


Contents

1 Fundamentals 9

1.1 Sets and Multisets of Words . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Polynomials and Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Intuitive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A SEQUENTIAL GRAMMARS 21

2 Basic Families of Grammars and Languages 23

2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Iteration Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Languages as Accepted Sets of Words 57

3.1 Turing Machines versus Phrase Structure Grammars . . . . . . . . . . . . 57

3.1.1 Turing Machines and Their Accepted Languages . . . . . . . . . . . 57

3.1.2 Nondeterministic Turing Machines and Their Accepted Languages . 66

3.1.3 A Short Introduction to Computability and Complexity . . . . . . . 73

3.2 Finite Automata versus Regular Grammars . . . . . . . . . . . . . . . . . . 80

3.3 Push-Down Automata versus Context-Free Languages . . . . . . . . . . . . 87

4 Algebraic Properties of Language Families 95

4.1 Closure Properties of Language Families . . . . . . . . . . . . . . . . . . . 95

4.2 Algebraic Characterizations of Language Families . . . . . . . . . . . . . . 106

4.2.1 Characterizations of Language Families by Operations . . . . . . . 106

4.2.2 Characterizations of Regular Language Families by Congruence Re-
lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Decision Problems for Formal Languages 119

6 Descriptional Complexity of Grammars and Languages 129

6.1 Measures of Descriptional Complexity . . . . . . . . . . . . . . . . . . . . . 129

6.2 Completeness of the Measures . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Comparison of Language Families with Respect to Descriptional Complexity129

6.4 Decision Problems Related to Descriptional Complexity . . . . . . . . . . . 129

5



6 CONTENTS

7 Some Special Properties of Context-Free Languages 131
7.1 Ambiguity of Context-Free Languages . . . . . . . . . . . . . . . . . . . . . 131
7.2 Semilinearity of Context-Free Languages . . . . . . . . . . . . . . . . . . . 131

B Formal Languages and Linguistics 133

8 Some Extensions of Context-Free Grammars 135
8.1 Families of Weakly Context-Sensitive Grammars . . . . . . . . . . . . . . . 135
8.2 Index Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Tree-Adjoining Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.4 Head Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.5 Comparison of Generative Power . . . . . . . . . . . . . . . . . . . . . . . 135

9 Contextual Grammars and Languages 137
9.1 Basic Families of Contextual Languages . . . . . . . . . . . . . . . . . . . . 137
9.2 Maximally Locally Contextual Grammars . . . . . . . . . . . . . . . . . . 137

10 Restart Automata 139

C Formal Languages and Biology 141

11 Lindenmayer Systems 143
11.1 The Basic Model – 0L Systems . . . . . . . . . . . . . . . . . . . . . . . . 143

11.1.1 Two Biological Examples . . . . . . . . . . . . . . . . . . . . . . . . 143
11.1.2 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . 146
11.1.3 The Basic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.1.4 Adult Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.1.5 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.1.6 Growth Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.2 Lindenmayer Systems with Interaction . . . . . . . . . . . . . . . . . . . . 171
11.2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . 171
11.2.2 Some Results on Lindenmayer Systems with Interaction . . . . . . . 176

12 Formal Languages and DNA Molecules 187
12.1 Basics from biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12.2 Adleman’s experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.3 Splicing as an operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

12.3.1 Non-iterated splicing . . . . . . . . . . . . . . . . . . . . . . . . . . 195
12.3.2 Iterated splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.3.3 Remarks on descriptional complexity . . . . . . . . . . . . . . . . . 208
12.3.4 Splicing on Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . 212

12.4 Sticker Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

13 Membrane Systems 231
13.1 Basic Membrane Systems and Their Power . . . . . . . . . . . . . . . . . . 231
13.2 Membrane Systems with Symport/Antiport Rules . . . . . . . . . . . . . . 231



CONTENTS 7

D Formal Languages and Pictures 233

14 Chain Code Picture Languages 235
14.1 Chain Code Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.2 Hierarchy of Chain Code Picture Languages . . . . . . . . . . . . . . . . . 243
14.3 Decision Problem for Chain Code Picture Languages . . . . . . . . . . . . 247

14.3.1 Classical Decision Problems . . . . . . . . . . . . . . . . . . . . . . 247
14.3.2 Decidability of Properties Related to Subpictures . . . . . . . . . . 257
14.3.3 Decidability of ”Geometric” Properties . . . . . . . . . . . . . . . . 260
14.3.4 Stripe Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

14.4 Some Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
14.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars . . . . 271

14.5.1 Definitions and some Theoretical Considerations . . . . . . . . . . . 271
14.5.2 Applications for Simulations of Plant Developments . . . . . . . . . 275
14.5.3 Space-Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 277
14.5.4 Kolam Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

15 Siromoney Matrix Grammars and Languages 283
15.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
15.2 Hierarchies of Siromoney Matrix Languages . . . . . . . . . . . . . . . . . 290
15.3 Hierarchies of Siromoney Matrix Languages . . . . . . . . . . . . . . . . . 290
15.4 Decision Problems for Siromoney Matrix Languages . . . . . . . . . . . . . 293

15.4.1 Classical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
15.4.2 Decision Problems related to Submatrices and Subpictures . . . . . 298
15.4.3 Decidability of geometric properties . . . . . . . . . . . . . . . . . . 302

16 Collage Grammars 309
16.1 Collage Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
16.2 Collage Grammars with Chain Code Pictures as Parts . . . . . . . . . . . . 320

Bibliography 325







Chapter 12

Formal Languages and DNA
Molecules

12.1 Basics from biology

We do not want to give a precise introduction to DNA molecules from the biological and
chemical point of view. We here only mention some facts which are important for the
mutations and changes of DNA molecules and are the fundamentals for the operations
with DNA strands to perform computations or to describe evolution.

The nucleotides which form the DNA strands are molecules that consist of a base -
which is adenine, cytosine, guanine, or thymine - a sugar group and a phosphate group.
Figure ?? gives the nucleotide with the thymine base. The left part is the thymine base and
the right part gives two phosphate groups. In the sequel we shall denote the nucleotides by
A, C, G and T, depending on its base adenine, cytosine, guanine, and thymine, respectively.
The five carbon groups CH within the sugar group in the middle part are denoted by 1’,
2’, 3’, 4’ and 5’. One can see that groups 3’ and 5’ are connected to phosphate groups.

C
@@

¡¡

HN

C

CH3

O

C
¡¡

CH
@@

N CH

CH

H

O

H

CH

CH

CH

O
@@

P
¡¡¡
¡

@@

O

O
¡¡

O

O
@@

P
¡¡¡
¡

@@

O

O
¡¡

O

1’

2’ 3’

4’

5’

Figure 12.1: Diagram of a molecule with thymine base

187



188 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Thus, the phosphate groups are able to link two bases. We note that one assumes that
the connection is directed from the 5’ part to the 3’ part. Using some such links we get a
sequence of connected bases which is called a single stranded DNA molecule. An example
consisting of a thymine, a guanine and a cytosine group is shown in the upper part of
Figure 12.2; the lower part shows the single strand formed by a guanine, a cytosine and
an adenine group (note that we go from left to right in the upper part and from right to
left in the lower part to ensure the direction from 5’ to 3’).

Moreover, the leftmost C in the thymine group in Figure 12.1 has two free bonds. The
same holds for the adenine group. Therefore, the thymine group and the adenine group
can be connected via hydrogen bonds (this is an attractive force between the hydrogen
attached to an electronegative atom of a molecule and an electronegative atom of another
molecule). Furthermore, the guanine group and the cytosine group have three free bonds
each, and hence they can be connected, too. This possibility of pairing adenine with
thymine (or thymine with adenine) and guanine with cytosine (or cytosine with guanine)
is called the Watson-Crick complementarity.1 Thus we get the molecule of the form shown
in Figure 12.2. Such a molecule is a double stranded DNA molecule. However, we mention
that Figure 12.2 only gives schematic presentation of a double stranded DNA molecule;
in reality, the molecule is twisted in the three-dimensional space, i. e., it is far from the
linear structure as given in Figure ??.

We mention that the connection of the thymine and adenine group and guanine and
cytosine group are very weak. They can already be destroyed by heating to approx. 900C.
The link of the bases via the phosphate group is much stronger.

From the point of formal languages or words over an alphabet, a DNA molecule can
be described as a word of pairs

A

T
or

T

A
or

C

G
or

G

C

where we have written the components of the pair above each other. Obviously, the
double stranded DNA is already completely determined if we only know one of its single
stranded parts. By the Watson-Crick complementarity, the other single stranded molecule
as well as the connections are uniquely determined. Thus, in many cases, it is sufficient
to consider a single stranded DNA molecule which can be represented by a word over the
alphabet {A, C, G, T}.

First we give a method to extract DNA strands of a certain length from a set of DNA
strands. We first produce a gel which is put into a rectangular container. Then along one
side of the container we form some wells, e.g., by means of a comb. Then we fill a small
amount of DNA strands into the wells and add a charge at the ends of the container.
Since DNA strands are negatively charged they move through the gel from left to right.
Obviously, the speed depends on the length of the strands. Therefore taking into account
the duration and the place we can select strands of a certain length (see Figure 12.3).

We now come to some operations which change the DNA under consideration.
Figure 12.4 shows the polymerase, where in the direction from 5’ to 3’ we complete a

partial double strand to a complete double strand. The transferase is an operation where
we add in one strand in the direction from 5’ to 3’ further nucleotides.

1Other possible pairings are so weak that they have not be considered.



12.1. BASICS FROM BIOLOGY 189

3’ ¾ 5’

5’ - 3’

•
•
•
•
•
A

T

•
•
•
•
•

P
¡¡

¡¡

¡¡

¡¡
P

5’

4’

3’

2’

1’

3’

5’

•
•
•
•
•
C

G

•
•
•
•
•

P
¡¡

¡¡

¡¡

¡¡
P

•
•
•
•
•
G

C

•
•
•
•
•

P
¡¡

¡¡

¡¡

¡¡
P

3’

5’

5’

3’

Figure 12.2: Diagram of a double stranded DNA molecule

large fragments small fragments

negative
electrodes

positive
electrodes

– +-

Figure 12.3: Measuring the length of DNA molecules by gel electrophoresis

An important operation is the polymerase chain reaction. One cycle consists of three
steps. First we separate the bonds between the two strands by a heating to a temperature
near to the boiling temperature (see upper part of Figure 12.5). Then we assume that in
the solution are so-called primers which connect at appropriate positions by the Watson-
Crick complementarity. For simplicity, in Figure 12.5, we use primers for the right end of
the upper strand and the left end of the lower strand; in reality they can be somewhere in
the strand. If we cool the solution, then the primers are connected with the corresponding
ends (see the middle part of Figure 12.5). Finally, by a polymerase we can fill the missing
parts and obtain two copies of the original DNA strand (see lower part of Figure 12.5).

This cycle can be iterated. After some cycles we have drastically increased the number
of the strand we are interested in. Now there is a chance by some filtering to check whether



190 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

this strand is contained in a solution or in a tube.

5’ 3’
CGGA

GCCTCTACCT
3’ 5’

-

5’ 3’
CGGAG

GCCTCTACCT
3’ 5’

-

5’ 3’
CGGAGA

GCCTCTACCT
3’ 5’

- ... -

5’ 3’
CGGAGATGGA

GCCTCTACCT
3’ 5’

Figure 12.4: Polymerase

γ︷ ︸︸ ︷ β︷ ︸︸ ︷

︸ ︷︷ ︸
γ

︸ ︷︷ ︸
β

¡
¡

¡¡ª

@
@

@@R

denaturation
by heating

γ︷ ︸︸ ︷ β︷ ︸︸ ︷
︸ ︷︷ ︸

γ

︸ ︷︷ ︸
β

?
annealing

?
annealing

γ︷ ︸︸ ︷ β︷ ︸︸ ︷

︸ ︷︷ ︸
β−primer

γ−primer︷ ︸︸ ︷

︸ ︷︷ ︸
γ

︸ ︷︷ ︸
β

?
polymerase

?
polymerase

γ︷ ︸︸ ︷ β︷ ︸︸ ︷

︸ ︷︷ ︸
γ

︸ ︷︷ ︸
β

γ︷ ︸︸ ︷ β︷ ︸︸ ︷

︸ ︷︷ ︸
γ

︸ ︷︷ ︸
β

Figure 12.5: Polymerase chain reaction

We now consider the endonuclease which is an operation where the strand is cut at
certain places. There are some enzymes which recognize a part of the strand and its
direction and are able to cut the phosphodiester bond between some nucleotides.

In the left part of Figure 12.6 this procedure is shown for the restriction enzyme
NdeI which is produced by the bacteria Neisseria denitrificans. It has the recognition
site CATATG in the upper strand. If we take into consideration the direction, then the
recognition site in the lower part is the same. The cut is performed after the first A in



12.1. BASICS FROM BIOLOGY 191

both strands (taking into consideration the direction). The bonds between both strands
of the molecule are separated between the cuts. We obtain two new strands with some
overhangs. In this case, we speak of so-called sticky ends.

The right part of Figure 12.6 shows the same procedure for the restriction enzyme
HaeIII (isolated from the bacteria Heamophilus aegyptius) with the recognition site GGCC.
The cut is performed after the second G. In this case we obtain so-called blunt ends.

5’ 3’
CATATG

GTATAC
3’ 5’

?
NdeI

5’ 3’ 5’ 5’
CA TATG

GTAT AC
3’ 5’ 3’ 5’

5’ 3’
GGCC

CCGG
3’ 5’

?
HaeIII

5’ 3’ 5’ 3’
GG CC

CC GG
3’ 5’ 3’ 5’

Figure 12.6: Endonuclease

The endonuclease can be reversed, i. e., intuitively the two double strands obtained by
the endonuclease are again glued together which results in the original doubled stranded
molecule. More formally, two steps are performed. First, a hydrogen bond connects the
overhangs of two double strands according to the Watson-Crick complementarity. Then a
ligase is done which connects the phosphate groups. For an illustration, see Figure 12.7.

C-A T-A-T-G

| | | |

G-T-A-T A-C

-hydrogen

bonding

C-A T-A-T-G

| | | | | |

G-T-A-T A-C

-ligase
C-A-T-A-T-G

| | | | | |

G-T-A-T-A-C

Figure 12.7: Hydrogen bonding and DNA ligase

Finally, we introduce the splicing operation. It consists of a endonuclease, which cuts
two double strands according to two enzymes in such a way that the obtained overhangs
are identical in both strands. Therefore we can glue them together by a hydrogen bonds
and ligase after an exchange of the ends. Thus starting from two DNA strands we obtain
two new DNA strands. Illustrations of the splicing operation with sticky and blunt ends
are given in Figures 12.8 and 12.9, respectively.

In order to formalize the splicing operation we consider it in a more formal way. We
set

A = T, C = G, G = C, T = A,

i. e., the overlined version of a is the letter which corresponds to a by the Watson-Crick
complementarity. If p = a1a2 . . . an is a word over {A, C, G, T} which represents the upper
strand of a word, then we denote by p = a1 a2 . . . an the corresponding lower strand, where
both strands are read from left to right. Let the two double strands

α1 x1 y z1 β1

α1 x1 y z1 β1

and
α2 x2 y z2 β2

α2 x2 y z2 β2



192 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

A G C T

T C G Aα1 β1
C G C G

G C G Cα2 β2

? ?
TaqI SciNI

T C G A

A G C T
α1 β1

G C G C

C G C G
α2 β2

? ?

XXXXXXXXXXXXXXXXXXXXz

»»»»»»»»»»»»»»»»»»»»9

exchange

T C G C

A G C G
α1 β2

G C G A

C G C T
α2 β1

? ?
DNA ligase

and
hydrogen bonding

A G C G

T C G Cα1 β2
C G C T

G C G Aα2 β1

Figure 12.8: Splicing with sticky ends

A G C T

T C G A
α1 β1

G G C C

C C G G
α2 β2

? ?
AluI HaeIII

A G C T

T C G A
α1 β1

G G C C

C C G G
α2 β2

? ?

XXXXXXXXXXXXXXXXXXXXz

»»»»»»»»»»»»»»»»»»»»9

exchange

A G C C

T C G G
α1 β2

G C G A

C G C T
α2 β1

? ?
DNA ligase

and
hydrogen bonding

T C G G

A G C Cα1 β2
C C G A

G G C Tα2 β1

Figure 12.9: Splicing with blunt ends



12.2. ADLEMAN’S EXPERIMENT 193

with the recognition sites x1yz1 and x2yz2 in the upper strands and the common overhang
y be given. If we have blunt ends, then y = λ holds. Then the cutting of the two strands
leads to

α1 x1

α1 x1 y

y z1 β1

z1 β1

and
α2 x2

α2 x2 y

y z2 β2

z2 β2

and the hydrogen bonds and ligases give

α1 x1 y z2 β2

α1 x1 y z2 β2

and
α2 x2 y z1 β1

α2 x2 y z1 β1

.

Using the notation

u1 =
α1

α1

, r1 =
x1

x1y
, r2 =

yz1

z1

, u2 =
β1

β1

, v1 =
α2

α2

, r3 =
x2

x2y
, r4 =

yz2

z2

, and v2 =
β2

β2

we get that the words

u1r1r2u2 and v1r3r4v2 are transformed into u1r1r4v2 and v1r3r2u2. (12.1)

In the sequel, we shall use the latter variant to describe a splicing.

12.2 Adleman’s experiment

In this section we shall demonstrate how one can solve non-biological problems by ap-
plying the operations considered in the preceding section. We partly follow the ideas
by L. M. Adleman who was one of the first scientists solving a hard problem by easy
calculations with DNA molecules.

We regard the Hamilton path problem. It requires to find a path in a graph which
starts and ends in two given nodes and contains each node of the graph exactly once.

Let us consider the graph H shown in Figure 12.10. Obviously, H has a Hamiltonian
path which starts in the node labelled by 0 and follows the labels of the nodes in their
natural order (thus ending in the node labelled by 6).

By Theorem 3.41, we know that the Hamilton path problem is NP -complete. Hence
we cannot expect that there is an algorithm solving the Hamilton path problem in polyno-
mial time by Turing machines (or by register machines or by a programming languages).
Therefore the Hamilton path problem can be considered as a hard problem.

A very simple algorithm to find a Hamiltonian path in a graph G with n nodes or to
find that there exists no Hamiltonian path in G consists of the following steps.

1. Construct all paths in G.
2. Take only paths of length n.
3. Take only paths starting in v0 and ending in v1.
4. Take only paths containing all nodes.
We now show how we can perform the steps 1. - 3. by means of DNA molecules.
For this purpose we model the nodes by single upper DNA strands of length 20 given

in their 5’-3’ orientation. For instance we choose

node labelled by 2 corresponds to TATCGGATCGGTATATCCGA,
node labelled by 3 corresponds to GCTATTCGAGCTTAAAGCTA,
node labelled by 4 corresponds to GGCTAGGTACGAGCATGCTT.



194 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

GFED@ABC4

ÁÁ>
>>

>>
>>

>>

··)
))

))
))

))
))

))
))

))
))

))
))

))

GFED@ABC3

@@¡¡¡¡¡¡¡¡¡

µµ

GFED@ABC1oo

¥¥

GFED@ABC0 //

@@¡¡¡¡¡¡¡¡¡

55jjjjjjjjjjjjjjjjjjjjjjjj GFED@ABC6

GFED@ABC2

DDRR

GFED@ABC5oo

@@¡¡¡¡¡¡¡¡¡

Figure 12.10: Graph whose Hamiltonian path problem is solved by DNA operations by
Adleman

To model the edges we use single lower strands of length 20, too, in their 3’-5’ orientation.
Because we want to model edges we have to take into them information from the two nodes
which are connected. One simple possibility is to take the Watson-Crick complementary
of the second half of the strand modelling the start node of the edge and the first half of
the end node of the edge. Thus we obtain that the

edge from 2 to 3 is modelled by CATATAGGCTCGATAAGCTC,
edge from 3 to 4 is modelled by GAATTTCGATCCGATCCATG.

Then by hydrogen bonding and ligase the following double stranded DNA molecule

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTACGAGCATGCTT

CATATAGGCTCGATAAGCTCGAATTTCGATCCGATCCATG

can be build. Its structure is of the form

v(2) v(3) v(4)

e(2, 3) e(3, 4)

where v(i) represent the node labelled by i and e(i, j) represents the edge going from the
node labelled by i to that labelled by j. This structure can be considered as a model of
the path from 2 to 4 via 3.

Therefore we can build all paths if we put the models of nodes and edges in a tube.
Thus we have performed Step 1 of the above algorithm.

The second step requires the filtering of strands with a certain length. This can be
done by the method presented in the preceding section (see Figure 12.3).

In order to perform step 3 we can take the polymerase chain reaction by which we can
produce a lot of molecules which start and stop with a certain sequence of DNA molecules.
Then we can filter out those with this start and end sequence.

We do not discuss the methods to do the fourth step.



12.3. SPLICING AS AN OPERATION 195

All together we can produce a tube which contains with high probability a molecule
which represents a hamiltonian path, i. e., we can solve the Hamilton path problem by
means of DNA molecules and operations on it.

However, two critical remarks are necessary. First, in order to get a probability which is
very near to one, we need a very large number of molecules, at least much more molecules
as we can put in a tube. Second, the execution of the steps by the methods given above
takes some time; L. M. Adleman needs hours to solve the Hamilton path problem for
the graph H of Figure 12.10, i. e., its solving by DNA structures takes more time than
the solving by electronic computers.

On the other side, Adleman implemented its solving process by methods which only
need a number of steps which is linear in the number of nodes. This contrasts the well-
known fact that the Hamilton path problem is NP-complete (which means that we cannot
expect an polynomial algorithm for this problem if we restrict to classical deterministic
and sequential algorithms). Moreover, R. J. Lipton (see [21]) has presented a general
method which allows a polynomial DNA computation for a lot of NP-complete problems.
Therefore DNA computing can be considered as a method to solve hard problems in
polynomial time (if we have fast implementations of the DNA operations).

Note that the existence of polynomial DNA algorithms for NP-complete problems is
not surprising, since it is based on a parallelism since many molecules act in each step
(for instance, in Step 1 of our algorithm we have determined all paths in parallel). We
know that NP-complete problems can be solved in polynomial time by nondeterministic
algorithms, where the all nondeterministic chosen paths are also handled in parallel.

12.3 Splicing as an operation

In Section 12.1 we have mentioned splicing as an operation which occurs in the develop-
ment/evolution of DNA molecules. In this section, we formalize this operation and obtain
an operation on words and languages. We study the power of the splicing operation on
words, languages and language families.

12.3.1 Non-iterated splicing

We start with a formalization of the splicing such that it is an operation applicable
to words and languages and allows a definition of a derivation and a device similar to
grammars.

Definition 12.1 A splicing scheme is a pair (V,R), where

– V is an alphabet and

– R is a subset of V ∗#V ∗$V ∗#V ∗.

The elements of R are called splicing rules. Any splicing rule r1#r2$r3#r4 identifies
four words r1, r2, r3 and r4. Obviously, this can be done by an quadruple (r1, r2, r3, r4),
too. However, in the sequel, we shall consider the sets of splicing rules as languages, and
thus we prefer to present them as words over V ∪ {#, $}.



196 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Definition 12.2 i) We say that w ∈ V ∗ and z ∈ V ∗ are obtained from u ∈ V ∗ and
v ∈ V ∗ by the splicing rule r = r1#r2$r3#r4, written as (u, v) |=r (w, z), if the following
conditions hold:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2 and z = v1r3r2u2.

This definition describes the situation given in (12.1). The words r1r2 and r3r4 describe
the recognition sites of the enzymes and the splitting can be done between r1 and r2 as
well as between r3 and r4 (if we only consider the upper strand). Note that, in the case of
sticky ends, r2 and r4 have to have a common non-empty prefix. This will not be required
in the sequel, but one has to have it in mind, if one is interested in modelling splicing
which occurs in biology.

We now give a slight modification of this formalization by emphasizing the getting of
the new word w and omitting the word z which is obtained, too. As we shall see below,
this can be done because z will have some features, we are not interested in, such that we
do not take it into consideration.

Definition 12.3 i) For two words u ∈ V ∗ and v ∈ V ∗ and a splicing rule r = r1#r2$r3#r4,
we define the word w obtained from u, vand r by a simple splicing, written as (u, v) `r w,
by the following conditions:

– u = u1r1r2u2 and v = v1r3r4v2,
– w = u1r1r4v2

ii) For a language L over V and a splicing scheme (V,R), we set

spl (L, R) = {w | (u, v) `r w, u ∈ L, v ∈ L, r ∈ R}.

For two language families L1 and L2, we set,

spl (L1,L2) = {L′ | L′ = spl (L,R) for some L ∈ L1

and some splicing scheme (V,R) with R ∈ L2}.

Example 12.4 We consider the language L = {anbn | n ≥ 0} and the splicing scheme
(V,R) with V = {a, b} and R = {a#b$a#b}. First we note that the only rule r of R is
only applicable to words anbn with n ≥ 1. Let u = anbn and v = ambm be two arbitrary
words from L with m, n ≥ 1. Then we obtain

(anbn, ambm) = (an−1abbn−1, am−1abbm−1) `r anbm.

Since n and m are arbitrary positive integers, we get

spl (L,R) = {anbm | n,m ≥ 1} .

Example 12.5 For the splicing system ({a, b, c, c′}, R) with

R = {canbn#c′$c′# | n ≥ 1}

and the language
L = {c}{a, b}+{c′},



12.3. SPLICING AS AN OPERATION 197

we obtain

spl (L,R) = {c}{anbn | n ≥ 1}
since the only simple splicing is (canbnc′, cvc′) `r canbn applying the rule canbn#c′$c′#.

(We note that the other word z which is obtained by this splicing is z = cvc′c′. It
contains two times the letter c′ such that it is not of interest if we restrict ourselves to
words over {a, b, c} or in {a, b, c}∗{c′}.)

Example 12.6 Let L and L′ be two arbitrary languages over V . Further, let (V ∪{c}, R)
be a splicing scheme with

R = {#xc$c# | x ∈ L′}.
Then we get

spl (L{c}, R) = {w | wx ∈ L for some x ∈ L′}
because simple splicing is only possible if u = wxc and v = w′c for some words wx, w′ ∈ L,
and x ∈ L′. Finally, by the definition of the right quotient Dr,

spl (L{c}, R) = Dr(L,L′).

(We note that the other word z obtained by splicing is z = w′cxc which we are not
interested in since it contains two times the letter c.)

Example 12.7 We want to show that

{anbn | n ≥ 1} /∈ spl (L(REG),L(RE)),

or more precisely, that L = {anbn | n ≥ 1} cannot be obtained from a regular set by
(arbitrary) splicings. Note that, by Example 12.5, we can get {c}L from a regular set by
splicing with a context-free set.

Assume that there are a regular language K and a splicing scheme (V, R) such that
spl (K,R) = L. By the pumping lemma for regular languages (see Theorem 2.31), there
is a constant m such that any word z ∈ K with |z| ≥ m has a decomposition z = z1z2z3

with |z1z2| ≤ m, |z2| > 0, and z1z
i
2z3 ∈ K for all i ≥ 0.

By definition, there are words u = u1r1r2u2 and v = v1r3r4v2 and a splicing rule
r = r1#r2$r3#r4 ∈ R such that

(u, v) `r= u1r1r4v2 = am+1bm+1.

Obviously, u1r1 = am+1z or r4v2 = z′bm+1 for certain words z and z′, respectively. We
only discuss the former case; the latter one can be handled analogously. If we decompose
u according to the pumping lemma, we get u = z1z2z3 with z2 = at for some t ≥ 1.
Consequently,

u′ = z1z
2
2z3 = am+1+tzr2u2 = atu1r1r2u2 ∈ K.

Thus

(u′, v) = (atu1r1r2u2, v1r3r4v2) ` atu1r1r4v2 = at+m+1bm+1.

Therefore at+m+1bm+1 ∈ spl (K, R) in contrast to at+m+1bm+1 /∈ L.



198 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

In the following theorem we determine the language families spl (L1,L2) or upper and
lower bounds for these families where L1 and L2 vary over some language families from
the Chomsky hierarchy and the family of finite languages.

Theorem 12.8 The table of Figure 12.11 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = spl (L(X),L(Y )) and
Z1/Z2 if L(Z1) ⊂ spl (L(X),L(Y )) ⊂ L(Z2).

FIN REG CF CS RE
FIN FIN FIN FIN FIN FIN
REG REG REG REG/CF REG/RE REG/RE
CF CF CF RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 12.11: Relations for the families spl (L1,L2)

Theorem 12.8 can be considered as a result on the power of the splicing operation. We
see an indifferent picture. On one hand side its power is large since context-free splicing
rules applied to context-free languages give already all recursively enumerable languages.
On the other side, if we start with regular languages, then we cannot obtain such easy
languages as {anbn | n ≥ 1} (see Example 12.7) and by regular splicing rules we have
almost no change of the family.

Before we give the proof of Theorem 12.8 we present some lemmas which will be used
in the proof and are of own interest since they can be applied to other language families,
too. The first lemma follows directly from the definitions.

Lemma 12.9 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have spl (L1,L2) ⊆ spl (L′1,L′2). 2

Lemma 12.10 If L1 is closed under concatenation with symbols, then L1 ⊆ spl (L1,L2)
for all language families L2.

Proof. Let L ⊆ V ∗ be an arbitrary language in L1 and c a symbol not in V . We
set L′ = L{c} and consider the splicing system (V ∪ {c}, R) with the single element set
R = {#c$c#}. Then we obtain spl (L′, R) = L because the only possible simple splicings
are given by (uc, vc) ` u where u and v are arbitrary elements of L. 2

Lemma 12.11 If L is closed under concatenation, homomorphism, inverse homomor-
phisms and intersections with regular sets, then spl (L,L(REG)) ⊆ L.

Proof. Let L be an arbitrary language of L. Then we set L1 = L{$}L. Let

h1 : (V ∪ {$, #})∗ → (V ∪ {$})∗

be the homomorphism defined by

h1(a) = a for a ∈ V, h1($) = $, h1(#) = λ.



12.3. SPLICING AS AN OPERATION 199

Then h−1
1 (L1) consists of all words which can be obtained from words of L1 by putting

some occurrences of # between some letters of V ∪ {$}. Thus

L2 = h−1
1 (L1) ∩ V ∗{#}V ∗{$}V ∗{#}V ∗ = {w1#w2$w3#w4 | w1w2, w3w4 ∈ L}.

Let
V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V }, V ′′′ = {a′′′ | a ∈ V }.

Furthermore, we consider the homomorphism

h2 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

defined by

h2(a) = a for a ∈ V, h2($) = $, h2(#) = #, h2(a
′) = a for a′ ∈ V ′

and the regular set
K = V ∗{#}(V ′)∗{$}(V ′)∗{#}V ∗.

Then
L3 = h−1

2 (L2) ∩K = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L, w3w4 ∈ L}

is a language in L by the closure properties of L.
Now let (V, R) be a splicing scheme with a regular set of splicing rules. Using the

homomorphisms

h3 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ {#, $})∗
h4 : (V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {#, $})∗ → (V ∪ V ′ ∪ {#, $})∗

defined by

h3(a) = a for a ∈ V, h3($) = $, h3(#) = #, h3(a
′) = λ for a ∈ V,

h3(a
′′) = a for a ∈ V, h3(a

′′′) = λ for a ∈ V,

h4(a) = a for a ∈ V, h4($) = $, h4(#) = #, h4(a
′) = a for a ∈ V,

h4(a
′′) = a′ for a ∈ V, h4(a

′′′) = a′ for a ∈ V

and the regular set

K ′ = (V ′)∗V ∗{#}(V ′′)∗(V ′′′)∗{$}(V ′′′)∗(V ′′)∗{#}V ∗(V ′)∗.

We get

L4 = h4(h
−1
3 (R) ∩K ′) = {u1r1#r′2u

′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R}.

The language L3 is regular by the closure properties of L(REG).
Now we define the homomorphism

h5 : (V ∪ V ′ ∪ {#, $})∗ → (V ∪ {#, $})∗

by
h5(a) = a for a ∈ V, h5($) = λ, h5(#) = λ, h5(a

′) = λ for a ∈ V.

Then h5(L3 ∩ L4) ∈ L consists of all words of the form u1r1r4v2 and thus h5(L3 ∩ L4) =
spl (L,R) ∈ L. Therefore spl (L,L(REG)) ⊆ L. 2



200 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Lemma 12.12 If L is closed under homomorphism, inverse homomorphisms and inter-
sections with regular sets, then spl (L(REG),L) ⊆ L.

Proof. From a regular set L a set R ∈ L of splicing rules, we construct the languages

L′ = {w1#w′
2$w

′
3#w4 | w1w2 ∈ L,w3w4 ∈ L}

and
R′ = {u1r1#r′2u

′
2$v

′
1r
′
3#r4v2 | u1, u2, v1, v2 ∈ V ∗, r1#r2$r3#r4 ∈ R}

as in the proof of Lemma 12.11 and from these two sets spl (L, R) which then belongs
to L. 2

Proof of Theorem 12.8 We prove the statements row by row from left to right.

If L is a finite language, then we can only apply to words of L such rules r1#r2$r3#r4

of R where r1r2 and r3r4 are subwords of words in L. Hence we have only to consider a
finite set of splicing rules. By application of a finite set of splicing rules to a finite set of
words we only obtain a finite set. Thus spl (L(FIN),L(RE)) ⊆ L(FIN).

If we combine this result with that of Lemmas 12.10 and 12.9, for all families X ∈
{FIN, REG, CF,CS,RE}, we get

L(FIN) ⊆ spl (L(FIN),L(FIN)) ⊆ spl (L(FIN),L(X))

⊆ spl (L(FIN),L(RE)) ⊆ L(FIN)

and thus
spl (L(FIN),L(X)) = L(FIN).

By Lemmas 12.10, 12.9, and 12.12, we get

L(REG) ⊆ spl (L(REG),L(FIN)) ⊆ spl (L(REG),L(REG)) ⊆ L(REG)

which proves the first two statements of the row belonging to REG.
By Lemma 12.9, we have L(REG) ⊆ spl (L(REG),L(X)) for X ∈ {CF,CS,RE}.

Moreover, this inclusion is strict by Example 12.5 because {c}{anbn | n ≥ 1} is not a
regular language.

By the closure properties of L(CF) and L(RE) (see Section 4.1) and Lemma 12.12,

spl (L(REG),L(CF)) ⊆ L(CF) and spl (L(REG),L(RE)) ⊆ L(RE).

Moreover,
spl (L(REG),L(CS)) ⊆ spl (L(REG),L(RE)) ⊆ L(RE)

by Lemma 12.9. These inclusions are strict by Example 12.7.

The relations L(CF) = spl (L(FIN),L(CF)) = spl (L(REG),L(CF)) can be shown as
above for regular languages.

By Lemma 4.26, for any recursively enumerable language L, there are context-free
languages L1 and L2 such that L = Dr(L1, L2). As in Example 12.6 we can prove that
L ∈ spl (L(CF),L(CF)). Therefore we obtain

L(RE) ⊆ spl (L(CF),L(CF)). (12.2)



12.3. SPLICING AS AN OPERATION 201

Furthermore,
spl (L(RE),L(RE)) ⊆ L(RE) (12.3)

can be proved by constructing a grammar which generates spl (L,R) for given (recursively
enumerable) languages L and R. (We omit a detailed construction. Informally, we first
construct a grammar which generates L§L§R, where § is a new symbol which separates
the words. If a word w1§w2§r1#r2$r3#r4 is generated, we look for subwords r1r2 in w1

and r3r4in w2. In the affirmative case, the word is u1r1r2u2§v1r3r4v2§r1#r2$r3#r4. By
some cancellations we obtain the word u1r1r4v2. It is easy to see that the tasks can be
solved by nonterminals moving in the word.)

For X ∈ {CF,CS,RE}, combining (12.2), (12.3), and Lemma 12.9 gives

L(RE) ⊆ spl (L(CF),L(CF)) ⊆ spl (L(CF),L(X))

⊆ spl (L(CF),L(RE)) ⊆ spl (L(RE),L(RE))

⊆ L(RE)

which implies
spl (L(CF),L(X)) = L(RE).

By Lemma 4.27, for any recursively enumerable language L, there is a context-sensitive
language L′ such that L′ ⊆ L{c1c

n
2c3 | n ≥ 0}, and for any w ∈ L, there is an n such

that wc1c
n
2c3 ∈ L′. It is easy to see that spl (L′, {#c1$c3#}) = L. Thus L(RE) ⊆

spl (L(CS),L(FIN)). As in the case of context-free languages we can now prove that

L(RE) = spl (L(CS),L(X)) = spl (L(RE),L(X))

for X ∈ {FIN,REG,CF,CS,RE}. 2

12.3.2 Iterated splicing

Simple splicing is an operation which generates one word from two words. This situation
is similar to a derivation step in a grammar or L system where we generate one word from
one word. However, in the theory of languages we consider the reflexive and transitive
closure of the derivation relation. This corresponds to an iterated performing of derivation
steps. We now present the analogous concept for the splicing operation.

Definition 12.13 A splicing system is a triple G = (V,R,A) where
– V is an alphabet,
– R is a subset of V ∗#V ∗$V ∗#V ∗ and
– A is a subset of V ∗.

Definition 12.14 The language L(G) generated by a splicing system G is defined by the
following settings:

spl 0(G) = A,

spl i+1(G) = spl (spl i(G), R) ∪ spl i(G) for i ≥ 0,

L(G) =
⋃
i≥0

spl i(G).



202 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

The essential difference to language generation by grammars and L systems is that we
start with a set of words instead of a single word. Moreover, this start language can be
infinite.

Furthermore, we mention that splicing systems have a biological meaning. Evolution is
based on changes in the DNA strands. Such changes can be originated by splicings. Thus
the application of a splicing rule can be considered as a step in the evolution. Therefore
the elements generated by a splicing system can be considered as those DNAs which
can be obtained during an evolution from elements of a given set A by evolution steps
modelled by the splicing rules in R.

Example 12.15 We consider the splicing system

G = ({a, b}, {a#b$a#b}, {anbn | n ≥ 1}) .

By Example 12.4, we have

spl 0(G) = {anbn | n ≥ 1},
spl 1(G) = spl ({anbn | n ≥ 1}, {a#b$a#b}) ∪ {anbn | n ≥ 1}

= {arbs | r, s ≥ 1} ∪ {anbn | n ≥ 1}
= {arbs | r, s ≥ 1},

spl 2(G) = spl ({arbs | r, s ≥ 1}, {a#b$a#b}) ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1} ∪ {arbs | r, s ≥ 1}
= {arbs | r, s ≥ 1}.

Thus we get spl 2(G) = spl 1(G). This implies by induction

spl m(G) = spl (spl m−1(G), {a#b$a#b}) ∪ spl m−1(G)

= spl (spl 1(G), {a#b$a#b}) ∪ spl 1(G)

= spl 2(G)

= spl 1(G).

Therefore
L(G) =

⋃
i≥0

spl i(G) = {arbs | r, s ≥ 1},

i. e., that the iteration does not increase the power (see Example 12.4).
The situation completely changes if we consider the splicing system

G′ = ({a, b}, {a#b$a#b}, {(anbn)2 | n ≥ 1}).

We obtain

spl 1(G′) = {anbm | n,m ≥ 1} ∪ {anbnanbm | n,m ≥ 1}
∪{anbmambm | n,m ≥ 1} ∪ {anbnanbmambm | n,m ≥ 1} .

By
(anbmambm, arbrarbr) ` anbmambr



12.3. SPLICING AS AN OPERATION 203

we have anbmambr ∈ spl 2(G), but anbmambr /∈ spl 1(G).
We shall show that

L(G′) = {{a}+{bnan | n ≥ 1}∗{b}+.

We prove by induction that spl m(G′) contains only words of this form. Above we have
seen that this statement holds for spl 1(G′). The splicing of two such words

arbn1an1bn2an2 . . . bnsansbt and apbm1am1bm2am2 . . . bmkamkbq

results in
arbn1an1bn2an2 . . . bnf anf bmgamgbmg+1amg+1 . . . bmkamkbq,

which is of the same form, again. Thus, if spl m(G′) only contains such words, then this
also holds for spl m+1(G′).

It remains to prove that all such words can be obtained. We prove this by induction
on the number of changes from a to b. If we only have one change, then we are interested
in the words arbt with r, t ≥ 1. All these words are already in spl 1(G′).

From the words arbn1an1bn2an2 . . . bnsansbt with s + 1 changes and apbmambq we get
arbn1an1bn2an2 . . . bnsansbmambq with s + 2 changes.

Example 12.16 Let

G = ({a, b, c}, {#c$c#a}, {cmanbn | n ≥ 1})
where m ≥ 1 is a fixed number. Then we get

spl r(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1} for r ≥ 1,

which implies
L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1}.

We slightly extend the definition of splicing systems by allowing an intersection with
T ∗ where T is a subset of the underlying alphabet. This is analogous to the situation
in grammars where we take in the language only words over the terminal alphabet. The
following definition formalizes this idea.

Definition 12.17 i) An extended splicing system is a quadruple G = (V, T,R,A) where
H = (V,R,A) is a splicing system and T is a subset of V .

ii) The language generated by an extended splicing system G is defined as L(G) =
L(H) ∩ T ∗.

Example 12.18 Let

G = ({a, b, c}, {a, b}, {#c$c#a}, {cmanbn | n ≥ 1})
where m ≥ 1 is a fixed number. From Example 12.16, we obtain

L(G) = {ctanbn | 0 ≤ t ≤ m,n ≥ 1} ∩ {a, b}∗
= {anbn | n ≥ 1} .



204 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

We now extend Definitions 12.14 and 12.17 to language families.

Definition 12.19 For two language families L1 and L2, we define the sets Spl(L1,L2)
and ESpl(L1,L2)) as the sets of all languages L(G) generated by some splicing system
G = (V, R, A) and by some extended splicing system G = (V, T, R, A)) with A ∈ L1 and
R ∈ L2, respectively.

We now give the position of the sets Spl(L1,L2) in the Chomsky hierarchy where L1

and L2 are some families of the Chomsky hierarchy or the family of finite languages.

Theorem 12.20 The table of Figure 12.12 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = Spl(L(X),L(Y )) and
Z1/Z2 if L(Z1) ⊂ Spl(L(X),L(Y )) ⊂ L(Z2).

FIN REG CF CS RE
FIN FIN/REG FIN/RE FIN/RE FIN/RE FIN/RE
REG REG REG/RE REG/RE REG/RE REG/RE
CF CF CF/RE CF/RE CF/RE CF/RE
CS CS/RE CS/RE CS/RE CS/RE CS/RE
RE RE RE RE RE RE

Figure 12.12: Relations for the families Spl(L1,L2)

We omit the proof of Theorem 12.20. Most of the results can easily be obtained from
the proof of the following theorem which is the statement for the families ESpl(L1,L2).

Theorem 12.21 The table of Figure 12.13 holds, where at the intersection of the row
marked by X and the column marked by Y we give Z if L(Z) = ESpl(L(X),L(Y )).

FIN REG CF CS RE
FIN REG RE RE RE RE
REG REG RE RE RE RE
CF CF RE RE RE RE
CS RE RE RE RE RE
RE RE RE RE RE RE

Figure 12.13: Relations for the families ESpl(L1,L2)

Before giving the proof of Theorem 12.21 we present some lemmas which will be used
in the proof.

The first lemma is the counterpart of Lemma 12.9 which follows from the definitions,
again.

Lemma 12.22 For any language families L1,L2,L′1,L′2 with L1 ⊆ L′1 and L2 ⊆ L′2, we
have ESpl(L1,L2) ⊆ ESpl(L′1,L′2). 2



12.3. SPLICING AS AN OPERATION 205

Lemma 12.23 If a language family L is closed under concatenation with symbols, then
L ⊆ ESpl(L,L(FIN)).

Proof. Let L be an arbitrary language of L over the alphabet V , and let c be a letter
not contained in V . Then we consider the splicing system

G = (V ∪ {c}, V, {#c$c#}, L{c}).
It is easy to see that

spl 0(G) = L{c},
spl n(G) = L ∪ L{c} for n ≥ 1,

L(G) = L.

Thus L ∈ ESpl(L,L(FIN) which proves the statement. 2

Lemma 12.24 L(REG) ⊆ Espl(L(FIN),L(FIN)).

Proof. Let L be an arbitrary regular language over T ∗. Then there exists a regular
grammar G = (N, T, P, S) such that L = L(G) and all rules of P have the form X → aY
or X → a where X and Y are nonterminals and a is a terminal (see Theorem 2.28).

We construct the extended splicing system

H = (N ∪ T ∪ {Z}, T, R1 ∪R2, {S} ∪ A1 ∪ A2)

with

R1 = {#X$Z#aY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
R2 = {#X$ZZ#a | X → a ∈ P, X ∈ N, a ∈ T},
A1 = {ZaY | X → aY ∈ P, X, Y ∈ N, a ∈ T},
A2 = {ZZa | X → a ∈ P, X ∈ N, a ∈ T}.

Note that the set of splicing rules and the set of start words are finite.
Now we apply the splicing rules in the following order:

(S,Za1A1) `R1 a1A1 where S → a1A1 ∈ P

(a1A1, Za2A2) `R1 a1a2A2 where A1 → a2A2 ∈ P ,

(a1a2A2, Za3A3) `R1 a1a2a3A3 where A2 → a3A3 ∈ P ,
. . . . . .

(a1a2 . . . an−2An−2, Zan−1An−1) `R1 a1a2 . . . an−1An−1 where An−2 → an−1An−1 ∈ P ,

(a1a2 . . . an−1An−1, ZZan) `R1 a1a2 . . . an where An−1 → an ∈ P .

This can be considered as a simulation of the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . .

=⇒ a1a2 . . . an−2An−2

=⇒ a1a2 . . . an−2an−1An−1

=⇒ a1a2 . . . an−2an−1an.



206 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

This proves L = L(G) ⊆ L(H).
It is easy to see that there are no other possibilities to obtain a word of T ∗ by iterated

splicing. Therefore L(H) ⊆ L, too.
Hence any regular language L is in ESpl(L(FIN),L(FIN)). 2

Lemma 12.25 For any family L which is closed under union, concatenation, Kleene-
closure, homomorphisms, inverse homomorphisms and intersections with regular sets,
ESpl(L,L(FIN)) ⊆ L.

Proof. We omit the long and technically hard proof. A complete proof can be found in
[10]. 2

Lemma 12.26 For any recursively enumerable language L ⊆ T ∗, there is an extended
splicing system G = (V, T, R, A) with a finite set A and a regular set R of splicing rules
such that L(G) = L.

Proof. Let L be an arbitrary recursively enumerable language, and let G = (N, T, P, S)
be the phrase structure grammar such that L(G) = L. Then we construct the extended
splicing system H = (V, T, R, A) with

U = N ∪ T ∪ {B},
V = U ∪ {X,X ′, Y, Z} ∪ {Ya | a ∈ U}
A = {XBSY,ZY, XZ} ∪ {ZvY | u → v ∈ P}

{ZYa | a ∈ U} ∪ {X ′aZ | a ∈ U}

and R consists of all rules of the following forms:

1) Xw#aY $Z#Ya for a ∈ U,w ∈ U∗,
2) X ′a#Z$X#wYa for a ∈ U,w ∈ U∗,
3) X ′w#Ya$Z#Y for a ∈ U,w ∈ U∗,
4) X#Z$X ′#wY for w ∈ U∗,
5) Xw#uY $Z#vY for u → v ∈ P, w ∈ U∗,
6) #ZY $XB#wY for w ∈ T ∗,
7) #Y $XZ#.

The letters X, X ′, Y, Z and Ya for a ∈ U are used as endmarkers (more precisely, as
the first or last letter of the word. This leads to the situation that the rules 1) – 5) involve
complete words.

In the first step we have to apply a splicing rule to two words of A. If we do not take
XBSY as one of these words, the only possible simple splicing are

(ZY, XZ) `7 Z and (ZvY, XZ) `7 Zv

(where the index of ` refers to the type of the rule which is used), and in both cases there
is no splicing rule which can be applied to the resulting word. Thus we have to start with
XBSY .



12.3. SPLICING AS AN OPERATION 207

Assume that we have obtained XBwY . Then we get the following sequence of splicings
using the word obtained in the last step together with a word of A:

(XBw′aY, ZYa) `1 XBw′Ya,

(X ′aZ,XBw′Ya) `2 X ′aBw′Ya,

(X ′aBwYa, ZY ) `3 X ′aBw′,

(XZ, X ′aBw′Y ) `4 XaBw′Y.

Therefore we have performed a shift of the last letter a to the beginning of the word.
This process can be iterated such that we can get any word Xw2Bw1 where w = w1w2.
Further we see that B is used to mark the beginning of the original word w.

Without blocking the splicing the above sequence is the only possible one besides the
special situation Xw2Bw′

1uY where u is a left hand side of a production u → v ∈ P .
Then we also can apply one rule of type 5 and get

(Xw2Bw′
1uY, ZvY ) `5 Xw2Bw′

1vY.

Thus we can get the following sequence of results of splicings

XBw′
1uw2Y, . . . , Xw2Bw′

1uY, Xw2Bw′
1vY, . . . , XBw′

1vw2Y.

Therefore we have simulated a derivation step of G (besides the endmarkers).
Note that during one complete shift we can apply some rules to non-overlapping words.

This is can be done in G by some derivation steps, too.
If we finish the simulation of a terminating derivation in G, then we get a word XBwY

with w ∈ T ∗ and w ∈ L. We apply a splicing rule of type 6) and 7) and yield

(ZY, XBwY ) `6 wY,

(wY,XZ) `7 w.

Thus we have shown that L = L(G) ⊆ L(H).
Furthermore, it can be seen that other sequences of splicing rules lead to a blocking

situation and the obtained word is not a word of T ∗. Therefore L(H) ⊆ L, too. 2

Lemma 12.27 For any extended splicing system G = (V, T, R, A), L(G) is a recursively
enumerable set.

Proof. The proof can be given by constructing a corresponding phrase structure gram-
mar. We omit the detailed construction. 2

Proof of Theorem 12.21 By Lemmas 12.22, 12.24 and 12.25, we obtain

L(REG) ⊆ ESpl(L(FIN),L(FIN)) ⊆ ESpl(L(REG),L(REG)) ⊆ L(REG).

These relations imply

L(REG) = ESpl(L(FIN),L(FIN)) = ESpl(L(REG),L(FIN)).



208 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

By Lemmas 12.23 and 12.25, we get

L(CF) ⊆ ESpl(L(CF),L(FIN)) ⊆ L(CF)

which yields L(CF) = ESpl(L(CF),L(FIN)).

Analogously, we obtain L(RE) = ESpl(L(RE),L(FIN)).

In the proof of Theorem 12.8 we have shown that, for any recursively enumerable
language L, there is a context-sensitive language L′ and a regular set R of splicing rules
such that L = spl (L′, R). It is easy to see (or to prove analogously to Lemma 12.23) that
L = L(G) for the extended splicing system G = (T ∪ {c1, c2, c3}, T, R, L′).

Therefore we have L(RE) ⊆ ESpl(L(CS),L(FIN)). Together with Lemma 12.22 and
L(RE) = ESpl(L(RE),L(FIN)) we get L(RE) = ESpl(L(CS),L(FIN)).

Lemma 12.26 and 12.27 can be formulated as L(RE) ⊆ ESpl(L(FIN),L(REG)) and
Espl(L(RE),L(RE) ⊆ L(RE). By combination with Lemma 12.22, we obtain L(RE) =
ESpl(L(X),L(Y )) for X ∈ {FIN,REG,CF,CS,RE} and Y ∈ {REG,CF,CS,RE}.

2

12.3.3 Remarks on descriptional complexity

In this section we study hierarchies which can be obtained by restricting some parameters
which can be seen immediately from the (extended) splicing system.

First we define the parameters or measures which we shall consider and the corre-
sponding language families.

Definition 12.28 i) For a splicing system G = (V, R,A) or an extended splicing system
G = (V, T, R, A) we define the complexity measures r(G), a(G) and l(G) by

r(G) = max{|u| | u = ui for some u1#u2$u3#u4 ∈ R, 1 ≤ i ≤ 4},
a(G) = #(A),

l(G) = max{|z| | z ∈ A}.

ii) For a language family L and n ≥ 1 and m ∈ {a, l}, we define the families Ln(r,L)
and Ln(m,L) as the set of languages L(G) where G = (V, R, A) is a splicing system with
r(G) ≤ n and A ∈ L and with m(G) ≤ n and R ∈ L, respectively.

iii) Analogously, for m ∈ {r, a, l}, we define the sets Ln(em,L) taking extended splicing
systems (instead of splicing systems).

r(G) is called the radius of G since it gives the maximal neighbourhood of the place
of splitting which is involved in the splicing. The other two measures concern the size of
the (finite) set of start words where the size is measured by the cardinality of the set or
the maximal length of words in it.

As a first result on the descriptional complexity of splicing systems we show that we
obtain an infinite hierarchy between the classes L(FIN) and Spl(L(FIN),L(FIN)) with
respect to the radius.



12.3. SPLICING AS AN OPERATION 209

Theorem 12.29 For any n ≥ 1,

L(FIN) ⊂ Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN))

and
Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)).

Proof. All inclusions follow by definition and the construction in the proof of Lemma 12.23.
In order to prove that the inclusion L(FIN) ⊆ L1(r,L(FIN)) is proper, we consider

the splicing system
G = ({a}, {a#$#a}, {a})

for which

spl i(G) = {a, a2, . . . , a2i} ,

L(G) = {a}+

hold (the statement on spl i(G) can easily be proved by induction on i; the only new
words in spl i+1(G) are obtained by (a2i

, ak) ` a2i+k where 1 ≤ k ≤ 2i) which generates
an infinite language and satisfies r(G) ≤ 1.

We now prove that Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)) for n ≥ 1, which implies the
strictness of Ln(r,L(FIN)) ⊂ Spl(L(FIN),L(FIN)), too.

For n ≥ 1, let
Ln = {a2nb2namb2na2n | m ≥ 2n + 1}.

The splicing system

Gn = ({a, b}, {an+1#an$an+1#an}, {a2nb2na2n+2b2na2n})

satisfies r(Gn) = n + 1. Let

(u1r1r2u2, v1r3r4v2) ` w, u1r1r2u2 = a2nb2nasb2na2n, v1r3r4v2 = a2nb2natb2na2n

for some integers s, t ≥ 2n + 1. Since r1r2 = r3r4 = a2n+1, in both word we have to
perform the split in the inner part am with m ≥ 2n+1 which leads to w = a2nb2narb2na2n

with 2n + 1 ≤ r ≤ s + t− 2n− 1. Because we start with a word where the inner part has
the length 2n + 2 we can produce by iterated applications any length in the inner part.
Therefore L(Gn) = Ln. Thus Ln ∈ Ln+1(r,L(FIN)).

Now let us assume that Ln = L(G) for some splicing system G = ({a, b}, R, A) with
A ∈ L(FIN) and r(G) ≤ n. Let p = r1#r2$r3#r4 be a splicing rule of R. Then |r1r2| ≤ 2n.
We apply p to the words u = u1r1r2u2 = a2nb2narb2na2n and v = v1r3r4v2

Let r1r2 ∈ {a}+. Then we can apply p by splitting the prefix a2n of u. We get the
word w1 = u1r1r4v2. Since w1 has to be an element of L(G) and therefore of Ln and u1r1

contains only a’s and r4v2 = z2b
2nakb2na2n for some z2 ∈ {a}∗ and some k ≥ 2n + 1. If

we now apply p to u and v by splitting the suffix a2n of u, we get

w2 = a2nb2nak′b2nz1z2b
2nakb2na2n ∈ L(G)

which does not belong to Ln in contrast to L(G) = Ln.



210 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

In the other cases, i. e., r1r2 is contained in {a}+{b}+ or {b}+ or {b}+{a}+, we also
find two different places where r can be used in u and at least one of these words does
not belong to Ln.

Hence we have shown that Ln cannot be generated by a splicing system G with
r(G) ≤ n.

This yields Ln(r,L(FIN)) ⊂ Ln+1(r,L(FIN)). 2

The situation changes completely if we switch to another family L as can be seen from
the following theorem where the hierarchies collapse at the first level.

Theorem 12.30 For L ∈ {L(REG),L(CF),L(RE)} and n ≥ 1, Ln(r,L) = L.

Proof. Let L ∈ {L(REG),L(CF),L(RE)}.
For a language L ∈ L and L ⊆ V ∗, we consider the splicing system

G = (V ∪ {c}, {#c$c#}, L)

with c /∈ V . Then the splicing rule cannot be applied which yields spl i(G) = L and
therefore L(G) = L. Hence

L ⊆ L1(r,L). (12.4)

Furthermore, by definition and Theorem 12.20 we have

Ln(r,L) ⊆ Lm(r,L) ⊆ L(L,L(FIN)) = L (12.5)

for m ≥ n. From (12.4) and (12.5) we get the statement of the lemma. 2

We now investigate the hierarchies obtained for the measures related to the size of the
set of start words in the case of extended systems.

Theorem 12.31 For any n ≥ 1, Ln(ea,L(REG)) = L(RE).

Proof. By definition and Theorem 12.21, for any n ≥ 1,

L1(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG)) = L(RE).

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L1(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T, R, A)
with a finite set A = {w1, w2, . . . , wn}. If n = 1, then L ∈ L1(ea,L(REG)). If n ≥ 2 we
construct the extended splicing system

G′ = (V ∪ {c, c′}, T, R′, {w})

with two additional letters c and c′,

R′ = R ∪ {#c′c$c#c′, #c$c′#, #c′$c#}

and
u = c′cw1cw2cw3c . . . cwncc′.

Let i be an integer with 1 ≤ i ≤ n. We have the following sequence of splicings



12.3. SPLICING AS AN OPERATION 211

(u, u) ` c′ using #c′c$c#c′,
(u, c′) ` c′cw1cw2c . . . cwi−1cwi = ui using #c$c′#,
(c′, ui) ` wi using #c′$c#.

Thus we have wi ∈ spl 3(G′) for 1 ≤ i ≤ n. Taking these words and the rules of R ⊂ R′

we can generate any word of L(G) and therefore L(G) ⊆ L(G′).
If we apply a rule r1#r2$r3#r4 ∈ R to a word w, then w = u1r1r2u2 or w = u1r1r2u2cx2

or w = x1cu1r1r2u2cx2 or w = x1cu1r1r2u2 for some words u1, u2 ∈ V ∗ and x1, x2 ∈
(V ∪ {c, c′})∗. The same situation holds with respect to the second word w′ containing
r3r4. We discuss now the case that w is of the third type and w′ is of the second type, i. e.,
w = x1cu1r1r2u2cx2 and w′ = v1r3r4v2cy2. Then we get (w, w′) ` x1cu1r1r4v2cy2 which
corresponds to a splicing of two words over V neighboured by c. Hence any generation of
a word over V can be obtained by a first phase using only rules from R′ \R and yielding
words from A and a second phase using only rules of R and yielding words of L(G). Hence
L(G′) ⊆ L(G). 2

Theorem 12.32 For any n ≥ 2, L1(el,L(REG)) ⊂ Ln(el,L(REG)) = L(RE).

Proof. By definition and Theorem 12.21, for any n ≥ 2,

L2(ea,L(REG)) ⊆ Ln(ea,L(REG)) ⊆ L(L(FIN),L(REG)) = L(RE).

Therefore it is sufficient to prove that any recursively enumerable language L is contained
in L2(ea,L(REG)).

Let L ∈ L(RE). Then L = L(G) for some extended splicing system G = (V, T, R, A)
with a finite set A = {w1, w2, . . . , wn}. For any i, 1 ≤ i ≤ n, let ci and c′i be two new
symbols. We set

G′ = (V ∪
n⋃

i=1

{ci, c
′
i}, T, R′, A′)

with

A′ = {cia | 1 ≤ i ≤ n, a ∈ V } ∪
n⋃

i=1

{ci, c
′
i} ,

Ri = {cix#$ci#a | x, xa are prefixes of wi, a ∈ V }

∪
n⋃

i=1

{ciwi#$#c′i, #ci$ci#wic
′
i, wi#c′i$c

′
i#} ,

R′ = R ∪
n⋃

i=1

Ri .

Let wi = ai,1ai,2 . . . ai,ri
. We have the following splicings

(ciai,1, ciai,2) ` ciai,1ai,2 using ciai,1#$ci#ai,2,
(ciai,1ai,2, ciai,3) ` ciai,1ai,2ai,3 using ciai,1ai,2#$ci#ai,3,
. . . . . . . . . . . .

(ciai,1ai,2 . . . ai,ri−1, ciai,ri
) ` ciai,1ai,2 . . . ai,ri

using ciai,1ai,2 . . . ai,ri−1#$ci#ai,ri
.



212 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Therefore ciwi is obtained. We continue by

(ciwi, c
′
i) ` ciwic

′
i using ciwi#$#c′i,

(ci, ciwic
′
i) ` wic

′
i using #ci$ci#wic

′
i,

(wic
′
i, c

′
i) ` wi using wi#c′i$c

′
i#.

Thus we get wi for 1 ≤ i ≤ n. Using the splicing rules from R we can now generate all
words of L(G) = L. Thus L ⊆ L(G′).

Since any start word contains at least one symbol ci or c′i, we have to cancel these
symbols at a certain step. These cancellations are only possible if – besides the endmarkers
ci and c′i – a word wi ∈ A is produced. If we apply rules from R before ci and c′i have
been cancelled, then the word – besides the endmarkers – is a prefix of wi and we can
generate from it wi or it is not a prefix of wi and there is no continuation which cancels
the endmarkers. Thus the above presented steps by splicing are the only possible ones,
Hence L(G′) ⊆ L, too.

Obviously, if we generate a language L ⊂ T ∗ by a system G, where the maximal
length of the axioms is 1, then the set of axioms has to contain at least one letter a of
T . Then a ∈ L(G). However, there are (finite) recursively enumerable sets which contain
only words of length greater than 2. Thus L1(el,L(REG)) ⊂ L(RE) which proves the
statement. 2

12.3.4 Splicing on Multisets

The theory developed up to now has some bad features. First, we have considered only the
operation `R which regards only one of the two words produced by the splicing. Second,
the derivation process by splicing has been studied as a sequential process, i.e., in any
step we applied one splicing rule to two words. In nature, splicings occur as a parallel
process, i.e., some rules are applied in parallel. Third, by definition the words taken for
some splicing did not vanish, they can be used later again. Thus one supposes that, for
any of the start words and the generated words, an (at least potentially) infinite number
of copies is present. This does not reflect reality. Therefore we now modify the concept
in order to cover all these aspects.

For two words w and v and a splicing rule p = u1#u2$u3#u4 such that w = w1u1u2w2

and v = v1u3u4v2, we write
[w, v] =⇒

p
[w′, v′]

where w′ = w1u1u4v2 and v′ = v1u3u2w2.
Let [w, v] =⇒

p
[w′, v′] and a ∈ V . From the definitions, we obtain immediately

l([w, v]) = l([w′, v′]) and #a([w, v]) = #a([w
′, v′]). (12.6)

Definition 12.33 A multiset splicing system (MSS for short) is a triple G = (V, P, M)
where
– V is an alphabet,
– P is a finite set of splicing rules over V such that, for any rule r1#r2$r3#r4 ∈ P ,

ri 6= λ for 1 ≤ i ≤ 4, and
– M is a finite multiset over V .



12.3. SPLICING AS AN OPERATION 213

Note that, in this section, we require that all words r1, r2, r3, and r4 occurring in
splicing rules have to be non-empty. Especially, this implies that single letters cannot be
spliced.

Definition 12.34 For two multisets M = [w1, w2, . . . , wn] and M ′ = [v1, v2, . . . , vn] of
words over V and a set P of splicing rules over V , we define

• a sequential derivation step M =⇒
s

M ′ by [w1, w2] =⇒
p

[v1, v2] and wi = vi for
3 ≤ j ≤ n for some p ∈ P and some appropriate order of the elements in M
and M ′,

• a maximally parallel derivation step M =⇒
mp

M ′ by [w2i−1, w2i] =⇒
pi

[v2i−1, v2i] for

1 ≤ i ≤ k ≤ n
2

and wi = vi for 2k+1 ≤ j ≤ n for some pi ∈ P and some appropriate
order of the elements in M and M ′, and by the requirement that there is no multiset
[w,w′] ⊆ [w2k+1, w2k+2, . . . , wn] to which a splicing rule p ∈ P can be (successfully)
applied,

• a strongly maximally parallel derivation step M =⇒
smp

M ′ by M =⇒
mp

M ′ for some k

(as in the preceding item) and there is no M ′′ with M =⇒
mp

M ′′ for some k′ > k.

As usually, by
∗

=⇒
s

,
∗

=⇒
mp

, and
∗

=⇒
smp

, we denote the reflexive and transitive closures of

=⇒
s

, =⇒
mp

, and =⇒
smp

, respectively.

Definition 12.35 We define the sequential, maximally parallel and strongly maximally par-
allel multiset languages mL(G, s), mL(G,mp) and mL(G, smp) generated by G as

mL(G, s) = {K | M ∗
=⇒
s

K},
mL(G,mp) = {K | M ∗

=⇒
mp

K},
mL(G, smp) = {K | M ∗

=⇒
smp

K}.

Example 12.36 We consider the multiset splicing system

G = ({a, b, c, d}, {r1, r2, r3},M)

with

r1 = a#b$d#d ,

r2 = b#b$d#d ,

r3 = b#b$c#d ,

M = [ab, abb, cd, cdd] .

By a sequential application of r1 we obtain from M the multisets

M1 = [ad, cdb, abb, cd] and M2 = [ad, cdbb, ab, cd] ,

and by applications of r2 and r3 we get

M3 = [abd, cdb, ab, cd], M4 = [abd, cb, ab, cdd] and M5 = [abdd, cb, ab, cd],



214 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

respectively. We can apply only r3 to M1, and this is possible for two different pairs of
M1. These applications yield

M6 = [abd, cb, ad, cdb] and M7 = [abdb, cb, ad, cd].

We can only apply r3 to M2 and obtain

M8 = [cdbd, cb, ad, ab].

No rule can be applied to M3. Further, r1 can be applied to two different pairs of M4,
which gives M6 and M8,again, and no other rule can be applied to M4. The only rule
which can be applied to M5 is r1, and its application to M5 yields M7. Since M6, M7 and
M8 do not allow the application of some rule, we have

mL(G, s) = {M, M1,M2,M3,M4,M5,M6,M7, M8} .

We consider now the maximally parallel mode of derivation. If we apply r1 to abb
and cdd, then there is no rule which can be applied to ab and cd. Thus this derivation
is maximally parallel and gives M2. M2 only allows the application of r3; and since its
application is a maximally parallel derivation step, we get M8.

If we apply r1 to ab and cdd, then we can apply r3 to abb and cd, too, and obtain M6,
to which no rule can be applied.

If we apply r2 to M , then abb and cdd are involved and there is no rule which can be
applied to ab and cd. Thus this derivation is maximally parallel and gives M3, and no
further derivation is possible. If we apply r3 to M , this yields M5 and M6 in a maximally
parallel way. Since M5 allows only the applicability of r1 resulting in M7, and no rule can
be applied to M6, M7, and M8, we get

mL(G,mp) = {M,M2,M3,M5,M6,M7,M8} .

Since there is a parallel derivation step which involves all four words of M , this is the
only strongly maximally parallel derivation from M . Therefore

mL(G, smp) = {M,M6}.
For Y ∈ {s,mp, smp}, we denote by mL(Y ) the family of all languages mL(G, Y )

which can be generated by a multiset splicing system G in the derivation mode Y . If we
restrict to multiset splicing systems G = (V, P,M) with a multiset M of cardinality n, we
use the notation mLn(Y ).

Lemma 12.37 For a multiset splicing system G = (V, P, M), a ∈ V , Y ∈ {s,mp, smp},
and any K ∈ mL(G, Y ),

#(K) = #(M), l(K) = l(M), and #a(K) = #a(M).

Proof. The assertions immediately follow from (12.6) and from the fact that any splicing
rule p has to be applied to two words and yields two words. 2

In the following, we compare the language classes generated in the different derivation
modes, mLn(Y ), Y ∈ {s,mp, smp}.



12.3. SPLICING AS AN OPERATION 215

Lemma 12.38 For two integers n and m, m 6= n, and two derivation modes Y ∈
{s,mp, smp} and Y ′ ∈ {s,mp, smp}, mLn(Y ) and mLm(Y ′) are incomparable.

Proof. Let L be a set of multisets in mLn(Y ). Then #(K) = n for any multiset K of L.
Analogously, #(K ′) = m for any multiset K ′ of some L′ ∈ mLm(Y ′). Thus L /∈ mLm(Y ′)
and L′ /∈ mLn(Y ). 2

Lemma 12.39 i) For n ∈ {1, 2, 3}, mLn(s) = mLn(mp) = mLn(smp).
ii) For n ≥ 4, mLn(mp) and mLn(smp)are both incomparable to mLn(s).
iii) For n ≥ 5, mLn(mp) is not contained in mLn(smp).
iv) For n ≥ 6, the classes mLn(s), mLn(mp), and mLn(smp) are pairwise incompa-

rable.

Proof. i) If n = 1 then no application of splicing rules is possible, and therefore the
statement is true. If n = 2 or n = 3, then exactly two elements are involved in a splicing
rule in all the derivation modes which implies the statement.

ii) We give the proof for n = 4. In order to obtain a proof for n ≥ 5 we proceed as
follows. If L is a language with the desired properties and four words in the initial set
and G is a multiset splicing system generating L, then we extend the alphabet by n− 4
letters a1, a2, . . . , an−4 and add these letters to the initial multiset; since we cannot apply
splicing rules to these new words in the initial set,

M ′ ∈ mL(G, Y ) if and only if M ′ ∪ {a1, a2, . . . , an−4} ∈ mL(G′, Y )

for any Y ∈ {s, mp, smp}. Thus the non-inclusions for n = 4 also hold for n ≥ 4.
a) First we prove that mLn(mp) and mLn(smp) are not contained in mLn(s). Let

G = ({a, b}, {a#b$b#a}, [ab, ab, ba, ba]).

Then

[ab, ab, ba, ba] =⇒
mp

[aa, aa, bb, bb] and [ab, ab, ba, ba] =⇒
smp

[aa, aa, bb, bb] .

Since there is no rule applicable to elements of [aa, aa, bb, bb], we obtain

mL(G,mp) = mL(G, smp) = {[ab, ab, ba, ba], [aa, aa, bb, bb]} .

On the other hand, since a sequential application of a splicing rule changes at most
two elements, the derivation [ab, ab, ba, ba] =⇒

s
[aa, aa, bb, bb] is impossible as well as

[aa, aa, bb, bb] =⇒
s

[ab, ab, ba, ba]. Therefore mL(H, s) 6= mL(G,mp) for any MSS H.

b) Now we show that neither mLn(mp) nor mLn(smp) contain mLn(s). Let

G = ({a, b, c, d, e, f, g, h}, {a#b$c#d, e#f$g#h}, [ab, cd, ef, gh]).

Then
mL(G, s) = {M0,M1,M2,M3},

where
M0 = [ab, cd, ef, gh], M1 = [ad, cb, ef, gh], M2 = [ab, cd, eh, gf ],



216 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

M3 = [ad, cb, eh, gf ].

Let us assume that mL(G, s) = mL(H, Y ) for some H = ({a, b, c, d, e, f, g, h}, P, M) and
Y ∈ {mp, smp}.

We only discuss the case that M = M0, we other cases lead analogously to contradic-
tions. To obtain the word ad without also obtaining ah or af , P needs to contain the
rule a#b$c#d. Similarly, to obtain eh, P must contain e#f$g#h. This means that

M0 =⇒Y M3

is the only possible derivation step from M0. To obtain M1 and M2 from M3 in any way,
P needs to contain the a#d$c#b and e#h$g#f , but then the only possibility is

M3 =⇒Y M0

which means that mL(G, s) cannot be generated by any MSS H in the maximally parallel,
or in the strongly maximally parallel modes.

iii) We only give the proof for n = 5, the modifications for n ≥ 6 are similar to that
of point ii).

Consider the MSS

G = ({a, b, c, d, e, f, g, h, i, j}, P, [ab, cd, ef, gh, ij])

with
P = {a#b$c#d, c#d$e#f, a#b$e#f, c#d$g#h, c#d$i#j}.

This system generates the following five multisets in the maximally parallel mode:

M0 = [ab, cd, ef, gh, ij], M1 = [ad, cb, ef, gh, ij], M2 = [ab, cf, ed, gh, ij],

M3 = [af, ch, eb, gd, ij], M4 = [af, cj, eb, gh, id].

Let us assume that H = ({a, b, c, d, e, f, g, h, i, j}, R, M) with some set R of splicing rules
and some multiset M satisfies

mL(H, smp) = mL(G,mp) = {M0,M1,M2,M3,M4} .

Let us observe an important property of the language mL(G,mp). It is impossible to
choose two multisets Mi and Mj of multisets from M1, M2, M3, and M4 in such a way
that Mi =⇒

smp
Mj or Mj =⇒

smp
Mi holds (in fact, this is true also for the relation =⇒

mp
).

To see this, consider for example M1 and M2. To obtain the word ab ∈ M2 from M1,
the system would need the rule a#d$c#b, but this rule would also produce cd 6∈ M2. Or
to obtain ad ∈ M1 from M2, the rule a#b$e#d is needed, but this would also produce
eb 6∈ M1.

Now let us try to construct the MSS H. We distinguish three cases for the axiom M
of H.

Case 1. M = M0. To derive M1 or M2, the system needs only one rule, a#b$c#d or
c#d$e#f , respectively, while to derive M3 or M4, it needs two rules, a#b$e#f, c#d$g#h
or a#b$e#f, c#d$i#j, respectively. This means that in the strongly maximally parallel
derivation mode, the multisets of the language mL(G,mp) can not be derived from M



12.3. SPLICING AS AN OPERATION 217

alone because in the strongly maximal parallel mode we can not apply only one rule when
it would be possible to apply two. As a consequence of this statement and the fact that
no two multisets of M1, M2, M3, and M4 can be used to derive one from the other, we
can conclude that M0 can not be the axiom of H.

Case 2. M = Mi, i ∈ {1, 2}. If M = M1, then the rule a#d$c#b can be used to
derive M0, and no other multisets can be derived from M1 in one step. The same holds
for M2, but we need to use the rule c#f$e#d to reach M0. From M0 it is impossible
to derive all three remaining multisets in one strongly maximally parallel derivation step
each, because, as we already have seen in Case 1 above, to reach M3 and M4 we need steps
which use two rules, while to reach M1 or M2 we need only one rule. Other combinations
are also impossible because of the property of mL(G,mp) mentioned above; that is, the
impossibility of deriving any one of M1, M2, M3, or M4 from any other. This means that
Mi, i ∈ {1, 2} can not be the axiom of H.

Case 3. M = Mi, i ∈ {3, 4}. The reasoning is similar to the reasoning of Case 2
above. Starting from M3 (or M4), only M0 can be derived using a#f$e#b, c#h$g#d (or
a#f$e#b, c#j$i#d). But it is impossible to reach all remaining multisets from M0 in
one step each as we have already seen above, and no two multisets of M1, M2, M3, and
M4 can be used to derive one from the other, so M = Mi, i ∈ {3, 4} can not be the axiom
of H.

Considering these three cases, we can conclude that it is not possible to get mL(G,mp)
by any MSS H in the strongly maximally parallel mode of derivation.

iv) Again, we only give the proof for n = 6, the modifications for n ≥ 7 are left to the
reader. By points ii) and iii), it is sufficient to show that mLn(smp) is not contained in
mLn(mp).

Consider the MSS

G = ({e, f, g, h, i, j, k, l}, {e#f$g#h, i#j$k#l, e#f$i#j, e#h$i#l}, [ef, gh, ij, kl, ef, ij])

which in the strongly maximal parallel mode generates the following three multisets:

M0 = [ef, gh, ij, kl, ef, ij], M1 = [eh, gf, il, kj, ej, if ], M2 = [el, gf, ih, kj, ej, if ].

(In the first derivation step we apply in parallel the first three rules which is the only
possible derivation step in the smp mode yielding M1 from the axiom M0, now the fourth
rule is the only rule applicable to M1, and this gives M2 to which no rule can be applied.)

Let us assume that H = ({e, f, g, h, i, j, k, l}, P, M) with some set P of splicing rules
and some initial multiset M satisfies

mL(H,mp) = mL(G, smp) = {M0,M1,M2} .

Let us try to construct H. We distinguish three cases for the axiom M of H.
Case 1. M = M0. M0 =⇒

mp
M2 is impossible since the generation of el requires the

combination of ef and kl which generates kf , too, and kf /∈ M2. Therefore we have
the derivation M0 =⇒

mp
M1 and it is easy to see that this requires the rules e#f$g#h,

i#j$k#l and e#f$i#j. Then we also have M0 =⇒
mp

[ej, gh, if, kl, ej, if ], and thus we can

generate a multiset not in mL(G, smp) which gives a contradiction.



218 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Case 2. M = M1. As above, we can show that M2 =⇒
mp

M0 is impossible, because

obtaining ef would also yield gl, therefore M1 =⇒
mp

M0 holds which means that P needs

to contain the rules e#h$g#f, i#l$k#j, e#j$i#f . However, then M1 =⇒
mp

M2 is impos-

sible since th rules above would also change the words ej, if . Since M0 =⇒
mp

M2 is also

impossible (see Case 1), we can conclude that mL(G, smp) can not be generated from
M1.

Case 3. M = M2. Since M2 =⇒
mp

M0 is impossible, again, we need the derivation

M1 =⇒
mp

M0. As in Case 2 we can show that this implies that M2 =⇒
mp

M1 cannot hold.

Therefore mL(G, smp) can neither be generated from M2, and this concludes our proof.
2

Besides comparisons of the generative power, one can also discuss decision problems.
However, there are trivial answers with respect to the emptiness problem and finiteness
problem, since all the considered types of languages are non-empty and finite. Therefore
one can list all elements of the generated language and can answer the membership prob-
lem and the universality problem (given a multiset splicing system G = (V, P,M), decide
whether or not all multisets M ′ with words of

⋃l
i=0(M)V i and #(M ′) = #(M) can be

generated). It remains an open problem to discuss the complexity of the membership and
universality problem.

12.4 Sticker Systeme

In this section the basic operation is polymerase, i.e., we glue together some parts of
double strands according to the Watson-Crick complementarity; e. g. from the pieces

AACGTAGCGATTT

CATCGCTAAACCGG
and

GGCCAATAGGGAAACC

TTATCCCT

we obtain the double strand

AACGTAGCGATTTGGCCAATAGGGAAACC

CATCGCTAAACCGGTTATCCCT

In order to describe the double strands with overhangs we introduce the following
notations. Let V be an alphabet, and let % ⊂ V × V be a symmetric relation (i.e.,
(a, b) ∈ % implies (b, a) ∈ % 2). We say that a and b are complementary if (a, b) ∈ %.

We set [
V

V

]

%

= {
[a

b

]
| a, b ∈ V, (a, b) ∈ %}

and consider this set as an alphabet. In the sequel the word
[

a1

b1

] [
a2

b2

]
. . .

[
an

bn

]
over

[
V
V

]
%

will often be written as
[

a1a2...an

b1b2...bn

]
.

2If one considers the biologically interesting case of V = {A,C, G, T}, then % is the relation given by
the Watson-Crick-complementarity.



12.4. STICKER SYSTEME 219

The elements of
[

V
V

]∗
%

describe the double strands where the upper and lower part are

letter by letter in the relation %. In order to describe the overhangs we set

(
V ∗

λ

)
= {

(w

λ

)
| w ∈ V ∗}

and (
λ

V ∗

)
= {

(
λ

w

)
| w ∈ V ∗} .

The elements of these sets describe single upper strands and single lower strands, respec-
tively. Now we define

L%(V ) = (

(
V ∗

λ

)
∪

(
λ

V ∗

)
)

[
V

V

]∗

%

,

R%(V ) =

[
V

V

]∗

%

(
V ∗

λ

)
∪

(
λ

V ∗

)
),

LR%(V ) = (

(
V ∗

λ

)
∪

(
λ

V ∗

)
)

[
V

V

]+

%

(

(
V ∗

λ

)
∪

(
λ

V ∗

)
),

W%(V ) = L%(V ) ∪R%(V ) ∪ LR%(V ).

Obviously, L%(V ), R%(V ), and LR%(V ) are constructs which describe double strands with
overhangs to the left side, to the right side, and to both sides. The three strands given in
the beginning of this section can be presented as

(
AAC

λ

)[
GTAGCGATTT

CATCGCTAAA

] (
λ

CCGG

)
,

(
GGCC

λ

) [
AATAGGGA

TTATCCCT

] (
AACC

λ

)

(
AAC

λ

)[
GTAGCGATTTGGCCAATAGGGA

CATCGCTAAACCGGTTATCCCT

](
AACC

λ

)

We note that
(

w
λ

) [
w1

w2

]
cannot be written as (a pair)

(
ww1

w2

)
since we loose the infor-

mation which letters are in the relation %.
Let x ∈ LR%(V ). Then x can be decomposed as

x = x1x2x3 with x2 ∈
[
V

V

]+

%

and x1, x3 ∈ (

(
V ∗

λ

)
∪

(
λ

V ∗

)
) . (12.7)

Thus

x1 =
(w1

λ

)
or x1 =

(
λ

w1

)
and x3 =

(w3

λ

)
or x3 =

(
λ

w3

)

for some w1 ∈ V ∗ and w3 ∈ V ∗. We define the delay of x by

d(x) = |w1|+ |w3|.



220 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

The delay of a word is the sum of its overhangs to the right and to the left. Obviously, a
delay can be defined for the elements of L%(V ) and R%(V ), too.

We now define the sticking operation µr : LR%(V ) ×W%(V ) → LR%(V ) which allows
the prolongation of an element of LR%(V ) to the right by an element of W%(V ). Let
x ∈ LR%(V ) be decomposed as x = x1x2x3 as in (12.7). Let y ∈ W%(V ). Then we define
µr(x, y) as

1. x1x2

[
u
v

]
y′ if x3 =

(
u
λ

)
and y =

(
λ
v

)
y′ for some u, v ∈ V ∗ and y′ ∈ R%(V ),

2. x1x2

[
u
v

]
y′ if x3 =

(
λ
v

)
and y =

(
u
λ

)
y′ for some u, v ∈ V ∗ and y′ ∈ R%(V ),

3. x1x2

[
u
v

] (
u′
λ

)
if x3 =

(
uu′
λ

)
and y =

(
λ
v

)
for some u, v, u′ ∈ V ∗ and y′ ∈ R%(V ),

4. x1x2

[
u
v

] (
λ
v′

)
if x3 =

(
u
λ

)
and y =

(
λ

vv′
)

for some u, v, v′ ∈ V ∗ and y′ ∈ R%(V ),

5. x1x2

(
uv
λ

)
if x3 =

(
u
λ

)
and y =

(
v
λ

)
for some u, v ∈ V ∗,

6. x1x2

[
v
u

] (
λ
u′

)
if x3 =

(
λ

uu′
)

and y =
(

v
λ

)
for some u, v, u′ ∈ V ∗,

7. x1x2

[
v
u

] (
v′
λ

)
if x3 =

(
λ
u

)
and y =

(
vv′
λ

)
for some u, v, v′ ∈ V ∗,

8. x1x2

(
uv
λ

)
if x3 =

(
λ
u

)
and y =

(
λ
v

)
for some u, v ∈ V ∗.

The pictures in Figure 12.14 illustrate the Cases 1, 3 and 4. The reader may verify that
the given cases record all possible cases of a continuation to the right (note that x3 =

(
λ
λ

)
is allowed).

x y x
y

x
y

Figure 12.14: Pictorial representation of the operation µr in the Cases 1, 3 and 4.

Obviously, in an analogous way we can define the prolongation to the left by an
operation µl. We omit the details.

Definition 12.40 i) A sticker system is a quadruple G = (V, %, A, D) where
– V is an alphabet,
– % ⊂ V × V is a symmetric relation on V ,
– A is a finite subset of LR%(V ), and
– D is a finite subset of W%(V )×W%(V ).
ii) We say that y ∈ LR%(V ) is derived by x ∈ LR%(V ) in one step (written as x =⇒ y)

iff
y = µl(µr(x, y2), y1) for some (y1, y2) ∈ D .

(Note that µl(µr(x, y2), y1) = µr(µl(x, y1), y2) since the prolongation to the right and to

the left are independent from each other.) By
∗

=⇒ we denote the reflexive and transitive
closure of =⇒.



12.4. STICKER SYSTEME 221

iii) The molecule language ML(G) and the word language wL(G) generated by G are
defined by

ML(G) = {z | x =⇒ s∗z, x ∈ A, z ∈
[
V

V

]+

%

}

and
wL(G) = {w |

[w

v

]
∈ ML(G) for some v ∈ V +},

respectively.

By definition the molecule language of G consists of all double strands without over-
hangs which can be obtained from the elements of A by simultaneous prolongations to the
left and to the right by elements of D. If we restrict to the upper strand of the molecules
of the molecule language, then we obtain the word language of G. Obviously, the upper
strands can be obtained from the molecules by the homomorphism which maps

[
a
b

]
to

a. Thus the word language of a sticker systems is a homomorphic images of its molecule
language.

Example 12.41 We consider the sticker system

G = ({a, b, c}, {(a, a), (b, b), (c, c)}, {
[a

a

]
}, D)

where

D =

{((
b

λ

)
,

(
b

λ

))
,

(( c

λ

)
,

(
λ

λ

))
,

((
λ

b

)
,

(
λ

λ

))
,

((
λ

c

)
,

(
λ

b

))}
.

We are only interested in molecules in

M = ML(G) ∩
[c

c

]∗ [
b

b

]∗ [a

a

] [
b

b

]∗
.

Any word in M has a derivation of the following form

[a

a

]
=⇒

(
b

λ

) [a

a

](
b

λ

)
=⇒

(
b2

λ

) [a

a

] (
b2

λ

)
=⇒ . . . =⇒

(
bn

λ

) [a

a

](
bn

λ

)

=⇒
(

bn−1

λ

)[
ba

ba

](
bn

λ

)
=⇒

(
bn−2

λ

)[
b2a

b2a

](
bn

λ

)
=⇒ . . . =⇒

[
bna

bna

](
bn

λ

)

=⇒
( c

λ

) [
bna

bna

](
bn

λ

)
=⇒

(
c2

λ

)[
bna

bna

](
bn

λ

)
=⇒ . . . =⇒

(
cn

λ

)[
bna

bna

](
bn

λ

)

=⇒
(

cn−1

λ

)[
cbnab

cbnab

](
bn−1

λ

)
=⇒

(
cn−2

λ

)[
c2bnab2

c2bnab2

](
bn−2

λ

)
=⇒ . . .

=⇒
[
cnbnabn

cnbnabn

]

(first we add n times to the left as well as to the right a b in the upper strand, then we
add n times to the left a b in the lower strand, then we add m times to the left a c in
the upper strand, then we add m times simultaneously c to the left and b to the right in



222 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

the lower strand; obviously, since we want to generate a double strand without overhangs
n = m has to hold). In a certain sense this derivation is the unique one for

[
cnbnabn

cnbnabn

]
;

the only change which is allowed concerns the order of the generation of the letter c in
the upper strand and of the letter b in the lower part, which have not to be generated in
the sequence given above, it can also happen in a mixed form, but we have to generate n
times c and n times b; also the application of (

(
λ
c

)
,
(

λ
b

)
) can be done earlier, if c is already

present in the upper overhang to the left and all bs added to the left have already their
counterpart in the lower strand.

Therefore we get for the word language

wL(G) ∩ {c}∗{b}∗{a}{b}∗ = {cnbnabn | n ≥ 1}.

It is easy to show (e.g. by a pumping lemma) that wL(G) is not a context-free language.

We now present four special types of sticker systems or requirements to the derivations
in the systems.

Definition 12.42 A sticker system G = (V, %, A, D) is called
– one-sided if, for each pair (u, v) ∈ D, u =

(
λ
λ

)
or v =

(
λ
λ

)
hold,

– regular if, for each pair (u, v) ∈ D, u =
(

λ
λ

)
holds,

– simple if, for each pair (u, v) ∈ D, uv ∈ (
V ∗
λ

)
or uv ∈ (

λ
V ∗

)
hold.

Obviously, the sticker system given in Example 12.41 is not one-sided and not regular
since it contains the element (

(
λ
c

)
,
(

λ
b

)
) in its set D. On the other hand, G of Example

12.41 is simple since we use for the prolongations only pairs which prolong to both sides
only the upper strand or only the lower strand of the molecule.

From the definition it can be seen that regular sticker systems have an analogy to
regular grammars since the molecule and the string can only be prolonged to the right,
respectively.

Definition 12.43 i) For a sticker system G = (V, %, A, D) and a natural number d ≥ 1,
we define the language MLd(G) as the set of all molecules which have a derivation

x = x0 =⇒ x1 =⇒ x2 =⇒ . . . =⇒ xk with xk ∈
[
V

V

]∗

%

with d(xi) ≤ d for 0 ≤ i ≤ k.

ii) We say that a molecule language L ⊂ [
V
V

]∗
%
or a word language L′ ⊂ V ∗ can be generated

with bounded delay, if there are a sticker system G = (V, %, A, D) and a natural number
d ≥ 1 such that ML(G) = MLd(G) and L = ML(G) and L′ = wL(G), respectively, are
valid.

The words of the language MLd(G) can be generated by a derivation where the length
of the overhangs is bounded by d. Thus it is obvious that MLd(G) ⊆ ML(G). If all
words of ML(G) can be generated by a derivation where the length of the overhangs is
bounded, then ML(G) = MLd(G).

We mention that the generation of
[

c
c

]n [
b
b

]n [
a
a

] [
b
b

]n
and cnbnabn by the sticker system

given in of Example 12.41 requires an overhang of length n to the right. This follows from
the fact that the shortening of the right overhang is only possible if the sub-molecule

[
b
b

]n



12.4. STICKER SYSTEME 223

between the c-part and the a-part has already been produced. We shall see below that
the languages generated in Example 12.41 cannot be derived with bounded delay since
the word language is not context-free (see Theorem 12.51).

We denote the families of word languages generated by arbitrary sticker systems,
one-sided sticker systems and regular sticker systems by L(ASL), L(OSL) and L(RSL),
respectively. If we allow only simple systems, we add the letter S before A, O, R, respec-
tively. Moreover, if we restrict to languages which can be generated by bounded delay,
we add (b) after SL. Furthermore, we combine these restriction. Thus L(ASL(b)) and
L(SRSL) are the families of languages which can be generated by arbitrary sticker systems
with bounded delay and by regular simple sticker systems, respectively.

We now investigate the generative power of sticker systems. The first two statements
follow directly from the definitions.

Lemma 12.44 For y ∈ {(b), λ}, the diagram given in Figure 12.15 is valid (if X and Y
are connected by a line and Y has a position above X, then X ⊆ Y ). 2

L(ASLy)

L(SASLy)

ppppppppppp
L(OSLy)

NNNNNNNNNNN

L(SOSLy

NNNNNNNNNNN

ppppppppppp
L(RSLy)

NNNNNNNNNNN

L(SRSLy)

ppppppppppp

NNNNNNNNNNN

Figure 12.15: Hierarchy of (bounded) language families generated by sticker systems

Lemma 12.45 For X ∈ {O, R, SO, SR}, L(XSL(b)) = L(XSL).

Proof. Let G = (V, %, A, D) be a (simple) one-sided or (simple) regular sticker system.
Let

d = max{d(x) | x ∈ A or (x, u) ∈ D or (u, x) ∈ D for some u}.
Now assume that there is a derivation of some molecule z with an upper overhang at the
right end which is longer than d. This situation can only occur if in the last step some
upper single strand has been added. Then the elements of D which result in a prolongation
to the right have to be simple. If there are upper strands the delay is increased; if it is
a lower strand, then the delay is decreased. Obviously, the order in which we apply the
single strands can be arbitrarily chosen. Finally we have to reach a molecule without
overhangs. Therefore we can choose the order of the simple addings in such a way that
the overhang is always smaller than d. Thus any molecule can be generated by a derivation
where all intermediate steps have a delay ≤ d. Hence ML(G) = MLd(G).

Therefore any language generated by a (simple) one-sided or (simple) regular sticker
system, is a language with bounded delay. This implies the statements. 2



224 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Lemma 12.46 L(ASL) ⊆ L(CS).

Proof. Let G = (V, %, A,D) be a sticker system. We consider the alphabet consisting of
all pairs (a, c) with a, c ∈ V ∪ {λ} and (a, c) ∈ % if a and c are both non-empty words.
It is easy to construct a phrase structure grammar which simulates the sticking of x to
the left and the sticking of y to the right where (x, y) ∈ D. Since no erasing is performed
during the simulations, the grammar is a context-sensitive one. 2

Lemma 12.47 L(OSL) ⊆ L(REG).

Proof. Let G = (V, %, A, D) be a one-sided sticker system. By the proof of Lemma
12.45, ML(G) = MLd(G) for some d. We now construct the context-free grammar
G′ = (N, T, P, S) with

N =

{〈u

λ

〉
l
,
〈u

λ

〉
r
,

〈
λ

u

〉

l

,

〈
λ

u

〉

r

| u ∈ V ∗, 0 ≤ |u| ≤ d

}
∪ {S},

T =

[
V

V

]

%

(the nonterminals store the existing overhangs to the left or to the right),and P consisting
of all rules of the form

S →
〈

u1

u2

〉

l

[
x1

x2

] 〈
v1

v2

〉

r

with

(
u1

u2

)[
x1

x2

](
v1

v2

)
∈ A

(by these rules we generate all elements of A),

〈
u1

u2

〉

l

→
〈

u′1
u′2

〉

l

[
w1

w2

]
such that

[
x1y1u1

x2y2u2

]
=

[
w1

w2

]

for some

((
u′1
u′2

) [
x1

x2

](
y1

y2

)
,

(
λ

λ

))
∈ D

(if the left end is
(

u1

u2

)
we add to the left the sticker

(
u′1
u′2

) [
y1

y2

] (
y1

y2

)
according to an

element of D to the left end and get
(

u′1
u′2

) [
x1y1u1

x2y2u2

]
),

〈
u1

u2

〉

r

→
[
w1

w2

]〈
u′1
u′2

〉

r

such that

[
u1y1x1

u2y2x2

]
=

[
w1

w2

]

for some

((
λ

λ

)
,

(
x1

x2

)[
y1

y2

](
u′1
u′2

))
∈ D

(we extend to the right), 〈
λ

λ

〉

l

→ λ and

〈
λ

λ

〉

r

→ λ

(if there is no overhang, then we finish the derivation).
It is easy to see that L(G′) = ML(G) = MLd(G).



12.4. STICKER SYSTEME 225

Moreover, any derivation starts with a rule S →
〈

u1

u2

〉
l

[
x1

x2

] 〈
v1

v2

〉
r
where

(
u1

u2

) [
x1

x2

] (
v1

v2

)

is in A. Then we extend from
〈

u1

u2

〉
l
to the left by rules of the form A → Bz and from〈

v1

v2

〉
r

to the right by rules of the form A → zB where w ∈ T ∗ and A,B ∈ N . Therefore

L(G′) is a finite union of languages of the form X{w}Y where X and Y are generated by
rules of the form A → zB or A → Bz and w ∈ T+. Hence X and Y are regular, which
implies that all X{w}Y and thus L(G′) are regular, too.

In order to get the word language, we only consider the upper strands, which can be
obtained by a homomorphism from L(G′). By the closure properties of L(REG), wL(G′)
is regular, too. 2

Lemma 12.48 L(REG) ⊆ L(RSL(b)).

Proof. Let L be a regular language. Then L = L(A) for some deterministic finite
automaton A = (X, Z, z1, F, δ). Let Z = {z1, z2, . . . , zk}.

We construct a sticker system G = (X, %, A, D) with % = {(a, a) | a ∈ X} (because
we are only interested in the word language it is sufficient to consider only molecules of
the form

[
w
w

]
). With any state zj we associate the words

[
w
w

] (
u
λ

)
with |wu| = k + 1 and

|u| = j. Or conversely, if w is a word of length k +1, and we want to remember a state zj,
then we choose x and u as the prefix and suffix of w of lengths k+1−j and j, respectively.
A word z ∈ L can be written as w = w1w2 . . . wr where |wi| = k + 1 for 1 ≤ i ≤ r − 1
and 1 ≤ |wr| ≤ k + 1. We consider the states si = δ(z0, w1w2 . . . wi) = δ(si−1, wi). By a
partition of wi into xi and ui as mentioned above we can remember the state si.

We now define A and D by

A1 =
{[x

x

]
| x ∈ L, 0 ≤ |x| ≤ k + 1

}
,

A2 =
{[x

x

] (u

λ

)
| |xu| = k + 1, |u| = j, δ(z0, xu) = zj

}
,

A = A1 ∪ A2

(any word x ∈ L of length at most k + 1 is in L(G) by A1 ⊆ L(G); otherwise we consider
the prefix of the word, i.e., w1 in the above notation and remember zj = s1),

D1 =

{((
λ

λ

)
,

(
λ

v

) [x

x

] (u

λ

))
| |v| = j, |xu| = k + 1, |u| = i, δ(zj, xu) = zi

}
,

D2 =

{((
λ

λ

)
,

(
λ

v

) [x

x

])
| |v| = j, 1 ≤ |x| ≤ k + 1, δ(zj, x) ∈ F

}
,

D = D1 ∪D2

(by the rules of D1, we extend the word by xu, which leads from the remembered state
zj to the state zi which is stored by u of length i; by the rules of D2, we read the last
subword of the partition we add the word without an overhang and stop the generation
if an accepting state is reached; otherwise we have no applicable rule).

It is easy to see by theses explanations that L = wL(G).
Obviously, G is a regular sticker system. Moreover, by our construction, all overhangs

are bounded by k. Therefore, ML(G) = MLk(G) which shows that wL(G) is of bounded
delay. 2



226 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

Lemma 12.49 L(ASL(b)) = L(LIN).

Proof. We first prove that L(ASL(b)) ⊆ L(LIN) holds.
In a sticker system, a word is generated by adding to the left and to the right elements

of W%(V ), i.e., looking only on the upper strand a derivation has the form

z =⇒ p1zq1 =⇒ p2p1zq1q2 =⇒ . . . =⇒ pnpn−1 . . . p2p1zq1q2 . . . qn−1qn. (12.8)

In a linear grammar, the situation is opposite since a derivation has the form

S =⇒ p′1A1q
′
1 =⇒ p′1p

′
2A2q

′
2q
′
1 =⇒ . . . =⇒ p′1p

′
2 . . . p′nAnq

′
nq′n−1 . . . q′1

=⇒ p′1p
′
2 . . . p′nAz′q′nq

′
n−1 . . . q′1.

Thus the idea of the linear grammar is to start with the elements added in the last step of
the generation in the sticker system, to move ”backwards” in the generation and to stop
with a generation of an element of the start set of the sticker system.

We now give the formalization of this idea. Let G = (V, %, A, D) be a sticker system.
Let L = MLd(G) for some constant d. Then the delays are bounded by d. We construct
the linear grammar G′ = (N, T, P, S) with

N =

{〈(
u1

u2

)
,

(
v1

v2

)〉
|
(

u1

u2

)
,

(
v1

v2

)
∈

(
λ

V

)
∪

(
V

λ

)
, |u1|, |u2|, |v1|, |v2| ≤ d

}
∪ {S},

T =

[
V

V

]

%

(by the nonterminals we store the overhangs by going from the outer part to the inner
part) and P consisting of all rules of the following forms

S →
[
w1

w2

]〈(
u1

u2

)
,

(
v1

v2

)〉 [
z1

z2

]
where

([
w1

w2

](
u1

u2

)
,

(
v1

v2

)[
z1

z2

])
∈ D

(we generate the outer elements pn and qn of the derivation (12.8),

〈(
u1

u2

)
,

(
v1

v2

)〉
→

[
w1

w2

] 〈(
u′1
u′2

)
,

(
v′1
v′2

) 〉 [
z1

z2

]

where

((
x1

x2

) [
x′1
x′2

] (
u′1
u′2

)
,

(
v′1
v′2

)[
y1

y2

](
y′1
y′2

))
∈ D,

[
w1

w2

]
=

[
u1x1x

′
1

u2x2x′2

]
,

[
z1

z2

]
=

[
y1y

′
1v1

y2y′2v2

]
,

(we proceed to the ”middle”),

〈(
u1

u2

)
,

(
v1

v2

)〉
→

[
w1

w2

] [
x1

x2

] [
z1

z2

]

where

[
x1

x2

]
6=

[
λ

λ

]
,

(
w′

1

w′
2

)[
x1

x2

] (
z′1
z′2

)
∈ A,

[
w1

w2

]
=

[
u1w

′
1

u2w′
2

]
,

[
z1

z2

]
=

[
z′1v1

z′2v2

]
,



12.4. STICKER SYSTEME 227

(if the overhangs of the nonterminal fit to some element of A, we finish the derivation),

S →
[
w1

w2

]
where

[
w1

w2

]
∈ A

(we generate directly the elements from A which belong to the language ML(G)). By
these explanations it is easy to see that L(G′) = wLd(G). 2

Lemma 12.50 There is a regular language which is not in L(SOSL).

Proof. We consider the language L = {b}{a}+{b}, which is regular since it is given as
a regular expression. Let us assume that L = wL(G) for some simple one-sided sticker
system G = (V, %, A,D). Because A is finite, and L is infinite, one needs upper and
lower strands which can generate in the upper part an arbitrary number of as and the
corresponding letter in the lower part, i.e., D contains at least one pair of one of the forms

((
λ

λ

)
,
(y1

λ

))
and

((
λ

λ

)
,

(
λ

y2

))
or

((y1

λ

)
,

(
λ

λ

))
and

((
λ

y2

)
,

(
λ

λ

))

with y1 ∈ {a}+ and y2 ∈ (V ′)+, where V ′ consists of all letters c with (a, c) ∈ %.
We only discuss the first case; the other one can be handled analogously.
Let |y1| = k1 and |y2| = k2. Then, for ba2b, we have a derivation

(
x1

x2

)[
u1

u2

](
z1

z2

)
=⇒∗

[
ba2b

w1

]

for some
(

x1

x2

) [
u1

u2

] (
z1

z2

)
∈ A and some w1 ∈ (V ′′)+ where V ′′ consists of all letters c with

(a, c) ∈ varrho or (b, c) ∈ varrho. However, this molecule can be extended to the right

by adding k2 times
(

y1

λ

)
and k1 times

(
λ
y2

)
. Because we have k2|y1| = k1|y2| = k1k2, we

get the result [
ba2b

w1

] (y1

λ

)k2
(

λ

y2

)k1

=

[
ba2bak1k2

w2

]

for some w2 ∈ (V ′)+ of length k1k2 + 4. Hence ba2bak1k2 ∈ wL(G), but ba2bak1k2 /∈ L in
contrast to L = wL(G). 2

If we combine the Lemmas 12.44 – 12.50 and the fact that L(SASL) contains a non-
context-free language by Example 12.41, we obtain the following hierarchy.

Theorem 12.51 The diagram of Figure 12.16 holds (where an arrow X → Y is used for
the proper inclusion X ⊂ Y ; if X and Y are connected by a line and Y has an upper
position than X, then X ⊆ Y ). 2

By Theorem 12.51 simple regular (and simple one-sided) sticker systems are not able
to generate all regular languages. However, this is possible, if we add to the generation
process the application of a homomorphisms. More precisely, all regular languages can
be obtain as the image of simple regular sticker languages under special homomorphisms,
so-called codings.

A homomorphism h : X∗ → Y ∗ is called a coding, if h(x) ∈ Y holds for any x ∈ X.
Thus a coding maps letters to letters.



228 CHAPTER 12. FORMAL LANGUAGES AND DNA MOLECULES

L(CS)

L(ASL)

jjjjjjjjjjjjjjjjjj
L(ASL(b)) = L(LIN)

kkVVVVVVVVVVVVVVVVVVVVVV

L(SASL)
L(OSL) = L(OSL(b))

= L(RSL) = L(RSL(b))
= L(REG)

hhQQQQQQQQQQQQ

55jjjjjjjjjjjjjj

L(SASL(b))

L(SOSL) = L(SOSL(b))

hhQQQQQQQQQQQQQQQQQQQ

jjjjjjjjjjjjjjjjjjjjjjj

OO

L(SRSL) = L(SRSL(b))

Figure 12.16: Hierarchy of language families generated by sticker systems

Theorem 12.52 For any regular language L, there are a simple regular sticker system
G with bounded delay and a coding h such that h(wL(G)) = L.

Proof. Let G′ = (N, T, P, S) be a regular grammar in normal form (i. e., any non-erasing
rule has the form A → aB or A → a with A,B ∈ N and a ∈ T ) such that L(G′) = L.
We construct the sticker system G = (V, %, A,D) with

V = {[X, a]i | X ∈ N, a ∈ T, i ∈ {1, 2}},
% = {([X, a]i, [X, a]i) | X ∈ N, a ∈ T, i ∈ {1, 2}},
A =

{[
[S, a]1
[S, a]1

](
λ

[X, a]2

)
| S → aX ∈ P, X → bY ∈ P for some Y or X → b ∈ P

}

∪ [S, a]1

{[
[S, a]1
[S, a]1

]
| S → a ∈ P

}
,

D =

{((
λ

λ

)
,

(
λ

[X, a]1[Y, b]2

))
| X → aY ∈ P, Y → bZ ∈ P for some Z or Y → b ∈ P

}

∪
{((

λ

λ

)
,

(
[X, a]2[Y, b]1

λ

))
| X → aY ∈ P, Y → bZ ∈ P for some Z or Y → b ∈ P

}

∪
{((

λ

λ

)
,

(
λ

[X, a]1

))
| X → a ∈ P

}
∪

{((
λ

λ

)
,

(
[X, a]2

λ

))
| X → a ∈ P

}
.

Let n ≥ 2 be an even natural number. It is easy to see that there is a derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an−1an



12.4. STICKER SYSTEME 229

in G′ if and only if there is a derivation
[
[S, a1]1
[S, a1]1

] (
λ

[A1, a2]2

)
=⇒

[
[S, a1]1[A1, a2]2
[S, a1]1[A1, a2]2

](
[A2, a3]1

λ

)

=⇒
[
[S, a1]1[A1, a2]2[A2, a3]1
[S, a1]1[A1, a2]2[A2, a3]1

](
λ

[A3, a4]2

)

. . .

=⇒
[
[S, a1]1[A1, a2]2[A2, a3]1 . . . [An−2, an−1]1
[S, a1]1[A1, a2]2[A2, a3]1 . . . [An−2, an−1]1

](
λ

[An−1, an]2

)

=⇒
[
[S, a1]1[A1, a2]2[A2, a3]1 . . . [An−2, an−1]1[An−1, an]2
[S, a1]1[A1, a2]2[A2, a3]1 . . . [An−2, an−1]1[An−1, an]2

]

in G. Moreover, the analogous situation holds for odd n (the difference is that the last
overhang is then in the lower strand).

Moreover, we define the homomorphism h by h([X, a]i) = a for X ∈ N , a ∈ T , and
i ∈ {1, 2}. Obviously, we get h(wL(G)) = L(G′) = L which proves the statement. 2

We note that we used only overhangs of length 1 in the proof of Theorem 12.52.
However, the reason for this restriction comes from the homomorphism. If we do not
apply homomorphisms, then we cannot restrict the delay.

For X ∈ {A, O,R}, we denote the family of languages which can be generated by an
X sticker system with a delay d′ ≤ d by L(XSL(d)).

It is obvious that

L(XSL(1)) ⊆ L(XSL(2)) ⊆ L(XSL(3)) ⊆ · · · ⊆ L(XSL(d)) ⊆ . . . (12.9)

We now prove that the hierarchy (12.9) is infinite, i. e., there are infinitely many proper
inclusions in (12.9).

Theorem 12.53 For any natural number n ≥ 1 and any X ∈ {A,O, R}, there is a
number d such that n ≤ d and L(XSL(d)) ⊂ L(XSL(d + 1)).

Proof. We give the proof only for the case of regular sticker system. The proof for one-
sided and arbitrary sticker systems can be presented analogously; we have to use Lemma
12.49 in the case of arbitrary systems.

Assume that the statement is not true. Then there exists a number t such that
L(RSL(t)) = L(RSL(b)).

Let L ⊆ X∗ be a regular language where X has n ≥ 2 letters. Then L ∈ L(RSL(b))
by Theorem 12.51. By our assumption there is a regular sticker system G with a delay
d ≤ t. Now we construct the context-free regular grammar G′ = (N, X, P, S) from G as
in the proof of Lemma 12.47. We note that N consists of all possible overhangs. Since
there are only s = nd+1−1

n−1
words of length ≤ d over X, G′ has at most 4s nonterminals.

This implies that any regular language over X can be generated by a context-free
grammar with less than nt+1−1

n−1
nonterminals. This contradicts Theorem ?? of Section 6.2.

2

We mention that we have only shown the infiniteness of the hierarchy (12.9) but we
do not know where the proper inclusions are. Especially, we do not know whether all
inclusions from (12.9) are proper.




