Logik I für IF04, CV04, IngIF04, WIF04

Übungsblatt 5

zur Vorlesung von Prof. Dr. J. Dassow im Wintersemester 2004/2005

Magdeburg, 7. Dezember 2004

1. Bestimmen Sie $res^*(K)$ für

$$K = \{\{p,q,r\}, \{\neg p\}, \{\neg q\}, \{\neg r\}\}.$$

2. Bestimmen Sie $\operatorname{res}^*(K)$ für

$$K = \{ \{p,q,r\}, \{\neg p, \neg q, \neg r\} \}.$$

3. Es sei n eine beliebige positive natürliche Zahl. Bestimmen Sie

$$res^*(\{\{p_1, p_2, \dots, p_n\}, \{\neg p_1, \neg p_2, \dots, \neg p_n\}\}).$$

- 4. Zeigen Sie, dass es zu jeder Zahl $k \in \mathbb{N}$ eine Klauselmenge K über p_0, p_1, \dots, p_{k-1} gibt, für die $\operatorname{res}^{k-1}(K) \neq \operatorname{res}^k(K) = \operatorname{res}^*(K)$ gilt.
- 5. Wenden Sie den Algorithmus zum Testen der Erfüllbarkeit von Hornausdrücken auf die folgenden Ausdrücke an.
 - a) $(\neg p \lor \neg q \lor \neg r) \land \neg s \land (\neg r \lor p) \land r \land q \land (\neg t \lor s) \land t$,
 - b) $(p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q \vee r)$.
- 6. Zeigen Sie, dass es nicht zu jedem aussagenlogischen Ausdruck einen semantisch äquivalenten Hornausdruck gibt.