Multisets

multiset M over V - function from V^{*} into \mathbf{N}
$M(x)$ - multiplicity of $x \in V^{*}$
A multiset M is called finite if there is a finite subset U of V^{*} such that $M(x)=0$ for all $x \notin U$.

Cardinality - \# $(M)=\sum_{x \in V^{*}} M(x)$,
Length $\quad-l(M)=\sum_{x \in V^{*}} M(x)|x|$
a finite multiset can be represented as $\left[w_{1}, w_{2}, \ldots, w_{n}\right]$,
$l(M)=\left|w_{1} w_{2} \ldots w_{n}\right|$,
$\#_{a}(M)=\#_{a}\left(w_{1} w_{2} \ldots w_{n}\right)$

Multiset Splicing I

Definition: For multisets $M=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ and $M^{\prime}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of words over V and a set P of splicing rules over V, we define

- a sequential derivation step $M \underset{p}{\Longrightarrow} M^{\prime}$ by $\left[w_{1}, w_{2}\right] \underset{p}{\Longrightarrow}\left[v_{1}, v_{2}\right]$ and $w_{i}=v_{i}$ for $3 \leq j \leq n$ for some $p \in P$ and some appropriate order of the elements in M and M^{\prime},
- a maximally parallel derivation step $M \underset{m_{p}}{\Longrightarrow} M^{\prime}$ by $\left[w_{2 i-1}, w_{2 i}\right] \underset{p_{i}}{\longrightarrow}\left[v_{2 i-1}, v_{2 i}\right]$ for $1 \leq i \leq k \leq \frac{n}{2}$ and $w_{i}=v_{i}$ for $2 k+1 \leq j \leq n$ for some $p_{i} \in P$ and some appropriate order of the elements in M and M^{\prime}, and by the requirement that there is no multiset $\left[w, w^{\prime}\right] \subseteq\left[w_{2 k+1}, w_{2 k+2}, \ldots, w_{n}\right]$ to which a splicing rule $p \in P$ can be (successfully) applied,
- a strongly maximally parallel derivation step $M \xlongequal{\longrightarrow} M^{\prime}$
by $M \underset{m p}{\Longrightarrow} M^{\prime}$ for some k (as in the preceding item) and there is no $M^{\prime \prime}$ with $M \underset{m p}{\Longrightarrow} M^{\prime \prime}$ for some $k^{\prime}>k$.

Multiset Splicing Systems

Definition: A multiset splicing system is a triple $G=(V, P, M)$ where

- V is an alphabet,
- P is a finite set of splicing rules over V such that, for any rule $r_{1} \# r_{2} \$ r_{3} \# r_{4} \in P, r_{i} \neq \lambda$ for $1 \leq i \leq 4$, and
$-M$ is a finite multiset over V.
Definition We define the sequential, maximally parallel and strongly maximally parallel multiset languages $m L(G, s), \quad m L(G, m p)$ and $m L(G, s m p)$ generated by G as

$$
\begin{aligned}
m L(G, s) & =\left\{K \mid M \Longrightarrow_{s}^{*} K\right\} \\
m L(G, m p) & =\left\{K \mid M \Longrightarrow_{m p}^{*} K\right\} \\
m L(G, s m p) & =\left\{K \mid M \Longrightarrow_{s m p}^{*} K\right\}
\end{aligned}
$$

Some Notations

$$
\begin{aligned}
& \text { for } Y \in\{s, m p, s m p\} \text {, we denote by } \\
& m \mathcal{L}(Y) \quad \text { - the family of all languages } m L(G, Y) \text { which can be } \\
& \text { generated by a multiset splicing system } G \text { in the } \\
& \text { derivation mode } Y \text {, } \\
& m \mathcal{L}_{n}(Y) \quad \text { - the family of all languages } m L(G, Y) \text { which can be } \\
& \text { generated by a multiset splicing system } G=(V, P, M) \\
& \text { with } \#(M)=n \text { in the derivation mode } Y \text {. }
\end{aligned}
$$

Some Facts I

Lemma:

For any multiset splicing system $G=(V, P, M), a \in V, Y \in\{s, m p, s m p\}$, and any $K \in m L(G, Y)$,

$$
\#(K)=\#(M), l(K)=l(M), \text { and } \#_{a}(K)=\#_{a}(M)
$$

Theorem:

For two integers n and $m, m \neq n$, and two derivation modes $Y \in$ $\{s, m p, s m p\}$ and $Y^{\prime} \in\{s, m p, s m p\}$, the language families $m \mathcal{L}_{n}(Y)$ and $m \mathcal{L}_{m}\left(Y^{\prime}\right)$ are incomparable.

Some Facts II

Theorem:

i) For $n \in\{1,2,3\}, m \mathcal{L}_{n}(s)=m \mathcal{L}_{n}(m p)=m \mathcal{L}_{n}(s m p)$.
ii) For $n \geq 4, m \mathcal{L}_{n}(m p)$ and $m \mathcal{L}_{n}(s m p)$ are both incomparable to $m \mathcal{L}_{n}(s)$.
iii) For $n \geq 5, m \mathcal{L}_{n}(m p)$ is not contained in $m \mathcal{L}_{n}(s m p)$.
iv) For $n \geq 6$, the classes $m \mathcal{L}_{n}(s), m \mathcal{L}_{n}(m p)$, and $m \mathcal{L}_{n}(s m p)$ are pairwise incomparable.

Sticking Operation - Prolongation to the Rigth

For $x \in W_{\varrho}(V)$ mit $x=x_{1} x_{2} x_{3}, y \in W_{\varrho}(V)$, we define $\mu_{r}(x, y)$ by

1. $x_{1} x_{2}\left[\begin{array}{l}u \\ v\end{array}\right] y^{\prime}$, if $x_{3}=\binom{u}{\lambda}, y=\binom{\lambda}{v} y^{\prime} \quad\left(u, v \in V^{*}, y^{\prime} \in R_{\varrho}(V)\right.$,
2. $x_{1} x_{2}\left[\begin{array}{l}u \\ v\end{array}\right] y^{\prime}$, if $x_{3}=\binom{\lambda}{v}, y=\binom{u}{\lambda} y^{\prime} \quad\left(u, v \in V^{*}, y^{\prime} \in R_{\varrho}(V)\right)$,
3. $x_{1} x_{2}\left[\begin{array}{c}u \\ v\end{array}\right]\binom{u^{\prime}}{\lambda}$, if $x_{3}=\binom{u u^{\prime}}{\lambda}, y=\binom{\lambda}{v}\left(u, v, u^{\prime} \in V^{*}, y^{\prime} \in R_{\varrho}(V)\right)$,
4. $x_{1} x_{2}\left[\begin{array}{l}u \\ v\end{array}\right]\binom{\lambda}{v^{\prime}}$, if $x_{3}=\binom{u}{\lambda}, y=\binom{\lambda}{v v^{\prime}} \quad\left(u, v, v^{\prime} \in V^{*}, y^{\prime} \in R_{\varrho}(V)\right)$,
5. $x_{1} x_{2}\binom{u v}{\lambda}$, if $x_{3}=\binom{u}{\lambda}, y=\binom{v}{\lambda} \quad\left(u, v \in V^{*}\right)$,
6. $x_{1} x_{2}\left[\begin{array}{l}v \\ u\end{array}\right]\binom{\lambda}{u^{\prime}}$, if $x_{3}=\binom{\lambda}{u u^{\prime}}, y=\binom{v}{\lambda} \quad\left(u, v, u^{\prime} \in V^{*}\right)$,
7. $x_{1} x_{2}\left[\begin{array}{c}v \\ u\end{array}\right]\binom{v^{\prime}}{\lambda}$, if $x_{3}=\binom{\lambda}{u}, y=\binom{v v^{\prime}}{\lambda}\left(u, v, v^{\prime} \in V^{*}\right)$,
8. $x_{1} x_{2}\binom{u v}{\lambda}$, if $x_{3}=\binom{\lambda}{u}, y=\binom{\lambda}{v} \quad\left(u, v \in V^{*}\right)$.

Sticker Systems

Definition: i) A sticker system is a quadruple $G=(V, \varrho, A, D)$ where

- V is an alphabet,
$-\varrho \subset V \times V$ is a symmetric relation on V,
- A is a finite subset of $L R_{\varrho}(V)$, and
- D is a finite subset of $W_{\varrho}(V) \times W_{\varrho}(V)$.
ii) We say that $y \in L R_{\varrho}(V)$ is derived by $x \in L R_{\varrho}(V)$ in one step (written as $x \Longrightarrow y)$ iff $y=\mu_{l}\left(\mu_{r}\left(x, y_{2}\right), y_{1}\right)$ for some $\left(y_{1}, y_{2}\right) \in D$.
By $\xlongequal{*}$ we denote the reflexive and transitive closure of \Longrightarrow.
iii) The molecule language $M L(G)$ and the word language $w L(G)$ generated by G are defined by

$$
M L(G)=\left\{z \mid x \Longrightarrow s * z, x \in A, z \in\left[\begin{array}{l}
V \\
V
\end{array}\right]_{\varrho}^{+}\right\}
$$

and

$$
w L(G)=\left\{w \left\lvert\,\left[\begin{array}{c}
w \\
v
\end{array}\right] \in M L(G)\right. \text { for some } v \in V^{+}\right\}
$$

respectively.

Special Sticker Systems I

Definition:

A sticker system $G=(V, \varrho, A, D)$ is called

- one-sided if, for each pair $(u, v) \in D, u=\binom{\lambda}{\lambda}$ or $v=\binom{\lambda}{\lambda}$ hold,
- regular if, for each pair $(u, v) \in D, u=\binom{\lambda}{\lambda}$ holds,
- simple if, for each pair $(u, v) \in D, u v \in\binom{V^{*}}{\lambda}$ or $u v \in\binom{\lambda}{V^{*}}$ hold.

Special Sticker Systems II

Definition:

i) For a sticker system $G=(V, \varrho, A, D)$ and a natural number $d \geq 1$, we define the language $M L_{d}(G)$ as the set of all molecules which have a derivation
$x=x_{0} \Longrightarrow x_{1} \Longrightarrow \ldots \Longrightarrow x_{k}$ with $x_{k} \in\left[\begin{array}{l}V \\ V\end{array}\right]_{\varrho}^{*}$ and $d\left(x_{i}\right) \leq d$ for $0 \leq i \leq k$.
ii) We say that a molecule language $L \subset\left[\begin{array}{l}V \\ V\end{array}\right]_{\varrho}^{*}$ or a word language $L^{\prime} \subset V^{*}$ can be generated with bounded delay, if there are a sticker system $G=(V, \varrho, A, D)$ and a natural number $d \geq 1$ such that $M L(G)=M L_{d}(G)$ and $L=M L(G)$ and $L^{\prime}=w L(G)$, respectively, are valid.

Sticker System - Results I

Lemma: For $X \in\{A, O, R, S A, S O, S R\}, X S L(b) \subseteq X S L$.
Lemma: For $y \in\{(b), \lambda\}$, the following diagram holds.

Sticker Systems - Results II

Lemma: $A S L \subseteq \mathcal{L}(C S)$.
Lemma: $O S L \subseteq \mathcal{L}(R E G)$.
Lemma: $S O S L(b)=S O S L$ und $S R S L(b)=S R S L$.
Lemma: $\mathcal{L}(R E G) \subseteq R S L(b)$.
Lemma: $A S L(b)=\mathcal{L}(L I N)$.
Lemma: There is a regular language which is not in $S O S L$.

Sticker Systems - Results III

Satz: The following diagram holds.

