Logik I für IF04, CV04, IngIF04, WIF04

Übungsblatt 6

zur Vorlesung von Prof. Dr. J. Dassow im Wintersemester 2004/2005

Magdeburg, 5. Januar 2005

- 1. Gegeben sei die Signatur S mit $R_1 = \{r\}$, $F_2 = \{f\}$ und $K = F_1 = R_2 = R_i = F_i = \emptyset$ für $i \geq 3$.
 - a) Bestimmen Sie alle Terme t über S, deren Länge (als Wort betrachtet) höchstens 20 ist und die als Variable nur x enthalten.
 - b) Bestimmen Sie über der Variablenmenge var = $\{x,y\}$ alle Terme t über \mathcal{S} , deren Länge (als Wort betrachtet) höchstens 12 ist.
 - c) Bestimmen Sie über der Variablenmenge var = $\{x, y\}$ alle Ausdrücke A über \mathcal{S} , deren Länge (als Wort betrachtet) höchstens 14 ist.
- 2. Gegeben seien die Signatur \mathcal{S} durch $K = \{c\}$, $F_1 = \{f\}$, $R_1 = \{r_1\}$, $R_2 = \{r_2\}$, $F_2 = R_i = F_i = \emptyset$ für $i \geq 3$, die Interpretation $I = (U, \tau)$ durch $U = \mathbb{N}$ und

$$\tau(c) = 2,$$
 $\tau(f) = F : \mathbb{N} \to \mathbb{N} \text{ mit } F(n) = n^2,$ $\tau(r_1) = \{m \mid m \ge 10\},$ $\tau(r_2) = R_{<} = \{(n, m) \mid n < m\}$

sowie die Interpretation $I'=(U',\tau')$ durch $U'=\{a,b\}^*,\ \tau'(c)=ab,\ \tau'(r_1)=\{u\in\{a,b\}^*\mid u\ \text{beginnt mit }a\},\ \tau'(r_2)=\{(u,v)\mid |u|\leq |v|\}$ sowie

$$\tau'(f) = F' \colon \{a,b\}^* \to \{a,b\}^* \qquad \text{mit} \qquad F'(u) = \begin{cases} aau' & \text{für } u = au', \\ u & \text{sonst,} \end{cases}$$

und die Belegungen α bez. I und α' bez. I' mit $\alpha(x)=1$ und $\alpha'(x)=bb$. Bestimmen Sie die Werte $w^I_{\alpha}(A)$ und $w^{I'}_{\alpha'}(A)$ der Ausdrücke

- a) $(r_1(f(c)) \wedge r_2(x, f(x))),$
- b) $(r_2(f(c), x) \vee r_2(c, f(x))),$
- c) $\forall x(r_1(f(c)) \land r_2(x, f(x))),$
- d) $\exists x (r_1(f(c)) \land r_2(x, f(x))).$
- 3. Sei S_1 die Signatur, die durch

$$K = \emptyset$$
, $R_2 = \{r\}$, $R_1 = F_1 = F_2 = R_i = F_i = \emptyset$ für $i \ge 3$

gegeben ist. Ferner seien

$$\begin{split} A_1 &= \forall x r(x,x), \\ A_2 &= \forall x \forall y (r(x,y) \rightarrow r(y,x)), \\ A_3 &= \forall x \forall y \forall z ((r(x,y) \wedge r(y,z)) \rightarrow r(x,z)). \end{split}$$

Geben Sie Modelle für die folgenden drei Mengen an:

- a) $\{A_1, A_2, \neg A_3\},\$
- b) $\{A_1, \neg A_2, A_3\},\$
- c) $\{\neg A_1, A_2, A_3\}.$