Multisets

multiset M over V — function from V^* into ${\bf N}$

M(x) — multiplicity of $x \in V^*$

A multiset M is called finite if there is a finite subset U of V^* such that M(x) = 0 for all $x \notin U$.

a finite multiset can be represented as $[w_1, w_2, \dots, w_n]$, $l(M) = |w_1 w_2 \dots w_n|$, $\#_a(M) = \#_a(w_1 w_2 \dots w_n)$

Multiset Splicing I

Definition: For multisets $M = [w_1, w_2, \dots, w_n]$ and $M' = [v_1, v_2, \dots, v_n]$ of words over V and a set P of splicing rules over V, we define

- a sequential derivation step $M \Longrightarrow M'$ by $[w_1, w_2] \Longrightarrow [v_1, v_2]$ and $w_i = v_i$ for $3 \le j \le n$ for some $p \in P$ and some appropriate order of the elements in M and M',
- a maximally parallel derivation step $M \Longrightarrow_{mp} M'$ by $[w_{2i-1}, w_{2i}] \Longrightarrow_{p_i} [v_{2i-1}, v_{2i}]$ for $1 \le i \le k \le \frac{n}{2}$ and $w_i = v_i$ for $2k + 1 \le j \le n$ for some $p_i \in P$ and some appropriate order of the elements in M and M', and by the requirement that there is no multiset $[w, w'] \subseteq [w_{2k+1}, w_{2k+2}, \dots, w_n]$ to which a splicing rule $p \in P$ can be (successfully) applied,
- a strongly maximally parallel derivation step $M \Longrightarrow_{smp} M'$ by $M \Longrightarrow_{mp} M'$ for some k (as in the preceding item) and there is no M''with $M \Longrightarrow_{mp} M''$ for some k' > k.

Multiset Splicing Systems

Definition: A multiset splicing system is a triple G = (V, P, M) where

- -V is an alphabet,
- P is a finite set of splicing rules over V such that, for any rule $r_1 \# r_2 \$ r_3 \# r_4 \in P$, $r_i \neq \lambda$ for $1 \leq i \leq 4$, and
- M is a finite multiset over V.

Definition We define the sequential, maximally parallel and strongly maximally parallel multiset languages mL(G,s), mL(G,mp) and mL(G,smp) generated by G as

$$mL(G, s) = \{K \mid M \Longrightarrow_{s}^{*} K\},\$$

$$mL(G, mp) = \{K \mid M \Longrightarrow_{mp}^{*} K\},\$$

$$mL(G, smp) = \{K \mid M \Longrightarrow_{smp}^{*} K\}.$$

Some Notations

for $Y \in \{s, mp, smp\}$, we denote by

- $m\mathcal{L}(Y)$ the family of all languages mL(G, Y) which can be generated by a multiset splicing system G in the derivation mode Y,
- $m\mathcal{L}_n(Y)$ the family of all languages mL(G, Y) which can be generated by a multiset splicing system G = (V, P, M)with #(M) = n in the derivation mode Y.

Some Facts I

Lemma:

For any multiset splicing system $G=(V,P,M),~a\in V$, $Y\in\{s,mp,smp\}$, and any $K\in mL(G,Y)$,

$$\#(K) = \#(M), \ l(K) = l(M), \text{ and } \#_a(K) = \#_a(M).$$

Theorem:

For two integers n and m, $m \neq n$, and two derivation modes $Y \in \{s, mp, smp\}$ and $Y' \in \{s, mp, smp\}$, the language families $m\mathcal{L}_n(Y)$ and $m\mathcal{L}_m(Y')$ are incomparable.

Some Facts II

Theorem:

- i) For $n \in \{1, 2, 3\}$, $m\mathcal{L}_n(s) = m\mathcal{L}_n(mp) = m\mathcal{L}_n(smp)$.
- ii) For $n \ge 4$, $m\mathcal{L}_n(mp)$ and $m\mathcal{L}_n(smp)$ are both incomparable to $m\mathcal{L}_n(s)$.
- iii) For $n \geq 5$, $m\mathcal{L}_n(mp)$ is not contained in $m\mathcal{L}_n(smp)$.
- iv) For $n \ge 6$, the classes $m\mathcal{L}_n(s)$, $m\mathcal{L}_n(mp)$, and $m\mathcal{L}_n(smp)$ are pairwise incomparable.

Sticking Operation – Prolongation to the Rigth

For
$$x \in W_{\varrho}(V)$$
 mit $x = x_1 x_2 x_3$, $y \in W_{\varrho}(V)$, we define $\mu_r(x, y)$ by
1. $x_1 x_2 \begin{bmatrix} u \\ v \end{bmatrix} y'$, if $x_3 = \begin{pmatrix} u \\ \lambda \end{pmatrix}$, $y = \begin{pmatrix} \lambda \\ v \end{pmatrix} y'$ $(u, v \in V^*, y' \in R_{\varrho}(V))$,
2. $x_1 x_2 \begin{bmatrix} u \\ v \end{bmatrix} y'$, if $x_3 = \begin{pmatrix} \lambda \\ v \end{pmatrix}$, $y = \begin{pmatrix} u \\ \lambda \end{pmatrix} y'$ $(u, v \in V^*, y' \in R_{\varrho}(V))$,
3. $x_1 x_2 \begin{bmatrix} u \\ v \end{bmatrix} \begin{pmatrix} u' \\ \lambda \end{pmatrix}$, if $x_3 = \begin{pmatrix} uu' \\ \lambda \end{pmatrix}$, $y = \begin{pmatrix} \lambda \\ vv' \end{pmatrix}$ $(u, v, u' \in V^*, y' \in R_{\varrho}(V))$,
4. $x_1 x_2 \begin{bmatrix} u \\ v \end{bmatrix} \begin{pmatrix} \lambda \\ v' \end{pmatrix}$, if $x_3 = \begin{pmatrix} u \\ \lambda \end{pmatrix}$, $y = \begin{pmatrix} \lambda \\ vv' \end{pmatrix}$ $(u, v, v' \in V^*, y' \in R_{\varrho}(V))$,
5. $x_1 x_2 \begin{pmatrix} uv \\ \lambda \end{pmatrix}$, if $x_3 = \begin{pmatrix} u \\ \lambda \end{pmatrix}$, $y = \begin{pmatrix} v \\ \lambda \end{pmatrix}$ $(u, v \in V^*)$,
6. $x_1 x_2 \begin{bmatrix} v \\ u \end{bmatrix} \begin{pmatrix} \lambda \\ u' \end{pmatrix}$, if $x_3 = \begin{pmatrix} \lambda \\ uu' \end{pmatrix}$, $y = \begin{pmatrix} v \\ \lambda \end{pmatrix}$ $(u, v, u' \in V^*)$,
7. $x_1 x_2 \begin{bmatrix} v \\ u \end{bmatrix} \begin{pmatrix} v' \\ \lambda \end{pmatrix}$, if $x_3 = \begin{pmatrix} \lambda \\ u \end{pmatrix}$, $y = \begin{pmatrix} vv' \\ \lambda \end{pmatrix}$ $(u, v, v' \in V^*)$,
8. $x_1 x_2 \begin{pmatrix} uv \\ \lambda \end{pmatrix}$, if $x_3 = \begin{pmatrix} \lambda \\ u \end{pmatrix}$, $y = \begin{pmatrix} \lambda \\ v \end{pmatrix}$ $(u, v \in V^*)$.

Sticker Systems

Definition: i) A sticker system is a quadruple $G = (V, \rho, A, D)$ where

- -V is an alphabet,
- $\varrho \subset V \times V$ is a symmetric relation on V,
- A is a finite subset of $LR_{\varrho}(V)$, and
- D is a finite subset of $W_{\varrho}(V) \times W_{\varrho}(V)$.
- ii) We say that $y \in LR_{\varrho}(V)$ is derived by $x \in LR_{\varrho}(V)$ in one step (written as $x \Longrightarrow y$) iff $y = \mu_l(\mu_r(x, y_2), y_1)$ for some $(y_1, y_2) \in D$.
- By $\stackrel{*}{\Longrightarrow}$ we denote the reflexive and transitive closure of \Longrightarrow .

iii) The molecule language ML(G) and the word language wL(G) generated by G are defined by

$$ML(G) = \{ z \mid x \Longrightarrow s * z, \ x \in A, \ z \in \begin{bmatrix} V \\ V \end{bmatrix}_{\varrho}^+ \}$$

 and

$$wL(G) = \{w \mid {w \brack v} \in ML(G) \text{ for some } v \in V^+\},$$
tively.

respectively.

Formal Languages and Biological Processes

Special Sticker Systems I

Definition:

A sticker system $G = (V, \varrho, A, D)$ is called

• one-sided if, for each pair $(u, v) \in D$, $u = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ or $v = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ hold,

• regular if, for each pair $(u, v) \in D$, $u = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ holds,

• simple if, for each pair $(u, v) \in D$, $uv \in {\binom{V^*}{\lambda}}$ or $uv \in {\binom{\lambda}{V^*}}$ hold.

Special Sticker Systems II

Definition:

i) For a sticker system $G = (V, \varrho, A, D)$ and a natural number $d \ge 1$, we define the language $ML_d(G)$ as the set of all molecules which have a derivation

$$x = x_0 \Longrightarrow x_1 \Longrightarrow \ldots \Longrightarrow x_k$$
 with $x_k \in \begin{bmatrix} V \\ V \end{bmatrix}_{\varrho}^*$ and $d(x_i) \le d$ for $0 \le i \le k$.

ii) We say that a molecule language $L \subset \begin{bmatrix} V \\ V \end{bmatrix}_{\varrho}^*$ or a word language $L' \subset V^*$ can be generated with *bounded delay*, if there are a sticker system $G = (V, \varrho, A, D)$ and a natural number $d \geq 1$ such that $ML(G) = ML_d(G)$ and L = ML(G) and L' = wL(G), respectively, are valid.

Sticker System – Results I

Lemma: For $X \in \{A, O, R, SA, SO, SR\}$, $XSL(b) \subseteq XSL$.

Lemma: For $y \in \{(b), \lambda\}$, the following diagram holds.

Sticker Systems – Results II

Lemma: $ASL \subseteq \mathcal{L}(CS)$.

Lemma: $OSL \subseteq \mathcal{L}(REG)$.

Lemma: SOSL(b) = SOSL und SRSL(b) = SRSL.

Lemma: $\mathcal{L}(REG) \subseteq RSL(b)$.

Lemma: $ASL(b) = \mathcal{L}(LIN)$.

Lemma: There is a regular language which is not in SOSL.

