
Logics, Categories and Colimits

Lecture Notes

DRAFT

A lecture by Till Mossakowski

Notes taken by Florian Pommerening, Tilman Thiry and Robert Mattmüller

2

Contents

1 Introduction 5

2 Logics 7

2.1 Propositional Logics . 7

2.1.1 Foundations . 7

2.1.2 Proofs for Propositional Logic 13

2.1.3 Conservative Extensions 18

2.1.4 Freeness . 23

2.2 Description Logics . 28

2.2.1 Foundations . 28

2.2.2 Extensions of ALC . 33

2.2.3 Signature morphisms 34

2.2.4 Freeness . 35

2.2.5 Conservative Extensions 39

2.3 First-Order Logic . 43

2.3.1 Foundations . 43

2.3.2 Signature Morphisms 45

2.3.3 Conservative Extensions 47

2.3.4 Sort generation constraints 49

2.3.5 Proofs . 50

3 Category theory 51

3.1 Satisfaction Systems . 51

3.2 Categories . 53

3.2.1 Functors . 57

3.2.2 Institutions . 58

3.2.3 Structured speci�cations 61

3.2.4 Institutions with proofs 65

3.3 Colimits . 66

3.3.1 Coproducts . 66

3.3.2 Semi-exactness . 69

3.3.3 Colimits in general . 75

3.4 Natural transformations . 77

3

3.4.1 Institution comorphisms 79
3.5 Borrowing . 81

3.5.1 Borrowing for structured speci�cations 83
3.6 Free speci�cations . 85

3.6.1 Model homomorphisms 85
3.7 Adjoint functors . 89

4 Outlook 93

4.1 Modal logic . 93
4.1.1 Correspondence theory 93

4.2 Coalgebraic logic . 94
4.3 Higher-order logic . 94
4.4 Substructural logics . 95

4.4.1 Linear logic . 95
4.4.2 Paraconsistent logic 95

4.5 Institutional model theory . 95
4.5.1 Logic programing . 95

4.6 Heterogenous speci�cations 96

5 Have fun 97

4

Chapter 1

Introduction

This course material has been initiated during the course Logics, Categories,
and Colimits for Arti�cial Intelligence given by Till Mossakowski in 2008/09
at the university of Freiburg, and has also been used for the course Logics
and categories for software engineering and arti�cial intelligence given by
Till Mossakowski and Lutz Schröder at the university of Bremen in 2009. It
provides material for one semester course and contains numerous exercises
for deepening the understanding. Worked-out solutions are available for
all exercises1, however, they have deliberately not been included into the
text. However, they are available upon request from the authors. Although
the material is basically self-contained, some prior exposition to logic and
mathematical notation is needed.

While many textbooks and courses are centered around some particular log-
ical system, in modern applications, a variety of logics are used an applied.
The emphasis of this text is therefore to introduce a range of well-known
and important logics in such a way that the common principles behind logic
become clear, and the perspective to the theory of abstract logical systems
(formalised as institutions, using category theory) is opened. The only avail-
able textbook on institutions so far [2] starts at a rather sophisticated level
and is based on a high level of abstraction - typical examples are partic-
ular logics and mathematical constructions related to these. By contrast,
the current text starts with a detailed discussion of individual logics, while
providing many example theories and arguments in these logics, and only
then moves on to the more abstract notions of institution theory. Moreover,
we start with the simple and well-known propositional logic, which is very
suitable to illustrate many logical concepts that are important also for more
complex logics. We then proceed to description logics, which have become
important in the �eld on ontologies and ontology engineering, and the move
on the classical �rst-order logic (and some extensions), which provides more
expressive power. Some discussion of modal logic is provdided in the outlook.

1Many thanks to Robert Mattmüller for preparing this!

5

The presentation of logics not only discusses the classical logical notions like
logical theory, logical consequence, proof, consistency, soundness, complete-
ness and so on. We also give attention to modularity and structuring, and for
example discuss conservative extension of theories from the very beginning,
while later on, a language for structured speci�cations is introduced in an
institution independent way. This is particularly important from a computer
science perspective: logical theories used in computer science are often too
large to be handled in a �attened unmodular way.
Logic is better learned if you can experiment with tools from the very start.
Therefore, this text should be used with accompanying tools. The central
tool that we use is the Heterogeneous tool set Hets [5, 4, 3], which provides
a uniform input notation and tool support for a variety of logics. Hets

is freely available at http://www.dfki.de/sks/hets, and there is an
easy GUI-based installer. We urge the reader to install Hets and try out
the examples presented in the text.
It should be noted that the current text is an un�nished draft; while most
of the de�nitions, theorems and exercises are there, especially in the later
chapters, explanatory text is still missing.

6

http://www.dfki.de/sks/hets

Chapter 2

Logics

Logic has been characterised as the study of sound reasoning, of what fol-
lows from what. Hence, the notion of logical consequence is central. In this
chapter, we will introduce several logics. We begin with the simplest one,
propositional logic. Although many readers will already know about propo-
sitional logic, it is nevertheless recommended to at least skim through this
chapter and to do the exercises and try out Hets. In particular, the notions
of signature morphism, model reduct, conservative, free and cofree extension
are not so well-known, and using the Hets truth table prover, these notions
can be illustrated very well.

We then proceed to various description logics, centered around the web
ontology language OWL. Finally, �rst-order logic and some extensions for
datatypes, subsorting and partial functions (as integrated in the language
Casl) will be covered.

2.1 Propositional Logics

2.1.1 Foundations

Propositional logic is one of the simplest logics that one can think of; still,
it poses many non-trivial problems, is linked intimately to one the greatest
open problems of computer science (the P=NP-problem), and has many
applications, ranging from circuit design over planning to diagnostic systems.
Since propositional logic is well supported with tools, it is often used as a
kind of assembly language, that is, problems formulated in other formalisms
are translated to propositional logic and then solved there.

The language of logic can be divided into the logical and the non-logical part.
While logical symbols are provided by he logic itself and are �xed, non-logical
symbols are provided by the user, tailored towards a particular application.
The non-logical symbols are collected in a signature. In propositional logic,
these are just propositional letters:

7

De�nition 2.1.1 (Signature). A propositional signature Σ is a set (of propo-
sitional letters, or propositional symbols, or propositional variables1).

A signature provides us with the basic material to form logical expressions,
called formulas or sentences.

De�nition 2.1.2 (Sentence). Given a propositional signature Σ, a proposi-
tional sentence over Σ is one produced by the following grammar

φ ::= p | ⊥ | > | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ

with p ∈ Σ. Sen(Σ) is the set of all Σ-sentences

Logical sentences provide a formalisation of the grammatical conjunctions
�and�, �or�, etc. However note that the formalisation of a natural language
sentence can be a non-trivial task. For example, the word �but� often needs to
formalised as logical conjunction, which also means that part of the meaning
is lost during formalisation. For a more detailed treatment of this topic, see
[1].
Truth valuations, ormodels (as we prefer to call them for the reason of achiev-
ing uniformity with other logics) provide an interpretation of propositional
sentences. Each propositional letter is interpreted as a truth value:

De�nition 2.1.3 (Model). Given a propositional signature Σ, a Σ-model
(or Σ-valuation) is a function in Σ → {T, F}. Mod(Σ) is the set of all
Σ-models.

Models interpet not only the propositional letters, but all sentences. A Σ-
model M can be extended to

M# : Sen(Σ)→ {T, F}

using truth tables (see Figure 2.1 for the truth tables of propositional logic).
We now can de�ne what it means for a sentence to be satis�ed in a model:

De�nition 2.1.4. φ holds in M (or M satis�es φ), written M |=Σ φ i�

M#(φ) = T

We now arrive at the notion of logical consequence, which is central to logic.
It formalises the notion of valid logical argument. Note that logic is not
about the truth of individual sentences. In some circumstances (=models),
a sentence may be true, in others, it may be false. This is subject to empirical
observation, speci�c sciences, subjective preference etc., and is beyond the
scope of logic. What logic provides is a mechanism to describe what valid
logical arguments are. Such arguments need to preserve truth, but they
cannot guarantee truth: if we start with false premises, then a valid logical
argument may still lead us to false conclusions.

1Note that the term �propositional constant� would be more appropriate for reasons
that will become clear later on.

8

M#(p) = M(p)

M#(>) = T

M#(⊥) = F

(a) base cases

M#(φ) M#(¬φ)

T F

F T

(b) not

M#(φ) M#(ψ) M#(φ ∧ ψ) M#(φ ∨ ψ) M#(φ→ ψ) M#(φ↔ ψ)

T T T T T T

T F F T F F

F T F T T F

F F F F T T

(c) and, or, implication, biimplication

Figure 2.1: Truth tables

De�nition 2.1.5 (Logical consequence). Given Γ ⊆ Sen(Σ) and φ ∈ Sen(Σ),
φ is a logical consequence of Γ (written as Γ |= φ), if for all M ∈ Mod(Σ)

M |= Γ implies M |= φ.

Γ is called the set of premises, and φ the conclusion.1

Example 2.1.6. An argument in natural language is tested for validity by
translating it into propositional logic.

John plays tennis, if it's
a sunny weekend day.

If John plays tennis, then
Mary goes shopping.

It is Saturday.
It is sunny.

Mary goes shopping

sunny ∧ weekend → tennis
tennis → shopping
saturday
sunny

shopping

Note that we �rst have to formalise the argument. Actually, we then can see
that shopping is not a logical consequence.

saturday → weekend

1By contrast, in an implication ϕ→ ψ, ϕ is called the antecedent, and ψ the
consquent. Note the di�erence between implication (a sentence-forming operator) and
logical consequence (a relation between sentences).

9

sunny ∧ weekend → tennis
tennis → shopping
saturday
sunny
saturday → weekend

shopping
The set of premises has the sentence shopping as a logical consequence
Exercise 1

Show the logical consequence in Exercise 2.1.6 with Hets, using the truth-
table prover.1EdNote(1)

De�nition 2.1.7. Two sentences φ and ψ are logically equivalent, φ |=|ψ if

{ψ} |= φ and {ψ} |= φ.

Proposition 2.1.8. Some logical equivalences.

• ¬(φ ∧ ψ) |=| (¬φ) ∨ (¬ψ) (�De Morgan's law 1�)

• ¬(φ ∨ ψ) |=| (¬φ) ∧ (¬ψ) (�De Morgan's law 2�)

• φ ∧ (ψ ∨ χ) |=| (φ ∧ ψ) ∨ (φ ∧ χ) (�Distributivity of ∧ over ∨�)

• φ ∨ (ψ ∧ χ) |=| (φ ∨ ψ) ∧ (φ ∨ χ) (�Distributivity of ∨ over ∧�)

• φ→ ψ |=| ¬φ ∨ ψ

• φ↔ ψ |=| (φ→ ψ) ∧ (ψ → φ)

The statement φ |=|ψ is a meta level statement and is sometimes also written
as 'φ⇔ ψ' or 'φ ≡ ψ'
Exercise 2

Show some of the logical equivalences in Prop. 2.1.8 with Hets, using the
truth-table prover.

De�nition 2.1.9 (Conjunctive normal form (CNF)). For each sentence,
there is an equivalent conjunction of disjunctions of literals. A literal is of
the form p or of form ¬p with (p ∈ Σ).
Dually there is a equivalent disjunction of conjunctions (disjunctive normal
form (DNF)).

Proof sketch. Use an algorithm that recursively eliminates implication and
equivalences, pulls negations inwards and shifts conjunctions outwards, using
Prop. 2.1.8 and the following equivalences:

• ¬¬φ |=|φ
1
EdNote: TODO: explain CASL notation

10

• ¬> |=| ⊥

• ¬⊥ |=| >

• > ∨ φ |=| >

• ⊥ ∧ φ |=| ⊥

• > ∧ φ |=|φ > is the empty conjunction

• ⊥ ∨ φ |=|φ ⊥ is the empty disjunction

De�nition 2.1.10 (Theories). A theory is a pair T = (Σ,Γ) where Σ is a
signature and Γ ⊆ Sen(Σ). A model of a theory T = (Σ,Γ) is a Σ-model M
with M |= Γ. Also

T |= φ i� Γ |=Σ φ.

De�nition 2.1.11. A theory T is satis�able, if it has a model.

Example 2.1.12. The theory T1 = ({p, q}, {p∨q,¬p}) is satis�able, because
it has a model M = {p 7→ F, q 7→ T}.
The theory T2 = ({p, q}, {p∨q,¬p,¬q}) is not satis�able, because there is no
{p, q}-model for {p ∨ q,¬p,¬q}

Exercise 3

Show the results of Example 2.1.12 using Hets, using the truth-table prover.

Proposition 2.1.13.

(Σ,Γ) |= φ i� (Σ,Γ ∪ {¬φ}) is unsatis�able.

Proof.

⇒: AssumeM were a model of (Σ,Γ∪{¬φ}). ThenM |= Γ andM |= ¬φ,
hence M 6|= φ. This is a contradiction to (Σ,Γ) |= φ.

⇐: Assume M |= Γ, M cannot satisfy ¬φ, hence M |= φ.

De�nition 2.1.14. φ is valid (also: �φ is a tautology�), if for all Σ-models
M

M |= φ.

Proposition 2.1.15. {φ} is unsatis�able i� ¬φ is valid

11

Representation Arbitrary CNF DNF ROBDD1

compact often sometimes sometimes often

satis�ability NP-compl. NP-compl. linear quite easy

validity CoNP-compl. linear2 CoNP-compl. quite easy

∧ easy easy hard medium

∨ easy hard easy medium

¬ easy hard hard easy

Table 2.1: Comparison between di�erent representations of formulae

Props. 2.1.13 and 2.1.15 together show that the important questions for
propositional theories (logical consequence and validity) can be reduced to
satis�ability. This explains the central role that SAT-solvers play.
Exercise 4 (Propositional Logic I)

(a) Use the equivalence rules introduced in Prop. 2.1.8 above to push all
occurrences of the negation symbol �¬� next to the atoms in the fol-
lowing expressions:

(i) ¬((A→ B) ∨ ((A→ C) ∧ ¬A))
(ii) ¬(A ∧ ¬B)→ A

(b) Below are two arguments in English. Translate each argument into
logic using an appropriate dictionary, and check whether the argument
is logically valid.

(i) If the king is in the room, then the courtiers laugh only if he
laughs. The courtiers always laugh when the jester is in the room.
The king never laughs when the jester is in the room. Therefore,
either the king or the jester is not in the room.

(ii) If Jones did not meet Smith last night, then either Smith was a
murderer, or Jones is telling a lie. If Smith was not a murderer,
then Jones did not meet Smith last night, and the murder hap-
pened after midnight. If the murder happened after midnight,
then either Smith was a murderer, or Jones is telling a lie, but
not both. Therefore, Smith was a murderer.

Exercise 5 (Propositional Logic II)

(a) (i) Find formulae A, B, and C such that {A,B}, {A,C}, and {B,C}
are consistent, while {A,B,C} is not.

(ii) For any n, �nd an inconsistent set of n formulae, of which every
n− 1 formulae are consistent.

1Reduced Ordered Binary Decision Diagrams
2A CNF is valid i� all conjuncts are valid. A conjunct is valid if it contains T or if it

contains p and ¬p.

12

(b) (i) Find four pairwise inconsistent non-contradictory formulae.
(ii) State the maximal number of pairwise inconsistent non-contradictory

formulae with two atomic propositions p and q.

(c) Check the validity of the following rules:

A ∧B
A

(∧ elimination) A B
A ∧B (∧ introduction)

[A]
....
C

[B]
....
C A ∨B
C

(∨ elimination) A ¬A
B

(¬ elimination)A ∧B
A

(∧ elimination)

Exercise 6 (Propositional Logic III)

Suppose the engine of a car does not perform properly. We want to decide
whether we should replace the engine, repair the engine, or replace auxil-
iary equipment. For the diagnosis, the following symptoms, intermediate
conclusions and �nal decisions or diagnoses should be considered.

Variable Meaning
black_exhaust Engine fumes are black
blue_exhaust Engine fumes are blue
low_power Engine has low power
overheat Engine overheats
ping Engine emits a pinging sound under load
incorrect_timing Ignition timing is incorrect
low_compression Compression of engine is low
carbon_deposits Cylinders have carbon deposits
clogged_�lter Air �lter is clogged
clogged_radiator Radiator is clogged
defective_carburetor Carburetor is defective
worn_rings Piston rings are worn
worn_seals Valve seals are worn
replace_auxiliary Replace auxiliary equipment
repair_engine Repair engine
replace_engine Replace engine

The following facts relate symptoms to intermediate conclusions (facts (i)
through (vi)) and intermediate conclusions to �nal decisions (facts (vii)
through (ix)).
(i) If the engine overheats and the ignition is correct, then the radiator is

clogged.
(ii) If the engine emits a pinging sound under load and the ignition timing

is correct, then the cylinders have carbon deposits.
(iii) If power output is low and the ignition timing is correct, then the piston

rings are worn, or the carburetor is defective, or the air �lter is clogged.
(iv) If the exhaust fumes are black, then the carburetor is defective, or the

air �lter is clogged.

13

(v) If the exhaust fumes are blue, then the piston rings are worn, or the
valve seals are worn.

(vi) The compression is low if and only if the piston rings are worn.
(vii) If the piston rings are worn, then the engine should be replaced.
(viii) If carbon deposits are present in the cylinders or the carburetor is

defective or valve seals are worn, then the engine should be repaired.
(ix) If the air �lter or radiator is clogged, then that auxiliary equipment

should be replaced.

Suppose the car owner complains that the engine overheats. Due to a recent
engine check, it is known that the ignition timing is correct. What should
be done to eliminate the problem?

Answer this question by translating the given information into a proposi-
tional Casl speci�cation and checking withHets which of the �nal decisions
(diagnoses) follow from the symptoms.

2.1.2 Proofs for Propositional Logic

There are di�erent proof methods for propositional logic. We will describe
them in the subsequent sections.

TODO: always present shopping example.

Truth tables

Truth tables directly evaluate the logical consequence relation. For small
signatures, truth tables are easy to construct and provide a good overview
for humans. You can construct truth tables easily using the truth table
prover of Hets. However, since their size grows exponentially with the
size of the signature, truth tables are not feasible even for medium-sized
signatures. Therefore, Hets limits the size to 16 propositional symbols.
Another limitation of truth tables is that they do not generalise to �rst-
order logic.

TODO: describe how they work

Natural deduction

In contrast to truth tables, this is really a proof calculus. That is, from
a given set of premises, new theorems (logical consequences) are derived
using proof rules. The proof rules for natural deduction closely follow human
reasoning. For each propositional connective, there is an introduction and an
elimination rule. The program Fitch [?] can be used for the construction and
veri�cation of natural deduction proofs. Natural deduction is also available
for �rst-order logic and other logics.

14

p q
∧-I

p ∧ q
p ∧ q

∧-E1
p

p ∧ q
∧-E2

q

p
∨-I1

p ∨ q

q
∨-I2

p ∨ q p ∨ q

[p]
····
r

[q]
····
r
∨-E

r

[p]
····
⊥
¬-I

¬p

¬¬p
¬-E

p

[p]
····
q
→ -I

p→ q

p→ q p
→ -E

q

p→ q q → p
↔ -I

p↔ q

p↔ q
↔ -E1

p→ q

p↔ q
↔ -E2

q → p

p ¬p
⊥-I

⊥
⊥
⊥-E

p
>-I

>

Figure 2.2: Natural deduction rules for propositional logic

De�nition 2.1.16. T = (Σ,Γ) ` φ, if φ can be obtained from Γ by success-
fully applying the rules in Figure 2.2.

Resolution

TODO: machine e�cient, unnatural SPASS, Vampire

Davis-Putnam-Logemann-Loveland algorithm.

TODO: expand
DPLL is a backtracking algorithm for testing satis�ability. zCha�, minisat,
darwin
It can

• select a literal,

• assign a truth value to it,

• simplify the formula,

• recursively check if the simpli�ed formula is satis�able

� if this is the case, the original formula is satis�able;

� otherwise, do the recursive check with the opposite truth value.

15

Implementations: mCha�, zCha�, darwin Crucial: design of the literal se-
lection function.
Example without saturday axiom.

Tableaux

machine e�cient, provides countermodels. Tableau proof methods are also
available for �rst-order logic and other logics. Especially for modal logics
and description logics, tableau calculi are very popular.
Isabelle's blast tactic
Interactive: Jitpro http://ps.uni-sb.de/jitpro/prover.php

Theorem 2.1.17 (Soundness).

T ` φ implies T |= φ

Theorem 2.1.18 (Completeness).

T |= φ implies T ` φ

De�nition 2.1.19 (Inconsistency).

(a) (Aristotle): A theory T is Aristotle-inconsistent, if there is a formula
φ with

T ` φ and T ` ¬φ.

(b) (Hilbert):A theory T is ⊥-inconsistent, if

T ` ⊥

(c) (Hilbert): A theory T is absolutely inconsistent, if

T ` φ for an arbitrary φ

Proposition 2.1.20. In propositional logic, all three de�nitions are equiv-
alent.

Proof.

• (a)⇒ (b) by ⊥-Introduction

• (b)⇒ (c) by ⊥-Elimination

• (c)⇒ (a) clear

16

http://ps.uni-sb.de/jitpro/prover.php

Example 2.1.21.

• Harry: John tells the truth: harry↔ john

• John: Harry lies: john↔ ¬harry

1 harry↔ john
2 john↔ ¬harry
3 harry
4 harry→ john ↔ -E (1)
5 john → -E (3,4)
6 john→ ¬harry ↔ -E (2)
7 ¬harry → -E (3,6)
8 ⊥ ⊥-I(3,7)
9 ¬harry ¬-I (3 - 8)
10 ¬harry→ john ↔ -E (2)
11 john → -E (9,10)
12 john→ harry ↔ -E (1)
13 harry → -E (11,12)
14 ⊥ ⊥-I (9,13)

Recall: By Proposition 2.1.13 (Σ,Γ) |= φ i� (Σ,Γ ∪ {¬φ}) unsatis�able

Theorem 2.1.22. (Σ,Γ) ` φ i� (Σ,Γ ∪ {¬φ}) inconsistent

Proof.

⇒ :

Γ ` φ implies

Γ ∪ {¬φ} ` φ
Γ ∪ {¬φ} ` ¬φ

}
Γ ∪ {¬φ} ` ⊥

⇐ :

Γ ∪ {¬φ} ` ⊥
By ¬-I: Γ ` ¬¬φ
By ¬-E: Γ ` φ

Proof. We prove soundness by induction on the length of the proof. Each rule
needs to be proven sound. To show completeness, we use that the following
three statements are equivalent:

17

• completeness

• every consistent theory is satis�able

• every unsatis�able theory is inconsistent

⇒ : Assume completeness and let T be unsatis�able. Hence T |= ⊥. By
completeness we conclude T ` ⊥

⇐ : Assume that every unsatis�able theory is inconsistent. Let T |= φ.
Then T ∪{¬φ} is unsatis�able. By assumption we know, that T ∪{¬φ}
is inconsistent. Hence: T ` φ.

Theorem 2.1.23. Every consistent theory is satis�able

Proof sketch:
Let T be consistent.
Extend T to a maximal consistent theory T ′

De�ne a model M by: M(φ) = > if T ′ ` φ
Then show the truth lemma: M |= φ i� T ′ ` φ
From this it is clear, that M is a T ′-model, and hence also a T -model.

Exercise 7 (Logical consequence or not?)

Evaluate the validity of the following argument. If it is a logical consequence,
use the programs SPASS, Fitch and Jitpro to construct formal (resolution,
natural deduction, tableau) proofs to show this. Otherwise, use Tarski's
World to construct a counterexample.1

1 Cube(a) ∨ (Cube(b)→ Tet(c))

2 Tet(c)→ Small(c)

3 (Cube(b)→ Small(c))→ Small(b)

4 ¬Cube(a)→ Small(b)

Exercise 8 (Inconsistency)

Consider the set T = {(A ∧ B) → ¬A,C ∨ A,¬A → A,B}. Use SPASS,
Fitch and Jitpro to construct formal proofs showing that T ` ⊥.

Exercise 9 (New connectives)

Consider the following truth table for the ternary connective ♦.
1SPASS is available within Hets, see http://www.dfki.de/sks/hets. Fitch and

Tarski's World can be downloaded from an internal web page shown in the lecture.
Jitpro is available under http://ps.uni-sb.de/jitpro/prover.php.

18

http://www.dfki.de/sks/hets
http://ps.uni-sb.de/jitpro/prover.php

P Q R ♦(P,Q,R)

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Express ♦ using only the connectives ∨, ∧, and ¬. Can you simplify the
result such that the simpli�ed sentence has no more than two occurrences
each of P , Q, and R, and no more than six occurrences of the Boolean
connectives ∨, ∧, and ¬?

2.1.3 Conservative Extensions

 specc Animals =
 props bird, penguin, living
 .penguin => bird
 .bird => living
 then % cons
 prop animal
 .bird => animal
 .animal => living
 end �
 specc penguin =
 props bird, penguin
 .penguin => bird
 then
 prop can_fly
 .bird => can_fly
 .penguin => not can_fly
 end �

Listing 2.1: Example for conservative extensions in CASL

De�nition 2.1.24. Given two signatures Σ1,Σ2 a signature morphism is a
function σ : Σ1 → Σ2 (Note that signatures are sets).

De�nition 2.1.25. A signature morphism σ : Σ1 → Σ2 induces a sentence
translation σ : Sen(Σ1)→ Sen(Σ2), de�ned inductively by

• σ(⊥) = ⊥

• σ(>) = >

19

• σ(φ1 ∧ φ2) = σ(φ1) ∧ σ(φ2)

• etc.

De�nition 2.1.26. A signature morphism σ : Σ1 → Σ2 induces a model
reduction _|σ: Mod(Σ2) → Mod(Σ1). Given M ∈ Mod(Σ2) i.e. M : Σ →
{T, F}, then M |σ∈ Mod(Σ1) is de�ned as M |σ(φ) := M(σ(φ)) i.e. M |σ=
M ◦ σ

Theorem 2.1.27 (Satisfaction condition). Given a signature morphism σ :
Σ1 → Σ2, M2 ∈ Mod(Σ2) and φ1 ∈ Sen(Σ1), then:

M2 |=Σ2 σ(φ1) i� M2|σ|=Σ1 φ1

(�truth is invariant under change of notation.�)

Proof. By induction on φ1.

• Atomic Sentences : M2 |= σ(φ) i� M2(σ(φ)) = > i� (M2 ◦ σ)(φ) = >
i� M2|σ(φ) = > i� M2|σ|= φ

• Negations : M2 |= σ(¬φ) i� M2 |= ¬σ(φ) i� M2 6|= σ(φ) i� M2|σ 6|= φ
i� M2|σ|= ¬φ.

• . . .

TODO: example views in propositional logic.

 spec Circular_Reasoning =
 props p,q,r
 . p <=> q
 . p <=> r
 . p <=> r
 end

 spec JohnMaryHarry =
 props john, mary, harry
 . john => harry
 . not harry \/ mary
 . not (mary /\ not john)
 end

 view r : Circular_Reasoning to JohnMaryHarry =
 p |-> john, q |-> harry, r |-> mary
 end �

20

 spec Sp =
 Σ1

 Γ1

 then
 Σ∆

 Γ∆

 end �

 spec Animals =
 props bird, penguin
 . penguin => bird
 then
 prop can_fly
 . penguin => not can_fly
 end �

Listing 2.2: Theory extensions in HetCasl.

De�nition 2.1.28. A theory morphism (Σ1,Γ1) → (Σ2,Γ2) is a signature
morphism σ : Σ1 → Σ2 such that for M2 ∈ Mod(Σ2,Γ2) we have M2|σ∈
Mod(Σ1,Γ1)
It is model-theoretically conservative, if for each M1 ∈ Mod(Σ1,Γ1) there is
M2 ∈ Mod(Σ2,Γ2) with M2|σ= M1

Extensions (casl keyword then; cf. Listing 2.2) always lead to a theory
morphism (by de�nition). Semantics for the Casl code are de�ned as fol-
lows: Theory morphism σ : (Σ1,Γ1) → (Σ2,Γ2), where Σ2 = Σ1 ∪ Σ∆ and
Γ2 = Γ1 ∪ Γ∆, such that σ : Σ1 → Σ2 is the inclusion.

De�nition 2.1.29. Let Ti = (Σi,Γi) for i ∈ {1, 2}. A theory morphism
σ : T1 → T2 is model-theoretically-conservative, if any M1 ∈ Mod(T1) has a
σ-expansion to a Σ2-model that is a model

M2 ∈ Mod(T2), with M2|σ= M1.

De�nition 2.1.30. Let Ti = (Σi,Γi) for i ∈ {1, 2}. A theory morphism σ :
T1 → T2 is consequence-theoretically conservative

1, if for each φ1 ∈ Sen(Σ1)

T2 |= σ(φ1) implies T1 |= φ1.

Theorem 2.1.31 (Compactness theorem).
If Γ |=Σ φ, then Γ′ |=Σ φ for some �nite Γ′ ⊆ Γ

Proof. Let Γ |=Σ φ. By completeness Γ `Σ φ. Since the proof rules all have
�nitely many premises, only �nitely many premises can be used in the proof
of Γ `Σ φ. Hence, Γ′ `Σ φ for some �nite Γ′ ⊆ Γ. By soundness Γ′ |=Σ φ.

De�nition 2.1.32. Let M ∈ Mod(Σ). Then

Th(M) := {φ ∈ Sen(Σ|M |=Σ φ}
1In the literature this is sometimes de�ned as proof-theoretical conservativity.We use

the term consequence-theoretical conservativity because it is de�ned over |= and not over
`.

21

Theorem 2.1.33. σ : T1 → T2 is model-theoretically conservative i� it is
consequence-theoretically conservative.

Proof.

⇒ : Assume that σ : T1 → T2 is model-theoretically conservative. Let φ1 be
a formula, such that T2 |=Σ2 σ(φ1). LetM1 be a ModelM1 ∈ Mod(T1).
By assumption there is a ModelM2 ∈ Mod(T2) withM2|σ= M1. Since
T2 |=Σ2 σ(φ1), we have M2 |= σ(φ1). By the satisfaction condition
M2|σ|=Σ1 φ1. Hence M1 |= φ1. Altogether T1 |=Σ1 φ1.

⇐ : Assume that σ : T1 → T2 is consequence-theoretically conservative.
Let M1 be a Model M1 ∈ Mod(T1). Assume that M1 has no σ-
extension to a T2-model. This means that T2 ∪ σ(Th(M1)) |= ⊥1.
Hence by compactness we have T2∪σ(Γ) |= ⊥ for a �nite Γ ⊆ Th(M1).
Let Γ = {φ1, . . . , φn}. Thus T2 ∪ σ({φ1, . . . , φn}) |= ⊥ and hence
T2 |= σ(φ1)∧ . . .∧σ(φn)→ ⊥. This means T2 |= σ(φ1∧ . . .∧φn → ⊥).
By assumption T1 |= φ1 ∧ . . . ∧ φn → ⊥. Since M1 ∈ Mod(T1) and
M1 |= φi, (1 ≤ i ≤ n)), also M1 |= ⊥. Contradiction to the assump-
tion that M1 has no σ-extension to a T2 model.

Theorem 2.1.34. If T1
σ1−→ T2

σ2−→ . . .
σn−1−−−→ Tn are model-theoretically

conservative, and T1 is satis�able, then Tn is satis�able.

Proof. Clear.

Exercise 10 (Conservative Extensions)

Consider your solution to Exercise 1.3 from the last exercise sheet, and con-
sider the theory morphism σ : (Σ1,Γ1)→ (Σ2,Γ2), where

Σ1 = {black_exhaust, blue_exhaust, low_power, overheat, ping,
incorrect_timing, clogged_�lter, low_compression, carbon_deposits,

clogged_radiator, defective_carburetor,worn_rings,worn_seals},
Σ2 = Σ1 ∪ {replace_auxiliary, repair_engine, replace_engine},

Γ1 contains all the axioms corresponding to the symptoms (the overheating
engine and the fact that the ignition timing is correct) as well as all the ax-
ioms describing diagnostic rules (i.e., the formalizations of facts (i) through
(vi) in the informal description in Exercise 1.3). Γ2 contains all axioms from
Γ1 plus the three rules corresponding to facts (vii) through (ix). The mor-
phism σ is the inclusion mapping from Σ1 into Σ2 mapping each proposition
to itself.

1This step is only possible in propositional logic. The other direction of the proof
can also be done in any other logic.

22

(a) Show that σ is a model-theoretically conservative theory morphism.

(b) Reformulate your Hets speci�cation such that (Σ2,Γ2) is speci�ed as
an extension to (Σ1,Γ1) using the then keyword. Additionally, indi-
cate that the extension is supposed to be conservative using %cons.
Use Hets to prove that this is indeed the case (you will need the latest
nightly build of Hets to do that1).

Exercise 11 (Conservative extensions)

Consider the following speci�cations.

(i)

logic Propositional

spec BlockShapes =
props cube tetrahedon
• cube∨tetrahedon
• ¬(cube∧tetrahedon)

then %%cons?

prop dodecahedron
• cube∨tetrahedon∨dodecahedron
• ¬(cube∧dodecahedron)
• ¬(tetrahedon∧dodecahedron)
• ¬cube⇒dodecahedron

end

(ii)

logic Propositional

spec Implications =
props a b c
• a⇒b
• b⇒c

then %%cons?

prop d
• ¬(d⇒a)

end

(a) Decide whether the extensions in (i) and (ii) are conservative. If they
are not, provide models that cannot be expanded.

(b) In case of lacking conservativity, use the theorem from the lecture to
construct from the model a sentence that can be proven in the extended
theory, but not in the base theory.

2.1.4 Freeness

Freeness and cofreeness constraints are a powerful mechanism at the level of
structured speci�cations. They work for any logic. Propositional logic is a
good starting point for learning about freeness and cofreeness, since things
are much less complicated here when compared with other logics.

Consider the following two statements:

Harry: John tells the truth.
John: If Mary is right, then Harry does not tell the truth.

1You can download the new Hets library from the lecture wiki (Resources/Software)
and follow the installation instructions provided there.

23

Let us formalise these statements and look at the logical consequences. We
introduce three propositions telling us whether Harry, John, resp. Mary tell
the truth.

 spec Liar0 =
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 then %implies
 . harry %(harry)%
 . john %(john)%
 . mary %(mary)%
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Actually, when calling Hets with the truth table prover, we get e.g. for the
�rst goal:

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || harry | john | mary || whenjohn | whenharry || harry
 ===++=======+======+======++==========+===========++======
 M- || F | F | F || T | T || F
 M- || F | F | T || T | T || F
 M- || F | T | F || T | T || F
 M- || F | T | T || T | T || F
 o || T | F | F || F | T || T
 o || T | F | T || F | T || T
 M+ || T | T | F || T | T || T
 o || T | T | T || T | F || T �

The other goal cannot be proved either. So this theory cannot decide the
truth of the propositional letters, and it leaves open whether Harry, John or
Mary tell the truth or lie, and indeed, we have �ve possible cases (indicated
by the �ve models, i.e. those rows marked with �M�). A semantics that
admits many possible interpretations and only constrains them by logical
formulas is called open world semantics.
By contrast, a closed world semantics assumes some default, e.g. any propo-
sitional letter whose truth value cannot be determined is assumed to be
false. Indeed, free or initial semantics imposes this kind of constraints. As
a prerequisite, we need to de�ne a partial order on propositional models:

De�nition 2.1.35. Given a propositional signature Σ and two Σ-models M
and M ′, then M ≤M ′ if M(p) = true implies M ′(p) = true for all p ∈ Σ

24

Then, a free (or initial) speci�cation, written free{SP}, selects the least
model of a speci�cation:

Mod(free{SP}) = {M ∈ Mod(SP) |M least model in Mod(SP)}

Note that a least model need not exists; in this case, the model class is empty,
hence the free speci�cation inconsistent. Coming back to our example:

 spec Liar1 =
 free {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

With the Hets truth table prover, we now get:

 || harry | john | mary || notharry | notjohn | free || notmary
 ===++=======+======+======++==========+=========+======++========
 M+ || F | F | F || T | T | T || T
 o || F | F | T || T | T | F || F
 o || F | T | F || T | F | F || T
 o || F | T | T || T | F | F || F
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || F
 o || T | T | F || F | F | F || T
 o || T | T | T || F | F | F || F �

That is, Harry, John and Mary all are lying! (We are not forced by the
speci�cation to think that they tell the truth, so by minimality of the initial
model, the propositional letters are all assigned false.)
Of course, the assumption that propositional letters are false by default is
somewhat arbitrary. We could have taken the opposite assumption. Indeed,
this exactly is what �nal (or cofree) speci�cations do:

Mod(cofree{SP}) = {M ∈ Mod(SP) |M greatest model in Mod(SP)}

However, no greatest model exists, hence the cofree speci�cation is inconsis-
tent:
We can also mix the open and closed world assumptions. Assume that we
want to be unspeci�c about Mary, but use closed world assumption for Harry
and John. Then we write:

25

 spec Liar2 =
 cofree {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . false %(false)%
 end �

 || harry | john | mary || whenjohn | whenharry | cofree || false
 ===++=======+======+======++==========+===========+========++======
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || F
 o || F | T | F || T | T | F || F
 o || F | T | T || T | T | F || F
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

 spec Liar3 =
 prop mary
 then
 free {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(harry)%
 . not john %(john)%
 end �

26

The semantics is as follows:

Mod(SP1 then free{SP2}) =

{M ∈ Mod(SP1 then SP2)|M is the least model in

Mod(SP1 then SP2) with the same σ-reduct as M}

and as a result, we obtain that both Harry and John lie (independently of
what Mary concerns!):

 || harry | john | mary || whenjohn | whenharry | free || harry
 ===++=======+======+======++==========+===========+======++======
 M+ || F | F | F || T | T | T || T
 M+ || F | F | T || T | T | T || T
 o || F | T | F || T | T | F || T
 o || F | T | T || T | T | F || T
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

The dual is cofree with mixed open and closed world semantics:

 spec Liar4 =
 prop mary
 then
 cofree {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . harry \/ mary %(harrymary)%
 . john %(john)%
 end �

Mod(SP1 then cofree{SP2}) =

{M ∈ Mod(SP1 then SP2)|M is the greatest model in

Mod(SP1 then SP2) with the same σ-reduct as M}

with the result that John tells the truth, and at least either of Harry and
Mary as well:
Exercise 12 (Logelei)

Consider the following Logelei:

When I recently took a train, three teenagers boarded in Bremen,
a boy and two girls. The boy asked his companions (named Olga

27

 || harry | john | mary || whenjohn | whenharry | cofree || harrymary
 ===++=======+======+======++==========+===========+========++==========
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || T
 o || F | T | F || T | T | F || F
 M+ || F | T | T || T | T | T || T
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || T
 M+ || T | T | F || T | T | T || T
 o || T | T | T || T | F | F || T �

and Petra) who from their class would come to the party that
was planned. It was an interesting subject for them, although
they made only indirect statements.
Olga started: �If neither Bernd nor Christian come, then Nobert
won't come either.�
Then Petra: �If Dieter and Norbert come, then so will Elgar.�
Olga: �If neither Axel nor Lars come, so won't Christian.�
Petra: �If Fabian does not come to the party, then Jürgen won't,
provided Martin comes.�
Olga: �If both Haug and Axel come, then Christian won't ap-
pear.�
Petra: �If Martin joints the party, then Bernd will (if Lars does
not come) join the party as well.�
The trains reached Osnabrück, where the three teenagers left.
The boy, who left last, just turned to me and whispered: �Our
conversation will have confused you a bit. You have to notice
that one of the girls always tells the truth, while the other one
never utters a true sentence.�
Before I could ask him who the liar was, the boy has left the
train. Since then, I speculate who would come to the party and
who wouldn't. Who??!

Specify this problem, using alternatively ordinary, free, or cofree speci�ca-
tions. Note that free and cofree speci�cations require a di�erent style of
axioms. Discuss the di�erences.

2.2 Description Logics

Description Logics emerged from the �eld of Knowledge Representation. Se-
mantic Networks (e.g. KL-ONE) were used to reason about concepts, sub-
classing and relations between these concepts. In such networks (cf. Figure
2.3a) the meaning of edges was not always well de�ned and in some cases the
formalization relied on undecidable First-Order Logics. Description Logics

28

(a) Semantic Network (b) Ontology with Concepts and Relations

Figure 2.3: Examples of Knowledge Representation in Semantic Networks

are (more or less e�ciently, depending on the intended use) decidable frag-
ments of First-Order Logic.

Applications:

• Ontologies (cf. Figure 2.3b), semantic web, swoogle

• Software Engineering

• Con�gurations (e.g. of cars, computer systems, etc.)

• Medicine

• Natural language processing

• Database management

• OWL (Web Ontology Language)

Syntactic elements Figure 2.3b already shows the basic elements of De-
scription Logics:

• Concepts (in OWL: classes) (Mother, Father, etc.)

• Subsumption C v D (read: �C is subsumed by D�) means that each
C is a D

29

� Woman v Person

� Father v Male

� . . .

• To relate concepts, we need roles (in OWL: properties) like 'hasChild'.

� Parent v ∃hasChild.> (>: top concept, includes everything. In
OWL: Thing)

� Parent v ∃hasChild.Child
� Child v ∃hasParent.> (Bad, because hasChild is converse to
hasParent which is not expressed here)

� Child v ∃hasChild−.> (Better formalization)

� hasParent ≡ hasChild− (Alternative, not possible in every DL)

� hasGrandfather ≡ (∃hasChild.∃hasChild.>) uMale (C ≡ D is an
abbreviation for C v D and D v C)

� hasGrandfather ≡ (∃hasChild.Parent) u Father (Alternative for-
malization)

These axioms are generally split up in two sets. The TBox contains a set
of subsumptions and de�nitions involving concepts and roles. The ABox
contains individuals and their membership in concepts and roles (e.g. john :
Father, hasChild(john, harry)).

2.2.1 Foundations

De�nition 2.2.1. A DL-signature Σ = (C,R, I) consists of

• a set C of concept names,

• a set R of role names,

• a set I of individual names,

De�nition 2.2.2. For a signature Σ = (C,R, I) the set of ALC-concepts1
over Σ is de�ned by the following grammar:

(Hets) Manchester syntax
C ::= A for A ∈ C a concept name

| > Thing

| ⊥ Nothing

| ¬C not C

| C u C C and C

| C t C C or C

| ∃R.C for R ∈ R R some C

| ∀R.C for R ∈ R R only C

De�nition 2.2.3. The set of ALC-Sentences over Σ (Sen(Σ)) is de�ned as

1ALC stands for �attributive language with complement�

30

• C v D, where C and D are ALC-concepts over Σ.

Class: C SubclassOf: D

• a : C, where a ∈ I and C is a ALC-concept over Σ.

Individual: a Types: C

• R(a1, a2), where R ∈ R and a1, a2 ∈ I.

Individual: a1 Facts: R a2

De�nition 2.2.4. Given Σ = (C,R, I), a Σ-model I = (∆I , ·I), where

• ∆I is a non-empty set

• AI ⊆ ∆I for each A ∈ C

• RI ⊆ ∆I ×∆I for each R ∈ R

• aI ∈ ∆I for each a ∈ I

De�nition 2.2.5. We can extend ·I to all concepts as follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI
(C uD)I = CI ∩DI
(C tD)I = CI ∪DI
(∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I .(x, y) ∈ RI , y ∈ CI}
(∀R.C)I = {x ∈ ∆I |∀y ∈ ∆I .(x, y) ∈ RI ⇒ y ∈ CI}

De�nition 2.2.6 (Satisfaction of sentences in a model).

I |= C v D i� CI ⊆ DI .
I |= a : C i� aI ∈ CI .
I |= R(a1, a2) i� (aI1 , a

I
2) ∈ RI .

De�nition 2.2.7. For Γ ⊆ Sen(Σ), φ ∈ Sen(Σ), φ is a logical consequence
of Γ (written: Γ |=Σ φ), if for each Σ-model I

I |= Γ implies I |= φ.

If Γ contains only subsumptions, Γ is written as T (TBox).

If Γ contains only sentences a : C and R(a1, a2), Γ is written as A (ABox).

31

Derived sentences (syntactic sugar)

• C ≡ D for {C v D,D v C}

Class: C EquivalentTo: D

• disjoint(C,D) for C uD v ⊥

Class: C DisjointTo: D

• domain(R) ≡ C for ∃R.> v C

ObjectProperty: R Domain: C

• ¬a : C for a : ¬C

• unsat(C) for C ≡ ⊥

TBox reasoning
T |= C v D i� T |= unsat(C u ¬D)
T |= unsat(C) i� T |= C v ⊥

Complexity of TBox reasoning for ALC:

• general TBoxes: EXPTIME complete

• empty or acyclic TBoxes: PSPACE complete1.

Acyclic TBoxes contain only de�nitions A ≡ C, such that concept depen-
dency is acyclic (A depends on all concepts occuring in C).

Description Logics use open world semantics, i.e. semantics of a theory
(TBox, ABox) is it's class of models. Typically there are many models of
a theory interpreting concepts, roles and individuals in di�erent ways. In
contrast closed world semantics would assume, that unspeci�ed facts are
false:

Example 2.2.8.

 VegetarianPizza v Pizza
 MagheritaPizza v Pizza
 TomatoTopping v VegetableTopping
 MozzarellaTopping v CheeseTopping
 VegetarianPizza ≡ ∀ hasTopping (VegetableTopping t CheeseTopping)
 MagheritaPizza v ∃ hasTopping MozarellaTopping u
 ∃ hasTopping TomatoTopping u
 ∀ hasTopping (MozzarellaTopping t TomatoTopping) �

1We know that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME and that P ⊂ EXPTIME, so it is
possible that PSPACE ⊂ EXPTIME.

32

ABox-Reasoning: for example: Instance checking:

T ,A |= a : C i� T ∪ A ∪ { not a : C} inconsistent

Complexity of deciding ABox consistency may be harder than TBox reason-
ing, but it usually is not. For ALC it is PSpace/ExpTime complete.

Exercise 13 (Description Logics)

Familiarize yourself with the pizza ontology.
It can be found at http://www.co-ode.org/ontologies/pizza/.

Exercise 14 (Speci�cation extensions)

Construct a speci�cation extension such that the basis speci�cation has mod-
els with 0, 1, 2 and 3 di�erent expansions.

Exercise 15 (Pizza ontology)

Formalize the following statements from the pizza ontology in Hets:1

• Pizza is food.
• Pizza base is food.
• Pizza topping is food.
• Pizzas, pizza bases, and pizza toppings are disjoint sets of things.
• A �sh topping is a pizza topping.
• A meat topping is a pizza topping.
• Pizzas have pizza toppings.
• Pizzas have unique pizza bases.
• Thin and crispy pizza bases are pizza bases.
• A thin and crispy pizza is a pizza that only has a thin and crispy base.
• An interesting pizza is a pizza that has at least three toppings.
• A vegetarian pizza is a pizza which has neither a meat topping nor a
�sh topping.

Exercise 16 (Deductive ontology)

Download and read the document describing the deductive ontology intro-
duced in the lecture.2

Formalize the part of the deductive ontology describing the concepts

• Satisfiable,
• Theorem,
• WeakerTheorem,
• Equivalent,
1The input format follows the Manchester syntax. To get an idea of what such a

formalization might look like, you can review the formalization of the family ontology
from the lecture at http://www.informatik.uni-freiburg.de/~ki/teaching/
ws0809/lccai/family.het.

2http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=
Documents&File=SZSOntology

33

http://www.co-ode.org/ontologies/pizza/
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/lccai/family.het
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/lccai/family.het
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Documents&File=SZSOntology

• TautologousConclusion,
• EquivalentTheorem,
• Tautology,
• ContradictoryAxioms,
• SatisfiableConclusionContradictoryAxioms,
• TautologousConclusionContradictoryAxioms, and
• NoConsequence,

i.e., the left half of the graphic depicting the deductive ontology, using
Manchester syntax. Follow these steps:

(a) Introduce basis concepts describing the status of the axioms (valid,
satis�able, unsatis�able), the status of the conjecture (valid, satis�-
able, unsatis�able), and the possible entailment relations between the
axioms and the conjecture (all models of the axioms are models of the
conjecture, some models of the axioms are models of the conjecture,
etc).

(b) For these basis concepts, formalize all subsumption, equivalence and
disjointness relations that you are aware of.

(c) De�ne the eleven concepts listed above as intersections of (comple-
ments of) basis concepts. Follow the de�nitions of the concepts given
in the Section Deductive Statuses of the document describing the de-
ductive ontology.

Exercise 17 (Family ontology)

Download the family ontology from the lecture website1.

(a) De�ne roles hasParent, siblingOf, relativeOf, and ancestorOf.
(b) De�ne cousin relations (cf. http://en.wikipedia.org/wiki/

Cousin) up to second degree cousins and two removes.
(c) Where applicable, state role hierarchies, re�exivity and transitivity of

roles, inverse roles, and role compositions.

Exercise 18 (Reasoning with Protégé and Pellet)

(a) Extend the family ontology from Exercise 4.1 with the individual and
role assertions (only marriage and parent-child relations) depicted in
the following family tree.

Abe Simpson Mona Simpson

Homer Simpson Marge Bouvier Patty Bouvier Selma Bouvier

Clancy Bouvier Jacqueline Gurney

Bart Simpson Lisa Simpson Maggie Simpson

1http:
//www.informatik.uni-bremen.de/agbkb/lehre/ss09/logcat/family.het
(note that the ontology di�ers from the one mentioned on the last exercise sheet)

34

http://en.wikipedia.org/wiki/Cousin
http://en.wikipedia.org/wiki/Cousin
http://www.informatik.uni-bremen.de/agbkb/lehre/ss09/logcat/family.het
http://www.informatik.uni-bremen.de/agbkb/lehre/ss09/logcat/family.het

(b) Additionally, state some implied facts (persons being grandparents,
implied relations, etc.) and mark them with %implies.

(c) Use Hets (latest build) to prove the implied facts. It is also possible to
translate the Hets input �le into an OWL �le that can be parsed by
Protégé by running hets -o owl Family.het.

2.2.2 Extensions of ALC

De�nition 2.2.9 (The logic ALCQ). ALCQ extends the sentences of ALC
with three cases:

(Hets) Manchester syntax
C ::= . . .

| ≤ nR.C for R ∈ R R max n C

{x ∈ ∆I |n ≥ |{y ∈ ∆I |(x, y) ∈ RI , y ∈ CI}|}
| ≥ nR.C for R ∈ R R min n C

{x ∈ ∆I |n ≤ |{y ∈ ∆I |(x, y) ∈ RI , y ∈ CI}|}
| = nR.C for R ∈ R R exactly n C

{x ∈ ∆I |n = |{y ∈ ∆I |(x, y) ∈ RI , y ∈ CI}|}
De�nition 2.2.10 (The logic ALCO). ALCO extends ALC by nominals.

(Hets) Manchester syntax
C ::= . . .

|{a1, . . . an} a1, ..., an

Complexity of ALCOQ: PSpace/ExpTime-complete

De�nition 2.2.11 (The logic S). S extends ALC by transitivity of roles
(Hets) Manchester syntax

φ ::= . . .
| Tra(R) R Transitive

Semantics: RI transitive
Example: Tra(Ancestor)

De�nition 2.2.12 (The logic SI). SI extends S by inverse roles
R ::= T . . . T ∈ R

|R−
Semantics: (R−)I = {(y, x)|(x, y) ∈ RI}

Complexity of SI : PSpace/ExpTime-complete

De�nition 2.2.13 (The logic SH). SH extends S by role hierarchies
R ::= . . .

|R1 v R2

Complexity of SH,SHI,SHIQ,SHOI,SHOQ : ExpTime/ExpTime-complete
Within SH TBoxes can be internalized:

• Introduce a role U the �universal role�

35

� For any Role R: R v U and R− v U
� Tra(U)

C v D i� T v ¬C tD
A TBox T can be coded into a single concept

CT ::= uDvEs¬D t E

TBox-Reasoning: T |= sat(D) i� sat(D u CT u ∀U.CT)

De�nition 2.2.14. SROIQ inctroduces the following new Sentences.
(Hets) Manchester syntax Semantics

φ ::= . . .
| R v S ObjectProperty: R RI ⊆ SI

SubPropertyOf: S

| R1; . . . ;Rn v R ObjectProperty: R RI1 ◦ . . . ◦RIn ⊆ RI
SubPropertyChain R_1 o ... o R_n

| Dis(R1, R2) ObjectProperty: R_1 Disjoint R_2 RI1 ∩RI2 = ∅
| Ref(R) ObjectProperty: R Reflexive ∀x ∈ ∆I .RI(x, x)
| Irr(R) ObjectProperty: R Irreflexive ∀x ∈ ∆I .¬RI(x, x)
| Asy(R) ObjectProperty: R Asymetric ∀x, y ∈ ∆I

R(x, y)→ R(y, x)
where R ◦ S = {(x, z)|∃y.(x, y) ∈ R, (y, z) ∈ S}
the following new concept
C ::= . . .

|∃R.Self (∃R.Self)I = {x|x ∈ ∆I , (x, x) ∈ RI} and the univer-

sal role
R ::= . . .

|U UI = ∆I ×∆I

Axioms about roles are collected in the RBox.
Complexity of SROIQ: N2ExpTime-complete (nondeterministic runtime

O(2(2n)), det. runtime O(222n

)

2.2.3 Signature morphisms

De�nition 2.2.15. Given two DL signatures Σ1 = (C1,R1, I1) and Σ2 =
(C2,R2, I2) a signature morphism σ : Σ1 → Σ2 consists of three functions

• σC : C1 → C2,

• σR : R1 → R2,

• σI : I1 → I2.

De�nition 2.2.16. Given a signature morphism σ : Σ1 → Σ2 and a Σ1-
sentence φ, the translation σ(φ) is de�ned by inductively replacing the sym-
bols1 in φ along σ.

1Note that φ and σ(φ) live in the same DL.

36

De�nition 2.2.17. Given a signature morphism σ : Σ1 → Σ2 and a Σ2-
model I2, the σ-reduct of I2 along σ I2|σ is the Σ1-model I1 de�ned by

• ∆I1 = ∆I2

• AI1 = σC(A)I2 , for A ∈ C1

• RI1 = σR(R)I2 , for R ∈ R1

• aI1 = σI(a)I2 , for a ∈ I1

Proposition 2.2.18 (satisfaction condition). Given σ : Σ1 → Σ2, φ1 ∈
Sen(Σ1) and I2 ∈ Mod(Σ2)

I2|σ|= φ1 i� I2 |= σ(φ1)

Proof. Induction over the structure of φ1

2.2.4 Freeness

De�nition 2.2.19. Given Σ = (C,R, I) and Σ-models I and I ′ we say that
I ≤ I ′ if

• ∆I ⊆ ∆I
′

• AI ⊆ AI′ for A ∈ C

• RI ⊆ RI′ for R ∈ R

• aI = aI
′

for a ∈ I

De�nition 2.2.20. Given a theory T = (Σ,Γ),

Mod(free{T}) = {M ∈ Mod(T)|M is the least model in Mod(T)}
Mod(cofree{T}) = {M ∈ Mod(T)|M is the greatest model in Mod(T)}

Given theories SP1 = (Σ1,Γ1) and SP2 = (Σ2,Γ2) and a signature morphism
σ : SP1 → SP2,

Mod(SP1 then free{SP2}) =

{M ∈ Mod(SP1 then SP2)|M is the least model in

Mod(SP1 then SP2) with the same σ-reduct as M}

Mod(SP1 then cofree{SP2}) =

{M ∈ Mod(SP1 then SP2)|M is the greatest model in

Mod(SP1 then SP2) with the same σ-reduct as M}

37

Example 2.2.21. De�ntion of a Man with only male descendant (Momd).

 spec Momd =
 Class Man
 ObjectProperty hasChild
 then free {
 Class Momd
 EquivalentTo Man and hasChild only Momd
 }
 end �

By the closed world assumption Momd only contains those individuals that
are forced to belong to Momd by the axioms:

(a) All men without children (in M |SP1= M |σ)

(b) All men having only children that belong to (1)

(c) All men having only children that belong to (2)

(d) . . .

Example 2.2.22. Transitive closure.

 spec Ancestor =
 ObjectProperty hasParent
 then free {
 ObjectProperty ancestor
 Characteristics: Transitive
 SuperPropertyOf: hasParent
 }
 end �

Without free, ancestor can be interpreted as the union of two di�erent
hasParent relations or even as the universal role. With free, ancestor
is always the transitive closure of hasParent.

Example 2.2.23. De�ntion of Momd (without) free.

 spec Momd2 =
 Class Man
 ObjectProperty hasChild
 then free {
 ObjectProperty decendant
 Characteristics: Transitive
 SuperPropertyOf: hasChild
 }
 then
 Class Momd
 EquivalentTo Man and decendant only Man
 end �

It is not possible to de�ne the transitive closure of a role without free (or
without de�ning it in the logic).

38

Encoding of Free and Cofree

Logic How to support free and cofree

Propositional Logic Quanti�ed Boolean Formulea

ALC µALC
FOL µFOL, HOL

Table 2.2: Support for free and cofree

As Table 2.2 shows, more complex logics are needed to encode free and cofree
in some logics.

Example 2.2.24. Encoding of free in Propositional Logic.

 spec Liar =
 prop mary
 then free {
 props harry, john
 . harry => john
 . john & mary => harry
 }
 end �

This can be encoded in the following QBF:

∀john′, harry′.((harry′ → john′) ∧ (john′ ∧mary→ harry′))

→ (harry→ harry′) ∧ (john→ john′)

The cofree variant can be encoded like this:

∀john′, harry′.((harry′ → john′) ∧ (john′ ∧mary→ harry′))

→ (harry′ → harry) ∧ (john′ → john)

De�nition 2.2.25. µALC (ExpTime-complete)
C ::= . . .

| X
| µX.C
| νX.C

Example 2.2.26. Encoding of Example 2.2.21 in µALC:

Momd = µX. Man u ∀hasChild.X

De�nition 2.2.27. EL (Reasoner Hyb can solve cyclic TBoxes in P with
greatest �xpoint semantic.)
C ::= >

| C u C
| ∃R.C
| ¬A

39

Example 2.2.28 ((co)inductive datatypes).

 Node v ∃hasValue.>
 then free {
 e : EmptyTree
 Tree ≡ EmptyTree t (Node u (≤1 child−.>) u ∃child.> u ∀child.Tree)
 } �

Trees are inductive datatypes that are de�ned bottom-up (from leaves to root)
and allow induction over their structure. If this would be cofree instead of
free Tree could be interpreted as the universal concept.

 Node v ∃hasValue.>
 then cofree {
 Stream ≡ Node u (≤1 succ.>) u ∃succ.Stream
 } �

Streams (in�nite lists) are coinductive datatypes that are de�ned top-down
(coinduction instead of induction). If this would be free instead of cofree
Stream could be interpreted as the empty concept.

Exercise 19 (Cyclic TBoxes)

Specify the following statements, possibly using cyclic TBoxes. If you use a
cyclic TBox, be careful to correctly choose least or greatest �xpoint seman-
tics, according to what is needed in the examples.

(a) A chess fanatic is a chess player all of whose friends are chess fanatics.
(b) A Gmail user has been invited by some Gmail user.
(c) A folder is an inode that contains inodes, all of which are �les, folders

or devices.

40

2.2.5 Conservative Extensions

Figure 2.4: Building the Ontology JRAO using modules from NCI and
GALEN

Example 2.2.29. JRAO (cf Figure 2.4) is constructed using fragments of
the two existing ontologies NCI and GALEN. NCI and GALEN are too large
for a complete import. The Goal is to only import interesting modules (called
ontology modules).

De�nition 2.2.30. A theory morphism σ : T1 → T2, T1 = (Σ1,Γ1), T2 =
(Σ2,Γ2) is a signature morphism σ : Σ1 → Σ2 such that M2 ∈ Mod(T2)
implies M2|σ∈ Mod(T1)

Example 2.2.31. T1 ↪→ T1 ∪ T2 is always a theory morphism.

De�nition 2.2.32. A theory morphism σ : T1 → T2 is consequence-theoretically
conservative1, if for all φ ∈ Sen(Σ1)

T2 |= σ(φ) implies T1 |= φ

De�nition 2.2.33. An ontology module T1 of an ontology T2 is a subtheory
T1 ⊆ T2, such that σ : T1 ↪→ T2 is conservative.

De�nition 2.2.34. A theory morphism σ : T1 → T2 is model-theoretically
conservative, if each T1-model M1 has a σ expansion to a T2-model M2, i.e.

M2|σ= M1

1This is the same de�nition as for Propositional Logic (cf. De�nition 2.1.29)but
with a di�erent meaning of T, φ, σ, . . .

41

Proposition 2.2.35. For any DL, model theoretical conservativity implies
consequence theoretical conservativity.

Proof. (cf. theorem 2.1.33)

Proposition 2.2.36. Let T1, T2 be TBoxes in ALC, ALCQ, ALCO or
ALCOQ. Then σ : T1 → T2 is consequence theoretically conservative i�
the following implication holds: If C is satis�able relative to T1 (i.e. there is
a T1-model making C non-empty) then σ(C) is satis�able relative to T2

Proof.

⇒ : Assume σ : T1 → T2 is consequence theoretically conservative (1) and
C is satis�able relative to T1 (2).
To show: σ(C) is satis�able relative to T2.

By (2) T1 6|= C v ⊥
By (1) we get T2 6|= σ(C v ⊥)

and thus T2 6|= σ(C) v ⊥.

Hence σ(C) is satis�able relative to T2.

⇐ : (a) Subsumption: T2 |= σ(C v D)

T2 |= σ(C v D)

i� T2 |= σ(C) v σ(D)

i� σ(C) u ¬σ(D) is unsatis�able relative to T2

i� σ(C u ¬D) is unsatis�able relative to T2

implies C u ¬D is unsatis�able relative to T1

i� T1 |= C v D

(b) Individuals: T2 |= σ(a : C)

cases: ALCO, ALCOQ:

T2 |= σ(a : C)

i� T2 |= σ({a} v C)

implies (by (a)) T1 |= {a} v C
i� T1 |= a : C

cases: ALC, ALCQ:

T2 |= σ(a : C)

i� (since a does not appear in T2) T2 |= > v σ(C)

implies (by (a)) T1 |= > v σ(C)

i� T1 |= a : C

42

(b) Roles: T2 |= σ(R(a, b))

cases: ALCO, ALCOQ:

T2 |= σ(R(a, b))

i� T2 |= σ({a} v ∃R.{b})
i� T2 |= σ({a}) v σ(∃R.{b})

implies (by (a)) T1 |= {a} v ∃R.{b}
i� T1 |= R(a, b)

cases: ALC, ALCQ:

T2 |= σ(R(a, b))

i�∗ T2 |= > v ⊥ (�T2 has no model.�)

i� T2 |= σ(>) v σ(⊥)

implies (by (a)) T1 |= > v ⊥
i�∗ T1 |= R(a, b)

(*) If T2 had a model, by the tree model property1, and since
a and b do not occur in T2, we can swap the interpretations
of σ(a) and σ(b), we can modify the T2-model to a T2-model
that does not satisfy σ(R(a, b)). If T2 has no model, any
sentence follows from it (in particular σ(R(a, b))).

Example 2.2.37.

 spec T2 =
 Webservice v ∃ provider.> u ∃ input.> u ∃ output.> %(a)%
 then
 Webservice v ∃ input.Integer u ∃ input.Array %(b)%
 Integer v ¬ Array %(c)%
 end �
T1 is the theory consisting of the axiom (a); T2 is the complete theory with
the axioms (a), (b) and (c).
T2 is not consequence theoretically conservative over T1 in ALCQ. This is
shown by giving a witness concept that is satis�able in T1 but not in T2.
Here the witness concept is: Webservice u (≤1 input.>)
However, the extension is consequence theoretically conservative in ALC.

Proof. Let C be satis�able relative to T1, i.e. let I be a T1-model with
CI 6= ∅. Let I ′ be obtained from I by

• ∆I
′

= ∆I]∆I , say ∆I
q1−−→ ∆I q∆I

q2←−− ∆I

1Relations form a tree, so R(a, b) implies ¬R(b, a). Shown only for ALC and ALCQ.

43

� Idea: create two copies of each individual. Interpret one copy as
Integer and the other one as Array.

� qi is an unambigous injection like qi(x) = 〈x, i〉

• CI′ = q1(CI) ∪ q2(CI)

� In set notation: CI
′

= {q1(x)|x ∈ CI} ∪ {q2(x)|x ∈ CI}

• RI′ =
⋃
i,j∈{1,2}qi ×qj(RI)

� In set notation: RI
′

=
⋃
i,j∈{1,2}{(qi(x),qj(y))|(x, y) ∈ RI}

Then I ′ is a T1-model making C non-empty. Extend I ′ to a T2-model I ′′ by
putting

• IntegerI
′′

= q1(∆I)

• ArrayI
′′

= q2(∆I)

This way each webserver has at least one integer and one array input. CI
′′ 6=

∅

Complexity:

• consequence-theoretical conservativity in

� ALCQI: 2ExpTime-complete

� ALCQIO: undecidable
� EL: ExpTime-complete

• model-theoretical conservativity in

� EL: undecidable
� ALC: Π1

1-complete

Exercise 20 (Conservative extension)

Consider the following description logic theories.
(a)

Lecture v ∃has_subject.Subject u ∃given_by.Lecturer

Intro_AI v Lecture

Is the following a conservative extension?

Intro_AI v ∃has_subject.Logic

Intro_AI v ∃has_subject.NeuralNetworks

Logic u NeuralNetworks v ⊥

44

(b)

Penguin v Bird

Bird v LivingBeing

Is the following a conservative extension?

Bird v Animal

Animal v LivingBeing

(c)

Penguin v Bird

Is the following a conservative extension?

Bird v CanFly

Penguin v ¬CanFly

In each case, consider di�erent possible senses of �conservative extension�. If
applicable, construct a witness concept.

2.3 First-Order Logic

• expressive general-purpose language

• roots are:

� Aristotelian Syllogisms

� Boole

� Frege's Begri�sschrift

• Axiomatic method: description of objects by their properties

� Euclids geometry axioms

� abstract algebra (groups, �elds, vector spaces)

� set theory (ZFC, VNBG) (foundation of mathematics and theo-
retical computer-science

• speci�cation of software

• language for upper ontologies

• logic programming

• Planning languages (PDDL)

45

2.3.1 Foundations

De�nition 2.3.1. A Signature Σ = (S, F, P) of many-sorted-FOL consists
of:

• a set S of sorts, where S∗ is the set of words over S

• for each w ∈ S∗,and each s ∈ S a set Fw,s of function symbols (here w
are the argument sorts and s are the result sorts)

• for each w ∈ S∗ a set Pw of predicate symbols

Example 2.3.2. �This spear is so sharp, that it can pierce through anything�
�This shield is so strong, that nothing can destroy it.� Formalised in Hets
as:

 sorts : Object
 ops : Spear: Object; Shield:Object
 preds : pierce: Object x Object
 destroy: Object x Object
 . forall x: Object . pierce (Spear, x)
 . not exists x: Object . destroy(x, Shield)
 . forall x,y: Object . pierce (x,y) --> destroy (x,y) �

De�nition 2.3.3. Given a Signature Σ = (S, F, P) the set of ground Σ-
terms is inductively de�ned by: fw,s(t1, . . . , tn) is a term of sort s, if each ti
is a term of sort si (i = 1 . . . n, w = S1 . . . Sn) and f ∈ Fw,s.
In particular (for n = 0) this means, that constants w = λ1 are terms

De�nition 2.3.4. Given a signature Σ = (S, F, P) the set of Σ-sentences
is inductively de�ned by:

• t1 = t2 for t1, t2 of the same sort

• Pw(t1, . . . , tn) for ti Σ-term of sort si, (1 ≤ i ≤ n,w = s1, . . . , sn, p ∈
Pw)

• φ1 ∧ φ2 for φ1, φ2 Σ-formulae

• φ1 ∨ φ2 for φ1, φ2 Σ-formulae

• φ1 → φ2 for φ1, φ2 Σ-formulae

• φ1 ↔ φ2 for φ1, φ2 Σ-formulae

• ¬φ1 for φ1 Σ-formula

• >
1empty word

46

• ⊥

• ∀x : s . φ if s ∈ S, φ is a Σ + {x : s}-sentence where Σ + {x : s} is Σ
enriched with a new constant x of sort s

• ∃x : s . φ likewise

Exercise 21 (Formalization in First-Order Logic)

Translate the following into First-Order Logic. Explain the meanings of the
names, predicates, and functions you use, and comment on any shortcomings
in your translations.
(a) There's a sucker born every minute.
(b) Whither thou goest, I will go.
(c) Soothsayers make a better living in the world than truthsayers.
(d) To whom nothing is given, nothing can be required.
(e) If you always do right, you will gratify some people and astonish the

rest.

Exercise 22 (First-Order Theorem Proving)

Use Spass to prove that the following statements are tautologies:
(a) There is some x such that if x is a P then everything is a P .
(b) There cannot be any barber (who is a man) who shaves every man who

does not shave himself.

Exercise 23 (Satis�ability of Speci�cations)

Consider the speci�cation of classical extensional parthood1. Assume you
want to prove that this speci�cation is consistent (right click on the node,
node menu, check consistency, CASL → SoftFOL (darwin)).

(a) Install the latest Hets binary2, the Darwin Theorem Prover3 and
the E Equational Theorem Prover4.

(b) Simplify the task of checking consistency by decomposing the speci-
�cation in such a way that the whole speci�cation can be seen as a
conservative extension of a smaller speci�cation and it is su�cient to
prove consistency of the smaller speci�cation and conservativity of the
extension.

(c) Use Darwin to �nd some models for the speci�cation (say the three
smallest models). For the smallest model, simply run Darwin from
Hets as described above. To �nd larger models of size n, add to your

1http:
//www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/CEP.casl

2http://www.dfki.de/sks/hets/
3http://combination.cs.uiowa.edu/Darwin/
4http://www.eprover.org/

47

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/CEP.casl
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/CEP.casl
http://www.dfki.de/sks/hets/
http://combination.cs.uiowa.edu/Darwin/
http://www.eprover.org/

speci�cation axioms stating that there should be n pairwise distinct el-
ements in the model. Can you come up with a conjecture regarding the
general form of a model for Classical_Extensional_Parthood?
How many elements can a model have?

Exercise 24 (Induction Proofs)

Consider the de�nitions of natural numbers, lists, and trees in the �le Datatypes.casl5.
Use Isabelle6 or Spass7 to prove the implied sentences.

2.3.2 Signature Morphisms

De�nition 2.3.5. Given a signature Σ = (S, F, P) a Σ-model M consists
of

• a carrier set Ms 6= ∅ for each sort s ∈ S

• a function fmw,s : Ms1 × . . . × Msn → Ms for each f ∈ Fw,s, w =
s1, . . . , sn.
In particular, for a constant, this is just an element of Ms

• a relation pMw ⊆Ms1 × . . .×Msn for each p ∈ Pw, w = s1 . . . sn

De�nition 2.3.6. Given signatures Σ = (S, F, P),Σ′ = (S′, F ′, P ′) a signa-
ture morphism σ : Σ→ Σ′ consists of

• a map σS : S → S′

• a map σFw,s : Fw,s → F ′
σS(w),σS(s)

for each w ∈ S∗ and each s ∈ S

• a map σPw : Pw → P ′
σS(w)

for each w ∈ S∗

De�nition 2.3.7. Given a signature morphism σ : Σ→ Σ′ and a Σ′-model
M ′, de�ne M = M ′|σ as

• Ms = M ′
σS(s)

• fMw,s = σFw,s(f)M
′

σS(w),σS(s)

• pMw,s = σPw (p)M
′

σS(w)

De�nition 2.3.8. A Σ-term t is evaluated in a Σ-model M as follows:

M(fw,s(t1, . . . tn)) = fMw,s(M(t1), . . .M(tn))

5http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/
Datatypes.casl

6http://isabelle.in.tum.de/
7http://www.spass-prover.org/

48

http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/Datatypes.casl
http://www.informatik.uni-freiburg.de/~ki/teaching/ws0809/ailogic/Datatypes.casl
http://isabelle.in.tum.de/
http://www.spass-prover.org/

De�nition 2.3.9 (satisfaction of sentences).

M |= t1 = t2 i� M(t1) = M(t2)

M |= pw(t1 . . . tn) i� (M(t1), . . .M(tn)) ∈ pMw
M |= φ1 ∧ φ2 i� M |= φ1 and M |= φ2

M |= ∀x : s.φ i� for all σ-expansions M ′ of M , M ′ |= φ

where σ : Σ ↪→ Σ + {x : s} is the inclusion.

M |= ∃x : s.φ i� there is a σ-expansion M ′ of M such that M |= M ′

De�nition 2.3.10. Given Γ ⊆ Sen(Σ), φ ∈ Sen(φ), Γ |= φ i� for all Σ-models M

M |= Γ implies M |= φ

Example 2.3.11. ΓChu |= ⊥
That is, ΓChu from the last example has no models (it is unsatis�able)

De�nition 2.3.12. Given a signature morphism σ : Σ→ Σ′ and φ ∈ Sen(Σ)
the translation σ(φ) is de�ned inductively by:

σ(fw,s(t1 . . . tn)) =σFw,s(fσ(w),σ(s))(σ(t1) . . . σ(tn))

σ(t1 = t2) =σ(t1) = σ(t2)

σ(pw(t1 . . . tn)) =σPw (p)σS(w)(σ(t1) . . . σ(tn))

σ(φ1 ∧ φ2) =σ(φ1) ∧ σ(φ2)

σ(∀x : s.φ) =∀x : σS(s).(σ + id)(φ)

σ(∃x : s.φ) =∃x : σS(s).(σ + id)(φ)

where (σ + id) : Σ + {x : s} → Σ′ + {x : s} acts like σ on Σ and is the
identity on x.

Proposition 2.3.13 (satisfaction condition). For a signature morphism σ :
Σ→ Σ′, φ ∈ Sen(Σ),M ′ ∈ Mod(Σ′):

M ′|σ|= φ i� M ′ |= σ(φ)

Proof. This can easily be shown by induction

De�nition 2.3.14. Mod(SP with σ : Σ→ Σ′) = {M ′ ∈ Mod(Σ′)|M ′|σ∈
Mod(SP)}

Proposition 2.3.15. Mod((Σ,Γ) with σ : Σ→ Σ′) = Mod(Σ′, σ(Γ))

Proof.
M ′|σ∈ Mod(Σ,Γ) i� M ′|σ|= Γ i� M ′ |= σ(Γ)

49

Exercise 25 (Theory morphisms)

(a) Show with Hets that Monoid→ Nat is a theory morphism.

(b) Specify that classical extensional parthood has models which use the
powerset without the empty set.

(c) Specify another theory morphism of your choice and prove it with
Hets.

2.3.3 Conservative Extensions

De�nition 2.3.16. A theory morphism σ : T1 → T2 is a consequence-
theoretically conservative extension, if for all φ ∈ Sen(Σ1)

T2 |= σ(φ) implies T1 |= φ

De�nition 2.3.17. A theory morphism σ : T1 → T2 is a model-theoretically
conservative extension, if each T1-modelM1 has a σ-expansion to a T2-model,
i.e. M2 ∈ Mod(T2) with M2|σ= M1.

Proposition 2.3.18. Model-theoretical conservativity implies consequence-
theoretical conservativity.

Proof. Same as in propositional logic (cf. 2.1.3).

Example 2.3.19. Theory T:

 sort: Nat
 ops: 0:Nat
 succ: Nat -> Nat
 pred: __ < __ : Nat x Nat
 forall x,y,z : Nat
 . x = o \/ exists u:Nat . succ(u) = x
 . x < succ(y) <=> (x<y \/ x = y)
 . not (x < 0)
 . x < y => not (y < x)
 . (x < y /\ y < z) => (x < z)
 . x < y \/ x = y \/ y < x �

Models of T :

• N (the standard model)

• N + Z

Now extent T to the theory T ′

Proposition 2.3.20 (completeness). For any sentence φ, T |= φ or T |= ¬φ.

50

 op: __ + __ : Nat x Nat -> Nat
 forall x,y : Nat
 . 0 + y = y
 . succ(x) + y = succ(x + y) %(+succ)%
 . succ(x) + y > y %(succ_great)% �

Proposition 2.3.21. T ′ is a consequence theoretical conservative extension
of T

Proof. Suppose that T ′ |= φ but T 6|= φ.
By completeness, T |= ¬φ, and since T ′ is an extension of T T ′ |= ¬φ hence
T ′ |= ⊥. But N is a model of T ′.

Proposition 2.3.22. T ′ is no model-theoretically conservative extension of
T .

Proof. Suppose that N + Z can be extended to a T ′-model M ′

By (succ_great) we have 0′ +M ′ 0′ >M
′

0′

now let n = 0′ +M ′ 0′

By (+succ) we know that: succM
′
(−1′ +M ′ 0′) = 0′ +M ′ 0′ = n′

Hence −1 +M ′ 0′ = (n− 1)′

analogous −2 +M ′ 0′ = (n− 2)′

we then get −n+M ′ 0′ = 0′

But, by (succ_great) we obtain −n′ +M ′ 0′ > 0′

2.3.4 Sort generation constraints

De�nition 2.3.23. Given a signature Σ = (S, F, T) a Σ-sort generation
constraint is a pair

(S0, F0) with s0 ⊆ S, (F0)w,s = Fw,s for w ∈ s∗, s ∈ S

Intuitively: (S0, F0) expresses that the carriers for the sorts in S0 are gener-
ated by the operations in F0

De�nition 2.3.24. M |= (S0, F0) i� for each x ∈ Ms, s ∈ S0 there is an
extension Σ′ of Σ with constants of sort in S \ S0, a term t of sort s using
only symbols from F0, and a Σ′ expansion of M such that M ′(t) = X.

Example 2.3.25. De�nition of a free datatype in Hets:

 sort Elem
 free type List ::= nil | cons(Elem; List)
 ({List}, {nil:List, cons: Elem × List → List}) �

The �rst two lines expand to:

51

 generated {
 sort List
 ops nil: List
 cons: Elem x List -> List
 forall x;y : Elem
 l1;l2 : List
 . not nil = cons(x,y)
 . cons(x,l1) = cons(y,l2) => (x=y & l1 = l2)
 } �

Models M are such that MElem is any set and

• MList = M∗Elem (words over MElem)

• nilM = λ

• consM (x,w) = x,w (concatenation of words)

If for example MElem = N, then 2, 20, 4 ∈MList since

• Σ′ extends Σ by constants a, b, c : Elem

• M ′(a) = 2, M ′(b) = 20, M ′(c) = 4

• t = cons(a, cons(b, cons(c, nil)))

• M ′(t) = 2, 20, 4

2.3.5 Proofs

We can use the propositional calculus if we introduce new rules for quanti�ers
seen in Figure 2.5.

∀x. φ(x)
∀-E

φ(t)

φ(c)
∀-I∗

∀x. φ(x)

φ(t)
∃-I

∃x. φ(x)

[φ(c)]
····
ψ ∃x. φ(x)

∃-E∗
ψ

Figure 2.5: Natural deduction rules for quanti�ers

The rules ∀-I and ∃-E have the side condition, that c must not occur freely
in any premise of φ(c).
Sort generation constraints lead to induction proof rules, e.g. for Nat (cf.
Example in section 2.3.3):

[P (0) ∧ ∀x : Nat.P (x)→ P (suc(x))]→ ∀x : Nat.P (x),

or for Lists (cf. Example in section 2.3.4):

[P (nil) ∧ ∀x : Elem, l : List.P (l)→ P (cons(x, l))]→ ∀l : List.P (l),

These rules are second order rules (because they qauntify over a predicate)
but can be instantiated to �rst order rules for any given (�xed) predicate.

52

Chapter 3

Category theory

3.1 Satisfaction Systems

• Notions, results, structuring mechanisms and even tools can be devel-
oped independently of the details of a particular logical system.

• Clari�cations of the notion of �a logic� or �a logical system�.

• Abstract model- and proof-theory

• Morphisms between logics

• Multi-logic speci�cations and theories.

De�nition 3.1.1. A satisfaction system (or information �ow classi�cation1

or twisted relations or two-valued Chu space2) consists of

• a set S (of �sentences�)

• a setM (of �Models�)

• a binary relation |=⊆M× S
Example 3.1.2. Given a propositional signature Σ, then (Sen(Σ),Mod(Σ), |=Σ

) is a satisfaction system. The same holds for any DL, FOL and CFOL (FOL
with sort generation constraints.

De�nition 3.1.3. Given a satisfaction system (S,M, |=), a theory is a set
Γ ⊆ S and for a given M ∈M

M |= Γ i� M |= ψ for all ψ ∈ Γ.

For a given φ ∈ S

Γ |= φ i� ∀M ∈M.M |= Γ→M |= φ.

Γ is satis�able, if there is some M ∈M with M |= Γ.

1Used in information �ow theory.
2Used in Mathematics.

53

De�nition 3.1.4. Given two satisfaction systems T1 = (S1,M1, |=1) and
T2 = (S2,M2, |=2) a satisfaction system morphism (α, β) : T1 → T2 is given
by

• a map α : S1 → S2 and

• a map β :M1 →M2,

such that for all φ1 ∈ S1 and M2 ∈M2

β(M2) |=1 φ1 i� M2 |=2 α(φ1) (satisfaction condition)

Example 3.1.5. For any propositional signature morphism σ : Σ1 → Σ2

(Sen(Σ1),Mod(Σ1), |=Σ1)
α,β−−→ (Sen(Σ2),Mod(Σ2), |=Σ2), with

• α(φ) = σ(φ)

• β(M) = M |σ

is a satisfaction system morphism, since

M2|σ|= φ1 i� M2 |= σ(φ1) (satisfaction condition in Prop).

The same holds for any DL and FOL but not for CFOL.

The satisfaction condition does not hold for CFOL. Consider the following
two signatures

 Σ1 = sorts s,t
 op c : s
 op f : t -> t

 Σ2 = sort Nat
 op 0 : Nat
 op suc : Nat -> Nat �

Then the signature morphism is uniquely de�ned as

• σS(s) = σS(t) = Nat,

• σFs (c) = 0,

• σFt,t(f) = suc.

Now consider the sort generation constraint φ1 = ({s, t}, {c : s, f : t →
t}) and the standard model M2 for Σ2, M2 = (N, 0,+1). Then σ(φ1) =
({Nat}, {0 : Nat, suc : Nat→ Nat}) and

• (M2|σ)s = (M2|σ)t = N,

• cM2|σ = 0,

54

• fM2|σ(x) = x+ 1.

M2 |= σ(φ1) (because the natural numbers are generated by 0 and +1), but
M2|σ 6|= φ1, since the only type correct term is c, which does not generate
the sort s. Also f does not generate anything, in particular not t).
To save the satisfaction condition we regard sort generation constraints as
pairs (σ : Σ′ → Σ, (S0, F0)), where Σ′ = (S′, F ′, P ′), S0 ⊆ S′, (F0)w,s ⊆ F ′w,s,
etc.
Given a Σ-Model M de�ne

M |= (σ, (S0, F0)) i� M |σ|= (S0, F0) in the sense de�ned above

Translation of a Σ-constraint (σ, (S0, F0)) along θ : Σ→ Σ̄ is de�ned as

θ((σ, (S0, F0))) = (θ ◦ σ, (S0, F0))

(S0, F0) ⊂ Σ′
σ←− Σ

Θ←− Σ̄

The satisfaction condition holds since:

M2|σ|= (σ, (S0, F0)) i� (M2|θ)|σ|= (S0, F0)

i� M2|θ◦σ|= (S0, F0)

i� M2 |= (θ ◦ σ, (S0, F0))

3.2 Categories

• Objects are not described by their construction, but by their relation
to other objects (�social lives�).

• Provides useful abstraction mechanism.

• Transfer of notions and results from one area to others.

• Visualisation of situations with diagrams.

De�nition 3.2.1. A Category C consists of

• a class |C| of objects

• for any two objects A,B ∈ |C| a set C(A,B) of morphisms from A to
B. f ∈ C(A,B) is written as f : A→ B (not necessarily a function).

• for any object A ∈ |C| an identity morphism

id A ∈ C(A,A),

i.e. id A : A→ A

55

• for any A,B,C ∈ |C| a composition operation

◦ : C(B,C)×C(A,B)→ C(A,C),

i.e. for f : A → B, g : B → C, we have g ◦ f : A → C. Alternatively,
the notion f ; g : A→ C.

A

B

C

f g

f ; g = g ◦ f

such that

• identities are neutral elements for composition, i.e. f ◦ id A = f =
id B ◦ f

A

A

B

B
id A

f

f

f

id B

• composition is associative, i.e. (f ◦ g) ◦ h = f ◦ (g ◦ h)

A B C D
h g f

g ◦ h

f ◦ g

f ◦ (g ◦ h)

(f ◦ g) ◦ h

Example 3.2.2.

• Set: Sets and functions.

� |Set| = {M |M is a set}
� Set(A,B) = {f |f : A→ B is a function} ⊆ P(A×B)

� Compositions and identities of functions.

• SignProp: Propositional signatures and signature morphisms (= Set).

• SignDL: DL-signatures and signature morphisms.

• SignFOL: FOL-signatures and signature morphisms.

• ThProp, ThDL, ThFOL: Theories and theory morphisms. For DL, we
have to choose a particular DL.

56

• Theories and mod.-th.cons. theory morphisms. Same objects as Th*

but fewer morphisms.

• SAT: satisfaction systems and morphisms.

• ModProp(Σ): Propositional models, where a unique morphism f :
M →M ′ exists i�

M ≤M ′, i.e. ∀p ∈ Σ. M(p) = > ⇒M ′(p) = >.

• Similarly any pre-order (i.e. re�exive, transitive relation) is a category.

• Sentences and logical entailment φ |= ψ is a pre-order, hence a cate-
gory.

• Pre-orders and monotone maps

• Graph: Graphs and homomorphisms

• Moore automata and simulations

• Petri nets and simulations

• Parallel systems and superpositions

• Monoids and homomorphisms

• Groups and homomorphisms

• Rings and homomorphisms

• vector spaces and linear maps

• metric spaces and non-expansive maps

• topological spaces and continous maps

De�nition 3.2.3. f : A → B is an isomorphism if there is a morphism
g : B → A such that f ◦ g = id B and g ◦ f = id A

A

B B

fg

id B

B

A A

gf

id A

De�nition 3.2.4. An object 0 ∈ |C| is called initial if for any A ∈ |C| there
exists a unique morphism 0A = 0→ A.

Example 3.2.5.

• Set: ∅.

57

• Graph: the empty graph.

• ModProp(Σ): the everywhere false model.

• ModProp(Σ,Γ): the model of free{Σ,Γ}

De�nition 3.2.6. Analogously, an object 1 ∈ |C| is called terminal, if for
each A ∈ |C| there exists a unique morphism 1A = A→ 1.

Example 3.2.7.

• Set: any singleton set.

• ModProp(Σ,Γ): the model of cofree{Σ,Γ}

De�nition 3.2.8. Given a Category C its dual Cop is given by just inverting
all arrows. Formally:

|Cop| =|C|
Cop(A,B) =C(A,B)

f ◦Cop
g =g ◦C f

(idA)C
op

=(idA)C

Proposition 3.2.9.

(Cop)op = C

Proposition 3.2.10. An object A is initial in C i� it is terminal in COP

Proof. There exists a unique morphism A → B in C, i� there is a unique
morphism B → A in Cop

That is: the notion �terminal object� is the dual of the notion �initial object�.

Theorem 3.2.11. Meta-Theorem: If a theorem holds for all categories, it
also holds for all categories, when all notions are replaced by their duals and
all arrows are reversed.

De�nition 3.2.12 (Products). Given two categories C1 and C2 their prod-
uct C1 ×C2 is de�ned as follows:

|C1 ×C2| =|C1| × |C2|
C1 ×C2((A1, A2), (B1, B2)) =C1(A,B)×C2(A,B)

(f1, f2) ◦ (g1, g2) =(f1 ◦ g1, f2 ◦ g2)

id (A1,A2) =(id A1 , id A2)

Exercise 26 (Generalization of surjectiveness)

Let A and B be two arbitrary sets and f : A→ B a function.
Show that the following statements are equivalent:

58

(a) f is surjective, i.e., for all b ∈ B there exists a ∈ A such that b = f(a).
(b) f is an epimorphism, i.e., for all sets C and functions g, g′ : B → C, if

g ◦ f = g′ ◦ f , then g = g′.
(c) f is a retraction, i.e., there is a function g : B → A such that f ◦ g =

idB.

Here, ◦ is the function composition, and idB is the identity function on B.

Exercise 27 (Uniqueness of identities)

Show that in any category, identities are unique.

Exercise 28 (Initial and terminal objects)

What are the initial and terminal objects in the following categories?

(a) The category of propositional signatures and signature morphisms
(b) The category of propositional theories and theory morphisms
(c) The category of propositional theories and conservative theory mor-

phisms
(d) The category of propositional models for the signature {p, q}
(e) The category of satisfaction systems

Exercise 29 (Uniqueness of initial objects)

Prove that any two initial objects are isomorphic and that any two terminal
objects are isomorphic.

Exercise 30 (Isomorphic theories)

What does it mean that two theories are isomorphic?

Exercise 31 (Graphic depiction of categories)

There are di�erent ways to realise a category with two objects and four
arrows. Draw all the possible shapes that such a category can have (in the
drawing, please use a di�erent style for the identity arrows, or even omit
them). Specify at least two di�erent composition laws (if existing) for each
shape.

3.2.1 Functors

Functors are morphisms between categories.

De�nition 3.2.13. Given two categories C1 and C2, a functor F : C1 →
C2 is de�ned by:

• its action on objects:

F : |C1| → |C2|

59

• its action on morphisms

F : C1(A,B)→ C2(FA,FB)

i.e. for f : A→ B ∈ C1, Ff : FA→ FB ∈ C2

such that

• F id A = id FA (preservation of identities)

• for f : x→ y, g : y → z, F (f ◦ g) = Ff ◦Fg (preservation of composi-
tions)

Example 3.2.14.

• I : SignProp → SignFOL

Objects: Σ 7→ (∅, ∅, P) with Pλ = Σ

Morphisms: Σ
σ−→
′
with σ′ 7→ (∅, ∅, P) with Pλ = Σ′

• Π1 : C1 ×C2 → C1

(A1, A2) 7→ (A1)
↓ (f1, f2) 7→ ↓ (f1)
(B1, B2) 7→ (B1)

• Analogously for Π1 : C1 ×C2 → C2

• Given A2 ∈ |C2|,_×A2 : C1 ×C2

A1 7→ A1 ×A2

↓ f1 7→ ↓ (f1, id A2)
B1 7→ B1 ×A2

Exercise 32 (Functors)

Given a category C, what are the functors

(a) from 1 = A

idA

to C?

(b) from 2 = A

idA

B

idB

f to C?

(c) from 3 =
A

idA C

idC

B

idB

h

f g to C?

60

3.2.2 Institutions

De�nition 3.2.15. A functor |=: C1 → C2 is faithful, if for f, g : A →
B ∈ C1, Ff = Fg implies f = g

De�nition 3.2.16. A concrete category is a faithful functor U : C→ Set.
Intuitively, this means that C is a category of sets with structure and struc-
ture preserving maps.

De�nition 3.2.17. A category C is concretisable, if there is a faithful func-
tor U : C→ Set

Example 3.2.18.

• PreOrd: Pre-Orders and monotone maps

• Mon: Monoids amd homomorphisms

Recall: SAT is the (quasi)1-category of all satisfaction systems and satisfac-
tion system morphisms (S,M, |=)

• S a set

• M a class

• |= ⊆M × S

De�nition 3.2.19. An institution is a functor Sign
I−→ Sat where Sign is

any category of signatures. Explicitly this means, that an institution is given
by

• a category Sign of signatures

• for each signature Σ ∈ |Sign| a satisfaction system I(Σ) = (Sen(Σ),Mod(Σ), |=Σ

)

� Sen(Σ) is the set of sentences over Σ

� Mod(Σ) is the set of models over Σ

� |=Σ is the satisfaction relation for Σ

• for each signature morphism σ : Σ1 → Σ2 a satisfactions system mor-
phism I(σ) = (σ,_|σ) : I(Σ1)→ I(Σ2)

� σ : Sen(Σ1)→ Sen(Σ2) is called sentence translation

� _|σ: Mod(Σ2)→ Mod(Σ1) is called model reduction.

1there is no class of all classes, hence we need the notion of conglomerates

61

such that for each φ1 ∈ Sen(Σ1),M2 ∈ Mod(Σ2), M2|σ|=Σ1 φ1 i� M2 |=Σ2

σ(φ1) (satisfaction condition)2 and such that

id (φ) =φ

M |id =M

σ1 ◦ σ2(φ) =σ1(σ2(φ))

M |σ1◦σ2=(M |σ1)|σ2

Alternative de�nition of institutions

De�nition 3.2.20. A category C is small, if |C| is a set. Let Cat be the
category with

• |Cat| = all small categories

• Cat(C,D) = functors from C to D

• obvious identities and compositions.

De�nition 3.2.21. CAT is the quasi-category of all categories and functors.

De�nition 3.2.22. An institution (Sign,Sen,Mod, |=) consists of

• a category Sign of signatures.

• a functor Sen : Sign → Set mapping each Σ ∈ |Sign| to the set
Sen(Σ) of sentences over Σ and each σ : Σ1 → Σ2 ∈ Sign to the
sentence translation Sen(Σ1)→ Sen(Σ2) usually also denoted by σ.

• for each functor Mod : Signop → CAT mapping each Σ ∈ |Sign| to
the model category Mod(Σ) and each signature morphism σ : Σ1 →
Σ2 ∈ Sign (i.e. σ : Σ2 → Σ1 ∈ Signop) to the reduct functor Mod(σ) :
Mod(Σ2)→ Mod(Σ1) usually written as _|σ.

• for each Σ ∈ |Sign|, a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ),
such that for σ : Σ1 → Σ2 ∈ Sign, φ1 ∈ Sen(Σ1), M2 ∈ Mod(Σ2),

M2|σ|=Σ1 φ1 i� M2 |=Σ2 σ(φ1)

De�nition 3.2.23. A room consists of

• a set S

• a category M

• a relation |M| × S
2�truth is invariant under change of notation�

62

De�nition 3.2.24. Given two rooms (S1,M1, |=1) and (S2,M2, |=2) a cor-
ridor (α, β) : (S1,M1, |=1)→ (S2,M2, |=2), where

• α : S1 → S2 is a function

• β : M2 →M1 is a function,

such that for φ1 ∈ S1,M2 ∈ |M2|

β(M2) |=1 φ1 i� M2 |=2 α(φ1)

Proposition 3.2.25. An institution as de�ned above (alternative de�nition)
is the same as a functor I : Sign→ Room

Proof.

Sign
I−→ Sat

• I(Σ) = (Sen(Σ),Mod(Σ), |=Σ)

• I(σ) = (Sen(σ),Mod(σ)) = (σ,_|σ)

Convention: from now on let I : Sign → Sat be an arbitrary but �xed
institution:

De�nition 3.2.26. Given a signature Σ ∈ |Sign|,Γ ⊆ Sen(Σ), φ ∈ Sen(Σ)
φ is a logical consequence of Γ (written as Γ |=Σ φ), i� for all M ∈ Mod(Σ)

M |= Γ implies M |=Σ φ

.

De�nition 3.2.27. A theory is a pair (Σ,Γ), where Σ ∈ |Sig|,Γ ⊆ Sen(Σ).

De�nition 3.2.28. A theory morphism σ : (Σ1,Γ1) → (Σ2,Γ2) is a sig-
nature morphism σ : Σ1 → Σ2 such that for all M2 ∈ Mod(Σ2) M2 |=
Γ2 implies M2|σ|= Γ1

Proposition 3.2.29. σ : (Σ1Γ1)→ (Σ2,Γ2) i� Γ2 |= σ(Γ1)

Proof.

Γ2 |= σ(Γ1)

i� for all M2 ∈ Mod(Σ2),M2 |= Γ2 ⇒M2 |= σ(Γ1)

i� by satisfaction condition

for all M2 ∈ Mod(Σ2),M2 |= Γ2 ⇒M2|σ|= Γ1

i� σ : (Σ1,Γ1)→ (Σ2,Γ2) is a theory morphism.

Exercise 33 (Institution of theories)

Given an institution I, obtain Ith by replacing the category of signatures
with the category of theories in I. Show that this yields an institution.

63

3.2.3 Structured speci�cations

• Manageability

• re-use

• clarity

De�nition 3.2.30. We inductively de�ne the set of structured speci�cations
in I:

• 〈Σ,Γ〉with Σ ∈ Sign,Γ ⊆ Sen(Σ)

� Sig(〈Σ,Γ〉) = Σ

� Mod(〈Σ,Γ〉) = {M ∈ Mod(Σ)|M |= Γ}

• Given two speci�cations SP1 and SP2 with Sig(SP1) = Sig(SP2) = Σ
�SP1 and SP2� is a speci�cation with

� Sig(SP1 and SP2) = Σ

� Mod(SP1 and SP2) = Mod(SP1) ∩Mod(SP2)

• Given a speci�cation SP with Sig(SP) = Σ and a signature morphism
σ : Σ→ Σ′ �SP with σ� is a speci�cation with

� Sig(SP with σ) = Σ′

� Mod(SP with σ) = {M ∈ Mod(Σ′)|M |σ∈ Mod(SP)}

• Given a speci�cation SP with Sig(SP) = Σ′ and a signature morphism
σ : Σ→ Σ′ �SP hide σ� is a speci�cation with

� Sig(SP hide σ) = Σ

� Mod(SP hide σ) = {M ′|σ|M ′ ∈ Mod(SP)}

De�nition 3.2.31. A signature fragment ∆ is a signature morphism ∆ :
Σ→ Σ′. Intuitively �Σ′ \ Σ�

De�nition 3.2.32 (structured speci�cations). If SP is a speci�cation with
Sig(SP) = Σ, ∆ : Σ→ Σ′ a signature fragment and Γ′ ⊆ Sen(Σ′), �SP then (∆,Γ)�
is a speci�cation with the same semantics as (SP with ∆) and 〈Σ′,Γ′〉

If we have a union operation on signatures ∪ : |Sign| × |Sign| → |Sign|
such that there exists signature morphisms for Σ1 and Σ2 such that Σ1

ι1−→
Σ1∪Σ2

ι2←− Σ2 We can form unions of speci�cations with di�erent signatures:
Given speci�cations SP1 and SP2 with Sig(SPi) = Σi �SP1 and SP2� is a
speci�cation with semantics as

(SP1 with ι1) and (SP2 with ι2)

64

De�nition 3.2.33. Let SP be a speci�cation with Sig(SP) = Σ and φ ∈
Sen(Σ), then SP |= φ i� for each M ∈ Mod(SP),M |= φ.

Example 3.2.34 (in ALC:).
 Σ = Classes: Person, Female, Woman, Man
 Γ = {Woman ≡ Person u Female, Man ≡ Person u ¬ Female} �

Consider 〈Σ,Γ〉hide Person, Female (shorthand for 〈Σ,Γ〉hide σ with the sig-
nature inclusion σ : (Classes: Woman, Man) ↪→ Σ)
〈Σ,Γ〉hide Person, Female |= Man u Woman ≡ ⊥
Mod(SP hide σ) = {M |σ|M ∈ Mod(SP)}

De�nition 3.2.35. Let SP1, SP2 be speci�cations. A signature morphism
σ : Sig(SP1) → Sig(SP2) is a speci�cation morphism, if for all M2 ∈
Mod(SP2):

M2|σ∈ Mod(SP1)

σ is model theoretically conservative, if each M1 ∈ Mod(SP1) has a σ-
expansion to a SP2-model. σ is consequence theoretically conservative, if
for all φ1 ∈ Sen(Sig(SP1)), SP2 |= σ(φ1) implies SP1 |= φ1.

Proposition 3.2.36. Any model theoretically conservative speci�cation mor-
phism is also consequence theoretically conservative.

Proof. Let σ : SP1 → SP2 be a mod.-th.-cons. speci�cation morphism. Let
SP2 |= σ(φ1) and M1 ∈ Mod(SP1). We have to show M1 |= φ1.
Since σ is mod.-th.-cons. there is M2 ∈ Mod(SP2) with M2|σ= M1. By
SP2 |= σ(φ1) we have M2 |= σ(φ1). By the satisfaction condition M2|σ|= φ1

thus M1 |= φ1.

Exercise 34 (Structured speci�cations)

(a) Show that, given a structured speci�cation SP and a signature mor-
phism σ : Σ→ Sig(SP),

(i) σ is a speci�cation morphism σ : SP hide σ → SP

(ii) the speci�cation morphism is model-theoretically conservative

(b) Structure some of the speci�cations that you have written so far and/or
that have been used in the lecture using the new structuring mecha-
nisms.

Normal forms of speci�cations

De�nition 3.2.37. The normal form of a speci�cation is inductively de�ned
as follows

• NF (〈Σ,Γ〉) := 〈Σ,Γ〉

65

• Let SP = �SP1 and SP2� with NF (SP1) = 〈Σ,Γ1〉 and NF (SP2) =
〈Σ,Γ2〉. Then NF (SP) := 〈Σ,Γ1 ∪ Γ2〉

• Let SP = �SP1 with σ� with σ : Σ1 → Σ and NF (SP1) = 〈Σ1,Γ1〉.
Then NF (SP) := 〈Σ, σ(Γ1)〉

• NF (SP hide σ) is unde�ned.

Example 3.2.38. Consider the following speci�cation SP

 sort s
 op f: s → s
 ∀ x,y : s
 . ∃ z:s. ¬∃ u:s. f(u) = z
 . f(x) = f(y) => x = y
 hide f �

We have

SP |= ∃x, y : s.x 6= y

SP |= ∃x, y, z : s.(x 6= y ∧ x 6= z ∧ y 6= z)

. . .

SP is not �nitely axiomatisable.

Proposition 3.2.39. Let SP be a speci�cation without hide and let NF (SP) =
〈Σ,Γ〉. Then

• Sig(SP) = Σ

• Mod(SP) = Mod(〈Σ,Γ〉)

Proof. Induction over SP

• SP = 〈Σ,Γ〉: clear

• SP = �SP1 and SP2�:

Mod(SP1 and SP2) =def Mod(SP1) ∩Mod(SP2)

=I.H. Mod(〈Σ,Γ1〉) ∩Mod(〈Σ,Γ2〉)
= Mod(〈Σ,Γ1 ∪ Γ2〉) = Mod(NF (SP))

• SP = �SP1 with σ�:

Mod(SP1 with σ) =def {M ∈ Mod(Σ)|M |σ∈ Mod(SP1)}
=I.H. {M ∈ Mod(Σ)|M |σ∈ Mod(〈Σ1,Γ1〉)}
=def {M ∈ Mod(Σ)|M |σ|= Γ1}
=sat.cond. {M ∈ Mod(Σ)|M |= σ(Γ1)}
= Mod(〈Σ, σ(Γ1)〉) = Mod(NF (SP))

66

Exercise 35 (Speci�cation morphisms)

Let SP1, SP2 be two speci�cations. Show that for any signature morphism
σ : Sig(SP1)→ Sig(SP2), the following are equivalent:

(a) σ : SP1 → SP2 is a speci�cation morphism
(b) Mod(SP2 hide σ) ⊆ Mod(SP1)
(c) Mod(SP2) ⊆ Mod(SP1 with σ)

Exercise 36 (Models of speci�cations)

Show that the following statements are not equivalent. Provide counterex-
amples for both implications.

(a) Mod(SP1) ⊆ Mod(SP2 hide σ)
(b) Mod(SP1 with σ) ⊆ Mod(SP2)

Exercise 37 (Algebraic laws for speci�cations)

Check which of the following algebraic laws hold:

(a) SP and SP ≡ SP
(b) SP1 and SP2 ≡ SP2 and SP1

(c) (SP with σ1) with σ2 ≡ SP with σ2 ◦ σ1

(d) (SP1 and SP2) with σ ≡ (SP1 with σ) and (SP2 with σ)
(e) (SP hide σ2) hide σ1 ≡ SP hide σ2 ◦ σ1

(f) (SP1 and SP2) hide σ ≡ (SP1 hide σ) and (SP2 hide σ)
(g) (SP with σ) hide σ ≡ SP
(h) (SP hide σ) with σ ≡ SP

3.2.4 Institutions with proofs

De�nition 3.2.40. Given an institution Sign
I−→ Room

(or (Sign,Sen,Mod, |=)) an entailment system for I is given by relations

`Σ ⊆ P(Sen(Σ))× Sen(Σ)

for each Σ ∈ |Sign|, sucht that

• {φ} `Σ φ for φ ∈ Sen(Σ) (re�exivity)

• for all i ∈ J , Γi `Σ φi and {φi|i ∈ J} `Σ ψ implies
⋃
i∈J Γi `Σ ψ

(transitivity)

• Γ `Σ φ and Γ ⊆ Γ′ implies Γ′ `Σ φ with Γ,Γ′, {φ} ⊆ Sen(Σ)
(monotonicity)

• if σ : Σ1 → Σ2 ∈ Sign and Γ `Σ1 φ with Γ, {φ} ⊆ Sen(Σ1) then
σ(Γ) `Σ2 σ(φ) (translation)

67

De�nition 3.2.41. An entailment system for I is

• sound, if Γ `Σ φ implies Γ |=Σ φ

• strongly complete, if Γ |=Σ φ implies Γ `Σ φ

• weakly complete, if ∅ |=Σ φ implies ∅ `Σ φ

Example 3.2.42. Prop and FOL have sound and complete entailment sys-
tems

Proof system for structured speci�cations

Let an institution with a sound entailment system be given.

(SP `Σ φi)i∈J {φi|i ∈ J} `Σ ψ
(CR)

SP `Σ φ

φ ∈ Γ
(basic)

〈Σ,Γ〉 `Σ φ

SP1 `Σ φ
(and− left)

SP1 and SP2 `Σ φ

SP2 `Σ φ
(and− right)

SP1 and SP2 `Σ φ

SP `Σ φ
(translation)

SP with σ `Σ′ σ(φ)

SP `Σ′ σ(φ)
(hiding)

SP hide σ `Σ φ

Figure 3.1: Natural deduction rules for structured speci�cations

Proposition 3.2.43. Proving in structured speci�cations is sound, i.e.

SP |=Σ φ implies SP |=Σ φ

Proof. Induction over the derivation of SP `Σ φ.

• (CR): By I.H. SP |=Σ φi. By soundness of the entailment system
{φi|i ∈ J} |=Σ ψ. Hence SP |=Σ ψ.

• (basic): clear

• (and-left): By I.H. SP1 |=Σ φ. Any (SP1 and SP2) model is a SP1

model, hence (SP1 and SP2) |=Σ φ

• (and-right): analogous

• (translation): By I.H. SP |=Σ φ. For M ∈ Mod(SP with σ) we
have M |σ∈ Mod(SP). Hence M |σ|=Σ φ. By satisfaction condition
M |=Σ′ σ(φ)

• (hiding): By I.H. SP |=Σ σ(φ). Let M ∈ Mod(SP hide σ). Then
there is M ′ ∈ Mod(SP) with M ′|σ= M . M ′ |=Σ′ σ(φ) and by satis-
faction condition M ′|σ= M |=Σ φ

68

3.3 Colimits

�Given a species of structure, say widgets, the result of inter-
connecting a system of widgets to a super-widget corresponds to
taking the colimit of the diagram of widgets in which the mor-
phisms show how they are interconnected� (J. Goguen)

Colimits are also used in Ontology alignment

3.3.1 Coproducts

Combination without interaction:

De�nition 3.3.1. Given two objects A,B ∈ |C| a coproduct of A and B is

an object AqB with two morphisms A
qA−−→ AqB qB←−− B (called the coproduct

injections) such that for any A
f−→ C

g←− B there is a unique h : A q B → C
such that

A B

C

A
∐
B

qA

f

qB

g

h

commutes.

Example 3.3.2. In Set, coproducts are disjoint unions

A ∪B = A× {0} ∪B × {1}

A
qA−−→ A ∪B

a 7→ (a, 0)

B
qB−−→ A ∪B

b 7→ (b, 1)

Given two functions A
f−→ C

g←− B de�ne h : A ∪B → C as

h(a, 0) = f(a)

h(b, 1) = g(b)

h(qA(a)) = f(a)

h(qB(b)) = g(b)

Now let k : A ∪B → C with k ◦ qA = f and k ◦ qB = g But then k(a, 0) =
f(a) and k(b, 1) = g(b) Hence h = k

69

Proposition 3.3.3. Coproducts are unique up to isomorphism

Proof. Given A,B ∈ |C|, and let A qA−−→ AqB qB←−− B and A
q′A−−→ Aq′B

q′B←−−
B be coproducts. By the universal property of AqB we have k : Aq′B → C
such that the following commutes

A B

A
∐
B

A
∐′B

qA

q′A

qB

q′B

h k

In order to show that h is in fact an isomorphism, we need to show: h◦k = id
and k ◦ h = id

Exercise 38 (Coproducts I)

Show that

(a) [h ◦ f, h ◦ g] = h ◦ [f, g]
(b) (f q g) ◦ (k q h) = (f ◦ k)q (g ◦ h)

Exercise 39 (Coproducts II)

(a) Let A and B be elements of a partially ordered set, considered as a
category. What is the coproduct of A and B?

(b) Let P and Q be objects in PoSet, the category of partially ordered
sets. What is the coproduct of P and Q?

Exercise 40 (Pushouts)

Consider the following diagram:

(a) Prove that if both squares are pushouts, then the outside rectangle
(with top and bottom edges the evident composites) is a pushout.

(b) Prove that if the outside rectangle and the left-hand square are pushouts
and the whole diagram commutes, then the right-hand square is a
pushout.

(c) Try to empirically verify this with some examples in Hets.

Exercise 41 (Pushouts of theories and theory morphisms)

Consider a pushout of theories and theory morphisms in a weakly semi-exact
institution:

70

σ′

σ

Show that if σ is model-theoretically conservative, then so is σ′.

Exercise 42 (Pushouts of theories � example)

Formalize the example from the lecture as a pushout of theories.

3.3.2 Semi-exactness

De�nition 3.3.4. An institution Sign
I−→ Room is (weakly) semi-exact, if

for any pushout of signatures in Sign

Σ

Σ1 Σ2

Σ′

σ1 σ2

θ1 θ2

and each pair of models M1 ∈ Mod(Σ1),M2 ∈ Mod(Σ2) that is compatible,
i.e. M1|σ1= M2|σ2, there is a unique (not necessarily unique) amalgamation
M1 ⊕M2 ∈ Mod(Σ′) with (M1 ⊕M2)|θ1= M1 and (M1 ⊕M2)|θ2= M2

2 EdNote(2)

♦♥♠
♦♥@. >@ ∗ [|(4)][ur]♥♠@ ∗ [|(4)]@. >[ul]
♥

@ ∗ [|(7)][ul]@ ∗ [|(7)][ur]

Given any models M1 and M2 with common reduct M0 . . .

♦♥♠M1 @|− >@ ∗ [|(7)][ddrr] ∈ ♦♥@. >@ ∗ [|(4)][ur]♥♠ 3 @ ∗ [|(4)]@. >[ul]M2@|− >@ ∗ [|(7)][ddll]
♥
∈

@ ∗ [|(7)][ul]@ ∗ [|(7)][ur]M0

. . . they must have a unique amalgamation M3

M3@|− >@ ∗ [|(7)][ddrr]@|− >@ ∗ [|(7)][ddll]♦♥♠M1 @|− >@ ∗ [|(7)][ddrr] ∈ ♦♥@. >@ ∗ [|(4)][ur]♥♠ 3 @ ∗ [|(4)]@. >[ul]M2@|− >@ ∗ [|(7)][ddll]
♥
∈

@ ∗ [|(7)][ul]@ ∗ [|(7)][ur]M0

Proposition 3.3.5. Propositional logic is semi-exact.

2
EdNote: TODO: update illustration

71

Proof. Sign = Set, Mod(Σ) = {Σ M−→ {T, F}}

Σ1 Σ2 {T, F}σ M2

M2|σ= M2 ◦ σ

Σ

Σ1 Σ2

Σ′

{T, F}

σ1 σ2

θ1 θ2

M1 M2

M1 ◦ σ1 = M1|σ1
M2 ◦ σ2 = M2|σ2

M1 ⊕M2

M1 ⊕M2 uniquely exists due to the universal property of the pushout.

How is M1 ⊕M2 constructed?

Σ

Σ1 Σ2

Σ1 q Σ2

Σ′

_/∼

M1 ⊕M2([q1(p1)]∼) = M1(p1)

M1 ⊕M2([q2(p2)]∼) = M2(p2)

This is well de�ned, since for p ∈ Σ :

M1(σ1(p)) = M2(σ2(p))

Proposition 3.3.6. DL is semi-exact.

Proof. Let M1|σ1= M2|σ2 and ∆ := ∆M1 = ∆M2

C

C1 C2

C ′

P(∆)

σC1 σC2

θC1 θC2

MC
1 MC

2
(M1 ⊕M2)C

I

I1 I2

I ′

∆

σI1 σI2

θI1 θI2

M I
1 M I

2
(M1 ⊕M2)I

R

R1 R2

R′

P(∆×∆)

σR1 σR2

θR1 θR2

MR
1 MR

2
(M1 ⊕M2)R

72

(C, I,R)

(C1, I1, R1) (C2, I2, R2)

(C ′, I ′, R′)

σ1 σ2

θ1 θ2

M1 ⊕M2 = (∆, (M1 ⊕M2)C , (M1 ⊕M2)I , (M1 ⊕M2)R)

Proposition 3.3.7. FOL is semi-exact.

Proof. Similar to DL but with some technical di�culties due to sorts.

De�nition 3.3.8 (Subsorted �rst-order logic (SubFOL)).
Signatures (Σ,≤, F, P) where

• (S,≤) is a preorder (i.e. ≤ is transitive and re�exive)

• (S, F, P) is a FOL-Signature

Models like FOL-Models plus: If s1 ≤ s2 then injMs1→s2 : Ms1 → Ms2 injec-
tive, such that:

• injMs→s = id

• injMs2→s3 ◦ inj
M
s1→s2 = injMs1→s3 (s1 ≤ s2 ≤ s3)

shortly: (S,≤)
M−→ Setinj

Proposition 3.3.9. SubFOL is not semi-exact.

Proof. In the following pushout there cannot be an amalgamation for the
models written next to the signatures

73

s1 s2

s3 s4

{1} {1,2}

{1} {1,2}

s1 ≤ s2

s3 ≤ s4

{1} ↪→ {1,2}

{1} ↪→ {1,2}
s1 s2≤ ≤

s3 s4

{1} {1,2}
↪→ ↓ 1 7→ 2

2 7→ 1
{1} {1,2}

s1 ≤ s2≤ ≤ ≤

s3 ≤ s4

{1} ↪→ {1,2}

↪→ ∗−→ ↓ 1 7→ 2
2 7→ 1

{1} ↪→ {1,2}

There is no injective function for
∗−→, such that the diagram commutes.

De�nition 3.3.10. In an institution with signature pushouts we can de�ne
a normal form of speci�cations with Sig(SP) = Σ of format:

NF (SP) = 〈Σ′,Γ〉 hide σ, with σ : Σ→ Σ′

It is uniquely de�ned as follows:

• NF (〈Σ,Γ〉) := 〈Σ,Γ〉 hide id

• Let NF (SPi) = 〈Σi,Γi〉 hide σi, i = 1, 2. Take a pushout

Σ

Σ1 Σ2

Σ′

σ1 σ2

θ1 θ2

θ1 ◦ σ1 = θ2 ◦ σ2

NF (SP1 and SP2) := 〈Σ′, θ1(Γ1) ∪ θ2(Γ2)〉 hide (θ1 ◦ σ1)

• Let NF (SP) = 〈Σ,Γ〉 hide σ : Σ′ → Σ. In the pushout

74

Σ′

Σ Σ′′

Σ

σ θ

σ′ θ′

NF (SP with θ : Σ′ → Σ′′) := 〈Σ, σ′(Γ)〉 hide θ′

• Let NF (SP) = 〈Σ,Γ〉 hide σ : Σ′ → Σ. Then

NF (SP hide θ : Σ′′ → Σ′) = 〈Σ,Γ〉 hide σ ◦ θ

Proposition 3.3.11. IN a semi-exact institution Mod(SP) = Mod(NF (SP))

Proof. Induction over SP :

• Mod(〈Σ,Γ〉) = Mod(〈Σ,Γ〉 hide id) X

• By i.h. assume Mod(SPi) = Mod(〈Σi,Γi〉 hide σi) i = 1, 2

� Prove Mod(SP1 and SP2) ⊆ Mod(NF (SP1 and SP2)):
Let M ∈ Mod(SP1) ∩Mod(SP2),
hence by i.h. M ∈ Mod(〈Σi,Γi〉 hide σi) for i = 1, 2.
That is, there is aMi ∈ Mod(Σi,Γi) withMi|σi= M . HenceM1⊕
M2 exists with M1 ⊕M2|θi |= Γi. By the satisfaction condition,
M1⊕M2 |= θi(Γi). HenceM1⊕M2 ∈ Mod(〈Σ′, θ1(Γ1)∪θ2(Γ2)〉),
witnessing that M ∈ Mod(NF (SP1 and SP2))

� Prove Mod(NF (SP1 and SP2)) ⊆ Mod(SP1 and SP2):
Let M ∈ Mod(〈Σ′, θ1(Γ1) ∪ θ2(Γ2)〉 hide θ1 ◦ σ1). Hence there
is M ′ with M ′|θ1◦σ1= M and M ′ |= θ1(Γ1) ∪ θ2(Γ2). By the
satisfaction condition M ′|θi is a σi-expansion of M satisfying Γi.
Hence M ∈ Mod(〈Σi,Γi〉 hide σi) = Mod(SPi)

� Translation and hiding similarly.

Exercise 43 (Normal forms of structured speci�cations)

(a) Complete the proof that in a semi-exact institution, building normal
forms preserves the model class (the cases of translation and hiding are
missing).

(b) Does the result hold for weakly semi-exact institutions as well?

Exercise 44 (Subsorts)

Consider the following speci�cation:

75

spec sp1 =
sorts Man, Woman < Person
sort Hybrid < Man
sort Hybrid < Woman

end

spec sp2 =
sorts Man, Woman < Person
sorts Female < Person
forall p: Person
. p in Woman => p in Female
. p in Man => not p in Female

end

spec sp = {sp1 hide Hybrid} and {sp2 hide Female} end

(a) Use the semantics of structured speci�cations to argue that the model
class of sp is empty (i.e., sp is inconsistent). Use the proof calculus
for structured speci�cations to derive sp ` ⊥.

(b) Compute the normal form and prove that sp is inconsistent.
(c) Try out Hets. Extend the above speci�cation by:

spec spimplies = sp
then %implies

. false
end

and then use �Edit -> Proofs -> TheoremHideShift� to com-
pute the normal form.

76

Woman Person

Woman v Female Woman v Person Person

Figure 3.2: Ontology alignment

3.3.3 Colimits in general

A colimit combines everything

Colimit of D

Diagram D

• Motivation: Goguen quote (see above)

• Ontology alignment (cf. Figure 3.2)

De�nition 3.3.12. A diagram is a functor I→ C where I is a small (index)
category (i.e. with a set of objects)

77

De�nition 3.3.13. Given a diagram D : I → C, a sink is a family of
morphisms µ = (µi : Di → C)i∈|I| into a common object C. (Di = D(i))

De�nition 3.3.14. A cocone is a sink µ such that for each d : i → j ∈ I
the following commutes:

Di Dj

C

Dd

µi µj

De�nition 3.3.15. A colimiting cocone is a cocone µ : D → C such that
for any other cocone µ′ : D → C ′ there exists a unique h : C → C ′, such that
for all i ∈ |I|

Di

C

C ′

µi

µ′i

h

commutes.

Example 3.3.16.

• Pushouts are colimits for diagrams of the shape

• Binary coproducts are colimits for diagrams of the shape

• Initial objects are colimits for diagrams of the empty shape (I = ∅)

• Arbitrary coproducts: I is discrete (all morphisms are identities).
Notation: qi∈|I|Ai

• Coequalizers:

De�nition 3.3.17. Given A B

f

g
a coequalizer is an arrow B

c−→ C

with c ◦ f = c ◦ g such that for any B
c′−→ C ′ with c′ ◦ f = c′ ◦ g there is a

unique h : C → C ′ with

A B

C

C ′

f

g

c

c′
h

Example 3.3.18. Coequalizers in Set

A B B/∼

f

g

q

The equivalence relation ∼ is generated by f(a) ∼ g(a) for a ∈ A. De�ne
q(b) := [b]∼. Then clearly: q ◦ f = q ◦ g.

78

A B

B/∼

C ′

f

g

q

q′
h

De�ne h([b]∼) = q′(b). This is well de�ned since b ∼ b′ ⇒ q′(b) = q′(b′).
q′(f(a)) = q′(g(a)).

Theorem 3.3.19. Pushouts are coequalizers of coproducts.

Proof. Consider the following diagram

A

B C

B q C

D

D′′

f g

qB qC

c

c ◦ qB c ◦ qC

f ′′ g′′

[f ′′, g′′]

[f ′′, g′′] ◦ qB ◦ f
= f ′′ ◦ f
= g′′ ◦ g
= [f ′′, g′′] ◦ qC ◦ g

Since C is universal with

c ◦ qB ◦ f = c ◦ qC ◦ g

we have a unique h : D → D′′

with h ◦ c = [f ′′, g′′] i�
h◦c◦qB = f ′′ and h◦c◦qC = g′′

(universal property of coproduct)

3.4 Natural transformations

Recall: An Institution is a functor Sign
I−→ Room, or by the alternative

de�nition

• a category Sign of signatures

• a functor Sen : Sign→ Set

• a functor Mod : Satop → Sat

• for each Σ ∈ |Sign|, a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ)

such that for any signature morphism σ : Σ′ → Σ′ ∈ Sign and M ′ ∈
Mod(Σ′), φ ∈ Sen(Σ)

M ′|σ|= φ i� M ′ |= σ(φ)

Natural transformations are morphisms between functors.

79

De�nition 3.4.1. Given two functors F,G : C→ D a natural transforma-
tion τ : F → G is a family of morphism (τC : FC → GC)C∈|C|

1 such that
for any f : C1 → C2 ∈ C

FC1 GC1

FC2
gC2

Ff

τC1

τC2

Gf

commutes

Example 3.4.2. i : ModSubFOL(≤) → ModSubFOL

for any SubFOL(≤) signature Σ we have

ModSubFOL(≤)(Σ1) ModSubFOL(Σ1)

ModSubFOL(≤)(Σ2) ModSubFOL(Σ2)

ιΣ1

ιΣ2

ModSubFOL(≤)(σ) ModSubFOL(σ)

Example 3.4.3. Given a diagram D : I → C a cocone µ : D → C =
(C, (µi : Di → C)i∈|I|) is the same as the natural transformation

µ : D → const(c) where const(c) : I→ C, with

ι1

ι2

C

C

λ id C

Naturality means that for any d : i→ j ∈ I

D(i)

D(j)

C

C

D(d)

µi

µj

id C

Example 3.4.4. Given categories C,D the functor category has as its ob-
ject the functors F : C → D and the mophisms: τ : F → G are natural
transformations.

Exercise 45 (Functor categories)

Given categories C and D, prove that [C,D] (functors from C to D as
objects and natural transformations as morphisms) indeed forms a category.

1FC and GC live in D.

80

3.4.1 Institution comorphisms

Motivation:

• Embeddings or encodings between institutions

• Re-use (�borrowing�) of proof tools

• heterogeneous speci�cation

De�nition 3.4.5. Given Institutions I = (Sign,Sen,Mod, |=) and I ′ =
(Sign′,Sen′,Mod′, |=′) an institution comorphism ρ(φ, α, β) : I → I ′ consists
of

• a functor φ : Sign→ Sign′

• a natural transformation α : Sen→ Sen′ ◦ φ

• a natural transformation β : Mod′◦φOP → Mod, such that the following
diagrams commute.

Sen(Σ1)

Sen(Σ2)

Sen′(φΣ1)

Sen′(φΣ2)

Sen(σ)

αΣ1

αΣ2

Sen′(φσ)

Mod(Σ1)

Mod(Σ2)

Mod′(φΣ1)

Mod′(φΣ2)

_|σ Mod(σ)

αΣ1

αΣ2

_|φσ Mod′(φσ)

Example 3.4.6. Propositional → FOL

• αΣ(φ) = φ

• Given M ′ ∈ ModFOL(φΣ), βΣ(M)(p) =

{
T , if () ∈M ′p
F , if () /∈M ′p

• βΣ(M ′) |= ϕ i� M ′ |= ϕ

Proof. Induction over ϕ, because propositional logic is the same in
Propositional and FOL.

Example 3.4.7. ALC → SROIQ (�Sublogic embedding�)

81

• φ = id

• αΣ(ϕ) = ϕ

• βΣ = id

• satisfaction condition trivially holds

SenALC(Σ) SenSROIQ(Σ)

SenALC(Σ′) SenSROIQ(Σ′)

SenALC(σ) SenSROIQ(σ)

Example 3.4.8. ALC → FOL

• φ((C,R, I)) = (S, F, P) with

� S = {Thing}
� F = {a : Thing|a ∈ I}
� P = {A : Thing|A ∈ C} ∪ {R : Thing× Thing|R ∈ R}

• φ(σ) = θ with

θ(Thing) = Thing

θ(Ia : Thing) = σI(a) : Thing

θ(R : Thing× Thing) = σR(R)

• Concept translation

� αx(A) = A(x : Thing)

� αx(¬C) = ¬αx(C)

� αx(C uD) = αx(C) ∧ αx(D)

� αx(C tD) = αx(C) ∨ αx(D)

� αx(∃R.C) = ∃y : Thing.(R(x, y) ∧ αy(C))

� αx(∀R.C) = ∀y : Thing.(R(x, y)→ αy(C))

• Sentence translation

� αΣ(C v D) = ∀x : Thing. (αx(C)→ αx(D))

� αΣ(a : C) = αx(C)[a/x]1

� αΣ(R(a, b)) = R(a, b)

• Model reduction

1Replace x by a.

82

� ForM ′ ∈ ModFOL(φΣ) de�ne βΣ(M ′) := (∆, ·I) with ∆ = M ′Thing
and AI = M ′A, a

I = M ′a, R
I = M ′R.

Proposition 3.4.9. CI =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= αx(C)

}
Proof. By Induction over the structure of C.

• AI = M ′A =
{
m ∈M ′Thing|M ′ + {x 7→ m} |= A(x)

}
• (¬C)I = ∆ \ CI =I.H. ∆ \ {m ∈ M ′Thing|M ′ + {x 7→ m} |= αx(C)} =
{m ∈M ′Thing|M ′ + {x 7→ m} |= ¬αx(C)}

The satisfaction condition holds as well.

Example 3.4.10. ρ : ALC → FOL can be extended to ρ : SROIQ → FOL.
For example quali�ed number restrictions

αx(≥ nR.C) = ∃≥ny : Thing. R(x, y) ∧ αy(C)

= ∃y1, . . . , yn : Thing.

n∧
i=1

R(x, yi) ∧ αyi(C) ∧
∧
i 6=j

yi 6= yj

αx(≤ nR.C) = ∃≤ny : Thing. R(x, y) ∧ αy(C)

= ¬∃≥n+1y : Thing. R(x, y) ∧ αy(C)

Exercise 46 (Institution comorphisms I)

Spell out the de�nition of institution comorphisms in terms of the �institu-
tions as functors� de�nition I : Sign→ Room.

Exercise 47 (Institution comorphisms II)

De�ne a model-expansive institution comorphism Propositional→ ALC.

Exercise 48 (Satisfaction relations as natural transformations)

Show that the satisfaction relation in an institution is a natural transfor-
mation |= : Gr ◦ Sen → Gr ◦ Uop ◦ Modop, where Gr : Set → Rel and
Gr : Setop → Rel map a function to its graph.

Exercise 49 (Comorphisms in Hets)

Experiment with Hets: Translate theories that you have used along comor-
phisms.

83

3.5 Borrowing

Motivation: re-use of proof tools.

De�nition 3.5.1. An institution comorphism ρ = (φ, α, β) : I → I ′ is
model expansive, if for each Σ ∈ |Sign|, βΣ : Mod′(φΣ) → Mod(Σ) is
surjective on objects.

Theorem 3.5.2 (Borrowing). Let ρ = (φ, α, β) : I → I ′ be a comorphism,
Σ ∈ |Sign|,Γ ⊆ Sen(Σ) and φ ∈ Sen(Σ). Then

(a) Γ |=Σ φ⇒ αΣ(Γ) |=φΣ αΣ(φ) (�completeness�)

(b) If ρ is model expansive, then
Γ |=Σ φ⇐ αΣ(Γ) |=φΣ αΣ(φ) (�soundness�)

Proof.

1a. Assume Γ |=Σ ϕ. If M ′ |=φΣ αΣ(Γ), then βΣ(M ′) |=Σ Γ. By assump-
tion βΣ(M ′) |=Σ ϕ. By the satisfaction condition M ′ |=φΣ αΣ(ϕ).

1b. Assume αΣ(Γ) |=φΣ αΣ(ϕ). Let M |= Γ. Since βΣ is surjective, we
get M ′ ∈ Mod(φΣ) with βΣ(M ′) = M . Hence βΣ(M ′) |=Σ Γ. By the
satisfaction condition M ′ |=φΣ αΣ(Γ). By assumption M ′ |=φΣ αΣ(ϕ).
By the satisfaction condition M = βΣ(M ′) |=Σ ϕ.

Proposition 3.5.3. All comorphisms introduced so far are model expansive.

Example 3.5.4. ρ = (φ, α, β) : FOL→ Prop with

• φ(S, F, P) =
⊎
w∈s∗ Pw

• αΣ(t1 = t2) = >
αΣ(pw(t1, . . . , tn)) = pw
αΣ(>) = >
αΣ(⊥) = ⊥
αΣ(¬ϕ) = ¬αΣ(ϕ) similarly for ∧,∨, . . .
αΣ(∀x : s. ϕ) = αΣ(ϕ)
αΣ(∃x : s. ϕ) = αΣ(ϕ)

• βΣ(M ′ : (
⊎
w∈s∗ Pw)→ {T, F}) = M

with Ms = {∗} and

� (fw,s)M (∗, . . . , ∗) = ∗ for f ∈ Fw,s
� (∗, . . . , ∗) ∈ pw i� M ′(pw) = T

84

Satisfaction condition follows by induction.
This is not model expansive. Still we have Γ |=Σ ϕ ⇒ αΣ(Γ) |=φΣ αΣ(ϕ),
i.e. αΣ(Γ) 6|=φΣ αΣ(ϕ) ⇒ Γ 6|=Σ ϕ. That is, we can use a SAT-solver for
disproving FOL theorems.

Exercise 50 (Satisfaction condition of institution comorphisms)

For the institution comorphism FOL→ Propositional from the lecture, show
the satisfaction condition.

Exercise 51 (Semi-exactness of institution comorphisms)

Show that if the model translation of an institution comorphism consists of
isomorphisms, then the comorphism is semi-exact.

Exercise 52 (Borrowing for structured speci�cations)

Complete the proof of the following fact:

For a comorphism ρ = (Φ, α, β) : I → I ′, a signature Σ ∈ |Sign|,
a Σ speci�cation SP, and a model M ′ ∈ Mod′(Σ),

M ′ ∈ Mod′(ρ̂(SP)) implies βΣ(M ′) ∈ Mod(SP).

The case of hiding was missing.

Exercise 53 (Preservation of pushouts and normal forms)

Consider the following theorem from the lecture:

If the signature translation of an institution comorphism ρ pre-
serves pushouts, then ρ̂ preserves normal forms.

Experiment with Hets (computation of normal forms and translation of
development graphs along comorphisms).
Do all the comorphisms in Hets preserve pushouts?
Show that those coding out subsorting do not.

3.5.1 Borrowing for structured speci�cations

De�nition 3.5.5. An institution comorphism ρ = (φ, α, β) : I → I ′ is
(weakly) semi-exact, if for each σ : Σ1 → Σ2 ∈ Sign

Mod(Σ1)

Mod(Σ2)

Mod′(φΣ1)

Mod′(φΣ2)

_|σ _|φσ

βΣ1

βΣ2

85

and any M2 ∈ Mod(Σ2) and M ′1 ∈ Mod′(φΣ1) with M2|σ= βΣ1(M ′1) there
exists a unique (not necessarily unique) M ′2 ∈ Mod′(φΣ2) with βΣ2(M ′2) =
M2 and M ′2|φσ= M ′1

De�nition 3.5.6. Given a comorphism ρ = (φ, α, β) : I → I ′ the transla-
tion ρ̂ of structured speci�cations in I is de�ned as follows:

ρ̂(〈Σ,Γ〉) := 〈φΣ, αΣ(Γ)〉
ρ̂(SP1 and SP2) := ρ̂(SP1) and ρ̂(SP2)

ρ̂(SP with σ) := ρ̂(SP) with φσ

ρ̂(SP hide σ) := ρ̂(SP) hide φσ

Theorem 3.5.7. If Sig(SP) = Σ, then Sig(ρ̂(SP)) = φΣ

Proof. Easy induction.

Theorem 3.5.8. M ′ ∈ Mod′(ρ̂(SP))⇒ βSig(SP)(M
′) ∈ Mod(SP)

Proof. Induction over SP

• SP = 〈Σ,Γ〉
Let M ′ ∈ Mod′(ρ̂(SP)), i.e. M ′ |= αΣ(Γ)
and thus βΣ(M ′) |= Γ,
so βΣ(M ′) ∈ Mod(〈Σ,Γ〉)

• SP = SP1 and SP2

Let M ′ ∈ Mod′(ρ̂(SP1 and SP2)),
i.e. M ′ ∈ Mod′(ρ̂(SP1)) and M ′ ∈ Mod′(ρ̂(SP2)).
By i.h. we have βΣ(M ′) ∈ Mod(SP1) and βΣ(M ′) ∈ Mod(SP2),
so βΣ(M ′) ∈ Mod(SP1 and SP2).

• SP = SP ′ with σ
Let M ′ ∈ Mod(ρ̂(SP ′ with σ)),
i.e. M ′ ∈ Mod(ρ̂(SP ′) with φσ).
By de�nition M |φσ∈ Mod′(ρ̂(SP ′)).
By i.h. βΣ1(M |φσ) ∈ Mod(SP ′).
Hence βΣ2(M)|σ∈ Mod(SP ′)
and thus βΣ2(M) ∈ Mod(SP ′ with σ) = Mod(SP)

• SP = SP ′ hide σ
exercise

Theorem 3.5.9. Let ρ = (φ, α, β) : I → I ′ be weakly semi-exact. Then
βSig(SP)(M

′) ∈ Mod(SP)⇒M ′ ∈ Mod(ρ̂(SP))

86

Proof. Induction over SP

• SP = 〈Σ,Γ〉
Use satisfaction condition.

• SP = SP1 and SP2

Use induction hypothesis.

• SP = SP ′ with σ : Σ1 → Σ2

Let βΣ2(M ′) ∈ Mod(SP ′ with σ)
⇒ βΣ2(M ′)|σ∈ Mod(SP ′)
⇒ βΣ1(M ′|φσ) ∈ Mod(SP ′)
⇒i.h. M ′|φσ∈ Mod(ρ̂(SP ′))
⇒M ′ ∈ Mod(ρ̂(SP ′) with φσ) = Mod(ρ̂(SP))

• SP = SP ′ hide σ : Σ1 → Σ2

Let βΣ1(M ′) ∈ Mod(SP ′ hide σ)
⇒ There is M ′′ ∈ Mod(SP ′) with M ′′|σ= βΣ1(M ′)
By weak semi-exactness, there is M ∈ Mod′(φΣ2) with
M |φσ= M ′ and βΣ2(M) = M ′′

⇒ βΣ2(M) ∈ Mod(SP ′) and by i.h. M ∈ Mod(ρ̂(SP ′))
witnessing that M |φσ= M ′ ∈ Mod(ρ̂(SP ′) hide φσ) = Mod(ρ̂(SP))

Theorem 3.5.10. Let ρ = (φ, α, β) : I → I ′ be a model-expansive and weakly
semi-exact comorphism. Let SP be a Σ-speci�cation and ϕ ∈ Sen(Σ). Then

SP |=Σ ϕ i� ρ̂(SP) |=′ψΣ αΣ(ϕ)

Proof.

⇒: Let SP |=Σ ϕ and M ′ ∈ Mod′(ρ̂(SP)). Then βΣ(M ′) ∈ Mod(SP),
hence βΣ(M ′) |=Σ ϕ. By sat. cond. M ′ |=′ψΣ αΣ(ϕ).

⇐: Assume ρ̂(SP) |= αΣ(ϕ). Let M ∈ Mod(SP). By surjectivity of
βΣ, there is M ′ ∈ Mod(ρ̂(SP)) with βΣ(M ′) = M . By assumption
M ′ |= αΣ(ϕ). By sat. cond. βΣ(M ′) = M |= ϕ.

Theorem 3.5.11. Let ρ = (φ, α, β) : I → I ′ be a comorphism such that φ
preserves pushouts. Then

NF (ρ̂(SP)) = ρ̂(NF (SP))

87

3.6 Free speci�cations

3.6.1 Model homomorphisms

Recall: Institutions are functors Sign
I−→ Room, where a room contains a

functor Signop Mod−−−→ CAT, mapping a signature to its model category.

Propositional logics

De�nition 3.6.1. M ≤M ′ i� for all p ∈ Σ : M(p) = T ⇒M ′(p) = T .

This de�nes a partial order on Σ-models and hence a category, i.e. there is
a (unique) morphism M →M ′ i� M ≤M ′

Description logics

De�nition 3.6.2. A homomorphism h : (∆, ·I) → (∆′, ·I′) is a function
h : ∆→ ∆′ such that

• x ∈ CI ⇒ h(x) ∈ CI′

• (x, y) ∈ RI ⇒ (h(x), h(y)) ∈ RI′

• h(aI) = aI
′

First-order logic

De�nition 3.6.3. Let Σ = (S, F, P) and M,M ′ ∈ Mod(Σ). A homomor-
phism h : M → M ′ is a family (hs : Ms → M ′s)s∈S, such that for any
f ∈ Fw,s, w = s1, . . . , sn

hs((fw,s)M (x1, . . . , xn)) = (fw,s)M ′(hs1(x1), . . . , hsn(xn)), and

(x1, . . . , xn) ∈ (Pw)M = (hs1(x1), . . . , hsn(xn)) ∈ (Pw)M ′

In category notation this means that the following two diagrams have to
commute

88

Ms1 × · · · ×Msn

M ′s1 × · · · ×M
′
sn

Ms

Ms′

(fw,s)M

(fw,s)M ′

hs1 × · · · × hsn hs

(Pw)M

(Pw)M ′

Ms1 × · · · ×Msn

M ′s1 × · · · ×M
′
sn

(hs1 × · · · × hsn)|(Pw)M hs1 × · · · × hsn

Extending structured speci�cations

De�nition 3.6.4. A sentence ϕ is basic i� for all homomorphisms h : M →
M ′:

M |= ϕ⇒M ′ |= ϕ

We can now add a new building block for structured speci�cations.

De�nition 3.6.5. The structured speci�cation free{SP} has the following
semantic

• Sig(free{SP}) = Sig(SP)

• Mod(free{SP}) = {M ∈ Mod(SP)|M initial in Mod(SP)}

Example 3.6.6. The natural numbers are the only model (up to isomor-
phism) of the speci�cation

free{sort Nat; ops 0:Nat, suc: Nat -> Nat}

Similarly: lists, trees, etc.

De�nition 3.6.7. A de�nit Horn-clause is a FOL-sentence of the Form

∀x1 : s1, . . . , xn : s : n. (ϕ1 ∧ · · · ∧ ϕn)→ ϕ0

with ϕi atomic formulae.

Theorem 3.6.8. If Γ consists of de�nit Horn-clauses, then 〈Σ,Γ〉 has an
initial model, i.e. Mod(free{〈Σ,Γ〉}) 6= ∅.

89

Proof. Let (TΣ)s be the set of terms of sort s. De�ne an equivalence relation
on (TΣ)s by

t1 ∼ t2 i� Γ |= (t1 = t2).

Let Ms = (TΣ)s/∼, then

(fw,s)M ([t1]∼, . . . , [tn]∼) := fw,s(t1, . . . , tn)

This is well de�ned, because Γ |= (ti = t′i) implies Γ |= fw,s(t1, . . . , tn) =
fw,s(t

′
1, . . . , t

′
n)

(pw,s)M := {([t1]∼, . . . , [tn]∼)|Γ |= pw,s(t1, . . . , tn)}

This is well de�ned, because Γ |= (ti = t′i) implies Γ |= pw,s(t1, . . . , tn) ↔
pw,s(t

′
1, . . . , t

′
n) This completes the de�nition of M . We have yet to show

that M is initial.

Let M ′ |= Γ. De�ne h : M →M ′ by

h([t]∼) := M ′(t)

This is well de�ned, since [t]∼ = [t′]∼ ⇒ t ∼ t′ ⇒M ′(t) = M ′(t′)

To proof the homomorphic properties we �rst need some ne de�nitions.

De�nition 3.6.9. A morphism f : A → B is an epimorphism, if for any
two r, s : B → C, r ◦ f = s ◦ f ⇒ r = s

Theorem 3.6.10. In SET epimorphisms are exactly the surjective func-
tions.

Proof. Let f : A→ B be surjective and r ◦ f = s ◦ f , then for any b ∈ B by
surjectivity there is an a ∈ A with f(a) = b. Then r(f(a)) = s(f(a)), hence
r(b) = s(b). Since b ∈ B is arbitrary r = s. Hence f is an epimorphism.

Conversely; assume that f : A → B is not surjective. That is, there is
b0 ∈ B, such that b0 /∈ f [A]1. Now de�ne r, s : B → {T, F} as:

r(b) =T

s(b) =

{
F , if b = b0

T , otherwise

Then r(f(a)) = s(f(a)) for all a ∈ A. Hence r ◦ f = s ◦ f , but r 6= s. Thus
f is not an epimorphism.

Dual notion: monomorphism. In Set: injective functions.

1Image of f over A

90

De�nition 3.6.11. If
e

is a coequalizer, then e is called a regular
epimorphism

Proposition 3.6.12. Any regular epimorphism is an epimorphism.

Proof.

f

g

e

r ◦ e r s h

since r ◦ e equalizes f and g, there is a unique h with r ◦ e = h ◦ e. Hence
h = r = s

Proof of Theorem 3.6.8 (ctd.) Homomorphic properties:

(TΣ)s1 × · · · × (TΣ)sn (TΣ)s

Ms1 × · · · ×Msn Ms

M ′s1 × · · · ×M
′
sn M ′s

fw,s

(fw,s)M

(fw,s)M ′

qs1 × · · · × qsn qs

hs1 × · · · × hsn hs

M
′(_

)×
· · · ×

M
′(_

)

M ′s

M ′(fw,s(t1, . . . , tn)) = (fw,s)M ′(M
′(t1), . . . ,M ′(tn))

⇒ ⇒ ⇒uper square commutes ⇒epimorphism

Predicates analogous.

Proposition 3.6.13 (satisfaction lemma).

(a) M(t) = [t]

(b) M |= t1 = t2 i� Γ |= t1 = t2

(c) M |= pw(t1, . . . , tn) i� Γ |= pw(t1, . . . , tn)

Proof.

(a) easy induction

(b) M |= t1 = t2 i� M(t1) = M(t2) i� (by 1.)[t1] = [t2] i� t1 ∼ t2 i� Γ |=
t1 = t2

91

(c) similar

Proposition 3.6.14. M |= Γ

Proof.
Let ∀x1 : s1, . . . , xn : sn.φ1 ∧ . . . ∧ φn ⇒ φ0 ∈ T
Let M ′ be an expansion of M interpreting x1 . . . xn, i.e. M

′ ∈ Mod(Σ′) with
Σ′ = Σ + {x1 : s1, . . . xm : sm}
Now, for any Σ′-term t, M ′(t) = M(t̄) with t̄ = t[t1/x1, . . . , tn/xn] with ti ∈
M ′(xi)
Assume that: M ′ |= φ1 ∧ . . . ∧ φn
hence M |= φ̄1 ∧ . . . ∧ φ̄n
and by the satisfaction lemma Γ |= φ̄1 ∧ . . . ∧ φ̄n
Since |= is closed under substitution and modus ponens Γ |= φ̄0

Hence M ′ |= φo
Hence M |= ∀x1 : s1, . . . , xn : sn.φ1 ∧ . . . ∧ φm = φ0

Altogether we have shown:

(a) M ∈ Mod(〈Σ,Γ〉)

(b) for any M ′ ∈ Mod(〈Σ,Γ〉) there exists a unique homomorphism h :
M →M ′

Hence M is initial in Mod(〈Σ,Γ〉) and thus M ∈ Mod(free{〈Σ,Γ〉})

3.7 Adjoint functors

�Adjoint functors arise everywhere� (Sounder MacLane)

Example 3.7.1. Given a set A, the set of words A∗ forms a monoid with
unit λ1 and with string concatenation as monoid multiplication

 Spec monoid =
 sort : s
 op : e:s
 op : __ * __ : s x s -> s
 forall x,y,z :s
 . x * e = x
 . e * x = x
 . (x * y) * z = x*(y*z)
 end �

1the empty word

92

Proposition 3.7.2. Let i : A→ A∗ be the injection taking any letter a ∈ A
to the single letter word a ∈ A∗. Given a monoid M = (Ms, em, ∗m) and a
function f : A → Ms, there is a unique monoid homomorphism f# : A∗ →
M with f# ◦ i = f

A

M

A∗

f

i

f#

Proof. De�ne f#(λ) = eM and f#(a1, . . . , an) = f(a1) ∗ . . . ∗ f(an). These
two conditions are equivalent to f# being a homomorphism with f# ◦ i = f ,
hence h# is the unique such homomorphism.

More formally: consider the functor U : Monoid→ Set taking any monoid
M to its carrier set

A

UM

UA∗ A∗

M

f

i

U(f#) f#

This property holds, because A∗ satis�es

• no junk

• no confusion A∗ |= t1 × t1 i� Monoidd |= t1 = t1

De�nition 3.7.3. Given a functor U : C → D and an object x ∈ |D| a
morphism η : X → UC (for some C ∈ |C|) is called U-universal and C is
called U-free over X, if for any morphism f : x → UC ′ there is a unique
f# : C → C ′ with U(f#) ◦ η = f

X

UC ′

UC C

C ′

f

η

U(f#) f#

Proposition 3.7.4. Given a functor U : C → D, if for any object x ∈ |D|
there is a universal arrow ηX : x→ U(Cx) these lead to a functor F : D→ C
de�ned by

93

X CX

Y CY

UCY

c (ηy ◦ f)#

ηy

In this case F is called left adjoint to U

Example 3.7.5.

• Monoid
U−→ Set FA = A∗

• TransRel
U−→ BinRel FR = transitive closure of R

• AcyclicGraph
U−→ Graph FG = the graph of strongly connected com-

ponents of G

• SignFOL
U−→ SignPROP U forgets everything except for the 0-ary pred-

icates. F is the inclusion.

• PoSet
U−→ Prost F (x,≤) = (x/∼,≤)

x ∼ y i� x ≤ y and y ≤ x

• Beh
U−→ Aut FA = external behaviour.

• Vect
U−→ Set FX = Vector space with base X.

• Z U−→ R Fr = dre

Typically left adjoints are creation processes.

Exercise 54 (Monomorphisms in Set)

Show that a morphism in Set is a monomorphism i� it is injective.

Exercise 55 (Uniqueness of left adjoints)

Show that left adjoints are unique up to isomorphism.

That is, given U : C→ D, if F1 : D→ C and F2 : D→ C are left adjoints of
U , then there is a natural transformation τ : F1 → F2 that is an isomorphism
in the category [D,C] of functors from D to C.

Exercise 56 (Free speci�cations)

Write a free speci�cation that, given a graph, speci�es the graph of all paths.

De�nition 3.7.6. A category with products A is called cartesian closed, if
for any A ∈ |A| the functor _ × A : A → A has a right adjoint (written
_A : A→ A

94

Given a Σ2 speci�cation SP and a signature morphism σ : Σ1 → Σ2 then
free{(}SP, σ) is a speci�cation with

Sig(free{(Σ2, σ} =Σ2

Mod(free{(Σ2, σ} ={M ∈ Mod(SP)|M is Mod(σ)-free over M |σ with η = id }

Example 3.7.7.

 spec Prost
 sort s
 pred __ <= __ : s x s
 forall x,y,z :s
 . x <= x
 . x <=y /\ y <= z => x <= z
 end

 spec POSET =
 Prost then free{
 sort t
 op i : s -> t
 pred __ <= __ t x t �

95

96

Chapter 4

Outlook

4.1 Modal logic

ALC ∼= multimodal logic K
ALC K

concept C formula ϕ
atomic concept A propositional variable p
C uD ϕ ∧ ψ
C tD ϕ ∨ ψ
¬C ¬ϕ
∃R.C ♦Rϕ
∀R.C �Rϕ
(∆, (CI)C∈C, (R

I)R∈R) Kripke model with set of worlds (∆),
accessability relations (RI) and inter-
pretation of propositional variables CI

�(R)ϕ �ϕ→ ϕ . . .

necessarily ϕ X
always ϕ X
ϕ ought to be −
Agent R knows ϕ X
Agent R believes ϕ −
After program R terminates ϕ holds − (�R⊥ ∼= R doesn't terminate)

4.1.1 Correspondence theory

Proposition 4.1.1. A Kripke frame satis�es �p → p (actually meaning:
∀p.�p→ p) i� the accessability relation is re�exive.

De�nition 4.1.2 (global satisfaction). Γ |=g i� for all Kripke models M :
(for all worlds w in M , M,w |= Γ) ⇒ (for all worlds w in M , M,w |= ϕ)

De�nition 4.1.3 (local satisfaction). Γ |=l i� for all worlds w in M :
If M,w |= Γ then M,w |= ϕ

97

modal logic formula schema property

T �p→ p re�exive
B p→ �♦p symmetric
D �p→ ♦p serial
4 �p→ ��p transitive (positive introspection)
5 ¬�p→ �¬�p euclidian (negative introspection)

Table 4.1: Properties of di�erent modal logics

4.2 Coalgebraic logic

T : Set→ Set coalgebra

X

Y

TX

TY

f

h Th

4.3 Higher-order logic

• Real numbers

• Inductive de�nitions

• Theorem provers: Isabelle, PVS, HOL

• Many codings (comorphisms) of logics in HOL

De�nition 4.3.1 (Syntax).
Types:

τ ::= s | 1 | τ1 × τ2 | τ1 → τ2 | Bool

Terms/formulae:

t ::= c | () | (t1, t2) | λx : τ.t | t1t2 | t1 = t2

De�nition 4.3.2 (Semantics).
Standard model: Interpretation of basic types. τ1 → τ2 is interpreted as the
function space.
Henkin model: τ1 → τ2 is interpreted as a subset of the function space.

Henkin models admit a complete calculus (standard semantics does not - see
Gödel)

98

Example 4.3.3 (Tarski's quanti�er elemination for real numbers).

∃r, s. r + 1 ≤ s ∧ s ≤ 3

∃s. s ≤ 3

>

Natural numbers can be used for coding. In particular formulae and prov-
ability. This can be used to form a sentence: �I am not provable�.

4.4 Substructural logics

In entailment systems, we had

Γ ` ϕ and Γ ⊆ Γ′ ⇒ Γ′ ` ϕ.

In non-monotone logics this is not the case.

4.4.1 Linear logic

Multiset of premises, every premise can only be used once.

4.4.2 Paraconsistent logic

Weak negation: Not necessarily {ϕ,¬ϕ} ` ⊥
Deductive databases.

• subsorted FOL, subsorted HOL

• partial functions

• polymorphism, type constructors (⇒ HasCASL)

4.5 Institutional model theory

Gödel completeness can be extended to institutions.

4.5.1 Logic programing

In arbitrary institutions. Fix an institution I = (Sign, Sen,Mod, |=)

De�nition 4.5.1. A Σ-sentence ϕ is basic, if there is a Σ-model Mϕ, s.t.
for any Σ-model M :

M |= ϕ i� ∃h : Mϕ →M

Example 4.5.2. In FOL the atomic formulae are basic.

De�nition 4.5.3. Mp(t1,...,tn) is the term algebra with p interpreted as {(t1, . . . , tn)}

99

De�nition 4.5.4 (Existential quanti�cation). Given a signature morphism
σ : Σ→ Σ′ and a Σ′-sentence ϕ, de�ne ∃σ. ϕ to be a Σ-sentence with

M |= ∃σ. ϕ i� there is a Σ′-model M ′ with M ′|σ= M and M ′ |= ϕ

De�nition 4.5.5. A signature morphism σ : Σ→ Σ′ is quasi-representable,
if for any model morphism h : M ′|σ→ N there is a unique σ-expansion
h′ : M ′ → N ′, i.e. with h′|σ= h (and hence N ′|σ= N).

Example 4.5.6. In FOL, σ is quasi-representable, if it adds new constants.

Proof. Given h : M ′|σ→ N de�ne N ′ like N and cN ′ := h(cM ′).

De�nition 4.5.7. A query is a sentence ∃σ. ϕ with σ quasi-representable
and ϕ basic.

Theorem 4.5.8 (First Herbrand theorem). Consider a theory T = 〈Σ,Γ〉
with an initial model 0T (called Herbrand model). Then for each query ∃σ. ϕ:

T |= ∃σ. ϕ i� 0T |= ∃σ. ϕ

4.6 Heterogenous speci�cations

Let CoIns be the category of institutions and institution comorphisms.

De�nition 4.6.1. A heterogenous logical environment is a diagram D : I →
CoIns

De�nition 4.6.2. Given a heterogenous logical environment D : I → CoIns,
de�ne the Grothendieck institution D# as follows:

• Signatures are pairs (i,Σ) with i ∈ I and Σ ∈ |Sign|D(i)

(i,Σ)

(j,Σ′)

(d, σ) with σ : φD(d)(Σ)→ Σ′

• (i,Σ)-sentences are Σ-sentences in D(i)

• (i,Σ)-models are Σ-models in D(i)

• (i,Σ)-satisfaction is Σ-satisfaction in D(i)

SenD(i)(Σ)
α
D(d)
Σ−−−→ SenD(j)(φD(d)(Σ))

Sen(σ)−−−−→ SenD(j)(Σ′)

ModD(i)(Σ)
β
D(d)
Σ←−−− ModD(j)(φD(d)(Σ))

_|σ←−− ModD(j)(Σ′)

100

Chapter 5

Have fun

Exercise 57 (Christmas bonus problem: existence of Santa Clause I)

Explain what is wrong with the following proof of the existence of Santa
Clause.

Recall the ∃-introduction rule:

ϕ(t)

∃x : s.ϕ(x)

Theorem. Santa Clause exists.
Proof. Assume to the contrary that Santa Clause does not exist. By ∃-
introduction, there exists something that does not exist. This is a contra-
diction. Hence, the assumption that Santa Clause does not exist must be
wrong. Thus, Santa Clause exists. 2

Exercise 58 (Christmas bonus problem: existence of Santa Clause II)

So, the existence proof in the last exercise was �awed. But I have another
proof. What about this one?

Let c be the set {x | if x ∈ x, then Santa Clause exists}.
Now, assume that c ∈ c. We know that c ∈ c i� �if c ∈ c, then Santa Clause
exists�. Therefore, we may assert that �if c ∈ c, then Santa Clause exists�.
Thus by modus ponens, Santa Clause exists.
However, I have just proven that �if c ∈ c, then Santa Clause exists�. Thus,
c ∈ c, and therefore Santa Clause exists. 2

Exercise 59 (Christmas bonus problem: all reindeers have the same color)

So I could not convince you that Santa Clause exists. Can I convince you
that all reindeers have the same color? The following proof should assure
you of that claim, shouldn't it?

101

Theorem. Any number of reindeers have the same color.
Proof. By induction.

Basis: one reindeer has the same color (obviously!).

Inductive step: suppose that any collection of n reindeers has the same color.
We need to show that n + 1 reindeers have the same color, too. By
induction hypothesis, the �rst n reindeers have the same color. Take
out the last reindeer of these and replace it with the n + 1st. Again
by induction hypothesis, these have the same color. Hence, all n + 1
reindeers have the same color. 2

102

Bibliography

[1] J. Barwise and J. Etchemendy. Language, proof and logic. CSLI publi-
cations, 2002.

[2] R. Diaconescu. Institution-Independent Model Theory. Birkhäuser, 2008.

[3] Till Mossakowski. Heterogeneous speci�cation and the heterogeneous
tool set. Technical report, Universitaet Bremen, 2005. Habilitation thesis.

[4] Till Mossakowski, Christian Maeder, and Klaus Lüttich. Hets user guide.
Technical report, Department of Computer Science; Universität Bremen;
Bibliothekstr. 1, 28359 Bremen; http://www.informatik.uni-bremen.de/,
2006.

[5] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heteroge-
neous Tool Set. In Orna Grumberg and Michael Huth, editors, TACAS
2007, volume 4424 of Lecture Notes in Computer Science, pages 519�522.
Springer-Verlag Heidelberg, 2007.

103

	Introduction
	Logics
	Propositional Logics
	Foundations
	Proofs for Propositional Logic
	Conservative Extensions
	Freeness

	Description Logics
	Foundations
	Extensions of ALC
	Signature morphisms
	Freeness
	Conservative Extensions

	First-Order Logic
	Foundations
	Signature Morphisms
	Conservative Extensions
	Sort generation constraints
	Proofs

	Category theory
	Satisfaction Systems
	Categories
	Functors
	Institutions
	Structured specifications
	Institutions with proofs

	Colimits
	Coproducts
	Semi-exactness
	Colimits in general

	Natural transformations
	Institution comorphisms

	Borrowing
	Borrowing for structured specifications

	Free specifications
	Model homomorphisms

	Adjoint functors

	Outlook
	Modal logic
	Correspondence theory

	Coalgebraic logic
	Higher-order logic
	Substructural logics
	Linear logic
	Paraconsistent logic

	Institutional model theory
	Logic programing

	Heterogenous specifications

	Have fun

