Contents

1 Fundamentals 9
1.1 Sets and Multisets of Words 9
1.2 Polynomials and Linear Algebra 15
1.3 Graph Theory 16
1.4 Intuitive Algorithms 18
A SEQUENTIAL GRAMMARS 21
2 Basic Families of Grammars and Languages 23
2.1 Definitions and Examples 23
2.2 Normal forms 34
2.3 Iteration Theorems 50
3 Languages as Accepted Sets of Words 57
3.1 Turing Machines versus Phrase Structure Grammars 57
3.1.1 Turing Machines and Their Accepted Languages 57
3.1.2 Nondeterministic Turing Machines and Their Accepted Languages 66
3.1.3 A Short Introduction to Computability and Complexity 73
3.2 Finite Automata versus Regular Grammars 80
3.3 Push-Down Automata versus Context-Free Languages 87
4 Algebraic Properties of Language Families 95
4.1 Closure Properties of Language Families 95
4.2 Algebraic Characterizations of Language Families 106
4.2.1 Characterizations of Language Families by Operations 106
4.2.2 Characterizations of Regular Language Families by Congruence Re- lations 115
5 Decision Problems for Formal Languages 119
6 Descriptional Complexity of Grammars and Languages 129
6.1 Measures of Descriptional Complexity 129
6.2 Completeness of the Measures 129
6.3 Comparison of Language Families with Respect to Descriptional Complexity 129
6.4 Decision Problems Related to Descriptional Complexity 129
7 Some Special Properties of Context-Free Languages 131
7.1 Ambiguity of Context-Free Languages 131
7.2 Semilinearity of Context-Free Languages 131
B Formal Languages and Linguistics 133
8 Some Extensions of Context-Free Grammars 135
8.1 Families of Weakly Context-Sensitive Grammars 135
8.2 Index Grammars 135
8.3 Tree-Adjoining Grammars 135
8.4 Head Grammars 135
8.5 Comparison of Generative Power 135
9 Contextual Grammars and Languages 137
9.1 Basic Families of Contextual Languages 137
9.2 Maximally Locally Contextual Grammars 137
10 Restart Automata 139
C Formal Languages and Biology 141
11 Lindenmayer Systems 143
11.1 The Basic Model - 0L Systems 143
11.1.1 Two Biological Examples 143
11.1.2 Definitions and Examples 146
11.1.3 The Basic Hierarchy 152
11.1.4 Adult Languages 156
11.1.5 Decision Problems 161
11.1.6 Growth Functions 165
11.2 Lindenmayer Systems with Interaction 171
11.2.1 Definitions and Examples 171
11.2.2 Some Results on Lindenmayer Systems with Interaction 176
12 Formal Languages and DNA Molecules 187
12.1 Basics from biology 187
12.2 Adleman's experiment 193
12.3 Splicing as an operation 195
12.3.1 Non-iterated splicing 195
12.3.2 Iterated splicing 201
12.3.3 Remarks on descriptional complexity 208
12.3.4 Splicing on Multisets 212
12.4 Sticker Systeme 218
13 Membrane Systems 231
13.1 Further Basics 231
13.2 Basic Membrane Systems and Their Power 239
13.3 Membrane Systems with Symport/Antiport Rules 248
D Formal Languages and Pictures 253
14 Chain Code Picture Languages 255
14.1 Chain Code Pictures 255
14.2 Hierarchy of Chain Code Picture Languages 263
14.3 Decision Problem for Chain Code Picture Languages 267
14.3.1 Classical Decision Problems 267
14.3.2 Decidability of Properties Related to Subpictures 277
14.3.3 Decidability of "Geometric" Properties 280
14.3.4 Stripe Languages 283
14.4 Some Generalizations 289
14.5 Lindenmayer Chain Code Picture Languages and Turtle Grammars 291
14.5.1 Definitions and some Theoretical Considerations 291
14.5.2 Applications for Simulations of Plant Developments 295
14.5.3 Space-Filling Curves 297
14.5.4 Kolam Pictures 300
15 Siromoney Matrix Grammars and Languages 303
15.1 Definitions and Examples 305
15.2 Hierarchies of Siromoney Matrix Languages 310
15.3 Hierarchies of Siromoney Matrix Languages 310
15.4 Decision Problems for Siromoney Matrix Languages 313
15.4.1 Classical Problems 313
15.4.2 Decision Problems related to Submatrices and Subpictures 318
15.4.3 Decidability of geometric properties 322
16 Collage Grammars 329
16.1 Collage Grammars 331
16.2 Collage Grammars with Chain Code Pictures as Parts 340
Bibliography 345

Chapter 13

Membrane Systems

13.1 Further Basics

In this section we introduce two further types of grammars. The common feature is that they use only context-free rules, however, by some restrictions in the application of rules a larger generative power than that of context-free grammars is obtained. These grammars will be used in the sequel to discuss the power of membrane systems which are the subject of this chapter.

We start with the definition of a matrix grammar ${ }^{1}$. Essentially, instead of context-free rules, finite sequences of context-free rules are considered and if one applies the first rule of such a sequence one has to apply the further rules of this sequence in the given order.

Definition 13.1 i) A matrix grammar is a quintuple $G=(N, T, M, S, F)$ where

- N, T and S are specified as in a context-free grammar,
- $M=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ is a finite set of finite sequence of context-free rules, i.e., for $1 \leq i \leq n$,

$$
m_{i}=\left(A_{i, 1} \rightarrow w_{i, 1}, A_{i, 2} \rightarrow w_{i, 2}, \ldots, A_{i, r_{i}} \rightarrow w_{i, r_{i}}\right)
$$

for some $r_{i} \geq 1, A_{i, j} \in N, w_{i, j} \in(N \cup T)^{*}, 1 \leq j \leq r_{i}$,

- F is a subset of the rules occurring in the sequences $m_{i}, 1 \leq i \leq n$.
ii) For a matrix $m=\left(A_{1} \rightarrow w_{1}, A_{2} \rightarrow w_{2}, \ldots, A_{r} \rightarrow w_{r}\right) \in M$, we say that x derives y by m, written as $x \Longrightarrow_{m} y$ if there exist words $x_{1}, x_{2}, \ldots x_{r+1}$ such that the following conditions hold:
- $x=x_{1}, y=x_{r+1}$,
- for $0 \leq i \leq r-1, x_{i}=x_{i}^{\prime} A_{i} x_{i}^{\prime \prime}$ and $x_{i+1}=x_{i}^{\prime} w_{i} x_{i}^{\prime \prime}$ or A_{i} does not occur in x_{i}, $x_{i+1}=x_{i}$ and $A_{i} \rightarrow w_{i} \in F$.

[^0]iii) The language $L(G)$ generated by G consists of all words $z \in T^{*}$ which have a derivation
$$
S \Longrightarrow m_{i_{i_{1}}} w_{1} \Longrightarrow_{m_{i_{2}}} w_{2} \Longrightarrow_{m_{i_{3}}} \ldots \Longrightarrow_{m_{i_{t}}}=w_{t}=z
$$
where $t \geq 1$ and $m_{i_{j}} \in M$ for $1 \leq j \leq t$.
The sequences $m \in M$ are called matrices. By definition the rules of a matrix have to be applied in the given order and all matrices of a matrix have to be applied where applications means a usual application if the left hand side occurs in the sentential form or no change if the left hand side does not occur in the sentential form and the rule belongs to F.

By $\mathcal{L}(M A T)$ we denote the family of all languages which can be generated by matrix grammars.

We give two examples.
Example 13.2 Let $G_{1}=\left(\{S, A, B\},\{a, b, c\},\left\{m_{1}, m_{2}, m_{3}\right\}, S, \emptyset\right)$ be a matrix grammar with

$$
m_{1}=(S \rightarrow A B), m_{2}=(A \rightarrow a A b, B \rightarrow B c), \text { and } m_{3}=(A \rightarrow a b, B \rightarrow c)
$$

Then any derivation has the form

$$
\begin{aligned}
S & \Longrightarrow_{m_{1}} A B \Longrightarrow_{m_{2}} a A b B c \Longrightarrow_{m_{2}} a^{2} A b^{2} B c^{2} \Longrightarrow_{m_{2}} a^{3} A b^{3} B c^{3} \Longrightarrow_{m_{2}} \cdots \\
& \Longrightarrow a_{m_{2}} a^{n-1} A b^{n-1} B c^{n-1} \Longrightarrow_{m_{3}} a^{n} b^{n} c^{n}
\end{aligned}
$$

which yields that

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\} .
$$

Example 13.3 We consider the matrix grammar

$$
\begin{array}{lll}
G_{2} & =\left(\{S, A, B, X, Y, Z, \#\},\{a\},\left\{m_{1}, m_{2}, \ldots, m_{8}\right\}, S,\{A \rightarrow \#, B \rightarrow \#\}\right) \\
m_{1} & =(S \rightarrow X A), & m_{2}=(X \rightarrow X, A \rightarrow B B), \\
m_{3} & =(X \rightarrow Y, A \rightarrow \#), & m_{4}=(Y \rightarrow Y, B \rightarrow A), \\
m_{5} & =(Y \rightarrow X, B \rightarrow \#), & m_{6}=(Y \rightarrow Z, B \rightarrow \#), \\
m_{7} & =(Z \rightarrow Z, A \rightarrow a), & m_{8}=(Z \rightarrow \lambda, A \rightarrow a) .
\end{array}
$$

Let us assume, that we have a sentential form $X A^{n}$ for some $n \geq 1$; note that by the application of the matrix m_{1} (which has been used in the first step) we obtain such a word with $n=1$. We cannot apply the matrix m_{3} since it introduces the nonterminal \# which cannot be replaced, i.e., the derivation cannot be terminated. Hence the only applicable rule is m_{2} which gives $X A^{n_{1}} B B A^{n_{2}}$ with $n_{1}+n_{2}=n-1$. Again, m_{2} is the only applicable if $n-1>1$; moreover, this situation holds as long as a letter A is present. Thus we get after n applications of m_{2} the sentential form $X B^{2 n}$. Now the only applicable matrix is m_{3} where $A \rightarrow \#$ cannot be applied which is allowed by $A \rightarrow \# \in F$. Now we have to proceed with $2 n$ application of m_{4} which yields $Y A^{2 n}$. Now we have two possibilities; we use m_{5} or m_{6}. In the former case we obtain the sentential form $X A^{2 n}$ which has the same form as our starting sentential form; only the number of occurrences of A is doubled. In the latter case we have to apply $2 n-1$ times the matrix m_{7} and once m_{8} which results
in $a^{2 n}$ (note that m_{8} cannot be applied earlier since we then obtain a sentential with no occurrence of X, Y, Z, i. e., the derivation is blocked). Thus we double the number of A 's or we terminate. Therefore

$$
L\left(G_{2}\right)=\left\{a^{2^{n}} \mid n \geq 1\right\} .
$$

Obviously, if all matrices have length 1, i. e., they consist of one rule only, then the application of the matrix coincides with the application of its rule. Thus such matrix grammars generate only context-free languages and all context-free languages can be generated. The example shows that also non-context-free languages can be generated by matrix grammars. Without proof we give that the generative power of matrix grammars equals the power of arbitrary phrase structure grammars.

Theorem $13.4 \mathcal{L}(M A T)=\mathcal{L}(R E)$.
We now present a normal form for matrix grammars.

Definition 13.5 A matrix grammar $G=(N, T, M, S, F)$ is in normal form if the following conditions hold:

- $N=N_{1} \cup N_{2} \cup\{S, Z, \#\}, S, Z, \# \notin N_{1} \cup N_{2}, N_{1} \cap N_{2}=\emptyset$
- any matrix of M has one of the following forms
- $(S \rightarrow X A)$ with $X \in N_{1}, A \in N_{2}$,
- $(X \rightarrow Y, A \rightarrow w)$ with $X, Y \in N_{1}, A \in N_{2}, w \in\left(N_{2} \cup T\right)^{*}$,
$-(X \rightarrow Y, A \rightarrow \#)$ with $X \in N_{1}, Y \in N_{1} \cup\{Z\}, A \in N_{2}$,
$-(Z \rightarrow \lambda)$,
- there is only one matrix of the form $(S \rightarrow X A)$ in M,
- F consists of all rules of the form $A \rightarrow \#$ with $A \in N_{2}$.

Moreover, in any derivation, the matrix $(Z \rightarrow \lambda)$ is only applied to a sentential form $w_{1} Z w_{2}$ with certain $w_{1} w_{2} \in T^{*}$.

The following theorem shows that the naming normal form is used correctly.

Theorem 13.6 For any recursively enumerable language L, there is a matrix grammar G in normal form such that $L(G)=L$.

Proof. We first proof that the required special forms of matrices are sufficient. Let L be a recursively enumerable language. By Theorem 13.4, there is a matrix grammar $G^{\prime}=\left(N, T, M, S^{\prime}, F\right)$ such that $L\left(G^{\prime}\right)=L$. We assume that

$$
\begin{aligned}
N & =\left\{A_{1}, A_{2}, \ldots, A_{t}\right\} \\
M & =\left\{m_{1}, m_{2}, \ldots m_{n}\right\} \\
m_{i} & =\left(A_{i, 1} \rightarrow w_{i, 1}, A_{i, 2} \rightarrow w_{i, 2}, \ldots, A_{i, r_{i}} \rightarrow w_{i, r_{i}}\right) \text { for } 1 \leq i \leq n
\end{aligned}
$$

We construct the matrix grammar G in normal form by the settings

$$
\begin{align*}
N_{1}= & \left\{[i, j] \mid 1 \leq i \leq n, 1 \leq j \leq r_{i}\right\} \cup\{[k] \mid 1 \leq k \leq t, \\
N_{2}= & N, \\
& \text { new letters } S, Z, \#, \\
& \left(S \rightarrow[i, 1] S^{\prime}\right) \text { for } 1 \leq i \leq n, \\
(1) & \left([i, j] \rightarrow[i, j+1], A_{i, j} \rightarrow w_{i, j}\right) \text { for } 1 \leq i \leq n, 1 \leq j<r_{i}, \\
(2) & \left([i, j] \rightarrow[i, j+1], A_{i, j} \rightarrow \#\right) \text { for } 1 \leq i \leq n, 1 \leq j<r_{i}, A_{i, j} \rightarrow w_{i, j} \in F, \\
(3) & \left(\left[i, r_{i}\right] \rightarrow\left[i^{\prime}, 1\right], A_{i, r_{i}} \rightarrow w_{i, r_{i}}\right) \text { for } 1 \leq i \leq n, 1 \leq i^{\prime}<n, \\
(4) & \left(\left[i, r_{i}\right] \rightarrow\left[i^{\prime}, 1\right], A_{i, r_{i}} \rightarrow \#\right) \text { for } 1 \leq i \leq n, 1 \leq i^{\prime}<n, A_{i, r_{i}} \rightarrow w_{i, r_{i}} \in F, \\
(5) & \left(\left[i, r_{i}\right] \rightarrow[1], A_{i, r_{i}} \rightarrow w_{i, r_{i}}\right) \text { for } 1 \leq i \leq n, \\
(6) & \left(\left[i, r_{i}\right] \rightarrow[1], A_{i, r_{i}} \rightarrow \#\right) \text { for } 1 \leq i \leq n, A_{i, r_{i}} \rightarrow w_{i, r_{i}} \in F, \tag{7}\\
(7) & \left([i] \rightarrow[i+1], A_{i} \rightarrow \#\right) \text { for } 1 \leq i \leq t-1, \tag{8}\\
(8) & \left([t] \rightarrow Z, A_{t} \rightarrow \#\right), \tag{9}\\
(9) & (10) \quad \tag{10}\\
& (Z \rightarrow \lambda) .
\end{align*}
$$

We have $L\left(G^{\prime}\right)=L(G)$ by the following reasons. We start with an application of a matrix of type (1), which says that the application of the i-th matrix is started. The simulation is performed by applying in succession the rules of type (2) or (3) with left hand sides $[i, 1],[i, 2], \ldots,\left[i, r_{i}-1\right]$ in their first rules and finishing the simulation with rules of type (4), (5), (6) or (7) with left hand side $\left[i, r_{i}\right]$ in its first rule. The matrices of types (3) and (5) can only be applied if the nonterminal $A_{i, j}$ and $A_{i, r_{i}}$ does not occur in the sentential form since otherwise the nonterminal \# is introduced which cannot be changed (there are no rules with left hand side \#), i. e., we cannot derive a terminal word. After the simulation of a complete matrix of G^{\prime}, we start another simulation of a matrix if we applied a rule of type (4) or (5) and we start the applications of type (8) and (9) if we applied matrices of type (6) or (7). By the matrices of type (8) and (9) we check that no nonterminal is present in the sentential form (otherwise a \# is introduced). Finally, we cancel the first letter Z. Thus any derivation consists of simulations of the application of matrices in G followed by a check that the word is terminal.

It remains to show that one rule of the form $(S \rightarrow X A)$ is sufficient. In order to prove this we change G^{\prime} to $G^{\prime \prime}=\left(N \cup\left\{S^{\prime \prime}\right\}, T, M \cup\left\{\left(S^{\prime \prime} \rightarrow S^{\prime}\right), S^{\prime \prime}, F\right)\right.$. It is obvious that $L\left(G^{\prime}\right)=L\left(G^{\prime \prime}\right)$ since any derivation has to start with $S^{\prime \prime} \Longrightarrow S^{\prime}$. Moreover, there is a unique matrix ($S^{\prime \prime} \rightarrow S^{\prime}$) of $G^{\prime \prime}$ which has to be used in the first step. Such the construction of G as above starting from $G^{\prime \prime}$ requires only the matrix $\left(S \rightarrow[i, 1] S^{\prime \prime}\right)$ where i refers to ($S^{\prime \prime} \rightarrow S^{\prime}$).

The second concept is that of grammar systems ${ }^{2}$ The basic idea can be illustrated as follows. Some (context-free) grammars are sitting around a table and a word is placed on the table. Now a grammar G can take the word and derive it as long productions of the grammar G are applicable. If no rule can be applied by G, then G puts the newly derived

[^1]word back to the table. Obviously, this process can be iterated. We have a cooperation of the grammars since rules of another grammar cannot be used if a grammar works.

We now give the formal definition.
Definition 13.7 i) A grammar system with n components is an $(n+3)$-tuple

$$
G=\left(N, T, P_{1}, P_{2}, \ldots, P_{n}, S\right)
$$

where

- N, T, S are specified as in a context-free grammar,
- $P_{1}, P_{2}, \ldots, P_{n}$ are finite subsets of $N \times(N \cup T)^{*}$, i. e., P_{i} is a finite set of context-free rules for $1 \leq i \leq n$.
ii) We say that x derives y by the set $P_{i}, 1 \leq i \leq n$, written as $x \xlongequal[P_{i}]{t}$ y if $x \xlongequal[P_{i}]{*} y$, i. e., y can be obtained from x by a derivation which only uses rules from P_{i}, and no rule of P_{i} can be applied to y.
iii) The language $L(G)$ generated by the grammar system G consists of all word $z \in T^{*}$ which can be generated by a derivation of the form

$$
S \underset{P_{i_{1}}}{\stackrel{t}{\Rightarrow}} w_{1} \xlongequal[P_{i_{2}}]{\stackrel{t}{\Rightarrow}} w_{2} \xlongequal[P_{i_{3}}]{\stackrel{t}{\Rightarrow}} \ldots \xrightarrow[P_{i_{s}}]{\stackrel{t}{\Rightarrow}} w_{s}=z
$$

for some $t \geq 1,1 \leq i_{j} \leq n, 1 \leq j \leq s$.
The sets $P_{1}, P_{2}, \ldots, P_{n}$ are called the components of the grammar system.
We now present two examples which generate the same languages as the matrix grammars considered in Examples 13.2 and 13.3.

Example 13.8 Let $G_{1}^{\prime}=\left(\left\{S, A, B, A^{\prime}, B^{\prime}\right\},\{a, b, c\}, P_{1}, P_{2}, P_{3}, S\right)$ be a grammar system with the three components

$$
P_{1}=\left\{S \rightarrow A B, A \rightarrow a A^{\prime} b, B \rightarrow B^{\prime} c\right\}, P_{2}=\left\{A^{\prime} \rightarrow A, B^{\prime} \rightarrow B\right\}, P_{3}=\{A \rightarrow \lambda, B \rightarrow \lambda\}
$$

Obviously, any derivation in the grammar system G_{1}^{\prime} has the form

$$
\begin{aligned}
& S \xrightarrow[P_{1}]{t} a A^{\prime} b B^{\prime} c \xlongequal[P_{2}]{t} a A b B c \underset{P_{1}}{t} a^{2} A^{\prime} b^{2} B^{\prime} c^{2} \xlongequal[P_{2}]{t} a^{2} A b^{2} B c^{2} \xlongequal[P_{1}]{t} \ldots \\
& \xlongequal[P_{2}]{\stackrel{t}{\longrightarrow}} \quad a^{n} A b^{n} B c^{n} \xlongequal[P_{3}]{t} a^{n} b^{n} c^{n},
\end{aligned}
$$

which gives

$$
L\left(G_{1}^{\prime}\right)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
$$

Example 13.9 We consider the grammar system $G_{2}^{\prime}=\left(\left\{S, S^{\prime}\right\},\{a\}, P_{1}, P_{2}, P_{3}, S\right)$ with the three components

$$
P_{1}=\left\{S \rightarrow S^{\prime} S^{\prime}\right\}, P_{2}=\left\{S^{\prime} \rightarrow S\right\}, P_{3}=\{S \rightarrow a\}
$$

Then any derivation is of the form

$$
\begin{aligned}
& S \xrightarrow[P_{1}]{\stackrel{t}{\longrightarrow}} \quad S^{\prime} S^{\prime} \underset{P_{2}}{t} S S \xrightarrow[P_{1}]{t}\left(S^{\prime}\right)^{4} \xrightarrow[P_{2}]{t} S^{4} \underset{P_{1}}{t}\left(S^{\prime}\right)^{8} \xrightarrow[P_{2}]{t} S^{8} \ldots \\
& \xrightarrow[P_{2}]{t} \quad S^{2^{t}} \underset{P_{3}}{\stackrel{t}{\Longrightarrow}} a^{2^{n}}
\end{aligned}
$$

and, consequently,

$$
L\left(G_{2}^{\prime}\right)=\left\{a^{2^{n}} \mid n \geq 0\right\}
$$

By $\mathcal{L}_{n}(C F)$ we denote the set of languages which can be generated by grammar systems with at most n components. Moreover, let

$$
\mathcal{L}_{*}(C F)=\bigcup_{i \geq 1} \mathcal{L}_{n}(C F) .
$$

Obviously, by definition,

$$
\mathcal{L}_{1}(C F) \subseteq \mathcal{L}_{2}(C F) \subseteq \mathcal{L}_{3}(C F) \subseteq \cdots \subseteq \mathcal{L}_{n}(C F) \subseteq \cdots \subseteq \mathcal{L}_{*}(C F)
$$

The following theorem determines the hierarchy more precisely.
Theorem 13.10 i) $\mathcal{L}(C F)=\mathcal{L}_{1}(C F)=\mathcal{L}_{2}(C F)$.
ii) For any $n \geq 3, \mathcal{L}(C F) \subset \mathcal{L}_{3}(C F)=\mathcal{L}_{n}(C F)=\mathcal{L}_{*}(C F)$.

Proof. i) By definition, a grammar system with one component is a context-free grammar. Thus $\mathcal{L}(C F)=\mathcal{L}_{1}(C F)$.

Moreover, by definition, $\mathcal{L}_{1}(C F) \subseteq \mathcal{L}_{2}(C F)$. Hence $\mathcal{L}(C F)=\mathcal{L}_{2}(C F)$.
We now show that $\mathcal{L}_{2}(C F) \subseteq \mathcal{L}(C F)$. Let $G=\left(N, T, P_{1}, P_{2}, S\right)$ be a grammar system with two context-free components. Without loss of generality we assume $N=$ $\operatorname{dom}\left(P_{1}\right) \cup \operatorname{dom}\left(P_{2}\right)$ (i. e., there are no superfluous nonterminals).

We first discuss the cases that $S \in \operatorname{dom}\left(P_{1}\right) \backslash \operatorname{dom}\left(P_{2}\right)$. We define the context-free grammar $G^{\prime}=\left(N^{\prime}, T, P, S^{(1)}\right)$ by

$$
\begin{aligned}
& N^{\prime}=\left\{A^{(1)} \mid A \in \operatorname{dom}\left(P_{1}\right)\right\} \cup\left\{\left\{A^{(2)} \mid A \in \operatorname{dom}\left(P_{2}\right)\right\},\right. \\
& P=\left\{A^{(1)} \rightarrow a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime} \mid A \rightarrow a_{1} a_{2} \ldots a_{n} \in P_{1},\right. \\
& a_{i}^{\prime}= \begin{cases}a_{i} & \text { if } a_{i} \in T, \\
a_{i}^{(1)} & \text { if } a_{i} \in \operatorname{dom}\left(P_{1}\right), \\
a_{i}^{(2)} & \text { if } a_{i} \in \operatorname{dom}\left(P_{2}\right) \backslash \operatorname{dom}\left(P_{1}\right)\end{cases} \\
& \cup\left\{A^{(2)} \rightarrow a_{1}^{\prime \prime} a_{2}^{\prime \prime} \ldots a_{n}^{\prime \prime} \mid A \rightarrow a_{1} a_{2} \ldots a_{n} \in P_{2},\right. \\
& a_{i}^{\prime \prime}=\left\{\begin{array}{ll}
a_{i} & \text { if } a_{i} \in T, \\
a_{i}^{(2)} & \text { if } a_{i} \in \operatorname{dom}\left(P_{2}\right), \\
a_{i}^{(2)} & \text { if } a_{i} \in \operatorname{dom}\left(P_{1}\right) \backslash \operatorname{dom}\left(P_{2}\right)
\end{array}\right\} .
\end{aligned}
$$

Let

$$
S \xlongequal[P_{1}]{t} w_{1} \xlongequal[P_{2}]{t} w_{2} \xlongequal[P_{1}]{t} \quad \ldots \xlongequal{t} w_{n} \xlongequal{t} w \in T^{*}
$$

be a derivation in G. Then $S \xlongequal{*} w_{1}$ is a context-free derivation using the rules of P_{1} and w_{1} contains no letter of $\operatorname{dom}\left(P_{1}\right)$, i. e., $w_{1}=v_{11} v_{12} \ldots v_{1 r_{1}}$ with $v_{1 i} \in V \backslash \operatorname{dom}\left(P_{1}\right)$. Then we have in G^{\prime} the derivation $S \xlongequal{v_{11}^{\prime}} v_{12}^{\prime} \ldots v_{1 r_{1}}^{\prime}$ with

$$
v_{1 i}^{\prime}= \begin{cases}v_{1 i} & \text { if } v_{1 i} \in T \\ v_{1 i}^{(2)} & \text { if } v_{1 i} \in \operatorname{dom}\left(P_{2}\right) \backslash \operatorname{dom}\left(P_{1}\right)\end{cases}
$$

for $1 \leq i \leq r_{1}$ using in any step the corresponding rule of P. Then

$$
w_{1}=v_{11} v_{12} \ldots v_{1 r_{1}} \stackrel{t}{\nrightarrow P_{2}} u_{11} u_{12} \ldots u_{1 r_{1}}=w_{2}
$$

where $v_{1 i} \xlongequal[P_{2}]{\stackrel{t}{\Longrightarrow}} u_{1 i}$ and $u_{1 i} \in V \backslash \operatorname{dom}\left(P_{2}\right)$ for $1 \leq i \leq r_{1}$. Thus $v_{1 i} \xlongequal[P_{P}]{*} u_{1 i}$ is a context-free using only rules of P_{2}, and, again, using the corresponding rules of P, we get a simulation of the derivation $w_{1} \xrightarrow[P_{2}]{*} w_{2}$ in G^{\prime}. Clearly, we can continue in this way and obtain that $w \in L(G)$ implies $w \in L\left(G^{\prime}\right)$, i.e., $L(G) \subseteq L\left(G^{\prime}\right)$. On the other hand, we can change the sequence in which we apply the rules of G^{\prime} such that we apply first rules corresponding to rules of P_{1} as long as this is possible, then we continue with rules corresponding to rules of P_{2} as long this is possible; then we return to rules which correspond to rules of P_{1} etc. Obviously, starting with S and using the corresponding rules of P_{1} and P_{2} in the same order, we get a derivation in G which yields the same word. Thus $L\left(G^{\prime}\right) \subseteq L(G)$.
ii) The inclusion $\mathcal{L}(C F) \subseteq \mathcal{L}_{3}(C F)$ follows by definition, and it is proper by the examples given above.

Now let $G=\left(N, T, P_{1}, P_{2}, \ldots, P_{n}, S\right)$ be a grammar systems with n components, where $n \geq 3$. we now construct a grammar system G^{\prime} with three components such that $L\left(G^{\prime}\right)=L(G)$, which proves that $\mathcal{L}_{n}(C F) \subseteq \mathcal{L}(C F)$. By the definition we get immediately $\mathcal{L}_{3}(C F)=\mathcal{L}_{n}(C F)=\mathcal{L}(\mathcal{F})$.

We set

$$
n^{\prime}= \begin{cases}n+1 & \text { if } n \text { is odd } \\ n & \text { if } n \text { is even }\end{cases}
$$

Obviously, n^{\prime} is even. Then, for $1 \leq i \leq n^{\prime}$, we define new pairwise disjunct alphabets $N_{i}=\left\{A^{(i)} \mid A \in N\right\}$. Moreover, for $1 \leq i \leq n^{\prime}$ and a word $w=x_{1} A_{1} x_{2} A_{2} \ldots x_{m} A_{m} x_{m+1}$ with $A_{i} \in N$ for $1 \leq i \leq m$ and $x_{j} \in T^{*}$ for $1 \leq j \leq m+1$, we set $w^{(i)}=$ $x_{1} A_{1}^{(i)} x_{2} A_{2}^{(i)} \ldots x_{m} A_{m}^{(i)} x_{m+1}$. Now we define

$$
G^{\prime}=\left(\bigcup_{i=1}^{n^{\prime}} N_{i}, T, P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, S^{(1)}\right)
$$

where

$$
\begin{aligned}
& P_{1}^{\prime}=\left\{A^{(i)} \rightarrow A^{(i+1)} \mid 1 \leq i \leq n^{\prime}, i \text { is odd, } A \in N\right\} \\
& P_{2}^{\prime}=\left\{A^{(i)} \rightarrow A^{(i+1)} \mid 1 \leq i<n^{\prime}, i \text { is even, } A \in N\right\} \cup\left\{A^{\left(n^{\prime}\right)} \rightarrow A^{(1)} \mid A \in N\right\}, \\
& P_{3}^{\prime}=\left\{A^{(i)} \rightarrow w^{(i)} \mid 1 \leq i \leq n, A \in N\right\} .
\end{aligned}
$$

Obviously, by definition, we have
$-w^{(i)} \xrightarrow[P_{1}]{t} w^{(i+1)}$ for odd $i, 1 \leq i \leq n$,
$-w^{(i)} \xrightarrow[P_{2}]{t} w^{(i+1)}$ for even $i, 1 \leq i<n^{\prime}$, and
$-w^{\left(n^{\prime}\right)} \underset{P_{2}}{\stackrel{t}{t}} w^{(1)}$,
$-w^{(i)} \xlongequal[P_{3}]{t} v^{(i)}$, where $1 \leq i \leq n$ and $w \xlongequal[P_{i}]{t} v$ in G. Thus any derivation in G^{\prime} has the form

where

$$
S \underset{P_{i_{1}}}{\stackrel{t}{\Longrightarrow}} \quad w_{1} \xrightarrow[P_{i_{2}}]{t} \quad w_{2} \xrightarrow[P_{i_{3}}]{t} \quad \ldots \xrightarrow[P_{i_{r}}]{t} \quad w_{r} \in T^{*}
$$

is a derivation in G. Now it is easy to see that $L\left(G^{\prime}\right)=L(G)$.
Let L be a language. Then we set

$$
N(L)=\{n|n=|w| \text { for some } w \in L\}
$$

i. e., $N(L)$ is the set of all lengths of words in L.

Let X be a set of grammars. Then we set

$$
N(X)=\{N(L) \mid L \in \mathcal{L}(X)\}
$$

Without proof we mention the following statements.
Theorem 13.11 i) $N(R E G)=N(C F) \subset N(C S) \subset N(R E)$.
ii) A set M of natural numbers belongs to $N(C F)$ if and only if there are numbers $r, s, p, q_{1}, q_{2}, \ldots q_{r}, p_{1}, p_{2}, \ldots, p_{s}$ such that $r \geq 0, s \geq 0, p \geq 1, q_{1}<q_{2}<\cdots<q_{r}<p_{1}<$ $p_{2}<\cdots<p_{s}$ and

$$
M=\left\{q_{1}, q_{2}, \ldots, q_{r}\right\} \cup \bigcup_{i=1}^{s}\left\{p_{i}+n p \mid n \in \mathbb{N}_{0}\right\}
$$

In a subset M of a set U, any element of M occurs once, however, in many applications an element can occur more often. Thus we associate a number of occurrences with any element in a set. Formally, this leads to the concept of a multiset.

A multiset M over U is a mapping M of U into the set $\mathbb{N}_{0} \cup\{\infty\}$ of non-negative integers and a symbol ∞ representing infinity. $M(x)$ is called the multiplicity of x.

A multiset M is called finite iff there is a finite subset U^{\prime} of U such that $M(x)=0$ for $x \notin U$ and $M(x) \neq \infty$ for $x \in U$. Then its cardinality is the sum of the multiplicities of the elements of U.

The cardinality and the length of a finite multiset M are defined as $\#(M)=\sum_{x \in U} M(x)$.
Let M be a finite multiset over a finite set U. Then we can build a word $w_{M} \in U^{*}$ such that $\#_{x}\left(w_{M}\right)=M(x)$ for all $x \in U$. Obviously, w_{M} is uniquely determined up to the order of the letters. For example, if M over $\{a, b, c, d\}$ is given by $M(a)=2, M(b)=3$, $M(c)=1$, and $M(d)=0$, then we can choose any of the words $a^{2} b^{3} c, a b c a b b, c b a b a b$, and $a b c b a b$ as w_{M}.

Conversely, with any word w over a U, we can associate a multiset M by setting $M(x)=\#_{x}(w)$. Clearly, $M_{w}=w$ holds for this situation.

Thus, in the sequel, we shall identify a finite multiset M with an associated word w_{M}. Obviously, $\#(M)=\left|w_{m}\right|$.

13.2 Basic Membrane Systems and Their Power

The idea of membrane systems is to model a biological cell as a computing device. A cell is considered as a membrane which contains further membranes which can contain membranes again. For instance the kernel of a cell gives a membrane contained in the skin membrane of the cell. Moreover, there is a change of the contents of each of the cells according to bio-chemical reactions inside a membrane, and there is an exchange of molecules through the membranes. If one considers the state of the cell, i. e., the molecules inside the membranes, as a configuration, then the above mentioned reactions lead to a change of the configuration. Therefore we have something which looks as a computation. However, inside of each membrane we only have a finite multiset of objects; therefore the computation is not done via words, it is done via multisets.

In Figure 1 we give a cell by the outer skin membrane 1 containing two membranes 2 and 3 and the membrane 2 contains a further membrane 4 . Moreover, the content of the cell itself is the multiset with the associated word $a b b$, the contents of the three membranes 2,3 , and 4 inside the cell are the multisets/words $b c$, $a a c$, and $a b c$ respectively.

Figure 13.1: A membrane structure
The first problem is to describe the membrane structure. This can be done by a tree, where the outer skin membrane is the root and x is a child of y if and only if the membrane y contains the membrane x. The membrane structure of the cell given in Figure 13.1 is then represented by

A further possibility to give a membrane structure is a correct sequence of indexed
brackets where the index refers to the membrane. The outer membrane is represented by $[1]_{1}$. If one has already a membrane structure where $\left[{ }_{i} \text { is followed by }\right]_{i}$, i. e., the sequence of brackets has the form $\left.w{ }_{[i}\right]_{i} w^{\prime}$, and the i th membrane contains the membranes $j_{1}, j_{2}, \ldots, j_{s}$, then we get a bracket word

$$
w\left[\left[_{i}\left[j_{1}\right]\right]_{j_{1}}\left[j_{2}\right]_{j_{2}} \cdots\left[j_{s}\right]_{j_{s}}\right]_{i} w^{\prime}
$$

The structure given in Figure 13.1 is represented by $\left[1\left[2[4]_{4}\right]_{2}[3]_{3}\right]_{1}$.
A membrane is called simple if there is no membrane inside of it. In terms of trees which describe a membrane structure, the leaves correspond to simple membranes.

We also have to clarify the concept of a rule in a membrane system because we cannot only change a letter or a multiset of letters, i.e., a word, we can also move letters or multisets of letters through membranes. Obviously, a letter is kept in a membrane, or it can go out of the membrane, or it can move into a membrane which is inside the given membrane. Therefore we define the set Tar consisting of here, out and $i n_{j}$ where j refers to the j-th membrane. Thus we formally define a rule in a membrane system as a pair

$$
\left(x_{1} x_{2} \ldots x_{n},\left(y_{1}, t_{1}\right)\left(y_{2}, t_{2}\right) \ldots\left(y_{m}, t_{m}\right)\right)
$$

where x_{i} and y_{j} are letters for $1 \leq i \leq n$ and $1 \leq j \leq m$, and $t_{j} \in T a r$ for $1 \leq j \leq m$. The application of this rule to the multiset $x_{1} x_{2} \ldots x_{n}$ in membrane k is performed as follows: the multiset $x_{1} x_{2} \ldots x_{n}$ is taken away from the multiset of membrane j, the letters y_{q}, $1 \leq q \leq m$,

- are added to the multiset in membrane j, if $t_{q}=$ here,
- are added to the multiset in membrane k, if $t_{q}=$ out and membrane k contains membrane j,
- are given to the environment (and are lost) if $t_{q}=$ out and membrane j is the outer membrane,
- are added to the multiset in membrane p, if $t_{q}=i n_{p}$ and membrane j contains membrane p. We note that, obviously, given a membrane j, the targets of the rules applicable to multisets in membrane j - besides here and out - can only be numbers of membranes which are contained in membrane j, i. e., which are sons of j in the tree describing the membrane structure. Moreover, out defines a unique membrane or the environment to which the letters have to go.

Again, we write $x_{1} x_{2} \ldots x_{n} \rightarrow\left(y_{1}, t_{1}\right)\left(y_{2}, t_{2}\right) \ldots\left(y_{m}, t_{m}\right)$ for a rule.
In order to simplify the notation, we write a instead of (a, here).
Thus we know, how to apply a rule. But in contrast to sequential grammars as context-free grammar or other phrase structure grammars, by the biological motivation, the rules have to be applied in parallel since some chemical reactions occur at the same moment. But we have a difference to L systems, too. In L systems, the rules are applied to letters - perhaps depending on the context - and thus the parallelism requires that to any object a rule has to be applied. In membrane systems, the rules are applied to multisets and thus it is possible that some objects remain to which no rule can be applied. For instance, let $p_{1}=a b \rightarrow a(b$, out $)\left(a, i n_{3}\right), p_{2}=a \rightarrow b b, p_{3}=b b \rightarrow(a$, out $)\left(a, i n_{2}\right)$ be the rules associated with the first membrane in the membrane structure given in Figure 13.1, where the membrane 1 contains the multiset represented by the word $a b b$. If we apply the
rule p_{1} then we take from this multiset one occurrence of a and one occurrence of b such that one occurrence of b remains to which no rule is applicable. On the other hand, if we apply the second rule p_{2}, then two occurrences of b are not involved, and we can apply p_{3} parallel to p_{2}. We require that we apply all rules in such a way that no rule is applicable to the remaining multiset. This is formally given in the following definition.

Definition 13.12 Let a multiset M and a set $P=\left\{w_{1} \rightarrow v_{1}, w_{2} \rightarrow v_{2}, \ldots, w_{m} \rightarrow v_{m}\right\}$ of rules be given. We say that P is applied in a maximal parallel way iff the following conditions are satisfied:

- M has a representation $w_{M}=w_{i_{1}} w_{i_{2}} \ldots w_{i_{r}} w^{\prime}$,
- all rules $w_{i_{k}} \rightarrow v_{i_{k}}, 1 \leq k \leq r$, are applied,
- no rule of P is applicable to w^{\prime}.

Note that it is allowed that there is another representation $w_{j_{1}} w_{j_{2}} \ldots w_{j_{s}} w^{\prime \prime}$ of M with $s \neq r$ and/or $i_{k} \neq j_{k}$ and/or $w^{\prime} \neq w^{\prime \prime}$ where we have to apply all rules $w_{j_{k}} \rightarrow v_{j_{k}}$, $1 \leq k \leq s$, and no rule of P is applicable to $w^{\prime \prime}$. Thus there is some nondeterminism in the definition of a maximal parallel derivation.

Before giving the formal definition of a membrane system we shortly discuss the problem of defining the generated language. Obviously, since the membranes contain multisets, only multisets can be generated. In a (context-free) grammar a derivation is finished iff the generated word contains only terminals, or in other words, no rule can be applied to the generated sentential forms. Therefore it is of interest to consider such multisets which are in the system if no rule is applicable. There are at least two possibilities for the choice of the generated multiset: take the union of all multisets present in the membranes or choose a special membrane and take the multiset in that membrane. We shall follow the second idea. Moreover, we shall not consider multisets, which count how often a letter occurs; we shall consider only the number of letters occurring in the multiset, that is the length of the word describing the multiset.

We now give the formal definition of a membrane system.
Definition 13.13 i) A membrane system with m membranes is a $(2 m+3)$-tuple

$$
\Gamma=\left(V, \mu, w_{1}, w_{2}, \ldots w_{m}, R_{1}, R_{2}, \ldots R_{m}, i\right)
$$

where

- V is a finite alphabet (of objects occurring in the membranes),
- μ is a membrane structure (of m membranes),
- for $1 \leq j \leq m, w_{j}$ is a word over V (giving the initial content of membrane j),
- for $1 \leq j \leq m, R_{j}$ is a finite set of rules which can be applied to words in membrane j,
- i is a natural number such that $1 \leq i \leq m$ and the membrane i is a simple membrane (the output membrane).
ii) A configuration of Γ is an m-tuple of multisets/words.

For two configurations $C=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ and $C^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{m}^{\prime}\right)$, we say that C is transformed to C^{\prime} by Γ, written as $C \vdash C^{\prime}$ if and only if C^{\prime} is obtained from C by a maximal parallel application of rules of R_{i} to u_{i} for all $i, 1 \leq i \leq m$, i.e., no rule of R_{i} can be applied to the multiset which remains after subtracting all sets to which rules are applied from u_{i}.
iii) A configuration $C=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ is called halting iff no rule of R_{i} is applicable to u_{i} for $1 \leq i \leq m$.
iv) The language $L(\Gamma)$ generated by a membrane system Γ is the set of all numbers n such that there is a halting configuration $C=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ of Γ with $\left|u_{i}\right|=n$.

We give two examples.
Example 13.14 We consider the membrane system

$$
\Gamma_{1}=\left(\{a, b, c\},\left[{ }_{1}[2]_{2}\right]_{1}, a^{2}, \lambda, R_{1}, \emptyset, 2\right)
$$

with

$$
R_{1}=\left\{a \rightarrow(a, \text { here })\left(b, i n_{2}\right)\left(c, \text { in }_{2}\right)^{2}, a^{2} \rightarrow(a, \text { out })^{2}\right\} .
$$

Since, initially, we have two letters a in the membrane 1, we have two possibilities: we apply two times the rule $a \rightarrow(a$, here $)\left(b, i n_{2}\right)\left(c, i n_{2}\right)^{2}$ or we apply once the rule $a^{2} \rightarrow$ $(a, \text { out })^{2}$. In the latter case both letters a are send in the environment and are lost such that the derivation stops since no further letters are in membrane 1. In the former case, two letters a remain in membrane 1 and two letters b and four letters c are send inside membrane 2. If we apply n times $a \rightarrow(a$, here $)\left(b, i n_{2}\right)\left(c, i n_{2}\right)^{2}$ and finish by one application of $a^{2} \rightarrow(a \text {,out })^{2}$, then we have finally $2 n$ letters b and $4 n$ letters c in membrane 2. Hence

$$
L\left(\Gamma_{1}\right)=\{6 n \mid n \geq 0\}
$$

Example 13.15 Let

$$
\Gamma_{2}=\left(\{A, B, D, E, X, Y, Z, a, \#\},\left[{ }_{1}[2]_{2}\right]_{1}, X A D E, \lambda, R_{1}, \emptyset, 2\right)
$$

be a membrane systems with two membranes where

$$
\begin{aligned}
R_{1}= & \{X A D E \rightarrow X B B D E, X E \rightarrow Y E, A D \rightarrow \#, \# \rightarrow \#, \\
& Y B D E \rightarrow Y A D E, Y D \rightarrow Y D, B E \rightarrow \#, \\
& \left.Y D \rightarrow Z, Z A \rightarrow Z\left(a, i n_{2}\right)\right\}
\end{aligned}
$$

We note that any application of a rule requires an occurrence of X or Y or Z. the initial configuration contains one such letter, namely X, and each rule produces at most one such letter. Therefore only one such letter occurs in any configuration (and as we see below, hence we can only apply one rule of R_{1} in each step). Furthermore, if the letter \# is introduced by some rule, then we can apply the rule $\# \rightarrow \#$ at every moment and thus the system cannot reach a halting configuration, i. e., no word of $L\left(\Gamma_{2}\right)$ can be generated.

Let a configuration ($X A^{n} D E, \lambda$) with $n \geq 1$ be given: note that the initial configuration is given by $n=1$. Then we cannot apply $X E \rightarrow Y E$ since we also have to apply
$A D \rightarrow \#$ by the maximal parallelism, which introduces \#. This holds as long A is present in the first component of the configuration. Hence we get

$$
\left(X A^{n} D E, \lambda\right) \vdash\left(X A^{n-1} B^{2} D E, \lambda\right) \vdash\left(X A^{n-2} B^{4} D E, \lambda\right) \vdash \cdots \vdash\left(X B^{2 n} D E, \lambda\right) .
$$

Now we can use $X E \rightarrow Y E$ (and only this rule is applicable) since it cannot be accompanied by $D A \rightarrow \#$. Thus we have ($Y B^{2 n} D E, \lambda$). By arguments as above we have to replace all occurrences of B by A using the rule $Y B D E \rightarrow Y A D E$. This yields $\left(Y A^{2 n} D E, \lambda\right)$. Now we have two cases for the continuation.

Case 1. We apply $Y D \rightarrow X D$. Then we obtain the configuration $\left(X A^{2 n} D E, \lambda\right)$ which has the form as the configuration from which we started and the process of doubling the A 's can be iterated.

Case 2. We apply $Y D \rightarrow Z$. We get $\left(Z A^{2 n} E, \lambda\right)$. In this configuration only $Z A \rightarrow$ $Z\left(a, i n_{2}\right)$ is applicable. Thus we obtain

$$
\left(Z A^{2 n} E, \lambda\right) \vdash\left(Z A^{2 n-1} E, a\right) \vdash\left(Z A^{2 n-2} E, a^{2}\right) \vdash \cdots \vdash\left(Z E, a^{2 n}\right) .
$$

The last configuration is a halting one and therefore $a^{2 n}$ belongs to $L\left(\Gamma_{2}\right)$. Therefore

$$
L\left(\Gamma_{2}\right)=\left\{2^{n} \mid n \geq 1\right\} .
$$

We ask the reader to note that the membrane systems Γ_{2} works as the matrix grammar G_{2}. In both cases the introduction of \# leads to a non-terminating derivation or only to non-halting configurations, and it is necessary to replace all A 's or all B 's, before X can be changed to Y or Y to X or Z, respectively.

A letter $c \in V$ is called a catalyst iff all rules where c occurs have the form $c a \rightarrow c w$ with $a \in V$ and $w \in(V \times T a r)^{*}$, i. e., the catalyst is not changed by the reaction, however, it is necessary that a can perform the change to w.

We say that a rule $u \rightarrow w$ with $w \in(V \times T a r)^{*}$ is

- non-cooperating iff $u \in V$,
- cooperating iff $|u| \geq 2$,
- catalytic iff $u=c a$ and $w=c w^{\prime}$ for some catalyst c, some $a \in V$ and some $w^{\prime} \in$ $(V \times T a r)^{*}$.
The notions non-cooperating and cooperating correspond to context-free and arbitrary rules, respectively, in usual grammars. However, since in a membrane system the words are interpreted as multisets we have no context in membrane systems and therefore we have only a cooperation between the letters of a multiset if the multiset is replaced.

We say that a membrane system is

- non-cooperating if all its rules are non-cooperating,
- catalytic if all its rules are non-cooperating or catalytic, and
- catalytic if it contains at least one rule which is cooperating and not catalytic.

By $\mathcal{L}_{n}(P, n c o), \mathcal{L}_{n}(P, c a t)$, and $\mathcal{L}_{n}(P, c o o)$, we denote the families of languages which can be generated by non-cooperating, catalytic, and cooperating membrane systems with at most n membranes, respectively. For $X \in\{n c o, c a t, c o o\}$,

$$
\mathcal{L}_{*}(P, X)=\bigcup_{n \geq 1} \mathcal{L}_{n}(P, X) .
$$

By definition, for $X \in\{n c o, c a t, c o o\}$, we have

$$
\begin{equation*}
\mathcal{L}_{1}(P, X) \subseteq \mathcal{L}_{2}(P, X) \subseteq \mathcal{L}_{3}(P, X) \subseteq \cdots \subseteq \mathcal{L}_{n}(P, X) \subseteq \cdots \subseteq \mathcal{L}_{*}(P, X) \tag{13.1}
\end{equation*}
$$

We first prove that the hierarchies given in (13.1) is finite for all X under consideration and has at most two levels.

Lemma 13.16 For $X \in\{n c o, c a t, c o o\}$ and $n \geq 2$,

$$
\mathcal{L}_{1}(P, X) \subseteq \mathcal{L}_{2}(P, X)=\mathcal{L}_{n}(P, X)=\mathcal{L}_{*}(P, X)
$$

Proof. Obviously, by (13.1) it is sufficient to prove that $\mathcal{L}_{*}(P, X) \subseteq \mathcal{L}_{2}(P, X)$.
The idea of the proof consist in an indexing of letters in such a way that the index gives the membrane in which the letter is. Thus we set

$$
V^{\prime}=\left\{a_{j} \mid a \in V, 1 \leq j \leq m, j \neq i\right\}
$$

and define for $1 \leq j \leq m, j \neq i$, the morphisms $h_{j}: V \rightarrow V^{\prime}$ by $h(a)=a_{j}$.
Let $L \in \mathcal{L}_{*}(P, X)$. Then $L=L(\Gamma)$ for some membrane system Γ. Let

$$
\Gamma=\left(V, \mu, w_{1}, w_{2}, \ldots, w_{m}, R_{1}, R_{2}, \ldots, R_{m}, i\right)
$$

with $m \geq 3$ (if $m \leq 2$, then $L \in \mathcal{L}_{2}(P, X)$ by definition). We construct the membrane system

$$
\Gamma^{\prime}=\left(V^{\prime} \cup V,\left[{ }_{1}[]_{i}\right]_{1}, w_{1}^{\prime}, w_{i}, R_{1}^{\prime}, R_{i}^{\prime}, i\right)
$$

with

$$
w_{1}^{\prime}=h_{1}\left(w_{1}\right) h_{2}\left(w_{2}\right) \ldots h_{i-1}\left(w_{i-1}\right) h_{i+1}\left(w_{i+1}\right) h_{i+2}\left(w_{i+2}\right) \ldots h_{m}\left(w_{m}\right)
$$

and R_{1}^{\prime} and R_{i}^{\prime} consisting of all rules which are constructed in the following way:

- If $u \rightarrow\left(b_{1}, t_{1}\right)\left(b_{2}, t_{2}\right) \ldots\left(b_{s}, t_{s}\right) \in R_{k}$ with $1 \leq k \leq m, k \neq i$, then $h_{k}(u) \rightarrow$ $c_{1} c_{2} \ldots c_{s} \in R_{1}^{\prime}$ where
- $c_{r}=\left(\left(b_{r}\right)_{k}\right.$, here $)$ if $t_{r}=$ here
- $c_{r}=\left(\left(b_{r}\right)_{p}\right.$, here $)$ if $t_{r}=i n_{p}$ and $p \neq i$,
$-c_{r}=\left(b_{r}, i n_{i}\right)$ if $t_{r}=i n_{i}$,
$-c_{r}=\left(\left(b_{r}\right)_{l}\right.$,here $)$ if $t_{r}=$ out and l is the unique membrane which contains membrane k in μ.
- If $u \rightarrow\left(b_{1}, t_{1}\right)\left(b_{2}, t_{2}\right) \ldots\left(b_{s}, t_{s}\right) \in R_{i}$ with $1 \leq k \leq m, k \neq i$, then $h_{k}(u) \rightarrow$ $c_{1} c_{2} \ldots c_{s} \in R_{i}^{\prime}$ where
$-c_{r}=\left(b_{r}\right.$, here $)$ if $t_{r}=$ here
- $c_{r}=\left(\left(b_{r}\right)_{l^{\prime}}\right.$, out $)$ if $t_{r}=$ out and l^{\prime} is the unique membrane which contains membrane i in μ.

By these definitions,

$$
\left(v_{1}, v_{2}, \ldots, v_{m}\right) \vdash\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m}^{\prime}\right)
$$

in Γ if and only if

$$
\left(h_{1}\left(v_{1}\right) \ldots h_{i-1}\left(v_{i-1}\right) h_{i+1}\left(v_{i+1}\right) \ldots h_{m}\left(v_{m}\right), v_{i}\right) \vdash\left(h_{1}\left(v_{1}^{\prime}\right) \ldots h_{i-1}\left(v_{i-1}^{\prime}\right) h_{i+1}\left(v_{i+1}^{\prime}\right) \ldots h_{m}\left(v_{m}^{\prime}\right), v_{i}^{\prime}\right)
$$

in Γ^{\prime}. Moreover, we have that $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ is a halting configuration of Γ if and only if $\left(h_{1}\left(v_{1}\right) h_{2}\left(v_{2}\right) \ldots h_{i-1}\left(v_{i-1}\right) h_{i+1}\left(v_{i+1}\right) \ldots h_{m}\left(v_{m}\right), v_{i}\right)$ is a halting configuration of Γ^{\prime}. Therefore the membrane i contains the same multisets if a halting configuration is obtained. Thus $L(\Gamma)=L\left(\Gamma^{\prime}\right)$. This implies $L=L\left(\Gamma^{\prime}\right) \in \mathcal{L}_{2}(P, X)$.

We now prove that Lemma 13.16 can be improved for $n c o$ and coo to $n \geq 1$. Moreover, we characterize $\mathcal{L}_{*}(P, n c o)$ and $\mathcal{L}_{*}(P, c o o)$.

Theorem 13.17 For all $n \geq 1, \mathcal{L}_{1}(P, n c o)=\mathcal{L}_{n}(P, n c o)=\mathcal{L}_{*}(P, n c o)=N(C F)$.
Proof. By (13.1) and Lemma 13.16, it is sufficient to prove that $N(C F) \subseteq \mathcal{L}_{1}(P, n c o)$ and $\mathcal{L}_{2}(P, n c o) \subseteq N(C F)$.

Let $L \in N(C F)$. Then there is a context-free language L^{\prime} such that $L=N\left(L^{\prime}\right)$. Let G be a context-free grammar generating L^{\prime}. We construct the membran system $\Gamma=\left(N \cup T,\left[{ }_{1}\right]_{1}, S, P, 1\right)$. Note that the rules of P in Γ are a short writing of rules where the target is here in all cases. It is obvious that a derivation $S \Longrightarrow w_{1} \Longrightarrow w_{2} \Longrightarrow \ldots \Longrightarrow w_{n}$ in G corresponds to $(S) \vdash\left(w_{1}\right) \vdash\left(w_{2}\right) \vdash \cdots \vdash\left(w_{n}\right)$ in Γ (any configuration has only one component). Moreover, $z \in L(G)$ iff $z \in T^{*}$ iff no rule is applicable in G iff (z) is a halting configuration. Hence $L(\Gamma)=N(L(G))=N\left(L^{\prime}\right)=N$. This proves $N(C F) \subseteq \mathcal{L}_{1}(P, n c o)$.

Let $L=L(\Gamma)$ for some membrane system with 2 membranes, i.e.,

$$
\Gamma=\left(V,\left[{ }_{1}[2]_{2}\right]_{1}, w_{1}, w_{2}, R_{1}, R_{2}, 2\right)
$$

For $i \in\{1,2\}$, let F_{i} be the set of all letters $a \in V$ such that there is no rule with left-hand side a in R_{i}. Without loss of generality we assume that w_{1} contains no letter of F_{1} since such letters cannot be changed by Γ, and therefore they are superfluous for $L(\Gamma)$. We set

$$
V_{i}=\left\{a_{i} \mid a \in V\right\} \text { and } V_{i}^{\prime}=\left\{a_{i}^{\prime} \mid a \in V\right\}
$$

the define the homomorphisms
$h_{i}: V \rightarrow V_{i}^{\prime}, g_{1}: V \times\left\{\right.$ here, out, in $\left._{2}\right\} \rightarrow F_{2} \cup V_{1}^{\prime} \cup V_{2}^{\prime}$ and $g_{2}: V \times\{$ here, out $\} \rightarrow F_{2} \cup V_{1}^{\prime} \cup V_{2}^{\prime}$
by

$$
\begin{aligned}
h_{i}(a) & =a_{i}^{\prime}, \\
g_{1}((b, \text { here })) & = \begin{cases}\lambda & \text { if } b \in F_{1} \\
b_{1}^{\prime} & \text { otherwise },\end{cases} \\
g_{1}((b, \text { out }) & =\lambda, \\
g_{1}((b, \text { in } 2)) & = \begin{cases}b & \text { if } b \in F_{2} \\
b_{2}^{\prime} & \text { otherwise },\end{cases} \\
g_{2}((b, \text { here })) & = \begin{cases}b & \text { if } b \in F_{2} \\
b_{2}^{\prime} & \text { otherwise },\end{cases} \\
g_{2}((b, \text { here })) & = \begin{cases}\lambda & \text { if } b \in F_{1} \\
b_{1}^{\prime} & \text { otherwise },\end{cases}
\end{aligned}
$$

and the grammar system $G=\left(N, V \backslash F_{2}, P_{1}, P_{2}, S\right)$ with two components by

$$
\begin{aligned}
N & =V_{1} \cup V_{2} \cup V_{1}^{\prime} \cup V_{2}^{\prime} \cup\{S\} \\
P_{1} & =\left\{S \rightarrow h_{1}\left(w_{1}\right) h_{2}\left(w_{2}\right)\right\} \cup\left\{a_{i} \rightarrow g_{i}(x) \mid a \rightarrow x \in R_{i}, 1 \leq i \leq 2\right\} \\
P_{2} & =\left\{a_{i}^{\prime} \rightarrow a_{i} \mid a \in V, 1 \leq i \leq 2\right\}
\end{aligned}
$$

A configuration $\left(w_{1} v, w_{2} u\right)$ of Γ with $w_{1} \in\left(V \backslash F_{1}\right)^{*}, v \in F_{1}^{*}, w_{2} \in\left(V \backslash F_{2}\right)^{*}$ and $u \in F_{2}^{*}$ is described in the grammar system G by a word $h_{1}\left(w_{1}\right) h_{2}\left(w_{2}\right) u$. Such a word cannot be processed by the first component of G and the second component of G cancels all the primes, i. e., we obtain the word $v_{1} v_{2} u$ where v_{1} is the variant of w_{1} where all letters have the index 1 and v_{2} is the variant of w_{2} where all letters have the index 2 . The first component of G transforms a word $v_{1} v_{2} u$ with $v_{1} \in V_{1}^{*}$ and $v_{2} \in V_{2}^{*}$ in $u_{1} u_{2}$ where u_{1} and u_{2} are the indexed and primed versions of w_{1}^{\prime} and w_{2}^{\prime} with $\left(w_{1}, w_{2} u\right) \vdash\left(w_{1}^{\prime}, w_{2}^{\prime} u\right)$ besides the letters of F_{1} which are cancelled since they do not contribute to Γ and the letters of F_{2} which remain in the second membrane. Therefore there are words $z_{1} \in\left(V \backslash F_{1}\right)^{*}$, $z \in F_{1}^{*}, z_{2} \in\left(V \backslash F_{2}\right)^{*}$ and $u^{\prime} \in F_{2}^{*}$ such that $w_{1}^{\prime}=z_{1} z, w_{2}=z_{2} u^{\prime}$ and

$$
h\left(w_{1}\right) h\left(w_{2}\right) u \Longrightarrow_{P_{1}} v_{1} v_{2} u \Longrightarrow_{P_{2}} h_{1}\left(z_{1}\right) h_{2}\left(z_{2}\right) u^{\prime} u
$$

in G. Moreover, the derivation stops in G if and only if all letters belong to F_{2}, and a halting configuration in Γ is obtained if and only if all letters in membrane 1 belong to F_{2} and all letters in membrane 2 belong to F_{2}. Taking into consideration that the letters of F_{1} are cancelled in G, we obtain that $L(\Gamma)=N(L(G))$. By Theorem 13.10 i), $L(G)$ is a context-free language. Hence $N(L(G)) \in N(C F)$. Therefore we have $L(\Gamma) \in N(C F)$ and $\mathcal{L}_{2}(P, n c o) \subseteq N(C F)$ is shown.

Theorem 13.18 For all $n \geq 1, \mathcal{L}_{1}(P, c o o)=\mathcal{L}_{n}(P, c o o)=\mathcal{L}_{*}(P, c o o)=N(R E)$.
Proof. By (13.1) it is sufficient to prove that $N(R E) \subseteq \mathcal{L}_{1}(P, c o o)$.
Let $L \in N(R E)$. By Theorem 13.4, there is a matrix grammar $G=(N, T, M, S, F)$ such that $L=N(L(G))$. By Theorem 13.6, we can assume that G is in normal form. We construct the membrane system

$$
\Gamma=\left(N_{1} \cup N_{2} \cup T \cup\left\{S, Z, \#, H, H^{\prime}, H^{\prime \prime}\right\} \cup\left\{H_{A} \mid A \in N_{2}\right\},\left[{ }_{1}\right]_{1}, S, R_{1}, 1\right)
$$

with R_{1} consisting of all rules of the forms
(1) $S \rightarrow H X A$ for $(S \rightarrow X A) \in M$,

$$
\begin{align*}
& H X A \rightarrow H Y x \text { for }(X \rightarrow Y, A \rightarrow x) \in M \tag{2}\\
& H X \rightarrow H^{\prime} H_{A} Y, H_{A} A \rightarrow \#, \# \rightarrow \#, H^{\prime} \rightarrow H^{\prime \prime}, H^{\prime \prime} H_{A} \rightarrow H \tag{3}\\
& \quad \text { for }(X \rightarrow Y, A \rightarrow \#) \in M
\end{align*}
$$

$$
\begin{equation*}
H Z \rightarrow \lambda \tag{4}
\end{equation*}
$$

Obviously, we have $S \Longrightarrow X A$ in G and $(S) \vdash(H X A)$ in Γ, i. e., besides the additional symbol H we have simulated a derivation step of G.

If we have a sentential form $w=X w_{1} A w_{2}$ in G, then we can apply a matrix of the form $(X \rightarrow Y, A \rightarrow x)$ and obtain $Y w_{1} x w_{2}$. In Γ we simulate this by applying $H X A \rightarrow H Y x$ to $H X w_{1} A w_{2}$ which gives $H Y w_{1} x w_{2}$, i. e., the simulation is correct.

The matrix $(X \rightarrow y, A \rightarrow \#)$ is only applicable to $X w$ if A does not occur in w and results in $Y w$. Accordingly, if we apply $H X \rightarrow H^{\prime} H_{A} Y$ to $X w$, we get $H^{\prime} H_{A} Y w$. If A is present, i.e. $w=w_{1} A w_{2}$, we have to apply $H^{\prime} \rightarrow H^{\prime \prime}$ and $H_{A} A \rightarrow \#$ in parallel (maximal parallelism) and get $H^{\prime \prime} \# w_{1} w_{2}$. However, now $\# \rightarrow \#$ can be applied at any moment and thus we cannot come to a halting configuration. If A is not present, we get

$$
H^{\prime} H_{A} Y w \vdash H^{\prime \prime} H_{A} Y w \vdash H Y w,
$$

i. e., again, the application of $(X \rightarrow y, A \rightarrow \#)$ is correctly simulated by the rules of (3).

If $Z \rightarrow \lambda$ is used in G we simulate this by $H Z \rightarrow \lambda$.
By these explanations it follows that $L(\Gamma)=N(L(G))=L$ and thus $L \in \mathcal{L}_{1}(P, c o o)$ which proves $N(R E) \subseteq \mathcal{L}_{1}(P, c o o)$.

For catalytic systems the situation is different since the hierarchy has two levels.
Theorem 13.19 For all $n \geq 2, \mathcal{L}_{1}(P, c a t) \subset \mathcal{L}_{2}(P, c a t)=\mathcal{L}_{n}(P, c a t)=\mathcal{L}_{*}(P, c a t)=$ $N(R E)$.

Proof. We omit the proof of the strictness of the inclusion $\mathcal{L}_{1}(P, c a t) \subset \mathcal{L}_{2}(P$, cat $)$.
Let L be the length set of a recursively enumerable language. Then there is a matrix grammar $G=\left(N_{1} \cup N_{2} \cup\{S, Z, \#\}, T, M, S, F\right)$ in normal form (see Definition 13.5 and Theorem 13.6) such that $L=N(L(G))$. Let $\left(X_{i} \rightarrow Y_{i}, A_{i} \rightarrow w_{i}\right), 1 \leq i \leq s$, and $\left(X_{j} \rightarrow Y_{j}, A_{j} \rightarrow \#\right), s+1 \leq j \leq t$, be the matrices of M which consist of two rules. We note that any sentential form of G, which does not contain S or Z, contains exactly one element of N_{1}. Since for membrane systems the order of the letters in a word is not important, we assume without loss of generality that, for $1 \leq i \leq s, w_{i}=w_{i}^{\prime} w_{i}^{\prime \prime}$ with $w_{i}^{\prime} \in N_{2}^{*}$ and $w_{i}^{\prime \prime} \in T^{*}$. If all elements of the multiset/word $w=a_{1} a_{2} \ldots a_{n}$ are sent in a membrane i, we write $\left(w, i n_{i}\right)$ instead of $\left(a_{1}, i n_{i}\right)\left(a_{2}, i n_{i}\right) \ldots\left(a_{n}, i n_{i}\right)$. We construct the catalytic membrane system

$$
\Gamma=\left(V,\left[{ }_{1}[2]_{2}\right]_{1}, S, \lambda, R_{1}, \emptyset, 2\right)
$$

with

$$
\begin{aligned}
V= & N_{1} \cup N_{2} \cup\left\{S, Z, \#, \S, \S_{1}, \S_{2}, \S_{3}, r, c_{0}, c\right\} \cup \bigcup_{i=1}^{t}\left\{r_{i}, r_{i}^{\prime}, c_{i}, Q_{i}, Q_{i}^{\prime}\right\} \cup \bigcup_{i=1}^{s}\left\{Q_{i}^{\prime \prime}\right\}, \\
R_{1}= & \left\{S \rightarrow c \S c_{0} c_{1} \ldots c_{t} \S_{1} r^{t} X A \mid(S \rightarrow X A) \in M\right\} \\
& \cup\left\{c \S \rightarrow c, c \$_{2} \rightarrow c, c_{0} r \rightarrow c_{0} \S, c_{0} Z \rightarrow c_{0}, \S_{1} \rightarrow \S_{2}, \S_{2} \rightarrow \S_{3}, \S_{3} \rightarrow \S_{1},\right. \\
& r \rightarrow \#, \# \rightarrow \#, \S \rightarrow \#\} \\
& \cup\left\{r_{i} \rightarrow \#, X_{i} \rightarrow \#, Q_{i}^{\prime} \rightarrow Y_{i}, c_{i} X_{i} \rightarrow c_{i} Q_{i}^{\prime} r_{i}^{t}, c_{i} r \rightarrow c_{i}, c_{0} r_{i} \rightarrow c_{0} r_{i}^{\prime} \S\right. \\
& \left.\quad c_{0} r_{i}^{\prime} \rightarrow c_{0} r \S, c_{i} \S_{2} \rightarrow c_{i} \# \mid 1 \leq i \leq t\right\} \\
& \cup\left\{c_{i} r_{j} \rightarrow c_{i} r_{j}^{\prime}, c_{i} r_{j}^{\prime} \rightarrow c_{i} r \mid 1 \leq i \leq t, 1 \leq j \leq t, i \neq j\right\} \\
& \cup\left\{Q_{i} \rightarrow Q_{i}^{\prime}, c_{i} A_{i} \rightarrow c_{i} Q_{i}^{\prime \prime}, Q_{i}^{\prime \prime} \rightarrow w_{i}^{\prime}\left(w_{i}^{\prime \prime}, i n_{2}\right) \mid 1 \leq i \leq s\right\} \\
& \cup\left\{c_{i} Q_{i} \rightarrow c_{i} Q_{i}^{\prime}, c_{i} A_{i} \rightarrow c_{i} \# \mid s+1 \leq i \leq t\right\} .
\end{aligned}
$$

The catalysts are given by $c, c_{0}, c_{1}, \ldots, c_{t}$.

Let us consider a configuration $\left(c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} X_{i} A_{i} z_{1}, z_{2}\right)$ and assume that it corresponds to a sentential form which is up the order of the letters $X_{i} A_{i} z_{1} z_{2}$ with $z_{1} \in N_{2}^{*}$ and $z_{2} \in T^{*}$.

We first discuss the case $i \leq s$. To avoid the application of a rule $\S \rightarrow \#, r \rightarrow \#$, and $X_{i} \rightarrow$ \# we have to use the rules $c_{0} r \rightarrow c_{0} \S, c_{j} r \rightarrow c_{j}$ for $1 \leq j \leq t, j \neq i$, and $c_{i} X_{i} \rightarrow c_{i} Q_{i} r_{i}^{t}$ (and $\S_{1} \rightarrow \S_{2}$). Thus we get

$$
\left(c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} X_{i} A_{i} z_{1}, z_{2}\right) \vdash\left(c \S c_{0} c_{1} \ldots c_{t} r_{i}^{t} \S_{2} Q_{i} A_{i} z_{1}, z_{2}\right) .
$$

By similar reasons, we now obtain

$$
\left(c \S c_{0} c_{1} \ldots c_{t} r_{i}^{t} \S_{2} Q_{i} A_{i} z_{1}, z_{2}\right) \vdash\left(c \S c_{0} c_{1} \ldots c_{t}\left(r_{i}^{\prime}\right)^{t} \S_{3} Q_{i}^{\prime} Q_{i}^{\prime \prime} z_{1}, z_{2}\right)
$$

(note that we introduce $\#$ via $c_{i} \S_{2} \rightarrow c_{i} \#$ if no A_{i} is present; in this case ($X_{i} \rightarrow Y_{i}, A_{i} \rightarrow$ w_{i}) is not applicable), and then

$$
\left(c \S c_{0} c_{1} \ldots c_{t}\left(r_{i}^{\prime}\right)^{t} \S_{3} Q_{i}^{\prime} Q_{i}^{\prime \prime} z_{1}, z_{2}\right) \vdash\left(c \S c_{0} c_{1} \ldots c_{t} r t \S_{1} Y_{i} w_{i}^{\prime} z_{1}, w_{i}^{\prime \prime} z_{2}\right)
$$

(note that c_{i} is involved in no applied rule). The latter configuration corresponds to $Y_{i} w_{i}^{\prime} z_{1} w_{i}^{\prime \prime} z_{2}$ which is obtained from $X_{i} A_{i} z_{1} z_{2}$ by application of $\left(X_{i} \rightarrow Y_{i}, A_{i} \rightarrow w_{i}\right)$.

If $s+1 \leq i \leq t$, we want to simulate the application of ($X_{i} \rightarrow Y_{i}, A_{i} \rightarrow \#$). Thus A_{i} has not to be present in the sentential form (since otherwise \# is produced in the matrix grammar and we cannot terminate). We get the following sequence of configurations:

$$
\begin{aligned}
\left(c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} X_{i} z_{1}, z_{2}\right) & \vdash\left(c \S c_{0} c_{1} \ldots c_{t} r_{i}^{t} \S_{2} Q_{i} z_{1}, z_{2}\right) \\
& \vdash\left(c \S c_{0} c_{1} \ldots c_{t}\left(r_{r}^{\prime}\right)^{t} \S_{3} Q_{i}^{\prime} z_{1}, z_{2}\right) \\
& \vdash\left(c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} Y_{i} z_{1}, z_{2}\right) .
\end{aligned}
$$

If A_{i} is present, then we introduce $\#$ in the last step via $c_{i} A_{i} \rightarrow c_{i} \#$; if A_{i} is not present, then c_{i} is not involved in the last step. Obviously, the corresponding sentential form $Y_{i} z_{1} z_{2}$ is obtained from $X_{i} z_{1} z_{2}$ by application of ($X_{i} \rightarrow Y_{i}, A_{i} \rightarrow \#$).

It remains the case where Z is present. Then our configuration is $\left(c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} Z, z\right)$, and the sentential form is $Z z$ with $z \in T^{*}$. We obtain the transformations

$$
\left.c \S c_{0} c_{1} \ldots c_{t} r^{t} \S_{1} Z, z\right) \vdash\left(c c_{0} c_{1} \ldots c_{t} \S_{2}, z\right) \vdash\left(c c_{0} c_{1} \ldots c_{t}, z\right)
$$

and the derivation $Z z \Longrightarrow z$ by application of $(Z \rightarrow \lambda)$. In both cases we have a halting configuration. Thus $L(\Gamma)=N(L(G))=L$.

For completeness we remark that we used $t+2$ catalysts where t is number of matrices consisting of two rules in the matrix grammar in normal form. In [?], it has been shown that two catalysts are sufficient to generate all recursively enumerable languages. It is open whether one catalyst is sufficient.

13.3 Membrane Systems with Symport/Antiport Rules

In this section we discuss membrane systems without the ability of changing objects. Hence only the moving through the membranes can be used for computation. Thus we
have a process which only works by the exchange of information. Hence the study of these systems is also of interest from an information-theoretic point of view, since it is investigated the power of communication.

In biology it is known that there are many cases where two chemicals pass through a membrane at the same time with the help of each other. Both chemicals go in the same direction (this is called symport) or in opposite direction (called antiport). Formally, such movements can be written as ($a b, i n$) or ($a b$, out) in symport case where both chemicals come in or leave out a membrane, respectively, or as (b, out; $a, i n$) denoting that a comes in and b leaves a given membrane.

Obviously, if one considers membrane systems where any rule is a symport or antiport rule, then no change of the involved chemicals occurs, and therefore finitely many objects are only moving around, which gives only a strongly limited power. Therefore we add symbols in the environment and assume that an infinite number of copies of each of these symbols is present in the environment.

We now give the formal definition of a membrane system with symport/antiport rules.

Definition 13.20 i) A membrane system with m membranes and symport/antiport rules is a construct

$$
\Gamma=\left(V, \mu, E, w_{1}, w_{2}, \ldots, w_{m}, R_{1}, R_{2}, \ldots R_{m}, i\right)
$$

where $V, \mu, w_{1}, w_{2}, \ldots w_{m}, R_{1}, R_{2}, \ldots, R_{m}$ and i are specified as in membrane system, E is a subset of V and, for $1 \leq j \leq m, R_{j}$ is a finite set of rules of the form (x, in) or (x, out) or (x, out; y, in) with $x, y \in V^{+}$.
ii) A configuration of a membrane system with symport/antiport rules is an m-tuple $C=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ of words (or equivalently, multisets) over V.

Let $j, 1 \leq j \leq m$, be a membrane and let j^{\prime} be the unique membrane which contains membrane j. The application of a rule $(x, i n)$ of R_{j} to C results in taking the multiset x out $c_{j^{\prime}}$ and adding to c_{j}; the application of (x,out) is performed by subtracting x from c_{j} and adding to $c_{j^{\prime}}$; the application of (x, out; y, in) consists in a parallel application of (x, out) and y, in) as described. If j is the outer membrane, then E takes the rule of membrane j^{\prime} where any element of E is present in E infinitely often.

The transformation of a configuration C into a configuration C^{\prime} (written as $C \vdash C^{\prime}$) is done by a maximal parallel application of the rules of all $R_{j}, 1 \leq j \leq m$, to C.

A configuration C is called halting if no rules from the sets $R_{j}, 1 \leq j \leq m$, can be applied to C
iii) The language $L(\Gamma)$ generated by a membrane system Γ with symport/antiport rules is the set of all numbers n such that there is a halting configuration $C=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ of Γ with $\left|u_{i}\right|=n$.

Example 13.21 We consider the membrane system

$$
\Gamma=\left(V,\left[{ }_{1}[2]_{2}\right]_{1}, E, a c, d f, R_{1}, R_{2}, 2\right)
$$

with

$$
\begin{aligned}
V= & \left\{a, b, c, c^{\prime}, d, e, e^{\prime}, f, g, \#\right\}, \\
E= & \left\{a, b, c, c^{\prime}, e, e^{\prime}, f, g, \#\right\}, \\
R_{1}= & \left\{(c, \text { out } ; \#, \text { in }),(c a, \text { out } ; \text { cbb, in }),\left(c a, \text { out }, c^{\prime} b b, \text { in }\right),(d a, \text { out } ; \#, \text { in })\right. \\
& \left(c^{\prime} d, \text { out } ; e, \text { in }\right),(\text { eb }, \text { out } ; \text { ea }, \text { in }),\left(e b, \text { out } ; e^{\prime} a, \text { in }\right),(f b, \text { out } ; \#, \text { in }), \\
& \left.\left(e^{\prime} f, \text { out } ; c d f, \text { in }\right),\left(e^{\prime} f, \text { out } ; g, \text { in }\right)\right\}, \\
R_{2}= & \left\{\left(d, \text { out } ; c^{\prime}, \text { in }\right),\left(c^{\prime}, \text { out }\right),\left(f, \text { out } ; e^{\prime}, \text { in }\right),\left(e^{\prime}, \text { out }\right),(d f, \text { in }),\right. \\
& (\#, \text { in }),(\#, \text { out }),(\text { ga }, \text { in }),(g, \text { out })\} .
\end{aligned}
$$

First we mention that the introduction of $\#$ is forbidden, again, because by the rules (\#, out) and (\#,in) in R_{2} the symbol \# can alternately moved from membrane 2 to membrane 1 and conversely such that no halting configuration can be reached. We study now the computations starting in $\left(c a^{n}, d f\right)$ (note that the case $n=1$ is given initially). If we use the rule $\left(c a\right.$, out; $\left.c^{\prime} b b, i n\right) \in R_{1}$, then we obtain $\left(c^{\prime} b b a^{n-1}, d f\right)$. Now only the rule (d,out; c^{\prime}, in) is applicable, which leads to $\left(d a^{n-1}, c^{\prime} f\right)$. Now we have to apply in parallel the rules (da,out; \#,in) and (c^{\prime},out), introduce the letter \# and cannot get a halting configuration. Therefore we can only use (ca,out; $c^{\prime} b b$, in), if the last occurrence of a inside the first membrane is cancelled by its application. Thus the only possible successful computation is

$$
\begin{array}{rlrl}
\left(c a^{n}, d f\right) & \vdash\left(c b b a^{n-1}, d f\right) & & \text { by }(c a, \text { out } ; c b b, \text { in }) \in R_{1} \\
& \vdash\left(c b^{4} a^{n-2}, d f\right) & & \text { by }(c a, \text { out } ; c b b, \text { in }) \in R_{1} \\
& \vdots & & \\
& \vdash\left(c b^{2 n-2} a, d f\right) & & \text { by }(c a, \text { out } ; c b b, \text { in }) \in R_{1} \\
& \vdash\left(c^{\prime} b^{2 n}, d f\right) & & \text { by }\left(c a, \text { out } ; c^{\prime} b b, \text { in }\right) \in R_{1} \\
& \vdash\left(d b^{2 n}, c^{\prime} f\right) & & \text { by }\left(d, \text { out } ; c^{\prime}, \text { in }\right) \in R_{2} \\
& \vdash\left(d c^{\prime} b^{2 n}, f\right) & & \text { by }\left(c^{\prime}, \text { out }\right) \in R_{2} \\
& \vdash\left(e b^{2 n}, f\right) & \text { by }\left(d c^{\prime}, \text { out } ; e, \text { in }\right) \in R_{1} \\
& \vdash\left(e a b^{2 n-1}, f\right) & \text { by (eb, out } ; e a, \text { in }) \in R_{1} \\
& \vdash\left(e a^{2} b^{2 n-2}, f\right) & & \text { by }(e b, \text { out } ; e a, \text { in }) \in R_{1} \\
& \vdots & & \\
& \vdash\left(e a^{2 n-1} b, f\right) & & \text { by }(e b, \text { out } ; e a, \text { in }) \in R_{1} \\
& \vdash\left(e^{\prime} a^{2 n}, f\right) & & \text { by }\left(e b, \text { out } ; e^{\prime} a, \text { in }\right) \in R_{1} \\
& \vdash\left(f a^{2 n}, e^{\prime}\right) & \text { by }\left(f, \text { out } ; e^{\prime}, \text { in }\right) \in R_{2} \\
& \vdash\left(e^{\prime} f a^{2 n}, \lambda\right) & \text { by }\left(e^{\prime}, \text { out }\right) \in R_{1}
\end{array}
$$

(note that an earlier use (eb, out; $e^{\prime} a$, in) $\in R_{1}$ leads to an introduction of $\#$ as above). Now we have two possibilities of continuation:

$$
\begin{array}{rll}
\left(e^{\prime} f a^{2 n}, \lambda\right) & \vdash\left(c d f a^{2 n}, \lambda\right) & \\
& \vdash\left(c y\left(e^{\prime} f, \text { out } ; c d f, \text { in }\right) \in R_{1}\right. \\
& \vdash\left(c b b a^{2 n-1}, d f\right) & \\
\text { by }(c a, \text { out } ; c b b, \text { in }) \in R_{1},(d f, \text { in }) \in R_{2}
\end{array}
$$

which means that, essentially, we have doubled the number of occurrences of a in membrane 1 and can iterate this process, or

$$
\begin{aligned}
\left(e^{\prime} f a^{2 n}, \lambda\right) & \vdash\left(g a^{2 n}, \lambda\right) & & \text { by }\left(e^{\prime} f, \text { out } ; g, \text { in }\right) \in R_{1} \\
& \vdash\left(a^{2 n-1}, g a\right) & & \text { by }(g a, \text { in }) \in R_{2} \\
& \vdash\left(g a^{2 n-1}, a\right) & & \text { by }(g, \text { out }) \in R_{2} \\
& \vdash\left(a^{2 n-2}, g a^{2}\right) & & \text { by }(g a, \text { in }) \in R_{2} \\
& \vdash\left(g a^{2 n-2}, a^{2}\right) & & \text { by }(g, \text { out }) \in R_{2} \\
& \vdots & & \\
& \vdash\left(\lambda, g a^{2 n}\right) & & \text { by }(\text { ga }, \text { in }) \in R_{2} \\
& \vdash\left(g, a^{2 n}\right) & & \text { by }(g, \text { out }) \in R_{2}
\end{aligned}
$$

and a halting configuration is obtained. Therefore

$$
L(\Gamma)=\left\{2^{n} \mid n \geq 1\right\} .
$$

We now prove that membrane systems with symport/antiport rules, i.e., membrane systems which only work on the basis of communication, are able to generate all recursively enumerable sets of numbers.

Theorem 13.22 For any set $L \in N(R E)$, there is a membrane system Γ with symport/antiport rules such that $L(\Gamma)=L$.

Proof. By Theorems 13.4 and 13.6 there is a matrix grammar $G=(N, T, M, S, F)$ in normal form such that $L=N(L(G))$. Let $\left(S \rightarrow X^{\prime} A^{\prime}\right)$ be the only matrix in G of this form. Let M have n matrices of the form $(X \rightarrow Y, A \rightarrow x)$ or $(X \rightarrow Y, A \rightarrow \#)$.

We define the membrane system

$$
\Gamma=\left(V,\left[{ }_{1}[2]_{2}\right]_{1}, E, c X^{\prime} A^{\prime}, \lambda, R_{1}, R_{2}, 2\right)
$$

with

$$
\begin{aligned}
V= & N_{1} \cup N_{2} \cup T \cup\{c, g, h, Z, \#\} \cup \bigcup_{i=1}^{n}\left\{c_{i}, c_{i}^{\prime}, d_{i}\right\}, \\
E= & N_{1} \cup N_{2} \cup T \cup\{g, h, Z, \#\} \cup \bigcup_{i=1}^{n}\left\{c_{i}, c_{i}^{\prime}, d_{i}\right\}, \\
Q_{i}= & \left\{\left(c X, \text { out } ; c_{i} Y, \text { in }\right),\left(c_{i} A, \text { out } ; c c_{i}^{\prime}, \text { in }\right),\left(c_{i}^{\prime}, \text { out } ; \text { x, in }\right),\left(c_{i}, \text { out } ; \#, \text { in }\right)\right\} \\
& \quad \text { for } m_{i}=(X \rightarrow Y, A \rightarrow x), \\
Q_{i}= & \left\{\left(c X, \text { out } ; c_{i} d_{i}, \text { in }\right),\left(d_{i}, \text { out } ; Y h, \text { in }\right),\left(c_{i} A, \text { out } ; \#, \text { in }\right),(h, \text { out } ; c g, \text { in }),\left(c_{i} g, \text { out }\right)\right\} \\
& \quad \text { for } m_{i}=(X \rightarrow Y, A \rightarrow \#), \\
R_{1}= & \{(c, \text { out } ; \#, \text { in }),(c Z, \text { out })\} \cup \bigcup_{i=1}^{n} Q_{i}, \\
R_{2}= & \{(\#, \text { in }),(\#, \text { out })\} \cup\{(a, \text { in }) \mid a \in T\} .
\end{aligned}
$$

We note, again, that introducing the symbol \# does not allow reaching of a halting configuration since it can be move from the second membrane to the first membrane or conversely at every moment.

Moreover, the second membrane only collects the terminals occurring at some moment in the first membrane.

Therefore we now consider only the first component of a configuration. If it has the form $c X A w$ (as it is the case for the initial configuration), then we can without introducing \# only perform the following steps

$$
c X A w \vdash c_{i} Y A w \vdash c c_{i}^{\prime} Y w \vdash c Y x w
$$

which means that we have correctly applied the simulation of the matrix $m_{i}=(X \rightarrow$ $Y, A \rightarrow x)$ and can proceed with the simulation of a further matrix.

If the configuration is $c X w$ and A does not occur in w, then the following steps have to be done

$$
c X w \vdash c_{i} d_{i} w \vdash c_{i} Y h w \vdash c_{i} Y c g w \vdash c Y w
$$

which is a correct simulation of the application of $(X \rightarrow Y, A \rightarrow \#)$.
Moreover, in both cases we stop if no nonterminal is present in the sentential form or in the first membrane (since the configuration $(c Z w, x)$ is only reachable if $w \in \lambda$). Therefore $L(\Gamma)=N(L(G))=L$.

[^0]: ${ }^{1}$ To be precise, we introduce matrix grammar with appearance checking and with erasing rules. Because the other more restricted types of matrix grammars will not be used we only use the term matrix grammar.

[^1]: ${ }^{2}$ To be precise we consider here cooperating distributed grammar systems with terminating derivation mode t; however, since other types of grammar systems are not used, we use the term grammar system only.

