover, we sometimes use λ =⇒G λ.

By this definition, in every derivation step we replace any letter of x according to rules
of P . Thus we have a completely parallel derivation process.

The replacement of a letter xi of x does not depend on the neighbouring letters xi−1

and xi+1; we only have to use a rule of P . Thus there is no interaction between the letters
of the word during a derivation. Hence one can say that we have a parallel context-free
derivation process. The 0 (zero) in Definition 11.1 stands for no (or 0) interaction.

By
∗

=⇒ we denotes the reflexive and transitive closure of =⇒. Then x
∗

=⇒ y holds
if and only if x = y (reflexivity) or there are a natural number r ≥ 1 and words
z0, z1, z2, . . . , zr such that

x = z0 =⇒ z1 =⇒ z2 =⇒ . . . =⇒ zr−1 =⇒ zr = y

(transitivity).

Definition 11.3 Let G = (V, P, ω) be a 0L system. The language L(G) generated by G
is defined as

L(G) = {z | ω
∗

=⇒ z} .

By this definition, the language generated by a 0L system consists of all words which
can be generated from the start element ω.

We set

L0(G) = {ω},
Ln(G) = {z | v =⇒ z for some v ∈ Ln−1(G)} for n ≥ 1.

By induction (on n) it is easy to prove that Ln(G) consists of all words y such that there
is a derivation

ω = z0 =⇒ z1 =⇒ z2 =⇒ . . . =⇒ zn−1 =⇒ zn = y .

Thus we get

L(G) =
⋃

n≥0

Ln(G) .

Before we give some examples we want to mention the differences between 0L systems
and the phrase structure grammars.
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• We have only one alphabet and no distinction between terminals and nonterminals.

• The language of a 0L system consists of all words generated by the systems, whereas
the language generated by a phrase structure grammar only contains words over the
terminal alphabet, which is a (proper) subset of all words generated by the grammar.

• In a derivation step of a 0L systems all letters of the current word are replaced,
whereas in a derivation step of a phrase structure grammar subwords of a bounded
length and in the case of a context-free grammar one letter is only replaced. This
means that 0L systems are characterized by a purely parallel derivation process
whereas context-free grammars are characterized by a purely sequential process.

• The derivation in a 0L system starts with a non-empty word over the underlying
alphabet. In phrase structure grammars the derivation starts with a distinguished
nonterminal.

Example 11.4 We consider the 0L system

G1 = ({a}, {a → a2}, a) .

By induction, we prove that Ln(G1) = {a2n} for n ≥ 0. By definition, L0(G1) = {a}
since a is the start word. Thus the basis of the induction is shown. Let Ln(G1) = {a2n}.
Because Ln+1(G1) = {z | a2n

=⇒ z} and a2n

=⇒ (a2)2n

= a2n+1

is the only derivation
from a2n

, we get Ln+1(G1) = {a2n+1}. Therefore the induction step has been proved, too.
Hence we obtain

L(G1) =
⋃

n≥0

{a2n} = {a2n | n ≥ 0} .

Example 11.5 Let
G2 = ({a, b}, {a → λ, b → ab}, aab) .

Then we only have the derivation

aab =⇒ λλab = ab =⇒ λab = ab =⇒ ab =⇒ ab =⇒ . . . ,

which results in
L(G2) = {aab, ab} .

Example 11.6 We consider the 0L system

G3 = ({a}, {a → a, a → a2}, a) .

We show that
L(G3) = {an | n ≥ 1}. (11.1)

This can be seen as follows. First, by induction, we prove an ∈ Ln−1(G3). By definition,
we have L0(G) = {a}. Further, applying a → a to the first n − 1 occurrences of a in an

and a → a2 to the last letter of an, we get an = an−1a =⇒ an−1a2 = an+1. Therefore
an ∈ Ln−1(G3) implies an+1 ∈ Ln(G3), and the induction step is performed. Thus we have

{an | n ≥ 1} ⊆
⋃

n≥0

Ln(G3) = L(G3) .
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On the other hand, obviously from a word an we can only generate non-empty words
over {a} by application of a → a and a → a2. Hence (11.1) holds.

Example 11.7 Let

G4 = ({a, b, c, d, e}, {a → a, b → ba, c → cbb, d → da, e → cbbd}, e).

By definition, L0(G4) = {e}.
We now prove that, for n ≥ 1,

Ln(G4) = {cbb(ba)2(ba2)2 . . . (ban−1)2dan−1}.

Because there is only one production for e, we only have the derivation e =⇒ cbbd.
Therefore L1(G4) = {cbbd} which proves the basis. Furthermore,

cbb(ba)2(ba2)2 . . . (ban−1)2dan−1 =⇒ cbbbaba(baa)2(baa2)2 . . . (baan−1)2daan−1

= cbb(ba)2(ba2)2 . . . (ban)2dan

is the only one step derivation with left hand side cbb(ba)2(ba2)2 . . . (ban−1)2dan−1. Thus
the induction step is shown, too.

Hence we get

L(G4) = {e} ∪ {cbbbababa2ba2 . . . banbandan | n ≥ 0}.

Example 11.8 We consider the 0L system

G5 = ({a, b, c}, {a → a2, b → ab, c → bc, c → c}, abc).

We now prove that

L(G5) = {a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bbc | n > n1 > n2 > · · · > nr ≥ 1, r > 0, n ≥ 2}
∪{a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bc | n > n1 > n2 > · · · > nr ≥ 1, r ≥ 0, n ≥ 1} .

Let

wn,n1,n2,...,nr
= a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bbc, n ≥ 2,

w′
n,n1,n2,...,nr

= a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bc, n ≥ 1.

Applying c → bc or c → c, we only get the derivations

wn,n1,n2,...,nr
=⇒ wn+1,n1+1,n2+1,...,nr+1,1 and wn,n1,n2,...,nr

=⇒ w′
n+1,n1+1,n2+1,...,nr+1,1 ,

w′
n,n1,n2,...,nr

=⇒ wn+1,n1+1,n2+1,...,nr+1 and w′
n,n1,n2,...,nr

=⇒ w′
n+1,n1+1,n2+1,...,nr+1 .

Since the start word is w′
1, we can only generate words of the form wn,n1,n2,...,nr

or
w′

n,n1,n2,...,nr
.

It remains to prove that we can obtain all these words. We prove this by induction
on the sum s = n + n1 + n2 + · · · + nr. If s = 1 (i. e., n = 1 and r = 0), then we have to
generate the start word w′

1 = abc. We consider two cases:
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Case 1: wn,n1,n2,...,nr
, nr ≥ 2.

Then w′
n−1,n1−1,n2−1,...,nr−1 ∈ L(G5) by induction and w′

n−1,n1−1,n2−1,...,nr−1 =⇒ wn,n1,n2,...,nr
.

Therefore wn,n1,n2,...,nr
∈ L(G5).

Case 2: wn,n1,n2,...,nr−1,1.
Then nr−1 ≥ 2 and wn−1,n1−1,n2−1,...,nr−1−1 ∈ L(G5) by induction. Because we have the
derivation wn−1,n1−1,n2−1,...,nr−1−1 =⇒ wn,n1,n2,...,nr−1,1, we get wn,n1,n2,...,nr

∈ L(G5).
Thus we can obtain all words of the form wn,n1,n2,...,nr

with r ≥ 1. Analogously, we can
prove that all words of the forms w′

n,n1,n2,...,nr
with r ≥ 1, wn and w′

n can be generated.

Example 11.9 We consider the 0L system G6 = ({a, b, c, d, e, f}, P6, a) with

P6 = {a → dabc, a → f, a → e, b → bc, c → λ, d → e, e → e, f → f 2}.

It is easy to see that

L(G6) = {a, e} ∪ {en−1da(bc)n | n ≥ 1} ∪ {en+1(bc)n | n ≥ 1}
∪ {enf 2m

(bc)n | n ≥ 1, m ≥ 0} ∪ {f 2n | n ≥ 0}

because, for n ≥ 1 and m ≥ 0, we have only the following derivations

a =⇒ dabc, a =⇒ e, a =⇒ f,

en−1da(bc)n =⇒ enda(bc)n−1, en−1da(bc)n =⇒ en+1(bc)n, en−1da(bc)n =⇒ enf(bc)n,

en+1(bc)n =⇒ en+1(bc)n, enf 2m

(bc)n =⇒ enf 2m+1

(bc)n, and f 2m

=⇒ f 2m+1

.

Giving the above definitions we followed the method to define phrase structure gram-
mars and their languages. However, we can give a alternative definition of 0L systems
based on algebraic concepts.

Let G = (V, P, ω) be a 0L system. Then we define the substitution σG : V ∗ → 2V ∗

by

σG(a) = {w | a → w ∈ P}.

Then it follows that
x =⇒G y if and only if y ∈ σG(x)

because in both cases we replace all letters xi of x by an element of σG(xi). Consequently
we get

L0(G) = {ω} = σ0
G(ω) ,

L1(G) = σG(ω) = σ1
G(ω) ,

L2(G) = σG(L1(G)) = σG(σG(ω)) = σ2
G(ω)

and, by induction,
Ln(G) = σn

G(ω).

This implies

L(G) =
⋃

n≥0

σn
G(ω).

We now define some special cases.
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Definition 11.10 i) A 0L system G = (V, P, ω) is called propagating (P0L system, for
short) if a → w ∈ P implies w 6= λ.

ii) A 0L system G = (V, P, ω) is called deterministic (D0L system, for short) if, for
any a ∈ V , a → w ∈ P and a → v ∈ P imply w = v.

iii) A PD0L system is a 0L system which is propagating as well as deterministic.

In Figure 11.5 we summarize to which special cases the grammars of our examples
belong.

grammar PD0L D0L P0L
G1 + + +
G2 – + –
G3 – – +
G4 + + +
G5 – – +
G6 – – –

Figure 11.5: A + or a – in the intersection of the row associated with G and the column
associated with X indicates that G is an X system or G is not an X system.

Let X ∈ {0L, P0L,D0L,PD0L}. If L is a language such that L = L(G) for some
X system G, then we say that L is an X language. Moreover, by L(X) we denote the fam-
ily of all languages generated by X systems. Thus we get the families L(PD0L), L(D0L),
L(P0L) and L(0L) of all PD0L, all D0L, all P0L and all 0L languages, respectively.

11.1.3 The Basic Hierarchy

We start with two lemmas which show that without loss of generality we can assume that
derivations of the empty word have a bounded length and that the length of intermediate
words in a derivation of x can be bounded linearly in the length of x.

Lemma 11.11 Let G = (V, P, ω) be a 0L system with n = #(V ). For a ∈ V , let
Ga = (V, P, a). If λ ∈ L(Ga), then λ ∈ Lm(Ga) for some m ≤ n.

Proof. We define Lr as the set of all letters a ∈ V such that λ ∈ Lm(Ga) for some m ≤ r.
Obviously, if a ∈ Lr then a ∈ Lr+1, too. Thus we have Lr ⊆ Lr+1 for r ≥ 1.

Let Lr = Lr+1. Further let a ∈ Lr+2. Then there is a derivation

a =⇒ w1 =⇒ w2 =⇒ . . . =⇒ ws = λ

with s ≤ r + 2. If s < r + 2, then a ∈ Lr+1. Let s = r + 2. Then b ∈ Lr+1 for any letter b
which occurs in w1. By our assumption, b ∈ Lr for any b occurring in w1. Hence there is
a derivation

a =⇒ w1 =⇒ v2 =⇒ v3 =⇒ . . . =⇒ vr−1 =⇒ λ .

This implies a ∈ Lr+1. Therefore in both cases we have shown that a ∈ Lr+1. This gives
Lr+2 ⊆ Lr+1 which proves Lr+2 = Lr+1 = Lr. By induction we can show that Lr+k = Lr

for all k ≥ 1.
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Since Li ⊆ V , there is a number t such that 1 ≤ t ≤ n and

L1 ⊂ L2 ⊂ L3 ⊂ · · · ⊂ Lt−1 ⊂ Lt = Lt+1 = Lt+2 = . . . .

Because Lt is a subset of V , t is smaller than the number of letters of V . Therefore t ≤ n.
Now assume that λ ∈ L(Ga), then a ∈ Lt and thus λ ∈ Lm(Ga) for some m ≤ t ≤ n.

2

Lemma 11.12 Let G = (V, P, ω) be a 0L system. Then there exists a constant CG such
that, for any word x ∈ L(G), there is a derivation

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = x

with |wi| ≤ CG · (|x| + 1) for 0 ≤ i ≤ r.

Proof. Let

n = #(V ) ,

k = max{|w| | a → w ∈ P} ,

l = max{|z| | z ∈ Lm(G) for m ≤ n} ,

CG = max{kn, l} .

Let x ∈ L(G). Then x ∈ Lr(G) for some r ≥ 0. Let

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = x.

Assume that there is some letter a ∈ V in the word wj, 1 ≤ j ≤ r, such that the
subderivation from a yields the empty word. Then we substitute this subderivation by
a derivation of λ which has at most n steps. Such a derivation exists by Lemma 11.11.
This procedure is done as long the derivation contains subderivations of the empty word
with more than n steps. As a result we obtain a derivation

ω = v0 =⇒ v1 =⇒ v2 =⇒ . . . =⇒ vs = x

with s ≤ r. We now prove that |vi| ≤ CG(|x| + 1).
If i ≤ n, then vi ∈ Li(G) and therefore |vi| ≤ l ≤ CG ≤ CG(|x| + 1) which proves the

statement of the theorem.
If i ≥ n, then we consider the word vi−n = u1u2 . . . ut where uj ∈ V for 1 ≤ j ≤ t. Then

x = u′
1u

′
2 . . . u′

t where u′
j 6= λ is obtained from uj or u′

j = λ (if from uj a subderivation
starts which yields the empty word). Let h be the number of letters uj of vi−n such that
u′

j 6= λ. Then h ≤ |x|. Moreover, since the subderivations giving λ are finished after
n derivation steps by our construction vi is build from the words u′′

j which are obtained
after n steps from uj. By definition of k we have |u′′

j | ≤ kn and hence

|vi| ≤ hkn ≤ CG(|x| + 1).

This proves the theorem. 2

We now compare the families generated by Lindenmayer systems with each other and
with the families of the Chomsky hierarchy.
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L(CS)

L(0L)

88qqqqqqqqqq

L(CF )

ffMMMMMMMMMM

L(P0L)

88qqqqqqqqqq

L(D0L)

ffMMMMMMMMMM

L(REG)

OO

L(PD0L)

ffMMMMMMMMMM

88qqqqqqqqqq

L(FIN)

OO

Figure 11.6: L1 → L2 denotes a proper inclusion of L1 in L2. If two families are not
connected by arrows, then they are incomparable.

Theorem 11.13 The diagram of Figure 11.6 holds.

Proof. The part L(FIN) ⊂ L(REG) ⊂ L(CF ) ⊂ L(CS) is well-known as a part of the
Chomsky hierarchy (see Theorem 2.37).

Since any PD0L system is a P0L system, too, it follows that L(PD0L) ⊆ L(P0L).
Analogously we obtain the other inclusions between L(PD0L), L(P0L), L(D0L) and
L(0L).

In order to prove the strictness of the inclusions it is sufficient to prove the existence
of languages L1 and L2 such that

L1 ∈ L(P0L), L1 /∈ L(D0L) and L2 ∈ L(D0L), L2 /∈ L(P0L).

Then L1 ∈ L(P0L) \ L(PD0L) and L1 ∈ L(0L) \ L(D0L) which proves the properness
of two inclusions. L2 can be used to show the strictness of the other two inclusions.

We consider L1 = {a}+. Because L1 = L(G3) for the P0L system G3 from Exam-
ple 11.6, L1 ∈ L(P0L) by definition. Let us assume that L1 ∈ L(D0L). Then there is a
D0L system G = ({a}, {a → ar}, as) with L(G) = L1. Since

as =⇒ asr =⇒ asr2

=⇒ asr3

=⇒ . . . =⇒ asrk

=⇒ . . .

is the only derivation in G, we get L(G) = {asrn | n ≥ 0}. If r = 1, then L(G) = {as}
which contradicts L1 = L(G). If r ≥ 2, then sr ≤ sr + 1 ≤ sr2. Hence asr+1 ∈ L1, but
asr+1 /∈ L(G) in contrast to L(G) = L1.

Hence L1 /∈ L(D0L).

Let L2 = {aab, ab}. By L2 = L(G2) for the D0L system G2 of Example 11.5, we have
L2 ∈ L(D0L). If L2 ∈ L(P0L), then L(G′) = L2 for some P0L system G′ = ({a, b}, P, ω).
By the completeness we have rules a → wa and b → wb in P . Then we obtain aab =⇒
wawawb and wawawb ∈ L(G′) = L2. Since G′ is propagating, wa and wb are non-empty
words which implies that the length of wawawb is at least 3. Therefore wa = a and wb = b.
Thus aab =⇒G′ aab and ab =⇒G′ ab are the only direct derivation steps. This implies
L(G′) = {ω}, i. e., L(G′) consists of one word, which contradicts L(G′) = L2 since L2

contains two words. Hence L2 /∈ L(P0L).



11.1. THE BASIC MODEL – 0L SYSTEMS 155

Let X ∈ {DP0L, P0L, D0L, 0L} and Y ∈ {FIN, REG, CF}. In order to prove that
L(X) and L(Y ) are incomparable, it is sufficient to present languages

L3 ∈ L(FIN), L3 /∈ L(0L) and L4 ∈ L(PD0L), L4 /∈ L(CF ).

We choose L3 = {a2, a4}. Obviously, L3 ∈ L(FIN). If L3 ∈ L(0L), then there
is a 0L system H = ({a}, P, ω) with L3 = L(H). Let a → wa ∈ P . Then we get
a4 =⇒ (wa)

4 ∈ L3. If |wa| ≤ 2, then |(wa)
4| ≥ 8. Therefore (wa)

4 /∈ L3 which contradicts
L(H) = L3. Thus the possible rules are a → a and a → λ. We consider the three
following possible cases.

Case 1. P = {a → a}.
Then ω =⇒ ω holds, which yields L(H) = {ω} in contrast to L(H) = L3.

Case 2. P = {a → λ}.
Then ω =⇒ λ holds which gives L(H) = {ω, λ} in contrast to the choice of H .

Case 3. P = {a → a, a → λ}.
Then a4 = aaaa =⇒ aaaλ = a3. This implies a3 ∈ L(H) which contradicts L(H) = L3.

Therefore L3 /∈ L(0L).

Let L4 = {a2n | n ≥ 2}. By Example 11.4, L4 = L(G1) for the PD0L system G1 and
thus L4 ∈ L(PD0L). On the other hand, L4 /∈ L(CF ) is not a semi-linear language, and
hence it is not context-free.

Let G = (V, P, ω) be a 0L system. We construct a phrase structure grammar H =
(N, V, P ′, S) with L(H) = L(G) as follows. We set N = {A, B, C, D, E} and define P ′ as
the set of all rules of the following types:

a) S → ADωB,
b) AD → AC, AD → AE,
c) Ca → wC for a → w ∈ P and CB → DB,
d) aD → Da for a ∈ V ,
e) AEa → aE and Ea → aE for a ∈ V , EB → λ,
f) S → λ, if λ ∈ L(G).

Any derivation in H starts with S =⇒
H

ADωB. Let us now assume that we have generated
a word ADa1a2 . . . anB with ai ∈ V for 1 ≤ i ≤ n. Now we can only apply the rules of
type b) and we obtain ACa1a2 . . . anB or AEa1a2 . . . anB.

In the former case we have to continue with rules of type c) which gives

ACa1a2 . . . anB =⇒
H

Aw1Ca2 . . . anB =⇒
H

. . . =⇒
H

Aw1w2 . . . wnCB

=⇒
H

Aw1w2 . . . wnDB

where ai → wi ∈ P for 1 ≤ i ≤ n. By rules of type d) we shift the letter D to the left and
obtain ADw1w2 . . . wnB. That is, we have obtained a word of the form we start with and
– besides the nonterminals – we have simulated the derivation a1a2 . . . an =⇒

G
w1w2 . . . wn.

We consider the latter case. If n = 0, we get AEB in H and the derivation cannot be
terminated (the only applicable rule EB → λ gives A and the derivation is now blocked).
If n ≥ 1, we get the derivation

AEa1a2 . . . anB =⇒
H

a1Ea2 . . . anB =⇒
H

. . . =⇒
H

a1a2 . . . anEB =⇒H a1a2 . . . an.
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That is, we only delete the nonterminals. (Note that other derivations are not possible
since the application of Ea1 → a1E would not delete the letter A which remains which
means that the derivation cannot terminate.)

Therefore, for any derivation

ω =⇒
G

v1 =⇒
G

v2 =⇒
G

. . . =⇒
G

vn

with vn 6= λ in G, there is a derivation

S =⇒
H

ADωB
∗

=⇒
H

ADv1B
∗

=⇒
H

ADv2B
∗

=⇒
H

. . .
∗

=⇒
H

ADvnB
∗

=⇒
H

AEvnB
∗

=⇒
H

vn

and conversely. Thus the languages L(G) and L(H) coincide in the non-empty words. If
λ ∈ L(G), then λ ∈ L(H) by application of the rule f). If λ /∈ L(G), then H does not
contain the rule f) and thus λ /∈ L(H). Hence we have L(G) = L(H).

Let x be a non-empty word of L(G). By Lemma 11.12, there is a derivation of x
such that any intermediate word has a length bounded by CG(|x| + 1). Therefore all the
intermediate words of the corresponding derivation of x in H have at most the length
CG(|x| + 1) + 3 ≤ C|x| for an appropriate constant C. By the workspace theorem (see
Theorem 3.22), the language of all non-empty words of L(H) is context-sensitive. 2

11.1.4 Adult Languages

The language generated by a 0L system consists of all words which can be derived from
the start word. Thus it takes into consideration all phases of the development, e. g. in
case of a flower the ”green” phase, which produces the handle or stem and the leaves, as
well as the ”flowering” phase, where the blossom is build and the parts of the ”green”
phase are not changed. Especially, one is interested in the final stages or adult stages
which are not changed (at least for a long time).

Modelling this aspect within the framework of 0L systems we are interested in those
strings w which belong to the language and only allow the derivation w =⇒ w. This leads
to the following definition.

Definition 11.14 The adult language LA(G) of a 0L system G is the set of all words
w ∈ L(G) such that w =⇒ v implies w = v.

By definition, the empty word cannot be contained in an adult language.
The adult alphabet VA(G) is set of all letters of V , which occur in words of LA(G).

Let X ∈ {0L, P0L, D0L, PD0L}. By L(AX) we denote the family of adult languages
generated by X systems.

Example 11.15 We consider the 0L system G6 from Example 11.9 Since

L(G6) = {a, e}∪ {en−1da(bc)n | n ≥ 1}∪ {en(bc)n | n ≥ 1}∪ {enf 2m

(bc)n | n ≥ 1, m ≥ 0},
we obtain the adult language

LA(G6) = {e} ∪ {en(bc)n | n ≥ 1}.
Note that the adult language of G6 is a context-free language whereas L(G6) is not
context-free.
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The aim of this section is to show that the fact seen in the example holds in general,
i. e., any adult language of a 0L system is a context-free language, and conversely, any
context-free language is an adult language of some 0L system.

Theorem 11.16 i) For any context-free grammar G such that λ /∈ L(G), there is a
propagating 0L system G′ such that LA(G′) = L(G). ii) For any context-free grammar G,
there is a 0L system G′ such that LA(G′) = L(G).

Proof. i) Let G = (N, T, P, S) be a context-free grammar with λ /∈ L(G). First we
construct a context-free grammar G′′ = (N ′′, T, P ′′, S ′′) in Chomsky normal form such
that L(G′′) = L(G) (see Theorem 2.26). Since λ /∈ L(G), P ′′ contains no rule of the form
A → λ with A ∈ N ′′. We define the 0L system G′ by

G′ = (N ′′ ∪ T, P ′′ ∪ {a → a | a ∈ N ′′ ∪ T}, S ′′). (11.2)

Since P ′′ contains no erasing rule, G′ is propagating.
Let x =⇒

G′′
y. Then x = u1Au2 and y = u1wu2 for some rule A → w ∈ P ′′. Then we

also have x =⇒
G′

y by applying a → a to all letters of u1 and u2 and A → w ∈ P ′′ to the
distinguished occurrence of A in x. Thus any sentential form of G′′ is contained in L(G′).

Moreover, if x =⇒G′ y, then x = x1x2 . . . xn, y = y1y2 . . . yn and xi → yi ∈ P ′ for
1 ≤ i ≤ n. Let M = {i1, i2, . . . , ir} be the subset of {1, 2, . . . , n} such that xi → yi 6= xi

for i ∈ M and xj → xj for j ∈ {1, 2, . . . , n} \ M . Then i ∈ M implies xi ∈ N ′′ and we
have in G′′ the derivation

x = u1xi1u2xi2 . . . urxiiur+1

=⇒
G′′

u1yi1u2xi2 . . . urxiiur+1

=⇒
G′′

u1yi1u2yi2u3xi3 . . . urxiiur+1

. . .

=⇒
G′′

u1yi1u2yi2 . . . ur−1yir−1
urxiiur+1

=⇒
G′′

u1yi1u2yi2 . . . ur−1yir−1
uryiiur+1

= y

This proves that L(G′) is the set of all sentential forms of G′′.
If x = u1Au2 is a sentential form of G′′ with A ∈ N ′′, then we apply to all letters of

u1 and u2 rules of the form a → a and to A a rule A → w with w 6= A (such a rule exists
since G′′ is in Chomsky normal form) and obtain u1wu2 6= x. Hence x is not in the adult
language of G′. On the other hand, if a sentential form x′ only contains terminals, then
we can only apply identity rules to the letters of x′ which gives x′ ∈ LA(G′).

Therefore LA(G′) consists of all sentential forms which only contain terminals, i. e.,
LA(G′) = L(G′′) = L(G).

ii) If L(G) does not contain the empty word, we repeat the construction given above.
If L(G) contains the empty word, then the grammar in Chomsky normal form contains
in addition the rule S → λ and S does not occur on the right hand side of a production,
I. e., S → λ is only used in the derivation S =⇒ λ of the empty word. Now we repeat the
above construction and add the rule S → λ to the production set of the 0L system. Thus
the obtained system is not propagating. However, in the =L system, the additional rule
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can only be used to derive the empty word in one step from the axiom S, too. Hence we
get the empty word which satisfies λ =⇒ λ in the adult language. 2

Lemma 11.17 Let G = (V, P, ω) be a 0L system. Let m = #(VA(G)). For any letter
a ∈ VA(G), let Ga = (V, P, a). Then, for any a ∈ VA(G), one of the following two cases
appears:

– λ ∈ Lt(Ga) for some t ≤ m or
– Lm(Ga) contains exactly one word za and, for all words v ∈ V ∗, za =⇒ v implies

v = za.

Proof. Let a ∈ VA(G). Then there is exactly one rule a → wa in P . Assume the
contrary, i. e., a → w1 ∈ P and a → w2 ∈ P with w1 6= w2. Since a ∈ VA(G), there
is a word x ∈ LA(G) where a occurs in x. Let x = x1ay1. Then have two derivation
x1ay1 =⇒ x2w1y2 and x1ay1 =⇒ x2w2y2 with x2w1y2 6= x2w2y2 in contrast to the property
of the words of LA(G).

Since x = x1ay1 =⇒ x2way2 = x ∈ LA(G), all letters of wa belong to the adult
alphabet VA(G). Consequently, all words of L(Ga) only contain letters of VA(G). Because
there is only one rule for any letter of VA(G), there is a unique derivation in Ga. Therefore,
for any t ≥ 0, Lt(G) contains at most one word.

If wa contains two occurrences of a, then we have a derivation

wa = u1au2au3 =⇒ u′
1wau

′
2wau

′
3

= u′
1u1au2au3u

′
2u1au2au3u

′
3 =⇒ u′′

1u
′
1wau

′
2wau

′
3u

′′
2u

′
1wau

′
2wau

′
3u

′′
3

= u′′
1u

′
1u1au2au3u

′
2u1au2au3u

′
3u

′′
2u

′
1u1au2au3u

′
2u1au2au3u

′
3u

′′
3

. . . . .

and therefore from wa we can generate a word with an arbitrarily large number of oc-
currences of a. Therefore, from x we can also generate a word with an arbitrarily large
number of occurrences of a. However, x derives only x and x has a bounded number of
occurrences of a. This contradiction shows that wa contains at most one occurrence of a.

Now assume that wa contains exactly one occurrence of a. Let wa = p1aq1. Then we
have the derivation

x = x1ay1 =⇒ x2p1aq1y2 =⇒ x3p2p1aq1q2y3 =⇒ . . . =⇒ xmpm−1pm−2 . . . p1aq1q2 . . . qm−1ym .

Obviously, if pi 6= λ or qi 6= λ for i ≥ 1, then we can generate arbitrarily long words from
x in contrast to x ∈ LA(G). If λ can be generated from p1 and q1, by Lemma 11.11, we
have derivations

p1 =⇒ p2 =⇒ p3 =⇒ . . . =⇒ ps =⇒ λ and q1 =⇒ q2 =⇒ q3 =⇒ . . . =⇒ qt =⇒ λ

with s < m and t < m and non-empty words p1, p2, . . . , ps, q1, q2, . . . , qt . Then we get
from a in at most m steps the word psps−1 . . . p1aq1q2 . . . qt which has the property

psps−1 . . . p1aq1q2 . . . qt =⇒ psps−1 . . . p1aq1q2 . . . qt.

Thus za = psps−1 . . . p1aq1q2 . . . qt has the properties required in the statement.
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Now assume that wa contains no occurrence of a. For i ≥ 1, let zi be the unique word
in Li(Ga). We first prove that zi has no occurrence of a for i ≥ 1. Let x be a word of
LA(G) containing a. Then x = x0ax1ax2 . . . axr with r ≥ 1 and xi not containing a for
0 ≤ i ≤ r. If u defined by x0 =⇒ u contains an occurrence of a and zj contains a for
some j ≥ 1, x =⇒j u0zju1zju2zj . . . zjur = x. Because u0 starts with u which contains a
and any zj contains an a, the generated word x contains at least r + 1 occurrences of a
which is impossible. Analogously we get a contradiction if u contains no a, i. e., all a’s
are contained in the word derived from x1ax2a . . . axr.

Now we have x = x1ay1 =⇒ x2z1y2 = x. Because a does not occur in z1 = wa, a
has to occur in at least one of the words x2 and y2. We only discuss the case that a
occurs in x2, the other case can be handled analogously. Then x = v1av2z1y2. Now we get
x =⇒ v′

1z1v
′
2z2y

′
2 = x. Because a occurs in x and #a(z1) = #a(z2) = 0, a occurs in v′

1 or
v′
2 or y′

2. Let us assume that a occurs in y′
2 (the other cases can be handled analogously).

Then we obtain
x = v′

1z1v
′
2z2v

′
3av′

4 =⇒ v′′
1z2v

′′
2z3v

′′
3z1v

′′
4 .

Continuing in this way we get that x contains all the words z1, z2, z3, . . . which is only
possible if zi = λ for some i. From Lemma 11.11 we know that λ ∈ Lt(Ga) for some t ≤ n.
2

Lemma 11.18 For any 0L system G, there is a 0L system G′ = (V, P ′, S) such that
LA(G′) = LA(G) and, for any a ∈ VA(G′), the only production in P ′ is a → a.

Proof. Let G = (V, P, S). Without loss of generality we assume that the start word of G
is a letter S not belonging to the adult alphabet VA(G) (if this is not the case, we add S
to the alphabet and S → ω to the set of productions, where ω is the original start word;
these additions do not change the adult language). Let n = #(VA(G)). For any letter
a ∈ VA(G), let Ga = (V, P, a).

We define the homomorphism h by

h(a) = λ if a ∈ VA(G) and λ ∈ Lm(Ga) for some m ≤ n ,

h(a) = za if a ∈ VA(G) and za ∈ Ln(Ga) ,

h(a) = a if a /∈ VA(G) .

By Lemma 11.17 the homomorphism is well defined. We set G′ = (V, P ′, S) with

P ′ = {a → h(w) | a → w ∈ P and a /∈ VA(G)} ∪ {a → a | a ∈ VA(G)}.

One can easily prove by induction on the number i of derivation steps that

S =⇒i
G x if and only if S =⇒i

G′ h(x) . (11.3)

Now let x = x1x2 . . . xm be a word of LA(G) with xi ∈ VA(G) for 1 ≤ i ≤ m.
Then x1x2 . . . xm =⇒G′ x1x2 . . . xm by the definition of P ′, and this is the only possible
derivation from x. Therefore x ∈ LA(G′). Hence LA(G) ⊆ LA(G′).

Now let w be a word of LA(G′). By (11.3), there is a word w′ such that w′ ∈ L(G)
and w = h(w′). We assume that w′ = w0B1w1B2w2 . . . wt−1Btwt with t ≥ 0, wi ∈ VA(G)∗
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for 0 ≤ i ≤ t and Bj /∈ VA(G) for 1 ≤ j ≤ t. For 0 ≤ i ≤ t, we define zi as follows. If
wi = λ, then we set zi = λ. If wi 6= λ, then wi consists only of letters VA(G). Then we
define zi as the only word which can be generated from wi in m steps in G. Therefore

h(wi) = zi and zi =⇒G zi (11.4)

for 1 ≤ i ≤ n. Then
h(w′) = z0B1z1B2z2 . . . zt−1Btzt = w .

For 0 ≤ i ≤ t, by the definition of P ′, if zi 6= λ,

zi =⇒G′ zi (11.5)

holds, because all letters of zi belong to VA(G). Let BrBr+1 . . . Bs be a subword of w only
consisting of letters not in VA(G), i.e zr = zr + 1 = . . . zs−1 = λ, and the letters before Br

and after Bs in w – if they exist – are from VA(G). Since w ∈ LA(G′), we have w =⇒G′ w.
Taking into consideration (11.5) we get

BrBr+1 . . . Bs =⇒G′ BrBr+1 . . . Bs . (11.6)

For r ≤ i ≤ s, if Bi → yi in P , then Bi → h(yi) ∈ P ′. Thus

BrBr+1 . . . Bs =⇒G′ h(yr)h(yr+1) . . . h(ys) .

By (11.6),
BrBr+1 . . . Bs = h(yr)h(yr+1) . . . h(ys) . (11.7)

Therefore, for r ≤ i ≤ s, h(yi) contains only letters not in VA(G), which implies h(yi) = yi

by the definition of h (since letters of VA(G) occur in h(yi) otherwise). By (11.7) this
yields

BrBr+1 . . . Bs =⇒G yryr+1 . . . ys = h(yr)h(yr+1) . . . h(ys) = BrBr+1 . . . Bs .

If we combine this relation with (11.4) we get w =⇒G w is the only derivation for w =
h(w′) which proves that w ∈ LA(G). Thus we obtain LA(G′) ⊆ LA(G). 2

We note that we obtain a context-free grammar without rules of the form A → λ if
we start from a propagating system. Therefore, for any propagating system G there is a
context-free grammar H such that L(H) = LA(G) and L(H) does not contain the empty
word.

Theorem 11.19 i) For any 0L system G, there is a context-free grammar G′′ such that
L(G′′) = LA(G).

Proof. First, for G, we consider the 0L system G′ = (V, P ′, S) according to Lemma 11.18,
i. e., a → a is the only rule for a ∈ VA(G′) and LA(G′) = LA(G). Then we construct the
context-free grammar

G′′ = (V \ VA(G′), VA(G′), P ′ \ {a → a | a ∈ VA(G′)}, S).

It is easy to show that L(G′′) = LA(G′). 2
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Theorem 11.20 i) L(A0L) = L(CF) and L(AP0L) = {L | L ∈ L(CF), λ /∈ L}.
ii) The family L(AD0L) consists the empty set and all languages {w} for some word

w, and L(APD0L) consists the empty set and all languages {w} for some non-empty word
w.

Proof. i) By Theorem 11.16, we get that L(CF) ⊆ L(AP0L). Theorem 11.19 yields
the converse inclusion L(A0L) ⊆ L(CF). If we consider propagating systems, in both
statements we are restricted to languages without the empty word.

ii) If G = (V, P, ω) is a D0L system, then we have only one derivation

ω = w0 =⇒ w1 =⇒ w2 =⇒ w3 =⇒ . . . .

If there is an i such that wi = wi+1, then we have LA(G) = {wi}. If wi 6= wi+1 for any
i, then LA(G) = ∅. Thus the adult language of a deterministic 0L system is empty or
contains exactly one word.

In the propagating case, obviously, the empty word as the only word of the adult
language is impossible.

We now show that all singletons and the empty language occur as adult languages of
propagating D0L systems. Let w be a non-empty word over some alphabet V . Then we
consider the D0L system G = (V, {a → a | a ∈ V }, w). Obviously, w =⇒ w =⇒ w =⇒ . . .
is the only derivation in G. Thus LA(G) = {w}. For the D0L system G′ = (V, {a → λ |
a ∈ V }, w), we have the unique derivation w =⇒ λ =⇒ λ =⇒ . . . , i. e., LA(G′) = {λ}.
Furthermore, for G1 Example 11.4, LA(G1) is empty. 2

We note that L(AD0L) is a proper subfamily of the family of all finite languages.

11.1.5 Decision Problems

In this section we want to discuss the decidability status of the classical decision problems
considered in the theory of formal languages for interactionless Lindenmayer systems. For
X ∈ {0L, P0L, D0L, PD0L}, we regard the following problems.

Membership problem: Given X system G = (V, P, ω) and w ∈ V ∗,
decide whether or not w ∈ L(G).

Finiteness problem: Given X system G = (V, P, ω),
decide whether or not L(G) is finite.

Equivalence problem: Given X systems G = (V, P, ω) and H = (V, P ′, ω′),
decide whether or not L(G) = L(H).

For the sequential grammars of the Chomsky hierarchy, we have also considered the
emptiness problem. This is not of interest for Lindenmayer systems, because any language
generated by a Lindenmayer system G = (V, P, ω) contains at least the axiom ω and is
therefore not empty.

We mention that the membership problem and the finiteness problem have some bi-
ological relevance. Let us assume that we have a 0L system G which we want use as
a model for the development of some filamentous organism or alga etc. Usually such a
model is obtained by an analysis of the first steps of the development of the biological
object. Now the membership problem is the question whether or not a later stage of the
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development can be got by the model G. The finiteness problem has an negative answer
if and only if the development does not be finished after a certain time and at least one
branch of the development produces larger and larger plants. By such an interpretation,
there is an interest from a biological point of view in these questions. The equivalence
problem is the test whether or not two given models describe the same development.

However, one has to note that in biology one is more interested in the sequences of
the stages of the development instead of the set of all stages. In this lecture we shall only
consider the language theoretic part, for a discussion of decidability for sequences instead
of languages we refer to [11] and [27].

By Theorem 11.13, L(0L) is contained in L(CS). If we consider the proof we see
that, for a given 0L system G, we can construct a context-sensitive grammar H with
L(G) = L(H). It is known that it is decidable, whether or not a given word w belongs to
the language generated by a given context-sensitive grammar. Thus the membership for
0L systems is decidable, too. However, all known algorithms for the membership problem
for context-sensitive grammar have at least exponential time complexity.

By Lemma 11.12, there is a natural algorithm. We construct all derivations which
only contain words of length CG|w|. If w is obtained the answer to the membership is
”yes”, otherwise w /∈ L(G) holds. However, this algorithm is also exponential in time
because we have to consider exponentially many derivation steps.

In [25] it has been shown that the Cocke-Younger-Kasami algorithm known for context-
free grammars can be translated to interactionless 0L systems. However, by the parallelism
in the derivation in 0L system we get the complexity O(|w|4) for a fixed 0L system (in
the case of context-free grammars, the complexity is O(|w|3).

Theorem 11.21 For 0L systems, the membership problem is decidable in polynomial
time O(|w|4). 2

Theorem 11.22 For 0L systems, the finiteness problem is decidable in polynomial time.

Proof. Let G = (V, P, ω) be a 0L system. Let n = #(V ). For any letter a ∈ V , we set
Ga = (V, P, a).

We call a letter a ∈ V surviving in G iff Li(Ga) contains a non-empty word for any
i ≥ 0. Let Vs(G) be the set of all surviving letters of G. (Note that V = Vs(G) for a
propagating 0L system.)

We construct the directed graph HG = (V, E) where the set of vertices coincides with
the set of all letters of V and (a, b) ∈ E if and only if there is a production a → x1bx2 ∈ P
with x1, x2 ∈ V ∗.

Claim 1: a is surviving if and only if there is an infinite path in HG which starts in
a.

Let HG contain an infinite path starting in a. Let b be the letter which is obtained by
the beginning of length i of the this path. Then, by the definition of HG, there is a word
in Li(G) which contains b. This shows the non-emptiness of Li(Ga) for any i ≥ 0.

Conversely, let us assume that a is surviving. Then Ln+1(Ga) contains a non-empty
word w. Let b be a letter of w. Then there is a derivation

a = a0 =⇒ u1a1v1 =⇒ u2a2v2 =⇒ . . . =⇒ un+1an+1vn+1 = w
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such that an+1 = b and (ai, ai+1) ∈ E for 0 ≤ i ≤ n. Clearly, there are integers i and j,
0 ≤ i < j ≤ n + 1, such that ai = aj . Therefore the path

a0 → a1 → a2 → . . . → an+1

contains a cycle and can be continued to an infinite path.

Now we interpret HG as the graph of a (nondeterministic) finite automaton A =
({X}, V, a, V, δ) where all edges are labelled by X, the start state is a and all states are
accepting states. Then the existence of an infinite path starting from a is equivalent to
the infinity of the (regular) language accepted by A. Because it is decidable whether or
not the language accepted by a finite automaton is finite or not (see Theorem 5.9 and
Claim 1 holds, there is an polynomial algorithm which decides whether or not a ∈ Vs(G).
Thus we can algorithmically construct the set Vs(G) in polynomial time.

Now we construct the directed graph H ′
G = (Vs(G), E ′) where E ′ is the restriction of

E to Vs(G)×Vs(G). Further, we define a labelling of the edges of E ′ by the letters X and
Y . We label (a, b) ∈ E ′ by X if and only if there is a production a → x1bx2 ∈ P where
x1x2 contains a letter of Vs(G). Otherwise, we label (a, b) by Y .

Claim 2: L(G) is infinite if and only there is an infinite path in H ′
G starting in a letter

occurring in ω and containing an infinite number of occurrences of edges labelled by X.
Assume that there is an infinite path a0 → a1 → a2 → . . . starting from a = a0

which occurs in ω. Let j ≥ 0. Then aj occurs in some word of wj of Lj(G). Let
wj = x0b1x1b2x2 . . . brxr for some r ≥ 1, some words xk ∈ (V \ Vs(G))∗, 0 ≤ k ≤ r
and some letters bl ∈ Vs(G), 1 ≤ l ≤ r. Let aj = bs. Then we consider a derivation
wj =⇒ wj+1 = x′

0y1x
′
1y2x

′
2 . . . yrx

′
r, where any subword yl, 1 ≤ l ≤ r contains at least one

letter of Vs(G) (such rules exist for letters of Vs(G) by definition) and a rule aj → x1aj+1x2

to bs = aj . If (aj , aj+1) is labelled by X, then ys = x1aj+1x2 contains at least two
occurrences of surviving letters. Therefore wj+1 contains at least r + 1 occurrences of
surviving letters. Continuing in this way we obtain words in L(G) with an arbitrarily
large number of occurrences of letters of Vs(G). Thus L(G) has to be infinite.

Conversely, let us assume that L(G) is infinite. Then, for any number i ≥ 1, L(G)
contains a word of length ≥ i. We can improve this statement to the following one: For
any number i ≥ 1, L(G) contains a word with at least i occurrences of letters of Vs(G). If
we assume the contrary, then there is a number j such that any word of L(G) contains at
most j letters of Vs(G). Then any word of L(G) can be written as W = x0b1x1b2x2 . . . brxr

for some r ≥ 1, some words xk ∈ (V \ Vs(G)∗, 0 ≤ k ≤ r and some letters bl ∈ Vs(G),
1 ≤ l ≤ r, where r ≤ j. Since there is a number t such that Lt(Ga) = {λ} for all

a /∈ Vs(G), we have w
t

=⇒
G

z1z2 . . . zr where bi
t

=⇒
G

zi for 1 ≤ i ≤ r. If

K = max{wa | a → wa ∈ P, a ∈ V },

then |z1z2 . . . zr| ≤ rKt ≤ jKt. This yields a bound for the length of the words in L(G)
in contrast to the infinity of L(G).

Now let p be a sufficient large number, and let w be a word of L(G) containing at
least p occurrences of letters from Vs(G). Then we have a derivation

ω = u0a0v0 =⇒ u1a1v1 =⇒ u2a2v2 =⇒ . . . =⇒ umamvm = w
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such that (ai, ai+1) ∈ E for 0 ≤ i ≤ m and the path

a0 → a1 → a2 → . . . → am

contains at least n2 + 1 edges labelled by X. Let ai1 , ai2 , . . . , ait be the nodes such that
(aiq , aiq+1) is labelled by X. Then t ≥ n2 + 1. Hence there are f and g such that
1 ≤ f < g ≤ t and (ai,f , aif+1) = (ai,g, aig+1). Therefore there is an edge labelled by X
which occurs at least two times in the path. Thus the path contains a cycle with an edge
labelled by X. Therefore it can be extended to an infinite path which contains infinitely
often edges with label X.

Again, we interpret H ′
G as a nondeterministic finite automaton B = ({X, Y }, V, a, V, δ′)

taking the above labelling of the edges. The existence of a path having the properties
mentioned in Claim 2 is equivalent to the property that,

for any i ≥ 0, there is a word wi in T (B) with #X(wi) ≥ i. (11.8)

We define the homomorphism h : {X, Y }∗ → {X}∗ by h(X) = X and h(Y ) = λ. Then
(11.8) is equivalent to the infinity of h(T (B)). By the proofs of the closure properties
we can construct a regular grammar H or a deterministic finite automaton B′ such that
L(G) = T (B′) = h(T (B)). The decidability of the finiteness problem for regular languages
implies that we can decide whether or not L(G) is infinite. 2

Theorem 11.23 i) For P0L systems, the equivalence problem is undecidable.
ii) For D0L systems, the equivalence problem is decidable.

Proof. We only prove i). The proof for ii) is omitted because it is long if it is based on
the elementary knowledge and formal language theory or it is based on deep results of
(mathematical) group theory. A proof of ii) can be found in [27].

We prove i) by reduction to the Post Correspondence Problem. Let

U = {(u1, v1), (u2, v2), . . . , (un, vn)}
be a set of pairs of words with ui, vi ∈ {a, b}∗ for 1 ≤ i ≤ n.

We consider the 0L systems

G1 = (V, P, S) and G2 = (V, P ′, S)

with

V = {S, S ′, S ′′, Su, Sr, Sl, S
′, a, b, c} ,

P = {S → S ′, S → S ′′, Su → c, Sl → c, Sr → c}
∪

⋃

x∈{a,b}

{S ′ → xS ′x, S ′ → xSl, S
′ → Srx, Sl → xSl, Sr → Srx, Su → Srx, Su → xSl}

∪ {S ′ → xSuy : x, y ∈ {a, b}, x 6= y} ∪ {Su → xSuy : x, y ∈ {a, b}}

∪
n⋃

i=1

{S ′′ → uiS
′′vR

i } ,

P ′ = P ∪
n⋃

i=1

{S ′′ → uicv
R
i } .
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It is easy to show that

L(G1) = {S, S ′, S ′′} ∪ {αS ′αR : α ∈ {a, b}+}
∪ {αSuβ

R : α, β ∈ {a, b}+, |α| = |β|, α 6= β}
∪ {αSrβ

R : α, β ∈ {a, b}+, |α| < |β|}
∪ {αSlβ

R : α, β ∈ {a, b}+, |α| > |β|}
∪ {αcβR : α, β ∈ {a, b}+, α 6= β}
∪ {ui1ui2 . . . uikS

′′vikvik−1
. . . vi1 : k ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ k}

and

L(G2) = L(G1) ∪ {ui1ui2 . . . uikcvikvik−1
. . . vi1 : k ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ k}.

Obviously, L(G1) ⊆ L(G2), and L(G1) = L(G2) holds if and only if the part added to
L(G1) to obtain L(G2) is contained in {αcβR : α, β ∈ {a, b}+, α 6= β} (see the proof of
Theorem 5.10). Thus we get L(G1) = L(G2) iff the Post Correspondence Problem has no
solution. 2

Note that Theorem 11.23 implies that the equivalence problem for PD0L systems is
decidable and that the equivalence problem for 0L systems is undecidable.

We now give the decidability status of the above problems with respect to adult
languages.

Theorem 11.24 i) Given a 0L system G and a word w, it is decidable whether or not
w ∈ LA(G) holds.

ii) Given a 0L system G, it is decidable whether or not LA(G) is empty.
iii) Given a 0L system G, it is decidable whether or not LA(G) is finite.
iv) Given two P0L systems G1 and G2, it is undecidable whether or not LA(G1) =

LA(G2).
v) For two given D0L systems G1 and G2 it is decidable whether or not LA(G1) =

LA(G2).

Proof. Since the transformations of an 0L system G into a context-free grammar G′

and of a context-free grammar G′ (with λ /∈ L(G′)) into a (P)0L system G such that
LA(G) = L(G′) are constructive, we get the first four results from the decidability results
for context-free languages.

The equivalence of two D0L system with respect to adult languages is decidable,
because we can first check whether both system generate a non-empty adult language
(consisting of one word) and then we determine the adult languages and compare them.
2

11.1.6 Growth Functions

A very important field in the study of the development of filamentous organisms and
plants is the growth of the organism or plant. Usually, as a measure of the size of the
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plant one takes the number of cells which build it and the growth is measured by a function
which associates with a given time moment the size of the plant at this moment.

We now formalize this concept. In order to get a function one has to ensure that at
every moment only one organism exists, i. e. the Lindenmayer system has to generate
exactly one word. Therefore we have to restrict to deterministic Lindenmayer systems.
For a D0L system G = (V, P, ω), we have a uniquely determined derivation

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wm =⇒ . . . , (11.9)

and thus Lm(G) contains exactly one element wm. Conversely, let H be a 0L system
which, for some letter a ∈ V , has two rules a → w1 and a → w2 with w1 6= w2 in its
set of productions, and let a occur in some word w of L(H) (otherwise we can omit a
and its rules). Then we can generate two words from w because we have the derivations
w = x1ax2 =⇒ x′

1w1x
′
2 and w = x1ax2 =⇒ x′

1w2x
′
2. Hence Lm(H) for some m ≥ 1

contains at least two words.

Definition 11.25 The growth function fG : N → N of a deterministic 0L system G is
defined by

fG(m) = |wm|.

Example 11.26 We consider the deterministic 0L systems

G1 = ({a}, {a → a2}, a) ,

G2 = ({a, b}, {a → λ, b → ab}, aab) ,

G4 = ({a, b, c, d, e}, {a → a, b → ba, c → cbb, d → da, e → cbbd}, e)

given in the Examples 11.4, 11.5 and 11.7.

In G1, the only derivation is

a =⇒ a2 =⇒ a4 =⇒ a8 =⇒ . . . ,

which results in

fG1
(m) = 2m for m ≥ 0.

In G2, we only have the derivation

aab =⇒ λλab = ab =⇒ λab = ab =⇒ ab =⇒ ab =⇒ . . . ,

which gives

fG2
(0) = 3 and fG2

(m) = 2 for m ≥ 1.

In Example 11.7, we have shown that

L0(G4) = {e} ,

Lm(G4) = {cbb(ba)2(ba2)2 . . . (bam−1)2dam−1} for m ≥ 1 .
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Thus we get fG4
(0) = |e| = 1 and, for m ≥ 1,

fG4
(m) = |cbb(ba)2(ba2)2 . . . (bam−1)2dam−1|

= 1 + 2 · 1 + 2 · 2 + 2 · 3 + · · ·+ 2 · m + 1 + (m − 1)

= m + 1 + 2 ·
m∑

i=1

i = m + 1 + 2 · m(m + 1)

2
= m2 + 2m + 1

= (m + 1)2 .

This gives
fG4

(m) = (m + 1)2 for m ≥ 0.

In the examples we have determined the growth function by a determination of the
sequence of words generated by the system and obtained fG(m) as the length of |wm|
according to the definition. However, in biology one is interested in a computation of
fG(m) for arbitrary m, especially for large m, without a determination of wm. Such a
computation can easily be done if one has a formula for fG. In the sequel we shall present
some such formulae.

In the sequel we shall assume that the D0L system under consideration is given as

G = ({a1, a2, . . . , an}, {a1 → v1, a2 → v2, . . . , an → vn}, ω) (11.10)

and that its only derivation is given by (11.9).

Definition 11.27 Let G be a D0L system as in (11.10). Then we define the growth
matrix MG of G as the (n, n)-matrix

MG = (ai,j) = (#aj
(vi))n,n.

Example 11.28 Again, we consider the systems G1, G2 and G4. We get

MG1
= (2), MG2

=

(
0 0
1 1

)

, MG4
=









1 0 0 0 0
1 1 0 0 0
0 2 1 0 0
1 0 0 1 0
0 2 1 1 0









Theorem 11.29 Let G be a D0L system as in (11.10), and let MG be its growth matrix.
Then, for m ≥ 0,

fG(m) = Ψ(ω)(MG)m(1, 1, . . . , 1
︸ ︷︷ ︸

n times

)T .

Proof. First we note that

Ψ(wm) · (1, 1, . . . , 1)T = (#a1
(wm), #a2

(wm), . . . , #an
(wm))(1, 1, . . . , 1)T

=

n∑

i=1

#ai
(wm) = |wm|

= fG(m) .
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Thus it is sufficient to to prove that, for m ≥ 1,

Ψ(wm) = Ψ(ω)Mm
G .

This will be done by induction on m.
m = 0. We have

Ψ(w0) = Ψ(ω) = Ψ(ω) · E = Ψ(ω)M0
G,

where E is the unit matrix. Thus the induction basis is shown.
m > 0. By induction hypothesis,

Ψ(ω)Mm
G = Ψ(ω)Mm−1

G MG = Ψ(wm−1)MG (11.11)

Further, any occurrence of a letter ai, 1 ≤ i ≤ n, in wm−1 contributes #aj
(vi) occurrences

of aj , 1 ≤ j ≤ n, in wm. Thus

#aj
(wm) =

n∑

i=1

#ai
(wm−1)#aj

(vi).

This implies

Ψ(wm) = Ψ(wm−1)MG.

Together with (11.11) we get

Ψ(wm) = Ψ(ω)Mm
G .

2

Let

χMG
(x) = det(MG − xE) = anxn + an−1x

n−1 + · · ·+ a1x + a0

be the characteristic function of MG. By the Cayley-Hamilton Theorem (see Theorem 1.2),

O = χMG
(MG) = anMn

G + an−1M
n−1
G + · · ·+ a1MG + a0E.

For k ≥ 0, by left and right multiplication with Ψ(ω)Mk
G and (1, 1, . . . 1)T , respectively,

and Theorem 11.29, we obtain

0 = anΨ(ω)Mk+n
G (1, 1, . . . , 1)T + an−1Ψ(ω)Mk+n−1

G (1, 1, . . . , 1)T + . . .

a1Ψ(ω)Mk+1
G (1, 1, . . . , 1)T + a0Ψ(ω)Mk

G(1, 1, . . . , 1)T

= anfG(k + n) + an−1fG(k + n − 1) + · · · + a1fG(k + 1) + a0fG(k) .

Thus the growth function fG satisfies the difference equation

0 = anh(k + n) + an−1h(k + n − 1) + · · · + a1h(k + 1) + a0h(k).

Using the theory of difference equation (see Section 1.2) we get

h(x) =

s∑

i=1

(βi,0 + βi,1x + βi,2x
2 + . . . βi,ti−1x

ti−1)µx
i
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where, for 1 ≤ i ≤ s, µi is a root of multiplicity ti of

g(y) = anxn + an−1x
n−1 + · · ·+ a1x + a0,

∑s
i=1 ti = n, and βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1 are n real constants, which are uniquely

determined by the values h(0), h(1), . . . , h(n − 1).
If we take into consideration that χMG

= g holds, then the roots βi, 1 ≤ i ≤ s are the
eigenvalues of MG. Thus we obtain the following theorem.

Theorem 11.30 Let G be a D0L system as in (11.10), and let MG be its growth matrix.
For 1 ≤ i ≤ s, let µi be a eigenvalue of MG of multiplicity ti such that

∑s
i=1 ti = n. Then

fG(m) =

s∑

i=1

(βi,0 + βi,1m + βi,2m
2 + . . . βi,ti−1m

ti−1)µm
i

for certain constants βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1. 2

Example 11.31 We apply the theory developed up to this point to the our D0L systems
G1, G2 and G4. In order to simplify the notation, we shall sometimes only use the indexes
1, 2 and 4 to refer to G1, G2 and G4, respectively.

Then we get
χ1(x) = det(MG1

− xE) = det(2 − x) = 2 − x .

The only eigenvalue is µ1 = 2 of multiplicity 1. Thus we get fG1
(m) = β02

m. Since
fG1

(0) = 1 = β02
0 = β0 we obtain β0 = 1 which yields fG1

(m) = 2m for m ≥ 0.
Considering G2 we have

χ2(x) = det(MG2
− xE) = det

(
−x 0
1 1 − x

)

= −x(1 − x) .

Therefore the eigenvalues of G2 are µ1 = 0 and µ2 = 1 which both are of multiplicity 1.
Thus

fG2
(m) = β1,00

m + β2,01
m.

In the sequel we shall assume that 00 = 1 (note that 00 is an indefinite expression whose
value depends on the context). Then we have

β1,0 +β2,0 = 3 = fG2
(0)

β2,0 = 2 = fG2
(1).

The solutions of this system of linear equations are β1,0 = 1 and β2,0 = 2. Consequently,

fG2
(0) = 3 and fG2

(m) = 2 for m ≥ 1.

For G4, we get

χ4(x) = det(MG4
− xE) = det









1 − x 0 0 0 0
1 1 − x 0 0 0
0 2 1 − x 0 0
1 0 0 1 − x 0
0 2 1 1 −x









= (1 − x)4(−x) .
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Thus the eigenvalues of MG4
are µ1 = 1 of multiplicity 4 and µ2 = 0 of multiplicity 1.

Therefore we get

fG4
(m) = β1,00

m + (β2,0 + β2,1m + β2,2m
2 + β2,3m

3)1m.

The constants β1,0, β2,0, β2,1, β2,2, β2,3 can be determined as the solutions of the following
of linear equations

β1,0 +β2,0 = 1 = fG4
(0)

β2,0 +β2,1 +β2,2 +β2,3 = 4 = fG4
(1)

β2,0 +2β2,1 +4β2,2 +8β2,3 = 9 = fG4
(2)

β2,0 +3β2,1 +9β2,2 +27β2,3 = 16 = fG4
(3)

β2,0 +4β2,1 +16β2,2 +64β2,3 = 25 = fG4
(4) .

We obtain
β1,0 = 0, β2,0 = 1, β2,1 = 2, β2,2 = 1, β2,3 = 0,

which leads fG4
(m) = 1 + 2m + m2 = (m + 1)2 for m ≥ 1.

We mention that the formulae given in Theorems 11.29 and 11.30 have some nice
and some bad features. One formula uses the Parikh vector of ω and growth matrix,
which both can directly be obtained from the given system, however, the computation of
fG(m) requires the calculation of the m-th power of a matrix. By the other formula, it
is easy to compute the value of the growth function for an arbitrarily given argument,
however, we note that it is hard to compute the eigenvalues of a growth matrix since they
can be complex and the degree of the characteristic function will be arbitrarily large for
arbitrarily large alphabets.

Theorem 11.32 Let G be a D0L system. Then the growth fG satisfies one of the follow-
ing conditions:
a) there is a constant c such that fG(m) ≤ c for all m
b) there are constants c1, c2 and p such that c1m

p ≤ fG(m) ≤ c2m
p for large m,

c) there are constants c1 and c2 such that cm
1 ≤ fG(m) ≤ cm

2 for large m.

Proof. We only give the proof for the case that the eigenvalues of MG are non-negative real
numbers, for a general proof (including complex roots) one has to consider the absolute
values |µ| of the eigenvalues µ of MG.

If G generates a finite language, then case a) holds obviously.
Let us now assume that G generates an infinite language. Let µ be the largest eigen-

value of MG. Then

fG(m) = (β0 + β1m + β2m
2 + · · ·+ βt−1m

t−1)µm + R(m)

where t is the multiplicity of µ and R(m) is asymptotically smaller than (β0 +β1m+ · · ·+
βt−1m

t−1)µm.
If µ > 1 holds, then fG is asymptotically equal to (β0 + β1m + · · ·+ βt−1m

t−1)µm. We
choose d such that

β0 + β1m + β2m
2 + · · ·+ βt−1m

t−1 ≤ dm



11.2. LINDENMAYER SYSTEMS WITH INTERACTION 171

for large m. Then we get

fG(m) ≤ dmµm = (dµ)m = cm
2

for large m. On the other hand β0 + β1m + · · ·+ βt−1m
t−1 > 0 for large m. Therefore, we

also have
µm = cm

1 ≤ fG(m)

for large m. Thus we have case c).
If µ = 1 holds, then fG is asymptotically equal to β0 + β1m + β2m

2 + · · ·+ βt−1m
t−1.

Then it is easy to see that case b) holds if t ≥ 2 and that a) holds if t = 1.
If µ < 1, then (β0 +β1m+β2m

2 + · · ·+βt−1m
t−1)µm tends to zero and the same holds

for R(m). Since the range of fG is the set of non-negative integers, this situation cannot
occur (since we assume that the generated language is infinite). 2

Theorem 11.32 says that we have only three different types of growth functions of D0L
systems. Thus there is no DOL system G such that fG(m) = log(m) holds. If we have
seen that the real growth of a plant is logarithmic, then we cannot take a D0L system to
model the development.

11.2 Lindenmayer Systems with Interaction

11.2.1 Definitions and Examples

It is a well-known fact that in reality other growth function also occur, for example there
are organisms with logarithmic growth. The development of such an organism cannot be
modelled by D0L systems.

In order to obtain more powerful systems one can take into consideration the context
of a cell, i. e., the rules for the development of a cell does not only depend on the cell
itself, it also depends on neighbouring cells. This reflects the biological situation much
better than the case without interaction considered in the preceding section.

Again, we model the cells by elements of an alphabet and the organisms by words.
However, we assume that the development of a cell in an organism depends on its k left
neighbours and its l right neighbours. Obviously, the first and last letters do not have
k and l neighbours, respectively. Therefore we add a new letter $ and prolong the word
by powers of $ to the right and to the left such that any letter has k left and l right
neighbours. Furthermore, we require a completeness condition to ensure that we have a
rule for any situation which can occur. Then, for any letter in a word, we have k left and
l right neighbours and a rule with respect to these neighbours. Again, the application of
rules is a purely parallel process of rewriting.

Formally we get the following concepts.

Definition 11.33 Let k and l be two non-negative integers. A 〈k, l〉 Lindenmayer system
(〈k, l〉L system for short) is a quadruple G = (V, $, P, ω) where

1. V is an alphabet, and $ is a symbol not occurring in V (used as an endmarker),
2. P is a finite set of quadruples (u, a, v, w) where

(a) u = $ru′ for some r ∈ N0 and some u′ ∈ V ∗ with |u′| = k − r,
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(b) a ∈ V ,

(c) v = v′$s for some s ∈ N0 and some v′ ∈ V ∗ with |v′| = l − s,

(d) w ∈ V ∗

and, for any triple (u, a, v) with the properties a), b) and c), there is a w ∈ V ∗ such
that (u, a, v, w) ∈ P .

3. ω is a non-empty word over V .

As usual we write (u, a, v) → w instead of (u, a, v, w). Moreover, if we consider a
〈k, 0〉L or 〈0, l〉L system, then we omit the non-existing context to the right or to the left,
and write only (u, a) → w or (a, v) → w, respectively.

Definition 11.34 Let G be a 〈k, l〉L system as in Definition 11.33.

i) Let x be a non-empty word over V and y ∈ V ∗. We say that x directly derives y
(written as x =⇒

G
y or x =⇒ y if G is understood) if the following conditions are satisfied:

– x = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,

– y = y1y2 . . . yn,

– (ui, ai, vi) → yi ∈ P where

ui =

{
$k−i+1a1a2 . . . ai−1 for 1 ≤ i ≤ k
ai−kai−k+1 . . . ai−1 for k < i

and

vi =

{
ai+1ai+2 . . . ai+l for i + l ≤ n
ai+1ai+2 . . . an$l+i−n for n < i + l

ii) The language L(G) generated by G is defined as

L(G) = {z | ω =⇒∗
G z}

where
∗

=⇒
G

denotes the reflexive and transitive closure of =⇒
G

.

Example 11.35 We consider the 〈1, 0〉L system G7 = ({a, b, c}, $, P7, c) with

P7 = {($, a) → a2, ($, b) → b, ($, c) → a, ($, c) → ba2, (a, a) → a2}
∪{(p, q) → q | (p, q) ∈ {a, b, c} × {a, b, c} \ {(a, a)}} .

First we have the derivations c =⇒ a and c =⇒ ba2. If we have a word an, then any
letters is doubled according to the rules, which leads to a2n. Starting from a we get all
words a2n

for n ≥ 0. If we have a word bam with m ≥ 1, then we replace b by b, the first
a by a, and all remaining a’s by a2. Thus we get

ba2n+1 = baa2n

=⇒ baa2n+1

= ba2n+1+1.

Therefore we obtain

L(G7) = {c} ∪ {a2n | n ≥ 0} ∪ {ba2n+1 | n ≥ 0}.
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Example 11.36 We consider the 〈1, 1〉L system G8 = ({a, b}, $, P8, ab2) with P consist-
ing of the following rules:

(u, a, b) → a2 for u ∈ {a, b, $},
(a, b, v) → b3 for v ∈ {a, b, $},
(u, z, v) → z in all other cases

Assume that we have a word anb2n. Then we have to replace the last letter a by a2, the
first letter b by b3 and the remaining letters x by x. Therefore

anb2n = an−1abb2n−1 =⇒ an−1a2b3b2n−1 = an+1b2(n+1)

for n ≥ 1, and hence

L(G8) = {anb2n | n ≥ 1}.

Example 11.37 We consider the 〈1, 0〉L system G9 = ({a, b, o, r}, $, P9, ar) with P9 con-
sisting of the following rules:

($, a) → o, (o, a) → b, (o, b) → o, (o, r) → ar,

(u, o) → a for u ∈ {a, b, o, r, $},
(u, z) → z in all other cases

We note that the system is deterministic because, for any pair (u, a), there is exactly one
rule (u, a) → w. Then we get the only derivation

ar =⇒ or =⇒ aar =⇒ oar =⇒ abr =⇒ obr =⇒ aor

=⇒ oaar =⇒ abar =⇒ obar =⇒ aoar =⇒ oabr =⇒ abbr

=⇒ obbr =⇒ aobr =⇒ oaor =⇒ abaar =⇒ obaar =⇒ . . .

We do not determine the language in detail, but we note some properties of the sequence
generated.

Fact 1: Each word of L(G9) starts with o or a.

The statement holds for the start word, and in the sequel o and a alternate as the first
letter by the rules ($, a) → o and ($, o) → a.

Fact 2: No word of L(G9) has the subword oo.

If we want to produce an o which is not in the beginning of the word, then we have
to apply the rule (o, b) → o. This requires that the word to which we apply the rule is of
the form x1obx2 for some words x1 and x2. If x1 ends on a letter different from o, then
we get x′

1aox′
2. That means, in order to produce oo as a subword in v′ with v =⇒ v′ the

word v has already to contain the subword oo. Because the start word does not contain
oo as a subword, no word of L(G9) contains oo.

Fact 3: For any words u, v ∈ {a, b, o}+ and z ∈ {a, b}∗ we have derivations ubzr
∗

=⇒
u′ozr and vazr

∗
=⇒ v′abzr for some u′ and v′ with |u′| = |u| and |v′| = |v| − 1.

We prove the statement by simultaneous induction on the length of u and v.
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Let |u| = 1. By Fact 1, u = o or u = a, we have the derivations obzr =⇒ aozr
and abzr =⇒ obzr =⇒ aozr, respectively. Thus the induction basis holds for ubzr.
Analogously we prove it for vazr.

Let |v| ≥ 2. We distinguish three cases.
Case 1: v = v1o. Then vazr = v1oazr =⇒ v′

1abzr, and |v′
1| = |v1| = |v| − 1. Therefore

the induction step is done.
Case 2: v = v1b. Then vazr = v1bazr. Now we apply the induction assumption for

v1bz
′r with z′ = az (this can be done since |v1| = |v|−1 < |v|)and get v1bz

′r
∗

=⇒ v′
1oz

′r =
v′
1oazr =⇒ v′′

1abzr and |v′′
1 | = |v′

1| = |v1| = |v| − 1.

Case 3: v = v1a. Then vazr = v1aazr
∗

=⇒ v′
1abazr by induction hypothesis. More-

over, |v′
1ab| = |v′

1|+2 = |v1|+1 = |v|. By Case 2 (with v′ = v′
1ab and |v′| = |v|), we know

that v′
1abazr = v′azr

∗
=⇒ v′′abzr with |v′′| = |v′| − 1 = |v′

1ab| − 1 = |v| − 1.
Analogously we prove the statement for |u| ≥ 2.

Now assume that in some step of the derivation we have an extension of the word
with respect to the length. By the rules, the only possibility is xor =⇒ x′aar = yar. Let
|yar| = s + 2. Now, by Fact 3, we have the following derivation

yar
∗

=⇒ y1abr
∗

=⇒ y2abbr
∗

=⇒ y3abbbr
∗

=⇒ . . .
∗

=⇒ ys−1abs−1r
∗

=⇒ absr (11.12)

where s = |y| = |yi| + i for 1 ≤ i ≤ s − 1, followed by the derivation

absr =⇒ obsr =⇒ p1ob
s−1r =⇒ p2ob

s−2r =⇒ . . . =⇒ psor =⇒ ps+1aar (11.13)

where |pi| = i for 1 ≤ i ≤ s and |ps+1| = s. Therefore we get a word of length s + 3.
This proves that L(G9) is infinite.
We note that it requires at least 2s+2 derivation steps to reach a word of length s+3

from a word of length s + 2.

Example 11.38 For any k ∈ N0 and any l ∈ N0, the context-free language

L = {anb2n | n ≥ 1} ∪ {a2nbn | n ≥ 1}

cannot be generated by a 〈k, l〉L systems. This can be seen as follows.
Assume the contrary, i. e., there is a 〈k, l〉L system G = ({a, b}, $, P, ω) for some

non-negative integers k and l such that L(G) = L.
To words anb2n and a2nbn with sufficiently large n, we can only apply rules with left

hand sides ($rak−r, a, al), (ak, a, asbl−s), (arbk−r, b, bl) and (bl, b, bs$l−s) with 0 ≤ r ≤ k
and 0 ≤ s ≤ l. We prove some facts on the rules with these left hand sides.

Fact 1: If ($rak−r, a, al) → w ∈ P , then w ∈ {a}∗, and if (bk, b, br$l−r) → v ∈ P , then
v ∈ {b}∗. Moreover, there are rules (ak, a, al) → w ∈ {a}+ and (bk, b, bl) → v ∈ {b}+.

We only give a proof for the part where a is replaced; the proof concerning b can be
given analogously.

We first show the statement for (ak, a, al).
Let n > k. Let anb2n = akan−k−lalb2n. Let (ak, a, al) → w ∈ P and let w1 and w2

be the words obtained from the first k letters a, from the subword alb2n and from the
last l letters b using some fixed rules, respectively. Then anb2n =⇒ w1w

n−k−lw2 = z. If
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w contains a as well as b, then a b occurs before an a in w2 and therefore in z which
contradict z ∈ L. If w ∈ {b}+, then wn−k−l contains at least n − k − l occurrences of
b and w2 is also in {b}∗. Therefore z contains at most |w1| occurrences of a. Because
|w1| < n − k − l for large n, we get a contradiction to z ∈ L, again. Thus (ak, a, al) → w
implies w ∈ {a}∗.

Analogously, we prove that (bk, b, bl) → v implies v ∈ {b}∗.
Let us assume that (ak, a, al) → λ is the only rule with left side (ak, a, al). Let w′

2 be
a word derivable from the subword albk and w′

3 a word derivable from bl. Then

anb2n = akan−k−lalbkb2n−k−lbl =⇒ w1w
′
2v

2n−k−lw′
3

for some v ∈ {b}∗. If v contains a b, then – as above – the word w1w
′
2 of bounded length

has to contain at least 2n−k−l
2

occurrences of a which is impossible. If (bk, b, bl) → λ is the
only rule for b in that context, then we can only obtain words w1w

′
2w

′
3, where w1 , w′

2,
and w′

3 are derivable from the subwords ak, albk, and bl, respectively, of anb2n and a2nbn.
Thus we cannot generate infinitely many words. This contradicts the infinity of L.

Thus we have a rule (ak, a, al) → as with s ≤ 1. Analogously, we show that there is a
rule (bk, b, bl) → bt with t ≥ 1.

Using these two rules we get anb2n =⇒ w1a
(n−k−l)sw′

2b
(2n−k−l)tw′

3 which implies w1 ∈
{a}∗ and w′

3 ∈ {b}∗. Thus, for r ≥ 1, ($rak−r, a, al) → w ∈ P implies w ∈ {a}∗, and
(bk, b, br$l−r) → v ∈ P implies v ∈ {b}∗.

Fact 2: If (ak, a, al) → w1 ∈ P and (ak, a, al) → w2 ∈ P , then w1 = w2, and if
(bk, b, bl) → v1 ∈ P and (bk, b, bl) → v2 ∈ P , then v1 = v2.

We prove the statement only for (ak, a, al). Let (ak, a, al) → as1 and (ak, a, al) → as2

be two rules in P with s1 < s2. Let n ≥ k + l + 2, then we have the derivations
anb2n = akaan−k−1b2n = u1a

s1u2 and anb2n =⇒ u1a
s2u2 where u1 and u2 are obtained

from ak and an−k−1b2n, respectively. Obviously, u1 = ax for some x ≥ 0 and u2 = aybk for
some y ≥ (n − k − l − 1)s2 (if we apply (ak, a, al) → as2 to the first n − k − l − 1 letters
of an−k−1b2n) and k ≥ 1. Thus we have

anb2n =⇒ ax+s1+ybk = z1 and anb2n =⇒ ax+s2+ybk = z2.

If k = 2(x+s2 +y) Then 2(x+s1 +y) < k and therefore z1 6= ak/2bk and z1 6= a2kbk which
contradicts z1 ∈ L. If 2k = x +x2 + y, then 2k > x + s1 + y. Therefore z1 6= a2kbk. Hence
we get z1 = ak/2bk. We now get 2(x+s1 +y) = k and then 4(x+s1 +y) = 2k = x+s2 +y.
Now we have s2 − s1 − 3x = 3y ≥ 3(n− k− l− 1)s2 which is impossible since s2 − s1 − 3x
is bounded whereas 3(n − k − l − 1)s2 can be arbitrarily large.

Fact 3: For sufficiently large n, the prefix ak, the subword akbl and the suffix bl of
anb2n or a2nbn generate uniquely determined words ap, ap′bq′, and bq, respectively, for
some p ≥ 0, p′ ≥ 0 q ≥ 0, and q′ ≥ 0.

The proof is analogous to that of Fact 2.

Let (ak, a, al) → as and (bk, b, bl) → bt be the only rules for (ak, a, al) and (bk, b, bl),
respectively. We note that s ≥ 1 and t ≥ 1 by Fact 1.

Thus, for sufficiently large n, we have the unique derivations

anb2n =⇒ apa(n−k−l)sap′bq′b(2n−k−l)tbq = ap+p′+(n−k−l)sbq+q′+(2n−k−l)t (11.14)
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and

a2nbn =⇒ apa(2n−k−l)sap′bq′b(n−k−l)tbq = ap+p′+(2n−k−l)sbq+q′+(n−k−l)t . (11.15)

Fact 4: There is a number n0 such that, for all n ≥ n0, any word anb2n generates only
words amb2m for some m and any word a2nbn generates only words a2m′

bm′

for some m′.

Assume the contrary, i. e., anb2n =⇒ a2mbm for some m or a2nbn =⇒ am′

b2m′

for some
m′. We only discuss the former case; the latter one can be handle analogously. By (11.14),
we get

2m = p + p′ + (n − k − l)s and m = q + q′ + (2n − k − l)t.

By an easy calculation we get

n =
p + p′ − 2q − 2q′ + k(2t − s) + l(2t − s)

4t − s
.

This is a contradiction, since the left side is unbounded, but the right side is a constant.

Fact 5: s = t = 1.

Let n be sufficiently large. By (11.14), from anb2n for sufficiently large n we derive
amb2m with m = p + p′ + (n − k − l)s. Let w = an′

b2n′

be the word which generates
am+1b2(m+1) (w has to have this form by Fact 4). By (11.14) we have

p + p′ + (n′ − k − l)s = m + 1 = p + p′ + (n − k − l)s + 1.

Thus (n′ − n)s = 1. This can only hold iff s = 1 and n′ = n + 1.
Analogously, we show t = 1.

Let anb2n =⇒ amb2m and a2nbn =⇒ a2m′

bm′

. Then we have

m = p + p′ + (n − k − l), 2m = q + q′ + (2n − k − l),
2m′ = p + p′ + (2n − k − l), m′ = q + q′ + (n − k − l).

by (11.14), (11.15) and Fact 5. By an easy calculation one gets p + p′ = q + q′ and then

m = 2m − m = q + q′ + (2n − k − l) − (p + p′ + (n − k − l) = n.

Therefore we only generate a finite language in contrast to the infinity of L = L(G).

11.2.2 Some Results on Lindenmayer Systems with Interaction

For k ∈ N0 and l ∈ N0, by L(〈k, l〉L) we denote the family of all languages generated by
〈k, l〉L systems. Further we set

L(IL) =
⋃

k≥0,l≥0

L(〈k, l〉L).

From the definitions we get directly the following statement.

Corollary 11.39 i) L(〈0, 0〉L) = L(0L).
ii) L(〈k, l〉L) ⊆ L(〈k′, l′〉L) ⊆ L(IL) for any k, k′, l, l′ ∈ N0, k ≤ k′ and l ≤ l′. 2
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First we study the relations between families of Lindenmayer languages with interac-
tion and languages of the Chomsky hierarchy.

Lemma 11.40 For any recursively enumerable language L ⊆ T ∗ there is a 〈1, 1〉L system
G such that L(G) ∩ T ∗ = L.

Proof. Let L be a recursively enumerable language. Then L = L(H) for some grammar
H = (N, T, P, S) in Kuroda normal form (see Theorem 2.19). With any production
p = AB → CD ∈ P we associate the two new letters Al,p and Br,p. We define

N ′ = {A′ | a ∈ N},
Nl = {Al,p | p = AB → CD ∈ P},
Nr = {Br,p | p = AB → CD ∈ P},
V = N ∪ N ′ ∪ Nl ∪ Nr ∪ T ∪ {F},
V ′ = V ∪ {$},
PT = {(u, a, v) → a | a ∈ T, u, v ∈ V ′},
PN = {(u, A, v) → A | A = A′ or A = Ar,p or A = Al,q for some p, q ∈ P, u, v ∈ V ′},
PN ′ = {(u, A′, v) → A | A ∈ N, u, v ∈ V ′} ∪ {(u, A′, v) → w | A → w ∈ P, u, v ∈ V ′},
Pr,l = {(u, Al,p, Br,p) → C | p = AB → CD ∈ P, u ∈ V ′}

∪{(Al,p, Br,p, v) → D | p = AB → CD ∈ P, v ∈ V ′}
∪{(u, Al,p, v) → F | u ∈ V ′, v ∈ V ′ \ {Br,p}}
∪{(u, Br,p, v) → F | u ∈ V ′ \ {Al,p}, v ∈ V ′},

P ′ = PT ∪ PN ∪ PN ′ ∪ Pr,l ∪ {(u, F, v) → F 2 | u, v ∈ V }

and consider the 〈1, 1〉L system G = (V, $, P ′, S).

Let w be a sentential form generated by H and assume that w ∈ L(G) (note that
these requirements hold for the axiom) and let w =⇒H w′ by an application of the rule
p = AB → CD ∈ P . Then we replace the occurrences of A and B to which p is applied
by Al,p and Br,p, respectively, all remaining nonterminals E by the associated E ′ and any
terminal a by a. This corresponds to a derivation step in G which yields a word w′′. To
any occurrence of a symbol E ′ in w′′ we apply (u, E ′, v) → E, to any terminal a in w′′ we
apply (u, a, v) → a, and we apply (u, Al,p, Br,p) → C and (Al,p, Br,p, v) → D. This leads
to w′. Analogously, we can prove that derivation steps in H with an application of rules
of the forms A → B or A → a or A → λ can be simulated in G. Thus any sentential
form of H belongs to L(G), too. Since L(H) is the intersection of all sentential forms of
H with T ∗, we have L(H) ⊆ L(G) ∩ T ∗.

Conversely, by arguments as above, it is easy to see that word obtained by an even
number of derivation steps in G is a sentential form of H or it contains the letter F and
that any word obtained by a odd number of derivation steps in G contains at least one
symbol of V \ (N ∪ T ). Thus L(G) ∩ T ∗ ⊆ L(H).

Therefore, L(G) ∩ T ∗ = L(H) = L. 2

Theorem 11.41 The diagram of Figure 11.7 holds.
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Figure 11.7: Relations between families of Lindenmayer languages with interaction and
languages of the Chomsky hierarchy

Proof. i) L(REG) ⊂ L(IL).
By Theorem 11.13, there exists a 0L language L which is not regular. Since L ∈ L(IL)
by Corollary 11.39, we have a language in L(IL) \L(REG). Thus it is sufficient to prove
the inclusion L(REG) ⊆ L(IL).

Assume that K ⊂ V ∗ is a regular language. Then K is accepted by a deterministic
finite automaton A = (V, Z, z0, F, δ). Let n = #(Z).

We first note that K contains a word whose length is at most n. Assume the contrary,
i. e., the shortest word w of K has a length r ≥ n + 1. Let w = a1a2 . . . ar. We consider
the states zi = δ(z0, a1a2 . . . ai) for 1 ≤ i ≤ r. We have at least n + 1 elements zi, but
only n states. Thus there are two numbers i and j, 1 ≤ i < j ≤ r such that zi = zj. By
w ∈ K, we have

δ(z0, a1 . . . ar) = δ(δ(z0, a1 . . . aj), aj+1 . . . ar) = δ(zj , aj+1 . . . ar) ∈ F .

Furthermore,

δ(z0, a1 . . . aiaj+1 . . . ar) = δ(δ(z0, a1 . . . ai), aj+1 . . . ar)

= δ(zi, aj+1 . . . ar)

= δ(zj , aj+1 . . . ar) ∈ F .

Therefore v = a1a2 . . . aiaj+1aj+2 . . . ar ∈ K and |v| = r − (j − i) < r which contradicts
the choice of w as a shortest word in K.

Analogously, we prove that, for any state z, there is a word w of length at most n with
δ(z, w) = z or there is no word v with δ(z, v) = z.

Now we construct the 〈n + 1, n〉L system H = (V, $, P, ω) where ω is one word in K
with length at most n and P consists of all rules of the form

a1) ($n+1, b1, b2b3 . . . bs$
n−s+1) → w,

where s ≤ n and w is a word of K of length at most 2n,

a2) ($n−r+1b1b2 . . . br, br+1, br+2br+3 . . . bs$
n−s+r) → λ,

where r + 1 ≤ s ≤ n

(by rules of these types we generate all words of K of length at most 2n from a word of
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length at most n),

b1) ($n+1, a0, a1a2 . . . an) → w,
where ai ∈ V for 0 ≤ i ≤ n and w = a0a1 . . . atvat+1at+2 . . . an

for some v ∈ V ∗ with |v| ≤ n, δ(z0, a0 . . . at) = δ(z0, a0 . . . atv),

b2) ($n−r+1c1c2 . . . cr, a, d1d2 . . . dn) → λ,
where 1 ≤ r ≤ n, ci ∈ V for 1 ≤ i ≤ r, di ∈ V ∪ {$} for 1 ≤ i ≤ n,

d1d2 . . . dn ∈ V s{$}n−s, r + s ≥ n

b3) (c1c2 . . . cn+1, a, d1d2 . . . dn) → a,
where ci ∈ V for 1 ≤ i ≤ n + 1, di ∈ V ∪ {$} for 1 ≤ i ≤ n,

d1d2 . . . dn ∈ V s{$}n−s, s ≥ 0

(by these rules, for a word x of length at most n + 1, i. e., x = a0a1 . . . anx′, we have a
derivation

a0a1 . . . atat+1at+2 . . . anx′ =⇒ a0a1 . . . atvat+1at+2 . . . anx′ (11.16)

where v is an arbitrary word with

δ(z0, a0 . . . at) = δ(z0, a0 . . . atv) and |v| ≤ n .) (11.17)

We now prove that L(H) ⊆ K. By definition, the start word belongs to K. Moreover,
all words generated from the start word by an application of rules of type a1) and a2)
yield a word of K, and rules of types b1), b2) and b3) cannot be applied to the start
word. Further, if x ∈ K and we apply rules of type b1), b2) and b3) to x, then

δ(z0, a0a1 . . . atat+1at+2 . . . anx′) = δ(z0, a0a1 . . . atvat+1at+2 . . . anx′)

which implies that the generated word a0a1 . . . atvat+1at+2 . . . anx′ belongs to T (A) = K,
too. Thus we produce only words of K.

Conversely, K ⊆ L(H) also holds. This can easily be proved by induction on the length
of the words of K. If w ∈ K has a length at most 2n, then w can be produced by a1) and
a2) applied to the start word. Thus the induction basis is satisfied. If w ∈ K has a length r
with r > 2n, i. e., w = e1e2 . . . en+1v, then there are integers i and j with 1 ≤ i < j ≤ n+1
and δ(z0, e1e2 . . . ei) = δ(z0, e1e2 . . . ej). Thus w′ = e1e2 . . . eiej+1ej+2 . . . en+1v belongs to
K. By induction hypothesis, w′ ∈ L(H). Now we are able to produce w from w′ by an
applications of rules of type b1), b2) and b3). Therefore w ∈ L(H).

ii) L(0L) ⊂ L(IL).
The inclusion holds by definition. Since, by Theorem 11.13, there is a regular language
R which is not in L(0L). By part i) of this proof R ∈ L(IL) \ L(0L) holds. Thus the
inclusion is proper.

iii) L(IL) and L(CF ) are incomparable.
Since L(0L) contains a non-context-free language, it follows that L(IL) as a superset of
L(0L) contains a non-context-free language.

On the other hand by Example 11.38 the context-free language

{anb2n | n ≥ 1} ∪ {a2nbn | n ≥ 1}

is not a 〈k, l〉L language for any k ∈ N0 and l ∈ N0.
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iv) L(IL) ⊂ L(RE).
In analogy to the proof that any 0L language can be generated by a phrase structure
grammar, we can show that any 〈k, l〉L language is in L(RE). Therefore L(IL) ⊆ L(RE).
The strictness of this inclusion follows from the Example 11.38.

v) L(IL) and L(CS) are incomparable.
The existence of a context-sensitive language which is not in L(IL) follows by Exam-

ple 11.38.
Now let M be a set with M ∈ L(RE) and M /∈ L(CS). Such a set exists by the

proper inclusion of L(CS) in L(RE) (see Theorem 5.3). By Lemma 11.40, there is a
〈1, 1〉L system G and a set T with L(G) ∩ T ∗ = M . If L(G) is context-sensitive, then
M ∈ L(CS) by the known closure of L(CS) under intersection by regular sets (see
Theorem 4.6). Thus L(G) /∈ L(CS). Therefore L(IL) contains a non-context-sensitive
language. 2

We now compare the families L(〈k, l〉L) with each other.

Lemma 11.42 For any k, k′, l, l′ ∈ N with k + l = k′ + l′, L(〈k, l〉L) = L(〈k′, l′〉L).

Proof. We first prove L(〈k, l〉L) = L(〈k + 1, l − 1〉L) for k ≥ 1 and l ≥ 2. Let
G = (V, $, P, ω) be a 〈k, l〉L system. Then we construct the 〈k + 1, l − 1〉L system
G′ = (V, $, P ′, ω) where P ′ consists of all rules of the form

– ($k+1, a, v) → λ where |v| = l − 1,

– (ub, a, v) → w where (u, b, av) → w ∈ P , |u| = k, |v| = l − 1, v 6= $l−1,

– (cub, a, $l−1) → w1w2 where (cu, b, a$l−1) → w1 ∈ P , (ub, a, $l) → w2 ∈ P , |c| = 1,
|u| = k − 1.

Obviously, z =⇒
G

z′ if and only if z =⇒
G′

z′. The only difference is that in G′ the first

letter is replaced by λ, the ith letter is replaced by w in G′ if and only if the (i − 1)st
letter is replaced by w in G, and the last letter is replaced by w1w2 in G′ if and only if the
last two letters are replaced by w1 and w2, respectively, in G. Therefore, L(G) = L(G′).

By an iterated application of equalities of this type, we get

L(〈k, 1〉L) = L(〈k − 1, 2〉L) = L(〈k − 2, 3〉L) = · · · = L(〈1, k〉L).

2

For k ≥ 2, we set L(kL) = L(〈1, k − 1〉L).
By Lemma 11.42, L(kL) = L(〈s, r〉L) for any s ∈ N and r ∈ N with s + r = k.

Lemma 11.43 For any k, k′, l, l′ ∈ N0 with k ≤ k′, l ≤ l′ and k + l〈k′ + l′,

L(〈k, l〉L) ⊂ L(〈k′, l′〉L).

Proof. For a proof of this lemma, we refer to [11]. 2

The following theorem relates the families L(〈k, l〉L) to each other.

Theorem 11.44 The diagram of Figure 11.8 holds.
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Figure 11.8: Relations between families of Lindenmayer languages with interaction

Proof. All inclusions and their strictnesses follow by Lemmas 11.42 and 11.43.

We now prove the existence of a language L ∈ L(〈1, 0〉L) which is not contained in
L(〈0, l〉L) for any l ≥ 1. This shows that no family of the left chain is contained in some
family of the right chain.

Let

L = {c} ∪ {a2n | n ≥ 0} ∪ {ba2n+1 | n ≥ 0}.
By Example 11.35, L = L(G7) for the 〈1, 0〉L system G7. Therefore L ∈ L(〈1, 0〉L).

Now assume that L ∈ L(〈0, l〉L) for some l ≥ 1. Let G = ({a, b, c}, $, P, ω) be the
〈0, l〉L system generating L. It is easy to see that (a, v) → wa,v ∈ P and (b, v) → wb,v ∈ P
imply wa,v ∈ a∗ and wb,v ∈ ba∗ (otherwise, e. g., a2n

, n ≥ l, would derive a word with at
least two occurrences of b). Moreover, for any v, wa,v and wb,v are uniquely determined.
E.g., if (a, al) → w1 and (a, al) → w2, then we derive w′

1 = w1w and w′
2 = w2w from a2n

with sufficiently large n where w originates from the last 2n−1 letters. Since ||w′
1|−|w′

2|| =
||w1| − |w2|| and the length between different words over {a} in L grows unbounded, we
obtain a contradiction.

Let (a, al) → ar. If r = 0, then we cannot generate words with an unbounded number
of occurrences of a. If r = 1, then the increase of the length originates only from the
first letter b and/or the last l letters such that the increase is bounded in contrast to the
structure of the words of L.

Now assume that a2n

=⇒ a2m

with m ≥ n and (b, al) → bas. Then baa2n

=⇒
basara2m

= ba2m+r+s. Thus r + s = 1 which gives r ≤ 1 which is impossible as shown
above.

Hence in all cases we got a contradiction which shows L /∈ L(〈0, l〉L).

Taking LR, by analogous arguments one can show that LR ∈ L(〈0, 1〉L) and LR /∈
L(〈k, 0〉L) for any k ∈ N which proves that no family of the right chain is contained in
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some family of the left chain.

We omit the proof of the incomparability of L(〈k, 0〉L) with L(kL) and that of
L(〈0, k〉L) with L(kL). 2

Finally, we present some results on topics which we studied in Sections 11.1.4, 11.1.5and
11.1.6 for 0L systems. We omit the exact formal definitions of adult languages and growth
functions of Lindenmayer systems with interaction. They can given by a straightforward
translation from the concepts for (deterministic) 0L systems.

We start with a characterization of adult languages of L systems with interaction.
By L(AIL) we denote the family of all adult languages which can be generated by

〈k, l〉L systems with k ∈ N0 and l ∈ N0.

Theorem 11.45 L(AIL) = {L | L ∈ L(RE) and λ /∈ L}.
Proof. Let L be an arbitrary language of L(RE) such that λ /∈ L. We consider the
〈1, 1〉L system constructed G constructed in the proof of Lemma 11.40. It is easy to see
that LA(G) = (L(G) ∩ T ∗) = L. Thus {L | L ∈ L(RE) and λ /∈ L} ⊆ L(AIL).

Let H be an arbitrary 〈k, l〉L system. Then L(H) ∈ L(RE) by Theorem 11.41. We
construct a Turing machine M which checks for a word w whether or not w derives only w
according to the rules of H (as in the case of 0L system, if w =⇒ w is the only derivation
from w, then there is exactly one rule for any letter and its context, and thus M has only to
simulate the derivation and reject if there are more rules or one does not get w). Because
Turing machines accept recursively enumerable languages, we have T (M) ∈ L(RE). Since
LA(H) = L(H)∩T (M) and L(RE) is closed under intersection (see Theorem 4.3), we get
LA(H) ∈ L(RE). Therefore L(AIL) ⊆ L(RE). Because adult languages do not contain
the empty word, we have that L(AIL) ⊆ {L | L ∈ L(RE) and λ /∈ L}. 2

By Theorem 11.41 and Theorems 11.20 and 11.45, we know that 0L systems generate
a smaller family of languages and a smaller family of adult languages than L systems with
interaction. We now show that this also holds with respect to growth functions.

Theorem 11.46 There is a deterministic 〈1, 0〉L system G such that its growth function
is not a growth function of a D0L system. More precisely, fG is not bounded by a constant
and, for any polynomial p with p(m) ≥ m for all m ≥ m0 for some m0 ∈ N,

lim
m→∞

fG(m)

p(m)
= 0 .

Proof. We consider the 〈1, 0〉L system G9 of Example 11.37. In Example 11.37, we have
shown that L(G9) is infinite. Therefore fG9

cannot be bounded by a constant.
Considering (11.12) and (11.13) we see that at least m derivation steps are necessary

in order to get a length extension of a word of length m by one. Thus we need at least
1 + 2 + 3 + · · · + m steps in order to obtain a word of length m + 1. Therefore we get

fG9

(m(m + 1)

2

)
≤ m + 1

or

fG9
(m) ≤ −1

2
+

√

1 + 8m

4
≤

√
2m.
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Therefore we get

lim
m→∞

fG9

p(m)
≤ lim

m→∞

√
2m

m
= 0 .

By Theorem 11.32, fG9
grows slower than any unbounded growth function of a D0L

system. Hence fG9
is not a growth function of a D0L system. 2

We have seen that the growth of a DIL system can be smaller than any polynomial.
However, for PDIL systems, there is a lower bound. Any unbounded growth function of a
PDIL system is bounded from below by the logarithm function. More precisely, we have
the following theorem.

Theorem 11.47 For any PDIL system G = (V, §, P, ω) with r = #(V ) and an unbounded
growth function fG,

lim
n→∞

fG(n)

logr(n)
≥ 1.

Proof. Let f : N → N such that f(t) gives the length of the tth non-empty word over V
in the lexicographic order. Since we have rn words of length n, we have

r + r2 + r3 + · · ·+ rn−1 =
rn − r

r − 1

words with a length at most n − 1. This implies f(n) = blogr(n(r − 1) + r)c.
Let ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . be the unique derivation with respect to G. Since

G is propagating, we have |wn| ≤ |wn+1| for n ≥ 0. Thus fG(n) ≥ f(n). Therefore we get

lim
n→∞

fG(n)

logr(n)
≥ lim

n→∞

f(n)

logr(n)
= lim

n→∞

blogr(n(r − 1) + r)c
logr(n)

≥ 1.

2

Finally we discuss the decidability status of some decision problems for IL systems.
Obviously, the membership problem is undecidable for IL systems. This can be seen as

follows. Let H = (N, T, P, S) be an arbitrary phrase structure grammar and w a word over
T . Then we can construct an IL system G such that L(G)∩ T ∗ = L(H). Thus w ∈ L(H)
if and only if w ∈ L(G). Because the membership problem for arbitrary phrase structure
grammars is undecidable, the membership problem for IL systems is undecidable, too.

We now improve this statement and show that the decision problems which are of
interest for IL systems are already undecidable for deterministic IL systems.

Theorem 11.48 i) The membership problem for deterministic IL systems is undecidable.
ii) The finiteness problem for deterministic IL systems is undecidable.
iii) The equivalence problem for deterministic IL systems is undecidable.

Proof. i) Let M = (X, Z, z0, Q, δ) be a deterministic Turing machine and w a word over
X. We construct the deterministic 〈2, 2〉L system G = (V ∪ Z ∪ {∗}, P, z0w

′) with

w′ =

{
w if w 6= λ
∗ if w = λ

,
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and

($$, z, ax) → z′∗
(y′y, z, ax) → z′y
(y′x′, y, za) → λ
(y′z, a, xx′) → a′







for

{
δ(z, a) = (z′, a′, L), z ∈ Z \ Q, a ∈ X ∪ {∗},
y ∈ X ∪ {∗}, x, x′, y′ ∈ X ∪ {∗, $},

(x′y, z, ax) → z′

(yz, a, xx′) → a′

}

for

{
δ(z, a) = (z′, a′, N), z ∈ Z \ Q, a ∈ X ∪ {∗},
x, x′, y ∈ X ∪ {∗, $},

(y′y, z, ax′) → a′z′

(yz, a, $$) → ∗
(yz, a, xx′) → λ






for

{
δ(z, a) = (z′, a′, R), z ∈ Z \ Q, a ∈ X ∪ {∗},
x ∈ V ∪ ∗, x′, y ∈ X ∪ {∗, $},

($$, q$$) → λ
(yq, a, xx′) → λ
(qb, a, xx′) → λ
(x′x, a, qy) → λ
(x′x, a, bq) → λ







for q ∈ Q, a, b ∈ X ∪ {∗}, x, x′y,∈ X ∪ {∗, $}

(we mention that not all combinations of letter from V ∪{∗} and $ given by the conditions
can occur, e. g. the right marker can not be followed by a symbol of V ∪ {∗}) and
(xy, a, x′y′) → a in all remaining cases.

Clearly, z0w
′ gives a description of the initial configuration (λ, z0, w) of the Turing

machine. Furthermore, it is easy to see that vzv′ =⇒ uz′u′ in G if and only if M
transforms the configuration (v, z, v′) in (u, z′, u′) as long as z ∈ Z \ Q. If q is in Q, then
in the word uqu′ we cancel the last two letters of u and the first two letters of u′ which are
in V ∪{∗}. If q has $ as the right and the left neighbour, then we cancel q. Thus starting
from uqu′ with q ∈ Q we derive the empty word. Therefore we generate the empty word
if and only if we reach a halting state from Q in M, i. e., if M stops on the input w.
Hence the decidability of membership problem for DIL systems implies the decidability
of the halting problem for Turing machine. Now Theorem 3.31 gives the undecidability
of membership problem for DIL systems.

ii) Let M = (X, Z, z0, Q, δ) be a deterministic Turing machine and w a word over X.
We construct - in analogy to the preceding proof - the deterministic 〈2, 2〉L system

G′ = (X ∪ {∗, d, d1, d2}, P ′, z0w
′ddd1),

where P ′ consist of the rules of P where we use d like a right marker as long as steps
of M are simulated and d, d1, d2 are also cancelled if a halting state is reached and the
additional rules

(xy, d1, $$) → d1d2 and (xd1, d2, $$) → d1

(again, we mention only those rules which change the letter under consideration).
If the Turing machine has performed 2n−1 or 2n steps where n ≥ 1 and the configura-

tion (u, z, v) or (u′, z′, v′) is obtained, then G′ derives in 2n− 1 or 2n the word uzvdddn
1d2

or u′z′v′dn+1
1 . Obviously, if no halting state is reached, then the language L(G′) is infinite

(since there are infinitely many tails dn
1 or dn

1d2). If a halting state obtained after a cer-
tain finite number of steps (note that M is deterministic), then after a certain number



11.2. LINDENMAYER SYSTEMS WITH INTERACTION 185

of steps the empty word is obtained because more letter are cancelled than newly intro-
duced. Thus L(G′) is infinite if and only if M does not halt on w. Thus the finiteness
problem for DIL systems is undecidable.

iii) We omit the proof and refer to [31] 2




