
Building Query Compilers
(Under Construction)

[expected time to completion: 5 years]

Guido Moerkotte

December 13, 2005

Contents

I Basics 1

1 Introduction 3
1.1 General Remarks . 3
1.2 DBMS Architecture . 3
1.3 Interpretation versus Compilation 4
1.4 Requirements for a Query Compiler 8
1.5 Search Space . 9
1.6 Generation versus Transformation 9
1.7 Focus . 10
1.8 Organization of the Book . 10

2 Textbook Query Optimization 13
2.1 Example Query and Outline . 13
2.2 Algebra . 14
2.3 Canonical Translation . 15
2.4 Logical Query Optimization . 17
2.5 Physical Query Optimization . 24
2.6 Discussion . 26

3 Join Ordering 29
3.1 Queries Considered . 29

3.1.1 Query Graph . 30
3.1.2 Join Tree . 31
3.1.3 Simple Cost Functions . 32
3.1.4 Classification of Join Ordering Problems38
3.1.5 Search Space Sizes . 38
3.1.6 Problem Complexity . 42

3.2 Deterministic Algorithms . 44
3.2.1 Heuristics . 44
3.2.2 Determining the Optimal Join Order in Polynomial Time. . . 46
3.2.3 The Maximum-Value-Precedence Algorithm 53
3.2.4 Dynamic Programming . 58
3.2.5 Memoization . 66
3.2.6 Join Ordering by Generating Permutations 67
3.2.7 A Dynamic Programming based Heuristics for Chain Queries 68
3.2.8 Transformation-Based Approaches 81

i

ii CONTENTS

3.3 Probabilistic Algorithms . 88
3.3.1 Generating Random Left-Deep Join Trees with Cross Products 88
3.3.2 Generating Random Join Trees with Cross Products 89
3.3.3 Generating Random Join Trees without Cross Products 93
3.3.4 Quick Pick . 102
3.3.5 Iterative Improvement . 103
3.3.6 Simulated Annealing . 103
3.3.7 Tabu Search . 105
3.3.8 Genetic Algorithms . 105

3.4 Hybrid Algorithms . 108
3.4.1 Two Phase Optimization . 108
3.4.2 AB-Algorithm . 108
3.4.3 Toured Simulated Annealing 108
3.4.4 GOO-II . 109
3.4.5 Iterative Dynamic Programming 109

3.5 Ordering Order-Preserving Joins 109
3.6 Characterizing Search Spaces .115

3.6.1 Complexity Thresholds . 115
3.7 Discussion . 118
3.8 Bibliography . 119

4 Database Items, Building Blocks, and Access Paths 127
4.1 Disk Drive . 127
4.2 Database Buffer . 134
4.3 Physical Database Organization .135
4.4 Slotted Page and Tuple Identifier (TID) 138
4.5 Physical Record Layouts . 138
4.6 Physical Algebra (Iterator Concept) 140
4.7 Simple Scan . 140
4.8 Scan and Attribute Access . 141
4.9 Temporal Relations . 142
4.10 Table Functions . 143
4.11 Indexes . 144
4.12 Single Index Access Path . 145

4.12.1 Simple Key, No Data Attributes 145
4.12.2 Complex Keys and Data Attributes 151

4.13 Multi Index Access Path . 152
4.14 Indexes and Joins . 154
4.15 Remarks on Access Path Generation159
4.16 Counting the Number of Accesses 159

4.16.1 Counting the Number of Direct Accesses 159
4.16.2 Counting the Number of Sequential Accesses 168
4.16.3 Pointers into the Literature 172

4.17 Disk Drive Costs forN Uniform Accesses 173
4.17.1 Number of Qualifying Cylinders, Tracks, and Sectors. 173
4.17.2 Command Costs . 174
4.17.3 Seek Costs . 174

CONTENTS iii

4.17.4 Settle Costs . 176
4.17.5 Rotational Delay Costs . 176
4.17.6 Head Switch Costs . 177
4.17.7 Discussion . 177

4.18 Concluding Remarks . 179
4.19 Bibliography . 179

II Foundations 181

5 Logic and Null Duplicates 183
5.1 Two-valued logic . 183
5.2 NULL values and two valued logic 183
5.3 Three valued logic . 183
5.4 Simplifying Boolean Expressions 183
5.5 Optimizing Boolean Expressions .183
5.6 Bibliography . 183

6 An Algebra for Sets, Bags, and Sequences 187
6.1 Sets, Bags, and Sequences . 187

6.1.1 Sets . 187
6.1.2 Duplicate Data: Bags . 188
6.1.3 Ordered Data: Sequences . 190

6.2 Algebra . 192
6.2.1 The Operators . 192
6.2.2 Preliminaries . 193
6.2.3 Operator Signatures . 195
6.2.4 Selection . 197
6.2.5 Projection . 197
6.2.6 Map . 197
6.2.7 Join Operators . 197
6.2.8 Linearity and Reorderability 199
6.2.9 Reordering of joins and outer-joins 202
6.2.10 Basic Equivalences for d-Join and Grouping 205
6.2.11 Simplifying Expressions Containing Joins 206
6.2.12 Reordering Joins and Grouping 207
6.2.13 ToDo . 215

6.3 Logical Algebra for Sequences . 215
6.3.1 Introduction . 215
6.3.2 Algebraic Operators . 216
6.3.3 Equivalences . 219

6.4 Bibliography . 219
6.5 Literature . 219

iv CONTENTS

7 Calculi 221
7.1 Calculus Representations . 221
7.2 Tableaux Representation . 221
7.3 Expressiveness . 221
7.4 Monoid Comprehension . 221
7.5 Bibliography . 221

8 Containment and Factorization 223
8.1 Query containment . 223
8.2 Detecting common subexpressions223

8.2.1 Simple Expressions . 223
8.2.2 Algebraic Expressions . 223

9 Translation and Lifting 225
9.1 Query Language to Calculus . 225
9.2 Query Language to Algebra . 225
9.3 Calculus to Algebra . 225
9.4 Bibliography . 225

10 Functional Dependencies 227
10.1 Functional Dependencies . 227
10.2 Functional Dependencies in the presence of NULL values. 227
10.3 Deriving Functional Dependencies over algebraic operators 227
10.4 Bibliography . 227

III Enabling Techniques 229

11 Simple Rewrites 231
11.1 Simple Adjustments . 231

11.1.1 Rewriting Simple Expressions 231
11.1.2 Normal forms for queries with disjunction 233

11.2 Deriving new predicates . 233
11.2.1 Collecting conjunctive predicates 233
11.2.2 Equality . 233
11.2.3 Inequality . 234
11.2.4 Aggregation . 235
11.2.5 ToDo . 237

11.3 Eliminating Redundant Joins .237
11.4 Distinct Pull-Up and Push-Down .237
11.5 Set-Valued Attributes . 237

11.5.1 Introduction . 237
11.5.2 Preliminaries . 238
11.5.3 Query Rewrite . 238

11.6 Bibliography . 239

CONTENTS v

12 View Merging 243
12.1 View Resolution . 243
12.2 Simple View Merging . 243
12.3 Predicate Move Around (Predicate pull-up and push-down) 244
12.4 Complex View Merging . 245

12.4.1 Views with Distinct . 245
12.4.2 Views with Group-By and Aggregation 246
12.4.3 Views in IN predicates . 247
12.4.4 Final Remarks . 247

12.5 Bibliography . 248

13 Unnesting Nested Queries 249
13.1 Classification of nested queries 249
13.2 Queries of Type A . 250
13.3 Queries of Type N . 251
13.4 Queries of Type J . 254
13.5 Queries of Type JA . 256
13.6 Alternative locations . 257
13.7 Different Kinds of Dependency .259
13.8 Unnesting IN . 261
13.9 Further reading . 261
13.10History . 261
13.11Bibliography . 262
13.12ToDo . 262

14 Optimizing Queries with Materialized Views 263
14.1 Conjunctive Views . 263
14.2 Views with Grouping and Aggregation 263
14.3 Views with Disjunction . 263
14.4 Bibliography . 263

15 Semantic Query Rewrite 265
15.1 Constraints and their impact on query optimization 265
15.2 Semantic Query Rewrite . 265
15.3 Exploiting Uniqueness in Query Optimization 266
15.4 Bibliography . 266

IV Search Space Limits and Extensions 267

16 Current Search Space and Its Limits 269
16.1 Plans with Outer Joins, Semijoins and Antijoins 269
16.2 Expensive Predicates and Functions 269
16.3 Techniques to Reduce the Search Space 269
16.4 Bibliography . 269

vi CONTENTS

17 Quantifier treatment 271
17.1 Pseudo-Quantifiers . 271
17.2 Existential quantifier . 272
17.3 Universal quantifier . 272
17.4 Bibliography . 275

18 Optimizing Queries with Disjunctions 277
18.1 Introduction . 277
18.2 Using Disjunctive or Conjunctive Normal Forms 278
18.3 Bypass Plans . 278
18.4 Implementation remarks . 279
18.5 Other plan generators/query optimizer 280
18.6 Bibliography . 280

19 Grouping and Aggregation 281
19.1 Introduction . 281
19.2 Aggregate Functions . 282
19.3 Normalization and Translation .. 285

19.3.1 Grouping and Aggregation in Different Query Languages . . 285
19.3.2 Extensions to Algebra . 286
19.3.3 Normalization . 286
19.3.4 Translation . 286

19.4 Lazy and eager group by . 286
19.5 Coalescing Grouping . 288
19.6 More Possibilities . 291

19.6.1 Eager/Lazy Group-By-Count 293
19.7 Translation into Our Notation .. 298
19.8 Aggregation of Non-Equi-Join Results 299
19.9 Bibliography . 299

20 Grouping and Aggregation 301
20.1 Introduction . 301
20.2 Lazy and eager group by . 302
20.3 Coalescing Grouping . 305
20.4 ToDo . 308

V Plan Generation 311

21 Introduction to Plan Generation 313
21.1 Search Space Selection . 313
21.2 Complexity Results . 313
21.3 Implementation Approaches and Architectures 313

21.3.1 Hard-wired Algorithms . 313
21.3.2 Rule Based Approaches . 313
21.3.3 Blackboard Architecture . 314

21.4 Index Selection . 314

CONTENTS vii

21.5 Disjunctive Queries . 314
21.6 Outer Joins . 314
21.7 Plan Improvements, Postprocessing, and Polishing 314

21.7.1 Pushing group operators . 314
21.7.2 Predicate pull-up . 315
21.7.3 Polishing . 315
21.7.4 Optimizing complex boolean expressions 315

21.8 Bibliography . 316

22 Hard-Wired Algorithms 317
22.1 Hard-wired Dynamic Programming 317

22.1.1 Introduction . 317
22.1.2 A plan generator for bushy trees 320
22.1.3 A plan generator for bushy trees and expensive selections . . . 321
22.1.4 A plan generator for bushy trees, expensive selections and

functions . 323
22.2 Bibliography . 323

23 Rule-Based Algorithms 325
23.1 Rule-based Dynamic Programming325
23.2 Rule-based Memoization . 325
23.3 Bibliography . 325

24 Deriving and Dealing with Interesting Orderings and Groupings 327
24.1 Introduction . 327
24.2 Problem Definition . 328

24.2.1 Ordering . 328
24.2.2 Grouping . 330
24.2.3 Functional Dependencies . 331
24.2.4 Algebraic Operators . 331
24.2.5 Plan Generation . 332

24.3 Overview . 333
24.4 Detailed Algorithm . 336

24.4.1 Overview . 336
24.4.2 Determining the Input . 337
24.4.3 Constructing the NFSM . 337
24.4.4 Constructing the DFSM . 340
24.4.5 Precomputing Values . 340
24.4.6 During Plan Generation . 341
24.4.7 Reducing the Size of the NFSM 342
24.4.8 Complex Ordering Requirements 345

24.5 Converting a NFSM into a DFSM 346
24.5.1 Definitions . 346
24.5.2 The Transformation Algorithm 347
24.5.3 Correctness of the FSM Transformation347

24.6 Experimental Results . 348
24.7 Total Impact . 348

viii CONTENTS

24.8 Influence of Groupings . 350
24.9 Annotated Bibliography . 352

25 Other Issues in Plan Generation 357
25.1 Plan Generation for Compressed Databases 357
25.2 Generating DAGs-Plans . 357

VI Cardinality and Cost Estimates 359

26 Introduction 361
26.1 Selection . 362
26.2 Join . 363
26.3 Projection, Grouping, and Duplicate Elimination 363
26.4 Feedback from Runtime . 364
26.5 Bibliography . 364

27 Statistics and Cardinality Estimates 367
27.1 Uniformity and Independence Assumption 367
27.2 Dropping the Uniformity Assumption 368

27.2.1 ToDo . 368
27.3 Dropping the Independence Assumption 368
27.4 Bibliography . 368

28 Cost functions for selected algebraic operators 369
28.1 Scan Operations . 369
28.2 I/O costs for index-based access 369
28.3 I/O costs for join algorithms .370
28.4 Sorting, Grouping, and Duplicate Elimination 372
28.5 Bibliography . 372

VII Implementation 375

29 Architecture of a Query Compiler 377
29.1 Compilation process . 378
29.2 Architecture . 378
29.3 Control Blocks . 378
29.4 Memory Management . 380
29.5 Tracing and Plan Visualization .. 380
29.6 Driver . 380
29.7 Bibliography . 380

30 Internal Representations 381
30.1 Requirements . 381
30.2 Algebraic Representations .381

30.2.1 Graph Representations . 382
30.2.2 Query Graph . 382

CONTENTS ix

30.2.3 Operator Graph . 382
30.3 Query Graph Model (QGM) . 382
30.4 Classification of Predicates .. 382
30.5 Treatment of Distinct . 382
30.6 Query Analysis and Materialization of Analysis Results 382
30.7 Query and Plan Properties . 383
30.8 Conversion to the Internal Representation 385

30.8.1 Preprocessing . 385
30.8.2 Translation into the Internal Representation 385

30.9 Bibliography . 385

31 Details on the Phases of Query Compilation 387
31.1 Parsing . 387
31.2 Semantic Analysis, Normalization, Factorization, Constant Folding,

and Translation . 387
31.3 Normalization . 389
31.4 Factorization . 389
31.5 Constant Folding . 390
31.6 Semantic analysis . 390
31.7 Translation . 392
31.8 Rewrite I . 397
31.9 Plan Generation . 397
31.10Rewrite II . 397
31.11Code generation . 397
31.12Bibliography . 398

32 Quality Assurance 399
32.1 Verification . 399
32.2 Validation . 399
32.3 Debugging . 399
32.4 Test Data Generation . 399
32.5 Benchmarking . 399
32.6 Bibliography . 399

VIII Selected Topics 401

33 Generating Plans for Top-N-Queries? 403
33.1 Motivation and Introduction .403
33.2 Optimizing for the First Tuple .403
33.3 Optimizing for the First N Tuples 403

34 Recursive Queries 405

35 Issues Introduced by OQL 407
35.1 Type-Based Rewriting and Pointer Chasing Elimination. 407
35.2 Class Hierarchies . 409
35.3 Cardinalities and Cost Functions 411

x CONTENTS

36 Issues Introduced by XPath 413
36.1 A Naive XPath-Interpreter and its Problems 413
36.2 Dynamic Programming and Memoization413
36.3 Naive Translation of XPath to Algebra 413
36.4 Pushing Duplicate Elimination .. 413
36.5 Avoiding Duplicate Work . 413
36.6 Avoiding Duplicate Generation .. 413
36.7 Index Usage and Materialized Views 413
36.8 Cardinalities and Costs . 413
36.9 Bibliography . 413

37 Issues Introduced by XQuery 415
37.1 Reordering in Ordered Context .415
37.2 Result Construction . 415
37.3 Unnesting Nested XQueries . 415
37.4 Cardinalities and Cost Functions 415
37.5 Bibliography . 415

38 Outlook 417

A Query Languages? 419
A.1 Designing a query language . 419
A.2 SQL . 419
A.3 OQL . 419
A.4 XPath . 419
A.5 XQuery . 419
A.6 Datalog . 419

B Query Execution Engine (?) 421

C Glossary of Rewrite and Optimization Techniques 423

D Example Query Compiler 429
D.1 Research Prototypes . 429

D.1.1 AQUA and COLA . 429
D.1.2 Black Dahlia II . 429
D.1.3 Epoq . 429
D.1.4 Ereq . 431
D.1.5 Exodus/Volcano/Cascade . 432
D.1.6 Freytags regelbasierte System R-Emulation 434
D.1.7 Genesis . 435
D.1.8 GOMbgo . 437
D.1.9 Gral . 440
D.1.10 Lambda-DB . 443
D.1.11 Lanzelotte in short . 443
D.1.12 Opt++ . 444
D.1.13 Postgres . 444
D.1.14 Sciore & Sieg . 446

CONTENTS xi

D.1.15 Secondo . 446
D.1.16 Squiral . 446
D.1.17 System R and System R∗ . 448
D.1.18 Starburst and DB2 . 448
D.1.19 Der Optimierer von Straube 451
D.1.20 Other Query Optimizer . 452

D.2 Commercial Query Compiler . 454
D.2.1 The DB 2 Query Compiler 454
D.2.2 The Oracle Query Compiler 454
D.2.3 The SQL Server Query Compiler 457

E Some Equalities for Binomial Coefficients 459

Bibliography 461

Index 521

F ToDo 523

xii CONTENTS

List of Figures

1.1 DBMS architecture . 4
1.2 Query interpreter . 4
1.3 Simple query interpreter . 5
1.4 Query compiler . 5
1.5 Query compiler architecture . 6
1.6 Execution plan . 7
1.7 Potential and actual search space 10
1.8 Generation vs. transformation .11

2.1 Relational algebra . 15
2.2 Equivalences for the relational algebra 16
2.3 (Simplified) Canonical translation of SQL to algebra 17
2.4 Text book query optimization . 18
2.5 Logical query optimization . 19
2.6 Different join trees . 21
2.7 Plans for example query (Part I) . 23
2.8 Plans for example query (Part II) .24
2.9 Physical query optimization . 26
2.10 Plan for example query after physical query optimization 27

3.1 Query graph for example query of Section 2.1 30
3.2 Query graph shapes . 31
3.3 Illustrations for the IKKBZ Algorithm 52
3.4 A query graph, its directed join graph, some spanning trees and join trees 54
3.5 A query graph, its directed join tree, a spanning tree andits problem . 55
3.6 Search space with sharing under optimality principle 60
3.7 Example of rule transformations (RS-1) 86
3.8 Encoding Trees . 91
3.9 Paths . 92
3.10 Tree-merge . 95
3.11 AlgorithmUnrankDecomposition 96
3.12 Leaf-insertion . 97
3.13 A query graph, its tree, and its standard decompositiongraph 98
3.14 AlgorithmAdorn . 100
3.15 A query graph, a join tree, and its encoding 107
3.16 Pseudo code forIDP-1 . 110

xiii

xiv LIST OF FIGURES

3.17 Pseudocode for IDP-2 . 120
3.18 Subroutineapplicable-predicates 121
3.19 Subroutineconstruct-bushy-tree 121
3.20 Subroutineextract-plan and its subroutine 122
3.21 Impact of selectivity on the search space 123
3.22 Impact of relation sizes on the search space 124
3.23 Impact of parameters on the performance of heuristics 125
3.24 Impact of selectivities on probabilistic procedures 126

4.1 Disk drive assembly . 128
4.2 Disk drive read request processing 129
4.3 Time to read 100 MB from disk (depending on the number of 8 KB

blocks read at once) . 132
4.4 Time needed to readn random pages 133
4.5 Break-even point in fraction of total pages depending onpage size . . 134
4.6 Physical organization of a relational database 136
4.7 Slotted pages and TIDs . 138
4.8 Various physical record layouts .. 139
4.9 Clustered vs. non-clustered index 145
4.10 Illustration of seek cost estimate 174

5.1 Truth tables for two-valued logic 183
5.2 Simplification Rules . 184
5.3 Laws for two-valued logic . 185
5.4 Truth tables for three-valued logic 186

6.1 Laws for Set Operations . 187
6.2 Laws for Bag Operations . 189
6.3 Outer join examples . 203
6.4 Two equivalent plans . 209
6.5 Applications of coalescing grouping 215
6.6 Example for Map Operator . 217
6.7 Examples for Unary and BinarŷΓ 218

11.1 Simplification rules for boolean expressions 234
11.2 Axioms for equality . 234
11.3 . 241
11.4 Axioms for inequality . 242

18.1 DNF plans . 278
18.2 CNF plans . 279
18.3 Bypass plans . 279

19.1 Two equivalent plans . 283
19.2 Applications of coalescing grouping 292

20.1 Two equivalent plans . 303
20.2 Applications of coalescing grouping 309

LIST OF FIGURES xv

21.1 Early grouping . 314

22.1 A sample execution plan . 318
22.2 Different join operator trees .. . 319
22.3 Bottom up plan generation . 321
22.4 A Dynamic Programming Optimization Algorithm 322

24.1 Propagation of orderings and groupings 332
24.2 Possible FSM for orderings . 333
24.3 Possible FSM for groupings . 334
24.4 Combined FSM for orderings and groupings 335
24.5 Possible DFSM for Figure 24.4 . 335
24.6 Preparation steps of the algorithm 336
24.7 Initial NFSM for sample query . 338
24.8 NFSM after addingDFD edges . 339
24.9 NFSM after pruning artificial states 339
24.10Final NFSM . 340
24.11Resulting DFSM . 340
24.12containsMatrix . 340
24.13transitionMatrix . 341
24.14Plan generation for different join graphs, Simmen’s algorithm (left) vs.

our algorithm (middle) . 348
24.15Memory consumption in KB for Figure 24.14 350
24.16Time requirements for the preparation step 353
24.17Space requirements for the preparation step 354

29.1 The compilation process . 377
29.2 Class Architecture of the Query Compiler 378
29.3 Control Block Structure . 379

31.1 Expression . 388
31.2 Expression hierarchy . 389
31.3 Expression . 390
31.4 Query 1 . 391
31.5 Internal representation .393
31.6 An algebraic operator tree with a d-join 396
31.7 Algebra . 396

35.1 Algebraic representation of a query 407
35.2 A join replacing pointer chasing 409
35.3 A Sample Class Hierarchy . 410
35.4 Implementation of Extents . 411

D.1 Beispiel einer Epoq-Architektur 430
D.2 Exodus Optimierer Generator . 432
D.3 Organisation der Optimierung . 435
D.4 Ablauf der Optimierung . 438
D.5 Architektur von GOMrbo . 439

xvi LIST OF FIGURES

D.6 a) Architektur des Gral-Optimierers; b) Operatorhierarchie nach Kosten 440
D.7 Die Squiralarchitektur . 447
D.8 Starburst Optimierer . 449
D.9 Der Optimierer von Straube . 451

Preface

Goals

Primary Goals:

• book covers many query languages (at least SQL, OQL, XQuery (XPath))

• techniques should be represented as query language independent as possible

• book covers all stages of the query compilation process

• book completely covers fundamental issues

• book gives implementation details and tricks

Secondary Goals:

• book is thin

• book is not totally unreadable

• book separates concepts from implementation techniques

Organizing the material is not easy: The same topic pops up

• at different stages of the query compilation process and

• at different query languages

Acknowledgements

Introducer to query optimization: Günther von Bültzingsloewen
Peter Lockemann
First paper coauthor: Stefan Karl,
Coworkers: Alfons Kemper, Klaus Peithner, Michael Steinbrunn, Donald Koss-

mann, Carsten Gerlhof, Jens Claussen,
Sophie Cluet, Vassilis Christophides, Georg Gottlob, V.S.Subramanian,
Sven Helmer, Birgitta König-Ries, Wolfgang Scheufele, Carl-Christian Kanne,

Thomas Neumann, Norman May, Matthias Brantner
Discussions: Umesh Dayal, Dave Maier, Gail Mitchell, Stan Zdonik, TamerÖzsu,

Arne Rosenthal,

xvii

xviii LIST OF FIGURES

Don Chamberlin, Bruce Lindsay, Guy Lohman, Mike Carey, Bennet Vance, Laura
Haas, Mohan, CM Park, Yannis Ioannidis, Götz Graefe, SergeAbiteboul, Claude De-
lobel Patrick Valduriez, Dana Florescu, Jerome Simeon, Mary Fernandez, Christoph
Koch, Adam Bosworth, Joe Hellerstein, Paul Larson, Hennie Steenhagen, Harald
Schöning, Bernhard Seeger,

Encouragement: Anand Deshpande
Manuscript: Simone Seeger,
and many others to be inserted.

Part I

Basics

1

Chapter 1

Introduction

1.1 General Remarks

Query languages like SQL or OQL are declarative. That is, they specify what the
user wants to retrieve and not how to retrieve it. It is the task of the query compiler
to generate aquery evaluation plan(evaluation planfor short, orexecution planor
simply plan) for a given query. The query evaluation plan (QEP) essentially is an
operator tree with physical algebraic operators as nodes. It is evaluated by the runtime
system. Figure 1.6 shows a detailed execution plan ready to be interpreted by the
runtime system. Figure 22.1 shows an abstraction of a query plan often used to explain
algorithms or optimization techniques.

The book tries to demystify query optimization and query optimizers. By means
of the multi-lingual query optimizer BD II, the most important aspects of query opti-
mizers and their implementation are discussed. We concentrate not only on thequery
optimizercore (Rewrite I, Plan Generator, Rewrite II) of the query compilation process
but touch on all issues from parsing to code generation and quality assurance.

We start by giving a two-module overview of a database management system. One
of these modules covers the functionality of the query compiler. The query compiler it-
self involves several submodules. For each submodule we discuss the features relevant
for query compilation.

1.2 DBMS Architecture

Any database management system (DBMS) can be divided into two major parts: the
compile time system (CTS) and the runtime system (RTS). Usercommands enter the
compile time system which translates them into executableswhich are then interpreted
by the runtime system (Fig. 1.1).

The input to the CTS are statements of several kinds, for example connect to
a database (starts a session), disconnect from a database, create a database, drop a
database, add/drop a schema, perform schema changes (add relations, object types,
constraints, . . .), add/drop indexes, run statistics commands, manually modify the
DBMS statistics, begin of a transaction, end of a transaction, add/drop a view, up-
date database items (e.g. tuples, relations, objects), change authorizations, and state a
query. Within the book, we will only be concerned with the tiny last item.

3

4 CHAPTER 1. INTRODUCTION

CTS

RTS

?

?

?

user command (e.g. query)

execution plan

result

Figure 1.1: DBMS architecture

calculus
interpretation

Rewrite

query
result

Figure 1.2: Query interpreter

1.3 Interpretation versus Compilation

There are two essential approaches to process a query:interpretationandcompilation.
The path of a query through a query interpreter is illustrated in Figure 1.2. Query

interpretation translates the query string into some internal representation that is mostly
calculus-based. Optionally, some rewrite on this representation takes place. Typical
steps during this rewrite phase are unnesting nested queries, pushing selections down,
and introducing index structures. After that, the query is interpreted. A simple query
interpreter is sketched in Figure 1.3. The first function,interprete , takes a simple
SQL block and extracts the different clauses, initializes the resultR and callseval .
Then,eval recursively evaluates the query by first producing the crossproduct of
the entries in thefrom clause. After all of them have been processed, the predicate
is applied and for those tuples where thewhere predicate evaluates to true, a result
tuple is constructed and added to the result setR. Obviously, the sketeched interpreter
is far from being efficient. A much better approach has been described by Wong and
Youssefi [851, 882].

Let us now discuss the compilation approach. The different steps are summarized
in Figure 1.4. First, the query is rewritten. Again, unnesting nested queries is a main
technique for performance gains. Other rewrites will be discussed in Part III. After
the rewrite, the plan generation takes place. Here, an optimal plan is constructed.
Whereas typically rewrite takes place on a calculus-based representation of the query,
plan generation constructs an algebraic expression containing well-known operators
like selection and join. Sometimes, after plan generation,the generated plan is refined:
some polishing takes place. Then, code is generated, that can be interpreted by the
runtime system. More specifically, the query execution engine—a part of the runtime

1.3. INTERPRETATION VERSUS COMPILATION 5

interprete(SQLBlockx) {

/* possible rewrites go here */
s := x.select();
f := x.from();
w := x.where();
R := ∅; /* result */
t := []; /* empty tuple */
eval(s, f , w, t, R);
return R;

}

eval(s, f , w, t, R) {

if(f .empty())
if(w(t))

R += s(t);
else

foreach(t′ ∈ first(f))
eval(s, tail(f), w, t ◦ t′, R);

}

Figure 1.3: Simple query interpreter

calculus algebra
code

generation

plan generation /

translation

execution
plan

Rewrite / TransformationRewrite

query

Figure 1.4: Query compiler

system—interpretes the query execution plan. Let us illustrate this. The following
query is Query 1 of the now obsolete TPC-D benchmark [800].

SELECT RETURNFLAG, LINESTATUS,
SUM(QUANTITY) as SUMQTY,
SUM(EXTENDEDPRICE) as SUMEXTPR,
SUM(EXTENDEDPRICE * (1 - DISCOUNT)),
SUM(EXTENDEDPRICE * (1 - DISCOUNT)*

(1 + TAX)),
AVG(QUANTITY),
AVG(EXTENDEDPRICE),
AVG(DISCOUNT),

6 CHAPTER 1. INTRODUCTION

parsing

nfst

rewrite I

plan generation

rewrite II

code generation

abstract syntax tree

internal representation

internal representation

internal representation

internal representation

execution plan

query

query
optimizer

CTS

Figure 1.5: Query compiler architecture

COUNT(*)
FROM LINEITEM
WHERE SHIPDDATE<= DATE ’1998-12-01’
GROUP BY RETURNFLAG, LINESTATUS
ORDER BY RETURNFLAG, LINESTATUS

The CTS translates this query into a query execution plan. Part of the plan is shown
in Fig. 1.6. One rarely sees a query execution plan. This is the reason why I included
one. But note that the form of query execution plans differs from DBMS to DBMS
since it is (unfortunately) not standardized the way SQL is.Most DBMSs can give the
user abstract representations of query plans. It is worth the time to look at the plans
generated by some commercial DBMSs.

I do not expect the reader to understand the plan in all details. Some of these details
will become clear later. Anyway, this plan is given to the RTSwhich then interprets it.
Part of the result of the interpretation might look like this:

1.3. INTERPRETATION VERSUS COMPILATION 7

(group
(tbscan

{segment ’lineitem.C4Kseg’ 0 4096}
{nalslottedpage 4096}
{ctuple ’lineitem.cschema’}
[20

LOAD_PTR 1
LOAD_SC1_C 8 1 2 // L_RETURNFLAG
LOAD_SC1_C 9 1 3 // L_LINESTATUS
LOAD_DAT_C 10 1 4 // L_SHIPDATE
LEQ_DAT_ZC_C 4 ’1998-02-09’ 1

] 2 1 // number of help-registers and selection-register
) 10 22 // hash table size, number of registers
[// init

MV_UI4_C_C 1 0 // COUNT(*) = 0
LOAD_SF8_C 4 1 6 // L_QUANTITY
LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE
LOAD_SF8_C 6 1 8 // L_DISCOUNT
LOAD_SF8_C 7 1 9 // L_TAX
MV_SF8_Z_C 6 10 // SUM/AVG(L_QUANTITY)
MV_SF8_Z_C 7 11 // SUM/AVG(L_EXTENDEDPRICE)
MV_SF8_Z_C 8 12 // AVG(L_DISCOUNT)
SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT
ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX
MUL_SF8_ZZ_C 7 13 15 // SUM(L_EXTDPRICE * (1 - L_DISC))
MUL_SF8_ZZ_C 15 14 16 // SUM((...) * (1 + L_TAX))

] [// advance
INC_UI4 0 // inc COUNT(*)
MV_PTR_Y 1 1
LOAD_SF8_C 4 1 6 // L_QUANTITY
LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE
LOAD_SF8_C 6 1 8 // L_DISCOUNT
LOAD_SF8_C 7 1 9 // L_TAX
MV_SF8_Z_A 6 10 // SUM/AVG(L_QUANTITY)
MV_SF8_Z_A 7 11 // SUM/AVG(L_EXTENDEDPRICE)
MV_SF8_Z_A 8 12 // AVG(L_DISCOUNT)
SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT
ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX
MUL_SF8_ZZ_B 7 13 17 15 // SUM(L_EXTDPRICE * (1 - L_DISC))
MUL_SF8_ZZ_A 17 14 16 // SUM((...) * (1 + L_TAX))

] [// finalize
UIFC_C 0 18
DIV_SF8_ZZ_C 10 18 19 // AVG(L_QUANTITY)
DIV_SF8_ZZ_C 11 18 20 // AVG(L_EXTENDEDPRICE)
DIV_SF8_ZZ_C 12 18 21 // AVG(L_DISCOUNT)

] [// hash program
HASH_SC1 2 HASH_SC1 3

] [// compare program
CMPA_SC1_ZY_C 2 2 0
EXIT_NEQ 0
CMPA_SC1_ZY_C 3 3 0

])
Figure 1.6: Execution plan

RETURNFLAG LINESTATUS SUMQTY SUM EXTPR . . .
A F 3773034 5319329289.68 . . .
N F 100245 141459686.10 . . .
N O 7464940 10518546073.98 . . .
R F 3779140 5328886172.99 . . .

8 CHAPTER 1. INTRODUCTION

This should look familar to you.
The above query plan is very simple. It contains only a few algebraic operators.

Usually, more algebraic operators are present and the plan is given in a more abstract
form that cannot be directly executed by the runtime system.Fig. 2.10 gives an exam-
ple of an abstracted more complex operator tree. We will workwith representations
closer to this one.

A typical query compiler architecture is shown in Figure 1.5. The first component
is the parser. It produces an abstract syntax tree. This is not always the case but this
intermediate representation very much simplifies the task of following component. The
NFST component performs several tasks. The first step is normalization. This mainly
deals with introducing new variables for subexpressions. Factorization and semantic
analysis are performed during NFST. Last, the abstract syntax tree is translated into the
internal representation. All these steps can typically be performed during a single path
through the query. Semantic analysis requires looking up schema definitions. This can
be expensive and, hence, the number of lookups should be minimized. After NFST the
core optimization steps rewrite I and plan generation take place. Rewrite II does some
polishing before code generation. These modules directly correspond to the phases in
Figure 1.4. They are typically further devided into submodules handling subphases.
The most prominent example is the preparation phase that takes place just before the
actual plan generation takes place. In our figures, we think of preparation as being part
of the plan generation.

1.4 Requirements for a Query Compiler

Here are the main requirements for a query compiler:

1. Correctness

2. Completeness

3. Generate optimal plan (viz avoid the worst case)

4. Efficiency, generate the plan fast, do not waste memory

5. Graceful degradation

6. Robustness

First of all, the query compiler must produce correct query evaluation plans. That is,
the result of the query evaluation plan must be the result of the query as given by the
specification of the query language. It must also cover the complete query language.
The next issue is that an optimal query plan must (should) be generated. However, this
is not always that easy. That is why some database researchers say that one must avoid
the worst plan. Talking about the quality of a plan requires us to fix the optimization
goal. Several goals are reasonable: We can optimize throughput, minimize response
time, minimize resource consumption (both, memory and CPU), and so on. A good
query compiler supports two optimization goals: minimize resource consumption and
minimize the time to produce the first tuple. Obviously, bothgoals cannot be achieved

1.5. SEARCH SPACE 9

at the same time. Hence, the query compiler must be instructed about the optimization
goal.

Irrespective of the optimization goal, the query compiler should produce the query
evaluation plan fast. It does not make sense to take 10 seconds to optimize a query
whose execution time is below a second. This sounds reasonable but is not trivial to
achieve. As we will see, the number of query execution plans that are equivalent to
a given query, i.e. produce the same result as the query, can be very large. Some-
times, very large even means that not all plans can be considered. Taking the wrong
approach to plan generation will result in no plan at all. This is the contrary of graceful
degradation. Expressed positively, graceful degradationmeans that in case of limited
resources, a plan is generated that may not be the optimal plan, but also not that far
away from the optimal plan.

Last, typical software quality criteria should be met. We only mentioned robust-
ness in our list, but others like maintainability must be metalso.

1.5 Search Space

For a given query, there typically exists a high number of plans that are equivalent to
the plan. Not all of these plans are accessible. Only those plans that can be generated
by known optimization techniques (mainly algebraic equivalences) can potentially be
generated. Since this number may still be too large, many query compilers restrict
their search space further. We call the search space explored by a query optimizer
the actual search space. The potential search spaceis the set of all plans that are
known to be equivalent to the given query by applying the state of the art of query
optimization techniques. The whole set of plans equivalentto a given query is typically
unknown: we are not sure whether all optimization techniques have been discovered
so far. Figure 1.7 illustrates the situation. Note that we run into problems if the actual
search space is not a subset of the equivalent plans. Then thequery compiler produces
wrong results. As we will see in several chapters of this book, some optimization
techniques have been proposed that produce plans that are not equivalent to the original
query.

1.6 Generation versus Transformation

Two different approaches to plan generation can be distinguished:

• The transformation-based approach transforms one query execution plan into
another equivalent one. This can, for example, happen by applying an algebraic
equivalence to a query execution plan in order to yield a better plan.

• The generic or synthetic approach produces a query execution plan by assem-
bling building blocks and adding one algebraic operator after the other, until a
complete query execution plan has been produced. Note that in this approach
only when all building blocks and algebraic opertors have been introduced the
internal representation can be executed. Before that, no (complete) plan exists.

For an illustration see Figure 1.8.

10 CHAPTER 1. INTRODUCTION

search space

equivalent

actual

potential
search space

plans

Figure 1.7: Potential and actual search space

A very important issue is how to explore the search space. Several well-known
approaches exist: A∗, Branch-and-bound, greedy algorithms, hill-climbing, dynamic
programming, memoization, [191, 480, 481, 613]. These formthe basis for most of
the plan generation algorithms.

1.7 Focus

In this book, we consider only the compilation of queries. Weleave out many special
aspects like query optimization for multi-media database systems or multidatabase
systems. These are just two omissions. We further do not consider the translation of
update statements which — especially in the presence of triggers — can become quite
complex. Furthermore, we assume the reader to be familiar with the fundamentals
of database systems [232, 442, 583, 639, 743] and their implementation [371, 275].
Especially, knowledge on query execution engines is required [312].

Last, the book presents a very personal view on query optimization. To see other
views on the same topic, I strongly recommend to read the literature cited in this book
and the references found therein. A good start are overview articles, PhD theses, and
books, e.g. [821, 287, 405, 406, 428, 494] [555, 559, 595, 756, 778, 805, 806].

1.8 Organization of the Book

The first part of the book is an introduction to the topic. It should give an idea about
the breadth and depth of query optimization. We first recapitulate query optimization
the way it is described in numerous text books on database systems. There should be
nothing really new here except for some pitfalls we will point out. The Chapter 3 is
devoted to the join ordering problem. This has several reasons. First of all, at least

1.8. ORGANIZATION OF THE BOOK 11

a) Generative Approach b) Transformational Approach

Figure 1.8: Generation vs. transformation

one of the algorithms presented in this chapter forms the core of every plan generator.
The second reason is that this problem allows to discuss someissues like search space
sizes and problem complexities. The third reason is that we do not have to delve into
details. We can stick to very simple (you might call them unrealistic) cost functions,
do not have to concern ourselves with details of the runtime system and the like. Ex-
pressed positively, we can concentrate on some algorithmicaspects of the problem. In
Chapter 4 we do the opposite. The reader will not find any advanced algorithms in this
chapter but plenty of details on disks and cost functions. The goal of the rest of the
book is then to bring these issues together, broaden the scope of the chapters, and treat
problems not even touched by them. The main issue not touchedis query rewrite.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Textbook Query Optimization

Almost every introductory textbook on database systems contains a section on query
optimization (or at least query processing) [232, 442, 583,639, 743]. Also, the two
existing books on implementing database systems contain a section on query optimiza-
tion [371, 275]. In this chapter we give an excerpt1 of these sections and subsequently
discuss the problems with the described approach. The bottom line will be that these
descriptions of query optimization capture the essence of it but contain pitfalls that
need to be pointed out and gaps to be filled.

2.1 Example Query and Outline

We use the following relations for our example query:

Student(SNo, SName, SAge, SYear)
Attend(ASNo, ALNo, AGrade)
Lecture(LNo, LTitle, LPNo)
Professor(PNo, PName)

Those attributes belonging to the key of the relations have been underlined.
With the following query we ask for all students attending a lecture by a Professor

called “Larson”.

select distincts.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNoand a.ALNo = l.LNo

and l.LPNo = p.PNoand p.PName = ‘Larson’

The outline of the rest of the chapter is as follows. A query istypically translated
into an algebraic expression. Hence, we first review the relational algebra and then dis-
cuss the translation process. Thereafter, we present the two phases of textbook query
optimization: logical and physical query optimization. A brief discussion follows.

1We do not claim to be fair to the above mentioned sections.

13

14 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

2.2 Algebra

Let us briefly recall the standard definition of the most important algebraic operators.
Their inputs are relations, that is sets of tuples. Sets do not contain duplicates. The
attributes of the tuples are assumed to be simple (non-decomposable) values. The
most common algebraic operators are defined in Fig. 2.1. Although the common set
operations union (∪), intersection (∩), and setdifference (\) belong to the relational
algebra, we did not list them. Remember that∪ and∩ are both commutative and
associative.\ is neither of them. Further, for∪ and∩, two distributivity laws hold.
However, since these operations are not used in this section, we refer to Figure 6.1 in
Section 6.1.1.

Before we can understand Figure 2.1, we must clarify some terms and notations.
For us, atupleis a mapping from a set of attribute names (or attributes for short) to their
corresponding values. These values are taken from certain domains. An actual tuple
is denoted embraced by brackets. They include a comma-separated list of the form
attribute name, column and attribute value as in[name: ‘‘Anton’’, age:
2] . If we have two tuples with different attribute names, they can be concatenated,
i.e. we can take the union of their attributes.Tuple concatentationis denoted by ‘◦’.
For example[name: ‘‘Anton’’, age: 2] ◦ [toy: ‘‘digger’’]
results in[name: ‘‘Anton’’, age: 2, toy: ‘‘digger’’] . Let A
and A′ be two sets of attributes whereA′ ⊆ A holds. Further lett a tuple with
schemaA. Then, we can projectt on the attributes inA (written ast.A). The re-
sulting tuple contains only the attributes inA′; others are discarded. For example, if
t is the tuple[name: ‘‘Anton’’, age: 2, toy: ‘‘digger’’] and
A = {name, age}, thent.A is the tuple[name: ‘‘Anton’’, age: 2] .

A relation is a set of tuples with the same attributes. The schema of a relation is the
set of attributes. For a relationR this is sometimes denoted bysch(R) , theschema
of R. We denote it byA(R) and extend it to any algebraic expression producing a
set of tuples. That is,A(e) for any algebraic expression is the set of attributes the
resulting relation defines. Consider the predicateage = 2 whereage is an attribute
name. Then,age behaves like a free variable that must be bound to some value before
the predicate can be evaluated. This motivates us to often use the termsattribute and
variable synonymously. In the above predicate, we would callage a free variable.
The set of free variables of an expressione is denoted byF(e).

Sometimes it is useful to work with sequences of attributes in comparison predi-
cates. LetA = 〈a1, . . . , ak〉 andB = 〈b1, . . . , bk〉 be two attribute sequences. Then
for any comparison operatorθ ∈ {=,≤, <,≥, >, 6=}, the expressionAθB abbreviates
a1θb1 ∧ a2θb2 ∧ . . . ∧ akθbk.

Often, anatural join is defined. Consider two relationsR1 andR2. DefineAi :=
A(Ri) for i ∈ {1, 2}, andA := A1 ∩ A2. Assume thatA is non-empty andA =
〈a1, . . . , an〉. If A is non-empty, the natural join is defined as

R1 1 R2 := ΠA1∪A2(R1 1p ρA:A′(R2))

whereρA:A′ renames the attributesai in A to a′i in A′ and the predicatep has the form
A = A′, i.e.a1 = a′1 ∧ . . . ∧ an = a′n.

For our algebraic operators, several equivalences hold. They are given in Fig-
ure 2.2. For them to hold, we typically require that the relations involved have disjoint

2.3. CANONICAL TRANSLATION 15

σp(R) := {r|r ∈ R, p(r)}
ΠA(R) := {r.A|r ∈ R}

R1 ×R2 := {r1 ◦ r2|r1 ∈ R1, r2 ∈ R2}
R1 1p R2 := σp(R1 ×R2)

Figure 2.1: Relational algebra

attribute sets. That is, we assume—even for the rest of the book—that attribute names
are unique. This is often achieved by using the notationR.a for a relationR or v.a
for a variable ranging over tuples with an attributea. Another possibility is to use the
renaming operatorρ.

Some equivalences are not always valid. Their validity depends on whether some
condition(s) are satisfied or not. For example, Eqv. 2.4 requiresF(p) ⊆ A. That is, all
attribute names occurring inp must be contained in the attribute setA the projection
retains: otherwise, we could not evaluatep after the projection has been applied. Al-
though all conditions in Fig. 2.2 are of this flavor, we will see throughout the course of
the book that more complex conditions exist.

2.3 Canonical Translation

The next question is how to translate a given SQL query into the algebra. Since the
relational algebra works on sets and not bags (multisets), we can only translate SQL
queries that contain adistinct. Further, we restrict ourselves to flat queries not con- EX
taining any subquery. Since negation, disjunction, aggregation, and quantifiers pose
further problems, we neglect them. Further, we do not allowgroup by, order by,
union, intersection, andexcept in our query. Last, we allow only attributes in the
selectclause and not more complex expressions.

Thus, the generic SQL query pattern we can translate into thealgebra looks as
follows:

select distincta1, a2, . . . , am

from R1c1, R2c2, . . . , Rncn

where p

Here, theRi are relation names and theci are correlation names. Theai in theselect
clause are attribute names (or expressions of the formci.ai) taken from the relations
in the from clause. The predicatep is assumed to be a conjunction of comparisions
between attributes or attributes and constants.

The translation process then follows the procedure described in Figure 2.3. First,
we construct an expression that produces the cross product of the entries found in the
from clause. The result is

((. . . ((R1 ×R2)×R3) . . .)×Rn).

16 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

σp1∧...∧pk
(R) ≡ σp1(. . . (σpk

(R)) . . .) (2.1)

σp1(σp2(R)) ≡ σp2(σp1(R)) (2.2)

ΠA1(ΠA2(. . . (ΠAk
(R)) . . .)) ≡ ΠA1(R)

if Ai ⊆ Aj for i < j (2.3)

ΠA(σp(R)) ≡ σp(ΠA(R))

if F(p) ⊆ A (2.4)

(R1 ×R2)×R3 ≡ R1 × (R2 ×R3) (2.5)

(R1 1p1,2 R2) 1p2,3 R3 ≡ R1 1p1,2 (R2 1p2,3 R3)

if F(p1,2) ⊆ A(R1) ∪ A(R2)

andF(p2,3) ⊆ A(R2) ∪ A(R3) (2.6)

R1 ×R2 ≡ R1 ×R2 (2.7)

R1 1p R2 ≡ R2 1p R1 (2.8)

σp(R1 ×R2) ≡ σp(R1)×R2

if F(p) ⊆ A(R1) (2.9)

σp(R1 1q R2) ≡ σp(R1) 1q R2

if F(p) ⊆ A(R1) (2.10)

ΠA(R1 ×R2) ≡ ΠA1(R1)×ΠA2(R2)

if A = A1 ∪A2, Ai ⊆ A(Ri) (2.11)

ΠA(R1 1p R2) ≡ ΠA1(R1) 1p ΠA2(R2)

if F(p) ⊆ A, A = A1 ∪A2,

andAi ⊆ A(Ri) (2.12)

σp(R1θR2) ≡ σp(R1)θσp(R2)

whereθ is any of∪, ∩, \ (2.13)

ΠA(R1 ∪R2) ≡ ΠA(R1) ∪ΠA(R2) (2.14)

σp(R1 ×R2) ≡ R1 1p R2 (2.15)

Figure 2.2: Equivalences for the relational algebra

Next, we add a selection with thewherepredicate:

σp((. . . ((R1 ×R2)×R3) . . .)×Rn).

Last, we project on the attributes found in theselectclause.

Πa1,...,an(σp((. . . ((R1 ×R2)×R3) . . .)×Rn)).

For our example query

select distincts.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNoand a.ALNo = l.LNo

and l.LPNo = p.PNoand p.PName = ‘Larson’

2.4. LOGICAL QUERY OPTIMIZATION 17

1. Let R1 . . . Rk be the entries in thefrom clause of the query. Construct the
expression

F :=

{
R1 if k = 1
((. . . (R1 ×R2)× . . .)×Rk) else

2. Thewhere clause is optional in SQL. Therefore, we distinguish the cases that
there is nowhereclause and that thewhereclause exists and contains a predi-
catep. Construct the expression

W :=

{
F if there is nowhereclause
σp(F) if the whereclause containsp

3. Lets be the content of theselect distinctclause. For the canonical translation
it must be of either ’*’ or a lista1, . . . , an of attribute names. Construct the
expression

S :=

{
W if s = ’*’
Πa1,...,an(W) if s = a1, . . . , an

4. ReturnS.

Figure 2.3: (Simplified) Canonical translation of SQL to algebra

the result of the translation is

Πs.SName(σp(((Student[s]× Attend[a])× Lecture[l])× Professor[p]))

wherep equals

s.SNo = a.ASNoand a.ALNo = l.LNo and l.LPNo = p.PNoand p.PName =
‘Larson’.

Note that we used the notationR[r] to say that a relation namedR has the correlation
namer. During the course of the book we will be more precise about the semantics
of this notation and it will deviate from the one suggested here. We will taker as a
variable successively bound to the elements (tuples) inR. However, for the purpose
of this chapter it is sufficient to think of it as associating acorrelation name with a
relation. The query is represented graphically in Figure 2.7 (top).

2.4 Logical Query Optimization

Textbook query optimization takes place in two separate phases. The first phase is
called logical query optimizationand the secondphysical query optimization. Fig-
ure 2.4 lists all these steps together with the translation step. In this section we discuss

18 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

1. translate query into its canonical algebraic expression

2. perform logical query optimization

3. perform physical query optimization

Figure 2.4: Text book query optimization

logical query optimization. The foundation for this step isformed by the set of algebra-
ic equivalences (see Figure 2.2). The set of algebraic equivalences spans the potential
search space for this step. Given an initial algebraic expression—resulting from the
translation of the given query—the algebraic equivalencescan be used to derive all
algebraic expressions that are equivalent to the initial algebraic expression. This set of
all equivalent algebraic expressions can be derived by applying the equivalences first
to the initial expression and then to all derived expressions until no new expression is
derivable. Thereby, the algebraic equivalences can be applied in both directions: from
left to right and from right to left. Care has to be taken that the conditions attached to
the equivalences are obeyed.

Of course, whenever we find a new algebraic equivalence that could not be de-
rived from those already known, adding this equivalence increases our potential search
space. On the one hand, this has the advantage that in a largersearch space we may
find better plans. On the other hand, it increases the alreadylarge search space which
might cause problems for its exploration. Nevertheless, finding new equivalences is a
well-established sport among database researchers.

One remark onbetterplans. Plans can only be compared if costs can be attached
to them via some cost function. This is what happens in most industrial strength query
optimizers. However, at the level of logical algebraic expressions adding precise costs
is not possible: too many implementation details are missing. These are added to the
plan during the next phase calledphysical query optimization. As a consequence, we
are left with plans without costs. The only thing we can do is to heuristicallyjudge the
effectiveness of applying an equivalence from left to rightor in the opposite direction.
As always with heuristics, the hope is that they work for mostqueries. However, it is
typically very easy to find counter examples where the heuristics do not result in the
best plan possible. (Again,bestwith respect to some metrics.) This finding can be
generalized: any query optimization that takes place in more than a single phase risks
missing the best plan. This is an important observation and we will come back to this
issue more than once.

After these words of warning let us continue to discuss textbook query optimiza-
tion. Logical query optimization requires the organization of all equivalences into
groups. Further, the equivalences are directed. That is, itis fixed whether they are ap-
plied in a left to right or right to left manner. Adirectedequivalence is calledrewrite
rule. The groups of rewrite rules are then successively applied to the initial algebraic
expression. Figure 2.5 describes the different steps performed during logical query
optimization. Associated with each step is a set of rewrite rules that are applied to the
input expression to yield a result expression. The numbers correspond to the equiva-

2.4. LOGICAL QUERY OPTIMIZATION 19

1. break up conjunctive selection predicates
(Eqv. 2.1:→)

2. push down selections
(Eqv. 2.2:→), (Eqv. 2.9:→)

3. introduce joins
(Eqv. 2.15:→)

4. determine join order
Eqv. 2.8, Eqv. 2.6, Eqv. 2.5, Eqv. 2.7

5. introduce and push down projections
(Eqv. 2.3:←), (Eqv. 2.4:→),
(Eqv. 2.11:→), (Eqv. 2.12:→)

Figure 2.5: Logical query optimization

lences in Figure 2.2. A small arrow indicates the direction in which the equivalences
are applied.

The first step breaks up conjunctive selection predicates. The motivation behind
this step is that selections with simple predicates can be moved around easier. The
rewrite rule used in this step is Equivalence 2.1 applied from left to right. For our
example query Step 1 results in

Πs.SName(
σs.SNo=a.ASNo(

σa.ALNo=l.LNo(
σl.LPNo=p.PNo(

σp.PName=‘Larson′(
((Student[s]× Attend[a])× Lecture[l])× Professor[p])))))

The query is represented graphically in Figure 2.7 (middle).
Step 2 pushes selections down the operator tree. The motivation here is to reduce

the number of tuples as early as possible such that subsequent (expensive) operators
have smaller input. Applying this step to our example query yields:

Πs.SName(
σl.LPNo=p.PNo(

σa.ALNo=l.LNo(
σs.SNo=a.ASNo(Student[s]× Attend[a])
×Lecture[l])

×(σp.PName=‘Larson′(Professor[p]))))

The query is represented graphically in Figure 2.7 (bottom).

20 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

Excursion In general, we might encounter problems when pushing down selections.
It may be the case that the order of the cross products is not well-suited for pushing
selections down. If this is the case, we must consider reordering cross products during
this step (Eqv. 2.7 and 2.5). To illustrate this point consider the following example
query.

select distincts.SName
from Student s, Lecture l, Attend a
where s.SNo = a.ASNoand a.ALNo = l.LNo

and l.LTitle = ‘Databases I’

After translation and Steps 1 and 2 the algebraic expressionlooks like

Πs.SName(
σs.SNo=a.ASNo(

σa.ALNo=l.LNo(
(Student[s]× σl.LT itle=‘Databases I′(Lecture[l])) × Attend[a]))).

Neither ofσs.SNo=a.ASNo andσa.ALNo=l.LNo can be pushed down further. Only after
reordering the cross products such as in

Πs.SName(
σs.SNo=a.ASNo(

σa.ALNo=l.LNo(
(Student[s]× Attend[a])× σl.LT itle=‘Databases I′(Lecture[l]))))

canσs.SNo=a.ASNo be pushed down:

Πs.SName(
σa.ALNo=l.LNo(

σs.SNo=a.ASNo(Student[s]× Attend[a])
×σl.LT itle=‘Databases I′(Lecture[l])))

This is the reason why in some textbooks reorder cross products before selections are
pushed down [232]. In this appoach, reordering of cross products takes into account
the selection predicates that can possibly be pushed down tothe leaves and down to
just prior a cross product. In any case, the Steps 2 and 4 are highly interdependent and
there is no simple solution. 2

After this small excursion let us resume rewriting our main example query. The
next step to be applied is converting cross products to join operations (Step 3). The
motivation behind this step is that the evaluation of cross products is very expensive
and results in huge intermediate results. For every tuple inthe left input an output
tuple must be produced for every tuple in the right input. A join operation can be
implemented much more efficiently. Applying Equivalence 2.15 from left to right to
our example query results in

Πs.SName(
((Student[s] 1s.SNo=a.ASNo Attend[a])

1a.ALNo=l.LNo Lecture[l])
1l.LPNo=p.PNo (σp.PName=‘Larson′(Professor[p])))

2.4. LOGICAL QUERY OPTIMIZATION 21

as

p

6
?
c

6
?
a

6
?
a

6
?
c

6
?
a

6
?
c

� -c

� -c

� -c

� -c

� -c

� -c

� -c

� -c

-

-

a

� -a

� -a

� -a

� -a

�

�

c

�

�

c

�

�

c

6
?
c

6
?
c

6
?
c

sa

a

� -c

� -c

� -c

� -c

� -c

� -c

� -c

� -c

sa

s

p

p

s

p

s

s

p

s

6
?
a

6
?
c

6
?
c

6
?
c as

p

l

l

p

sa

p

as

p

sa

p

s

s

p

s

p

p

s

s a

sa

sa

s

p

s

p

s

s

p

a

s

a

s

s

a a

s

as

asa

ss

a

6
?
c

6
?
c

s

-

-

�

�

6
?

l

a

c

p

a

a

a

a

a

p

a

a

a

a

c

p

p

p

p

p

a

a

a

a

p

p

p

p p
p

p
pp

l
l

l l l

l l l
l

l l
l

l

l l l
l

l l l
l

l l l
l

l l l
l

Figure 2.6: Different join trees

The query is represented graphically in Figure 2.8 (top).

The next step is really tricky and involved: we have to find an optimal order for
evaluating the joins. The join’s associativity and commutativity gives us plenty of
alternative (equivalent) evaluation plans. For our rathersimple query Figure 2.6 lists
some of the possible join orders where we left out the join predicates and used the

22 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

single letter correlation names to denote the relations to be joined. Onlyp abbreviates
the more complex expressionσp.PName=‘Larson′(Professor[p]). The edges show how
plans can be derived from other plans by applying commutativity (c) or associativity
(a).

Unfortunately, we cannot ignore the problem of finding a goodjoin order. It has
been shown that the order in which joins are evaluated has an enormous influence on
the total evaluation cost of a query. Thus, it is an importantproblem. On the other hand,
the problem is really tough. Most join ordering problems turn out to be NP-hard. As a
consequence, many different heuristics and cost-based algorithms have been invented.
They are discussed in depth in Chapter 3. There we will also find examples showing
how important (in terms of costs) the right choice of the joinorder is.

To continue with our example query, we use a very simple heuristics: among all
possible joins select the one that produces the smallest intermediate result. This can be
motivated as follows. In our current algebraic expression,the first join to be executed
is

Student[s] 1s.SNo=a.ASNo Attend[a].

All students and their attendances to some lecture are considered. The result and hence
the input to the next join will be very big. On the other hand, if there is only one profes-
sor namedLarson, the output ofσp.PName=‘Larson′(Professor[p]) is a single tuple.
Joining this single tuple with the relationLecture results in an output containing
one tuple for every lecture taught byLarson. For a large university, this will be a small
subset of all lectures. Continuing this line, we get the following algebraic expression:

Πs.SName(
((σp.PName=‘Larson′(Professor[p])

1p.PNo=l.LPNo Lecture[l])
1l.LNo=a.ALNo Attend[a])

1a.ASno=s.SNo Student[s])

The query is represented graphically in Figure 2.8 (middle).
The last step minimizes intermediate results by projectingout irrelevant attributes.

An attribute is irrelevant, if it is not used further up the operator tree. When pushingEX
down projections, we only apply them just before a pipeline breaker [312]. The reason
is that for pipelined operators like selection, eliminating superfluous attributes does
not gain much. The only pipeline breaker occurring in our plan is the join operator.
Hence, before a join is applied, we project on the attributesthat are further needed.
The result is

Πs.SName(
Πa.ASNo(

Πl.LNO(
Πp.PNo(σp.PName=‘Larson′(Professor[p]))
1p.PNo=l.LPNo

Πl.LPno,l.LNo(Lecture[l]))
1l.LNo=a.ALNo

Πa.ALNo,a.ASNo(Attend[a]))
1a.ASno=s.SNo

Πs.SNo,s.SName(Student[s]))

2.4. LOGICAL QUERY OPTIMIZATION 23

This expression is represented graphically in Figure 2.8 (bottom).

Πs.SName

Professor[p]Attend[a] Lecture[l]Student[s]

σs.SNo= a.ASNo∧a.ALNo = l.LNo∧
l.LPNo= p.PNo∧ p.PName= ′Larson′

Πs.SName

σp.PName= ′Larson′

σl.LPNo = p.PNo

Professor[p]Lecture[l]

σs.SNo =a.ASNo

σa.ALNo = l.LNo

Student[s] Attend[a]

Πs.SName

σl.PNo= p.PNo

Professor[p]

Lecture[l]

σp.PName= ′Larson′σa.ALNo = l.LNo

Student[s] Attend[a]

σs.SNo= a.ASNo

Figure 2.7: Plans for example query (Part I)

24 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

l.PNo= p.PNo

a.ALNo = l.LNo

Professor[p]s.SNo=a.ASNo

Student[s] Attend[a]

Πs.SName

σp.PName = ′Larson′

Lecture[l]

a.ASNo = s.SNo

l.LNo= a.ALNo

p.PNo= l.LPNo

Πs.SName

Student[s]

Lecture[l]σp.PName= ′Larson′

Professor[p]

Attend[a]

a.ASNo= s.SNo

l.LNo

Πs.SNo,s.SName

Student[s]

p.PNo= l.LPNo

Πp.PNo

Professor[p]

σp.PName = ′Larson′

Πs.SName

Πa.ASNo

Πl.LNo Πa.ALNo,a.ASNo

Attend[a]

Πl.LPNo,l.LNo

Lecture[l]

Figure 2.8: Plans for example query (Part II)

2.5 Physical Query Optimization

Physical query optimization adds more information to the logical query evaluation
plan. First, there exist many different ways to access the data stored in a database. One

2.5. PHYSICAL QUERY OPTIMIZATION 25

possibility is to scan a relation to find the relevant tuples.Another alternative is to use
an index to access only the relevant parts. If an unclusteredindex is used, it might be
beneficial to sort thetuple identifiers(TIDs2) to turn otherwise random disk accesses
into sequential accesses. Since there is a multitutude of possibilities to access data,
this topic is discussed in depth in Chapter 4. Second, the algebraic operators used in
the logical plan may have different alternative implementations. The most prominent
example is the join operator that has many different implementations: simple nested
loop join, blockwise nested loop join, blockwise nested loop join with in-memory hash
table, index nested loop join, hybrid hash join, sort merge join, bandwidth join, spe-
cial spatial joins, set joins, and structural joins. Most ofthese join implementations
can be applied only in certain situations. Most algorithms only implement equi-joins
where the join predicate is a conjunction of simple equalities. Further, all the imple-
mentations differ in cost and robustness. But also other operators like grouping may
have alternative implementations. Typically, for these operators exist sort-based and
hash-based alternatives. Third, some operators require certain propertiesfor their in-
put streams. For example, a sort merge join requires its input to be sorted on the join
attributes occurring in the equalities of the join predicate. These attributes are called
join attributes. The sortedness property can beenforcedby a sort operator. The sort
operator is thus anenforcersince it makes sure that the required property holds. As
we will see, properties and enforcers play a crucial role during plan generation.

If common subexpressions are detected at the algebraic level, it might be beneficial
to compute them only once and store the result. To do so, atmp operator must be
introduced. Later on, we will see more of these operators that materialize (partial)
intermediate results in order to avoid the same computationto be performed more than
once. An alternative is to allow QEPs which are DAGs and not merely trees (see
Section??).

Physical query optimization is concerned with all the issues mentioned above. The
outline of it is given in Figure 2.9. Let us demonstrate this for our small example query.
Let us assume that there exists an index on the name of the professors. Then, instead of
scanning the whole professor relation, it is beneficial to use the index to retrieve only
those professors namedLarson. Further, since a sort merge join is very robust and not
the slowest alternative, we choose it as an implementation for all our join operations.
This requires that we sort the inputs to the join operator on the join attributes. Since
sorting is a pipeline breaker, we introduce it between the projections and the joins. The
resulting plan is

Πs.SName(
Sorta.ASNo(Πa.ASNo(

Sortl.LNo(Πl.LNO(
Sortp.PNo(Πp.PNo(IdxScanp.PName=‘Larson′(Professor[p])))

1
smj
p.PNo=l.LPNo

Sortl.LPNo(Πl.LPno,l.LNo(Lecture[l])))

1
smj
l.LNo=a.ALNo

Sorta.ALNo(Πa.ALNo,a.ASNo(Attend[a]))))

1
smj
a.ASno=s.SNo

2Sometimes TIDs are called RIDs (Row Identifiers).

26 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

1. introduce index accesses

2. choose implementations for algebraic operators

3. introduce physical operators (sort, tmp)

Figure 2.9: Physical query optimization

Sorts.SNo(Πs.SNo,s.SName(Student[s])))

where we annotated the joins withsmj to indicate that they are sort merge joins. The
sort operator has the attributes on which to sort as a subscript. We cheated a little
bit with the notation of the index scan. The index is a physical entity stored in the
database. An index scan typically allows to retrieve the TIDs of the tuples qualifying
the predicate. If this is the case, another access to the relation itself is necessary to
fetch the relevant attributes (p.PNo in our case) from the qualifying tuples of the re-
lation. This issue is rectified in Chapter 4. The plan is shownas an operator graph in
Figure 2.10.

2.6 Discussion

This chapter left open many interesting issues. We took it for granted that the presenta-
tion of a query is an algebraic expression or operator tree. Is this really true? We have
been very vague about ordering joins and cross products. We only considered queries
of the formselect distinct. How can we assure correct duplicate treatment forselect
all? We separated query optimization into two distinct phases:logical and physical
query optimization. Any separation into different phases results in the danger of not
producing an optimal plan. Logical query optimization turned out to be a little difficult:
pushing selections down and reordering joins are mutually interdependent. How can
we integrate these steps into a single one and thereby avoid the problem mentioned?
Further, our logical query optimization was not cost based and cannot be: too much
information is still missing from the plan to associate precise costs with a logical alge-
braic expression. How can we integrate the phases? How can wedetermine the costs
of a plan? We covered only a small fraction of SQL. We did not discuss disjunction,
negation, union, intersection, except, aggregate functions, group-by, order-by, quanti-
fiers, outer joins, and nested queries. Furthermore, how about other query languages
like OQL, XPath, XQuery? Further, enhancements like materialized views exist nowa-
days in many commercial systems. How can we exploit them beneficially? Can we
exploit semantic information? Is our exploitation of indexstructures complete? What
happens if we encounter NULL-values? Many questions and open issues remain. The
rest of the book is about filling these gaps.

2.6. DISCUSSION 27

smj
a.ASno= s.SNo

Πs.SNo,s.SName

smj
l.LNo=a.ALNo

Πl.LPNo,l.LNo

smj
p.PNo=l.LPNo

Πa.ASNo

Sortl.LNo

Πl.LNo

Sortl.LPNoSortp.PNo

Professor[p]

Πp.PNo

IdxScanp.PName=′Larson′ Lecture[l]

Sorta.ALNo

Πa.ALNo,a.ASNo

Attend[a]

Πs.SName

Sorts.SNo

Student[s]

Sorta.ASNo

Figure 2.10: Plan for example query after physical query optimization

28 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

Chapter 3

Join Ordering

The problem ofjoin ordering is a very restricted and — at the same time — a very
complex one. We have touched this issue while discussing logical query optimiza-
tion in Chapter 2. Join ordering is performed in Step 4 of Figure 2.5. In this chapter,
we simplify the problem of join ordering by not considering duplicates, disjunctions,
quantifiers, grouping, aggregation, or nested queries. Expressed positively, we concen-
trate on conjunctive queries with simple and cheap join predicates. What this exactly
means will become clear in the next section. Subsequent sections discuss different al-
gorithms for solving the join ordering problem. Finally, wetake a look at the structure
of the search space. This is important if different join ordering algorithms are com-
pared via benchmarks. If the wrong parameters are chosen, benchmark results can be
misleading.

The algorithms of this chapter form the core of every plan generator.

3.1 Queries Considered

A conjunctive queryis one whosewhereclause contains a (complex) predicate which
in turn is a conjunction of (simple) predicates. Hence, a conjunctive query involves
only and and noor or not operations. Asimple predicateis of the forme1θe2 where
θ ∈ {=, 6=, <,>,≤,≥} is a comparison operator and theei are simple expressions
in attribute names possibly containing some simple and cheap arithmetic operators.
By cheap we mean that it is not worth applying extra optimization techniques. In this
chapter, we restrict simple predicates even further to the form A = B for attributes
A and B. A and B must also belong to different relations such that every simple
predicate in this chapter is a join predicate. There are two reasons for this restriction.
First, the most efficient join algorithms rely on the fact that the join predicate is of the
form A = B. Such joins are calledequi-joins. Any other join is called anon-equi-
join. Second, in relational systems joins on foreign key attributes of one relation and
key attributes of the other relation are very common. Other joins are rare.

A base relationis a relation that is stored (explicitly) in the database. For the rest
of the chapter, letRi (1 ≤ i ≤ n) ben relations. These relations can be base relations
but do not necessarily have to be. They could also be base relations to which predicates
have already been supplied, e.g. as a result of applying the first three steps of logical
query optimization.

29

30 CHAPTER 3. JOIN ORDERING

Student Attend

LectureProfessor

s.SNo = a.ASNo

a.ALNo = l.LNo

l.LPNo = p.PNo

p.PName = ’Larson’

Figure 3.1: Query graph for example query of Section 2.1

Summarizing, the queries we consider can be expressed in SQLas

select distinct*
from R1,. . . ,Rn

where p

wherep is a conjunction of simple join predicates with attributes from exactly two
relations. The latter restriction is not really necessary for the algorithms presented in
this chapter but simplifies the exposition.

3.1.1 Query Graph

A query graph is a convenient representation of a query. It isan undirected graph with
nodesR1, . . . , Rn. For every simple predicate in the conjunctionP whose attributes
belong to the relationsRi andRj , we add an edge betweenRi andRj . This edge is
labeled by the simple predicate. From now on, we denote the join predicate connect-
ing Ri andRj by pi,j. In fact, pi,j could be a conjunction of simple join predicates
connectingRi andRj.

If query graphs are used for more than join ordering, selections need to be repre-
sented. This is done by self-edges from the relation to whichthe selection applies to
itself. For the example query of Chapter 2.6, Figure 3.1 contains the according query
graph.

Query graphs can have many different shapes. The shapes thatplay a certain role in
query optimization and the evaluation of join ordering algorithms are shown in Fig. 3.2.
The query graph classes relevant for this chapter are chain queries, star queries, tree
queries, cyclic queries and clique queries. Note that theseclasses are not disjoint and
that some classes are subsets of other classes.EX

Excursion In general, the query graph is a hypergraph [807] as the following exam-
ple shows.

select *
from R1, R2, R3, R4
where f(R1.a, R2.a,R3.a) = g(R2.b,R3.b,R4.b)

3.1. QUERIES CONSIDERED 31

chain queries star queries tree query

cyclic query cycle queries grid query clique queries

Figure 3.2: Query graph shapes

3.1.2 Join Tree

A join tree is an algebraic expression in relation names and join operators. Sometimes,
cross products are allowed, too. A cross product is the same as a join operator with
trueas its join predicate. A join tree has its name from its graph representation. There,
a join tree is a binary tree whose leaf nodes are the relationsand whose inner nodes are
joins (and possibly cross products). The edges represent the input/output relationship.
Examples of join trees have been shown in Figure 2.6.

Join trees fall into different classes. The most important classes are left-deep trees,
right-deep trees, zig-zag trees, and bushy trees.Left-deep treesare join trees where
every join has one of the relationsRi as its right input.Right-deep treesare defined
analogously. Inzig-zag treesat least one input of every join is a relationRi. The
class of zig-zag trees contains both left-deep and right-deep trees. Forbushy trees
no restriction applies. Hence, the class of bushy trees contains all of the above three
classes. The roots of these notions date back to the paper by Selinger et al. [707],
where the search space of the query optimizer was restrictedto left-deep trees. There
are two main reasons for this restriction. First, only one intermediate result is generated
at any time during query evaluation. Second, the number of left-deep trees is far less
than the number of e.g. bushy trees. The other classes were then added later by other
researchers whenever they found better join trees in them. The different classes are
illustrated in Figure 2.6. From left to right, the columns contain left-deep, zig-zag,
right-deep, and bushy trees.

Left-deep trees directly correspond to an ordering (i.e. a permutation) of the rela-
tions. For example, the left-deep tree

((((R2 1 R3) 1 R1) 1 R4) 1 R5)

directly corresponds to the permutationR2, R3, R1, R4, R5. It should be clear that
there is a one-to-one correspondence between permutationsand left-deep join trees.
We will also use the termsequence of relationssynonymously. The notion ofjoin or-
deringgoes back to the times where only left-deep trees were considered and, hence,

32 CHAPTER 3. JOIN ORDERING

producing an optimal join tree was equivalent to optimally ordering the joins, i.e. de-
termining a permutation with lowest cost.

Left-deep, right-deep, and zig-zag trees can be classed under the general termlin-
ear trees. Sometimes, the term linear trees is used synonymously for left-deep trees.
We will not do so. Join trees are sometimes calledoperator treesor query evaluation
plans. Although this is not totally wrong, these terms have a slightly different connota-
tion. Operator trees typically contain more than only join operators. Query evaluation
plans (QEPs or plans for short) typically have more information from physical query
optimization associated with them.

3.1.3 Simple Cost Functions

In order to judge the quality of join trees, we need a cost function that associates a
certain positive cost with each join tree. Then, thetask of join orderingis to find
among all equivalent join trees the join tree with lowest associated costs.

One part of any cost function are cardinality estimates. They are based on the
cardinalities of the relations, i.e. the number of tuples contained in them. For a given
relationRi, we denote its cardinality by|Ri|.

Then, the cardinality of intermediate results must be estimated. This is done by
introducing the notion of join selectivity. Letpi,j be a join predicate between relations
Ri andRj. Theselectivityfi,j of pi,j is then defined as

fi,j =
|Ri 1pi,j Rj |
|Ri| ∗ |Rj|

This is the number of tuples in the join’s result divided by the number of tuples in the
Cartesian Product betweenRi andRj. If fi,j is 0.1, then only 10% of all tuples in
the Cartesian Product survive the predicatepi,j. Note that the selectivity is always a
number between 0 and 1 and thatfi,j = fj,i. We use anf and not ans, since the
selectivity of a predicate is often calledfilter factor.

Besides the relation’s cardinalities, the selectivities of the join predicatespi,j are
assumed to be given as input to the join ordering algorithm. Therefore, we can compute
the output cardinality of a joinRi 1pi,j Rj, as

|Ri 1pi,j Rj| = fi,j|Ri||Rj |
From this it becomes clear that if there is no join predicate for two relationsRi and
Rj , we can assume a join predicatetrue and associate a selectivity of1 with it. The
output cardinality is then the cardinality of the cross product betweenRi andRj . We
also definefi,i = 1 for all 1 ≤ i ≤ n. This allows us to keep subsequent formulas
simple.

We now need to extend our cardinality estimation to join trees. This can be done
by recursively applying the above formula. Consider a join treeT = T1 1 T2. Then,
|T | can be calculated as follows. IfT is a leafRi, then|T | := |Ri|. Otherwise,

|T | = (
∏

Ri∈R1,Rj∈T2

fi,j) |T1| |T2|.

Note that this formula assumes that the selectivities are independent of each other.
Assuming independence is common but may be very misleading.More on this issue

3.1. QUERIES CONSIDERED 33

can be found in Chapter 27. Nevertheless, we assume independence and stick to the
above formula.

For sequences of joins we can give a simple cardinality definition. Let s =
R1, . . . , Rn be a sequence of relations. Then

|s| =
n∏

k=1

(

k∏

i=1

fi,k|Rk|).

Given the above, a query graph alone is not really sufficient for the specification of
a join ordering problem: cardinalities and selectivities are missing. On the other hand,
from a complete list of cardinalities and selectivities we can derive the query graph.
Obviously, the following defines a chain query with query graphR1−−−R2−−−R3:

|R1| = 10

|R2| = 100

|R3| = 1000

f1,2 = 0.1

f2,3 = 0.2

In all examples, we assume for alli andj for which fi,j is not given that there is no
join predicate and hencefi,j = 1.

We now come to cost functions. The first cost function we consider is calledCout.
For a join treeT , Cout(T) is the sum of all output cardinalities of all joins inT . Re-
cursively, we can defineCout as

Cout(T) =

{
0 if T is a single relation
|T |+ Cout(T1) + Cout(T2) if T = T1 1 T2

From a theoretial point of view,Cout has many interesting properties. From a practical
point of view, however, it is rarely applied (yet).

In real cost functions, the cardinalities only serve as input to more complex for-
mulas capturing the costs of a join implementation. Since real cost functions are too
complex for this section, we stick to simple cost functions proposed by Krishnamurthy,
Boral, and Zaniolo [471]. They argue that these cost functions are appropriate for
main memory database systems. For the three different join implementations nested
loop join (nlj), hash join (hj), and sort merge join (smj), they give the following cost
functions:

Cnlj(e1 1p e2) = |e1||e2|
Chj(e1 1p e2) = h|e1|

Csmj(e1 1p e2) = |e1|log(|e1|) + |e2|log(|e2|)

whereei are join trees andh is the average length of the collision chain in the hash
table. We will assumeh = 1.2. All these cost functions are defined for a single join
operator. The cost of a join tree is defined as the sum of the costs of all joins it contains.

34 CHAPTER 3. JOIN ORDERING

We use the symbolsCx to also denote the costs of not only a single join but the costs
of the whole tree. Hence, for sequencess of relations, we have

Chj(s) =

n∑

i=2

1.2|s1, . . . , si−1|

Csmj(s) =

n∑

i=2

|s1, . . . , si−1| log(|s1, . . . , si−1|) +

n∑

i=1

|si| log(|si|)

Cnlj(s) =
n∑

i=2

|s1, . . . , si−1| ∗ si

Some notes on the cost functions are in order. First, note that these cost functions
are even for main memory a little incomplete. For example, constant factors are miss-
ing. Second, the cost functions are mainly devised for left-deep trees. This becomes
apparent when looking at the costs of hash joins. It is assumed that the right input is
already stored in an appropriate hash table. Obviously, this can only hold for base rela-
tions, giving rise to left-deep trees. Third,Chj andCsmj do not work for cross products.
However, we can extend these cost functions by defining the cost of a cross product
to be equal to its output cardinality, which happens to be thecost ofCnlj . Fourth,
in reality, more complex cost functions are used and other parameters like the width
of the tuples—i.e. the number of bytes needed to store them—also play an important
role. Fifth, the above cost functions assume that the same join algorithm is chosen
throughout the whole plan. In practice, this will not be true.

For the above chain query, we compute the costs of different join trees. The last
join tree contains a cross product.

Cout Cnlj Chj Csmj

R1 1 R2 100 1000 12 697.61
R2 1 R3 20000 100000 120 10630.26
R1 ×R3 10000 10000 10000 10000.00
(R1 1 R2) 1 R3 20100 101000 132 11327.86
(R2 1 R3) 1 R1 40000 300000 24120 32595.00
(R1 ×R3) 1 R2 30000 1010000 22000 143542.00

For the calculation ofCout note that|R1 1 R2 1 R3| = 20000 is included in all of the
last three lines of its column. For the nested loop cost function, the costs are calculated
as follows:

(R1 1 R2) 1 R3 = 1000 + 100 ∗ 1000 = 101000

(R2 1 R3) 1 R1 = 100000 + 20000 ∗ 10 = 300000

(R1 ×R3) 1 R2 = 10000 + 10000 ∗ 100 = 1010000

The reader should verify the other costs.
Several observations can be made from the above numbers:

• The costs of different join trees differ vastly under every cost function. Hence,
it is worth spending some time to find a cheap join order.

3.1. QUERIES CONSIDERED 35

• The costs of the same join tree differ under the different cost functions.

• The cheapest join tree is(R1 1 R2) 1 R3 under all four cost functions.

• Join trees with cross products are expensive.
Thus, a heuristics often used is not to consider join trees that contain unnecessary
cross products. (If the query graph consists of several unconnected components,
then and only then cross products are necessary. In other words: if the query
graph is connected, no cross products are necessary.).

• The join order matters even for join trees without cross products.

We would like to emphasize that the join order is also relevant under other cost func-
tions.

Avoiding cross products is not always beneficial, as the following query specifia-
tion shows:

|R1| = 1000

|R2| = 2

|R3| = 2

f1,2 = 0.1

f1,3 = 0.1

ForCout we have costs
Join Tree Cout

R1 1 R2 200
R2 ×R3 4
R1 1 R3 200
(R1 1 R2) 1 R3 240
(R2 ×R3) 1 R1 44
(R1 1 R3) 1 R2 240

Note that although the absolute numbers are quite small, theratio of the best and the
second best join tree is quite large. The reader is advised tofind more examples and to
apply other cost functions.

The following example illustrates that a bushy tree can be superior to any linear
tree. Let us use the following query specification:

|R1| = 10

|R2| = 20

|R3| = 20

|R4| = 10

f1,2 = 0.01

f2,3 = 0.5

f3,4 = 0.01

36 CHAPTER 3. JOIN ORDERING

If we do not consider cross products, we have for the symmetric (see below) cost
functionCout the following join trees and costs:

Join Tree Cout

R1 1 R2 2
R2 1 R3 200
R3 1 R4 2
((R1 1 R2) 1 R3) 1 R4 24
((R2 1 R3) 1 R1) 1 R4 222
(R1 1 R2) 1 (R3 1 R4) 6

Note that all other linear join trees fall into one of these classes, due to the symmetry
of the cost function and the join ordering problem. Again, the reader is advised to find
more examples and to apply other cost functions.

If we want to annotate a join operator by its implementation—which is necessary
for the correct computation of costs—we write1impl for an implementationimpl .
For example,1smj is a sort-merge join, and the according cost functionCsmj is used to
compute its costs.

Two properties of cost functions have some impact on the joinordering problem.
The first is symmetry. A cost functionCimpl is calledsymmetricif Cimpl(R1 1

impl

R2) = Cimpl(R2 1
impl R1) for all relationsR1 andR2. For symmetric cost functions,

it does not make sense to consider commutativity. Hence, it suffices to consider left-
deep trees only if we want to restrict ourselves to linear join trees. Note thatCout, Cnlj ,
Csmj are symmetric whileChj is not.

The other property is theadjacent sequence interchange(ASI) property. Informal-
ly, the ASI property states that there exists a rank functionsuch that the order of two
subsequences is optimal if they are ordered according to therank function. The ASI
property is formally defined in Section 3.2.2. Only for tree queries and cost functions
with the ASI property, a polynomial algorithm to find an optimal join order is known.
Our cost functionsCout andChj have the ASI property,Csmj does not. Summarizing
the properties of our cost functions, we see that the classification is orthogonal:

ASI ¬ ASI
symmetric Cout, Cnlj Csmj

¬ symmetric Chj (see text)

For the missing case of a non-symmetric cost function not having the ASI property,
we can use the cost function of the hybrid hash join [214, 609].

We turn to another not really well-researched topic. The goal is to cut down the
number of cost functions which have to be considered for optimization and to possibly
allow for simpler cost functions, which saves time during plan generation. Unfortu-
nately, we have to restrict ourselves to left-deep join trees. Lets denote a sequence or
permutation of a given set of joins. We define an equivalence relation on cost functions.

Definition 3.1.1 LetC andC ′ be two cost functions. Then

C ≡ C ′ :≺≻ (∀s C(s) minimal≺≻ C ′(s) minimal)

Here,s is a join sequence.

3.1. QUERIES CONSIDERED 37

Obviously,≡ is an equivalence relation.
Now we can define theΣIR property.

Definition 3.1.2 A cost function C isΣIR :≺≻ C ≡ Cout.

That is,ΣIR is the set of all cost functions that are equivalent toCout.
Let us consider a very simple example. The last element of thesum inCout is the

size of the final join (all relations are joined). This is not the case for the following
cost function:

C ′
out(s) :=

n−1∑

i=2

|s1, . . . , si|

Obviously, we haveC ′
out is ΣIR. The next observation shows that we can construct

quite complexΣIR cost functions:

Observation 3.1.3 Let C1 and C2 be twoΣIR cost functions. For non-decreasing
functionsf1 : R → R andf2 : R × R → R and constantsc ∈ R andd ∈ R+, we
have that EX

C1 + c
C1 ∗ d
f1 ◦ C1

f2 ◦ (C1, C2)

areΣIR. Here,◦ denotes function composition and(·, ·) function pairing.

There are of course many more possibilites of constructingΣIR functions. For the
cost functionsChj, Csmj, andCnlj , we now investigate which of them have theΣIR
property.

Let us considerChj first. From

Chj(s) =

n∑

i=2

1.2|s1, . . . , si−1|

= 1.2|s1|+ 1.2

n−1∑

i=2

|s1, . . . , si|

= 1.2|s1|+ 1.2C ′
out(s)

and observation 3.1.3, we conclude thatChj is ΣIR for a fixed relation to be joined
first. If we can optimizeCout in polynomial time, then we can optimizeCout for a fixed
starting relation. Indeed, by trying each relation as a starting relation, we can find the
optimal join tree in polynomial time. An algorithm that computes the optimal solution EX
for an arbitrary relation to be joined first can be found in Section 3.2.2.

Now, considerCsmj. Since

n∑

i=2

|s1, . . . , si−1|log(|s1, . . . , si−1|)

38 CHAPTER 3. JOIN ORDERING

is minimal if and only if
n∑

i=2

|s1, . . . , si−1|

is minimal and
∑n

i=2 |si| log(|si|) is independent of the order of the relations withins
— that is constant — we conclude thatCsmj is ΣIR.

Last, we have thatCnlj is not ΣIR. To see this, consider the following counter
example with three relationsR1, R2, andR3 of sizes 10, 10, and 100, resp. The
selectivities aref1,2 = 9

10 , f2,3 = 1
10 , andf1,3 = 1

10 . Now,

|R1R2| = 90

|R1R3| = 100

|R2R3| = 100

and

Cnl(R1R2R3) = 10 ∗ 10 + 90 ∗ 100 = 9100

Cnl(R1R3R2) = 10 ∗ 100 + 100 ∗ 10 = 2000

Cnl(R2R3R1) = 10 ∗ 100 + 100 ∗ 10 = 2000

We see thatR1R2R3 has the smallest sum of intermediate result sizes but produces the
highest cost. Hence,Cnlj is notΣIR.

3.1.4 Classification of Join Ordering Problems

After having discussed the different classes of query graphs, join trees and cost func-
tions, we can classify join ordering problems. To define a certain join ordering prob-
lem, we have to pick one entry from every class:

Query Graph Classes×Possible Join Tree Classes×Cost Function Class-
es

The query graph classes considered arechain, star, tree, andcyclic. For the join tree
classes we distinguish between the different join tree shapes, i.e. whether they are left-
deep, zig-zag, or bushy trees. We left out the right-deep trees, since they do not differ
in their behavior from left-deep trees. We also have to take into account whether cross
products are considered or not. For cost functions, we use a simple classification: we
only distinguish between those that have the ASI property and those that do not. This
leaves us with4 ∗ 3 ∗ 2 ∗ 2 = 48 different join ordering problems. For these, we will
first review search space sizes and complexity. Then, we discuss several algorithms for
join ordering. Last, we give some insight into cost distributions over the search space
and how this might influence the benchmarking of different join ordering algorithms.

3.1.5 Search Space Sizes

Since search space sizes are easier to count if cross products are allowed, we consider
them first. Then we turn to search spaces where cross productsare not considered.

3.1. QUERIES CONSIDERED 39

Join Trees with Cross Products We consider the number of join trees for a query
graph withn relations. Wen cross products are allowed, the number of left-deep and
right-deep join trees isn!. By allowing cross products, the query graph does not restrict
the search space in any way. Hence, any of then! permutations of then relations
corresponds to a valid left-deep join tree. This is true independent of the query graph.

Similarly, the number of zig-zag trees can be estimated independently of the query
graph. First note that for joiningn relations, we needn − 1 join operators. From any
left-deep tree, we derive zig-zag trees by using the join’s commutativity and exchange
the left and right inputs. Hence, from any left-deep tree forn relations, we can derive
2n−2 zig-zag trees. We have to subtract another one, since the bottommost joins’ ar-
guments are exchanged in different left-deep trees. Thus, there exists a total of2n−2n!
zig-zag trees. Again, this number is independent of the query graph.

The number of bushy trees can be estimated as follows. First,we need the number
of binary trees. Forn leaf nodes, the number of binary trees is given byC(n − 1),
whereC(n) is defined by the recurrence

C(n) =

n−1∑

k=0

C(k)C(n − k − 1)

with C(0) = 1. The numbersC(n) are called theCatalan Numbers(see [191]). They
can also be computed by the following formula:

C(n) =
1

n + 1

(
2n

n

)

.

The Catalan Numbers grow in the order ofΘ(4n/n3/2).
After we know the number of binary trees withn leaves, we now have to attach

then relations to the leaves in all possible ways. For a given binary tree, this can be
done inn! ways. Hence, the total number of bushy trees isn!C(n − 1). This can be
simplified as follows (see also [266, 482, 792]):

n!C(n − 1) = n!
1

n

(
2(n − 1)

n− 1

)

= n!
1

n

(2n− 2)!

(n− 1)!((2n − 2)− (n− 1))!

=
(2n − 2)!

(n− 1)!

Chain Queries, Left-Deep Join Trees, No Cartesian Product We now derive the
function that calculates the number of left-deep join treeswith no cross products for a
chain query ofn relations. That is, the query graph isR1 – R2 – . . . –Rn−1 – Rn. Let
us denote the number of join trees byf(n). Obviously, forn = 0 there is only one
(the empty) join tree. Forn = 1, there is also only one join tree (no join). For larger
n: Consider the join trees forR1 – . . . –Rn−1 where relationRn−1 is thek-th relation
from the bottom wherek ranges from1 to n− 1. From such a join tree we can derive
join trees for alln relations by adding relationRn at any position followingRn−1.
There aren − k such join trees. Only fork = 1, we can also addRn below Rn−1.

40 CHAPTER 3. JOIN ORDERING

Hence, fork = 1 we haven join trees. How many join trees withRn−1 at positionk
are there? Fork = 1, Rn−1 must be the first relation to be joined. Since we do not
consider cross products, it must be joined withRn−2. The next relation must beRn−3,
and so on. Hence, there is only one such join tree. Fork = 2, the first relation must
be Rn−2, which is then joined withRn−1. ThenRn−3, . . . , R1 must follow in this
order. Again, there is only one such join tree. For higherk, for Rn−1 to occur safely at
positionk (no cross products) thek − 1 relationsRn−2, . . . , Rn−k must occur before
Rn−1. There are exactly f(k − 1) join trees for thek − 1 relations. On each such join
tree we just have to addRn−1 on top of it to yield a join tree withRn−1 at positionk.

Now we can compute the f(n) asn +
∑n−1

k=2 f(k− 1) ∗ (n− k) for n > 1. Solving
this recurrence gives usf(n) = 2n−1. The proof is by induction. The casen = 1 is
trivial.

The induction step forn > 1 provided by Thomas Neumann goes as follows:

f(n) = n +

n−1∑

k=2

f(k − 1) ∗ (n− k)

= n +

n−3∑

k=0

f(k + 1) ∗ (n− k − 2)

= n +

n−3∑

k=0

2k ∗ (n− k − 2)

= n +

n−2∑

k=1

k2n−k−2

= n +

n−2∑

k=1

2n−k−2 +

n−2∑

k=2

(k − 1)2n−k−2

= n +

n−2∑

i=1

n−2∑

j=i

2n−j−2

= n +

n−2∑

i=1

n−i−2∑

j=0

2j

= n +

n−2∑

i=1

(2n−i−1 − 1)

= n +

n−2∑

i=1

2i − (n− 2)

= n + (2n−1 − 2)− (n− 2)

= 2n−1

Chain Queries, Zig-Zag Join Trees, No Cartesian Product All possible zig-zag
trees can be derived from a left-deep tree by exchanging the left and right arguments
of a subset of the joins. Since for the first join these alternatives are already considered

3.1. QUERIES CONSIDERED 41

within the set of left-deep trees, we are left withn − 2 joins. Hence, the number of
zig-zag trees forn relations in a chain query is2n−2 ∗ 2n−1 = 22n−3.

Chain Queries, Bushy Join Trees, No Cartesian Product We can compute the
number of bushy trees with no cross products for a chain queryin the following way.
Let us denote this number by f(n). Again, let us assume that the chain query has the
form R1 – R2 – . . . –Rn−1 – Rn. Forn = 0, we only have the empty join tree. For
n = 1 we have one join tree. Forn = 2 we have two join trees. For more relations,
every subtree of the join tree must contain a subchain in order to avoid cross products.
Further, the subchain can occur as the left or right argumentof the join. Hence, we can
compute f(n) as

n−1∑

k=1

2 f(k) f(n− k)

This is equal to

2n−1 C(n− 1)

whereC(n) are the Catalan Numbers. EX

Star Queries, No Cartesian Product The first join has to connect the center relation
R0 with any of the other relations. The other relations can follow in any order. Since
R0 can be the left or the right input of the first join, there are2 ∗ (n − 1)! possible
left-deep join trees for Star Queries with no Cartesian Product.

The number of zig-zag join trees is derived by exchanging thearguments of all
but the first join in any left-deep join tree. We cannot consider the first join since we
did so in counting left-deep join trees. Hence, the total number of zig-zag join trees is
2 ∗ (n− 1)! ∗ 2n−2 = 2n−1 ∗ (n− 1)!.

Constructing bushy join trees with no Cartesian Product from a Star Query other
than zig-zag join trees is not possible.

Remarks The numbers for star queries are also upper bounds for tree queries. For
clique queries, no join tree containing a cross product is possible. Hence, all join trees
are valid join trees and the search space size is the same as the corresponding search
space for join trees with cross products.

To give the reader a feeling for the numbers, the following tables contain the po-
tential search space sizes for somen.

42 CHAPTER 3. JOIN ORDERING

Join trees without cross products
chain query star query

left-deep zig-zag bushy left-deep zig-zag/bushy
n 2n−1 22n−3 2n−1C(n− 1) 2 ∗ (n− 1)! 2n−1(n − 1)!

1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 185794560

With cross products/clique
left-deep zig-zag bushy

n n! 2n−2 ∗ n! n!C(n− 1)

1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 928972800 17643225600

Note that in Figure 2.6 only 32 join trees are listed, whereasthe number of bushy
trees for chain queries with four relations is 40. The missing eight cases are those zig-
zag trees which are symmetric (i.e. derived by applying commutativity to all occurring
joins) to the ones contained in the second column.

From these numbers, it becomes immediately clear why historically the search
space of query optimizers was restricted to left-deep treesand cross products for con-
nected query graphs were not considered.

3.1.6 Problem Complexity

The complexity of the join ordering problem depends on several parameters. These
are the shape of the query graph, the class of join trees to be considered, whether cross
products are considered or not, and whether the cost function has the ASI property or
not. Not for all the combinations complexity results are known. What is known is
summarized in the following table.

3.1. QUERIES CONSIDERED 43

Query graph Join tree Cross products Cost function Complexity

general left-deep no ASI NP-hard
tree/star/chain left-deep no one join method (ASI) P
star left-deep no two join methods (NLJ+SMJ) NP-hard
general/tree/star left-deep yes ASI NP-hard
chain left-deep yes — open

general bushy no ASI NP-hard
tree bushy no — open
star bushy no ASI P
chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard

Ibaraki and Kameda were the first who showed that the problem of deriving optimal
left-deep trees for cyclic queries is NP-hard for a cost function for an n-way nested
loop join implementation [402]. The proof was repeated for the cost functionCout

which has the ASI property [178, 799]. In both proofs, the clique problem was used
for the reduction [285].Cout was also used in the other proofs of NP-hardness results.
The next line goes back to the same paper. Ibaraki and Kameda also described an algo-
rithm to solve the join ordering problem for tree queries producing optimal left-deep
trees for a special cost function for a nested-loop n-way join algorithm. Their algo-
rithm was based on the observation that their cost function has the ASI property. For
this case, they could derive an algorithm from an algorithm for a sequencing problem
for job scheduling designed by Monma and Sidney [564]. They,in turn, used an earlier
result by Lawler [487]. The algorithm of Ibaraki and Kameda was slightly generalized
by Krishnamurthy, Boral, and Zaniolo, who were also able to sketch a more efficient
algorithm. It improves the time bounds fromO(n2 log n) to O(n2). The disadvan-
tage of both approaches is that with every relation, a fixed (i.e. join-tree independent)
join implementation must be associated before the optimization starts. Hence, it on-
ly produces optimal trees if there is only one join implementation available or one is
able to guess the optimal join method before hand. This mightnot be the case. The
polynomial algorithm which we term IKKBZ is described in Section 3.2.2.

For star queries, Ganguly investigated the problem of generating optimal left-deep
trees if no cross products but two different cost functions (one for nested loop join, the
other for sort merge join) are allowed. It turned out that this problem is NP-hard [271].

The next line is due to Cluet and Moerkotte [178]. They showedby reduction from
3DM that taking into account cross products results in an NP-hard problem even for
star queries. Remember that star queries are tree queries and general graphs.

The problem for general bushy trees follows from a result by Scheufele and Mo-
erkotte [693]. They showed that building optimal bushy trees for cross products only
(i.e. all selectivities equal one) is already NP-hard. Thisresult also explains the last
two lines.

By noting that for star queries, all bushy trees that do not contain a cross product
are left-deep trees, the problem can be solved by the IKKBZ algorithm for left-deep
trees. Ono and Lohman showed that for chain queries dynamic programming considers
only a polynomial number of bushy trees if no cross products are considered [586].

44 CHAPTER 3. JOIN ORDERING

This is discussed in Section 3.2.4.
The table is rather incomplete. Many open problems exist. For example, if we

have chain queries and consider cross products: is the problem NP-hard or in P? Some
results for this problem have been presented [693], but it isstill an open problem (see
Section 3.2.7). Open is also the case where we produce optimal bushy trees with no
cross products for tree queries. Yet another example of an open problem is whether
we could drop the ASI property and are still able to derive a polynomial algorithm
for a tree query. This is especially important, since the cost function for a sort-merge
algorithm does not have the ASI property.

Good summaries of complexity results for different join ordering problems can be
found in the theses of Scheufele [691] and Hamalainen [362].

Given that join ordering is an inherently complex problem with no polynomial al-
gorithm in sight, one might wonder whether there exists goodpolynomial approxima-
tion algorithms. Chances are that even this is not the case. Chatterji, Evani, Ganguly,
and Yemmanuru showed that three different optimization problems — all asking for
linear join trees — are not approximable [123].

3.2 Deterministic Algorithms

3.2.1 Heuristics

We now present some simple heuristic solutions to the problem of join ordering. These
heuristics only produce left-deep trees. Since left-deep trees are equivalent with per-
mutations, these heuristics order the joins according to some criterion.

The core algorithm for the heuristics discussed here is thegreedy algorithm(for an
introduction see [191]). In greedy algorithms, aweightis associated with each entity.
In our case, weights are associated with each relation. A typical weight function is
the cardinality of the relation (|R|). Given a weight functionweight , a greedy join
ordering algorithm works as follows:

GreedyJoinOrdering-1({R1, . . . , Rn}, (* weight)(Relation))
Input: a set of relations to be joined and a weight function
Output: a join order
S = ǫ; // initialize S to the empty sequence
R = {R1, . . . , Rn}; // let R be the set of all relations
while(!empty(R)) {

Let k be such that: weight(Rk) = min Ri∈R(weight(Ri));
R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
return S

This algorithm takes cross products into account. If we are only interested in left-deep
join trees with no cross products, we have to require thatRk is connected to some of
the relations contained inS in caseS 6= ǫ. Note that a more efficient implementation
would sort the relations according to their weight.

3.2. DETERMINISTIC ALGORITHMS 45

Not all heuristics can be implemented with a greedy algorithm as simple as above.
An often-used heuristics is to take the relation next that produces the smallest (next)
intermediate result. This cannot be determined by the relation alone. One must take
into account the sequenceS already processed, since only then the selectivities of all
predicates connecting relations inS and the new relation are deducible. And we must
take the product of these selectivities and the cardinalityof the new relation in order to
get an estimate of the intermediate result’s cardinality. As a consequence, the weights
becomerelative to S. In other words, the weight function now has two parameters:
a sequence of relations already joined and the relation whose relative weight is to be
computed. Here is the next algorithm:

GreedyJoinOrdering-2({R1, . . . , Rn},
(* weight)(Sequence of Relations, Relation))

Input: a set of relations to be joined and a weight function
Output: a join order
S = ǫ; // initialize S to the empty sequence
R = {R1, . . . , Rn}; // let R be the set of all relations
while(!empty(R)) {

Let k be such that: weight(S,Rk) = min Ri∈R(weight(S, Ri));
R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
return S

Note that for this algorithm, sorting is not possible.GreedyJoinOrdering-2 can
be improved by taking every relation as the starting one.

GreedyJoinOrdering-3({R1, . . . , Rn}, (* weight)(Sequence of Relations, Relation))
Input: a set of relations to be joined and a weight function
Output: a join order
Solutions = ∅;
for (i = 1; i ≤ n; + + i) {

S = Ri; // initialize S to a singleton sequence
R = {R1, . . . , Rn} \ {Ri}; // let R be the set of all relations
while(!empty(R)) {

Let k be such that: weight(S,Rk) = min Ri∈R(weight(S, Ri));
R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
Solutions += S;

}
return cheapest in Solutions

46 CHAPTER 3. JOIN ORDERING

In addition to the relative weight function mentioned before, another often used
relative weight function is the product of the selectivities connecting relations inS
with the new relation. This heuristics is sometimes calledMinSel.

The above two algorithms generate linear join trees. Fegaras proposed a heuristic
(named Greedy Operator Ordering (GOO)) to generate bushy join trees [241, 242].
The idea is as follows. A set of join treesTrees is initialized such that it contains
all the relations to be joined. It then investigates all pairs of trees contained inTree .
Among all of these, the algorithm joins the two trees that result in the smallest inter-
mediate result when joined. The two trees are then eliminated from Trees and the
new join tree joining them is added to it. The algorithm then looks as follows:

GOO({R1, . . . , Rn})
Input: a set of relations to be joined
Output: join tree
Trees := {R1, . . . , Rn}
while (|Trees | != 1) {

find Ti, Tj ∈ Trees such that i 6= j, |Ti 1 Tj | is minimal
among all pairs of trees in Trees

Trees − = Ti;
Trees − = Tj;
Trees + = Ti 1 Tj ;

}
return the tree contained in Trees;

Our GOO variant differs slightly from the one proposed by Fegaras. He uses arrays,
explicitly handles the forming of the join predicates, and materializes intermediate
result sizes. Hence, his algorithm is a little more elaborated, but we assume that the
reader is able to fill in the gaps.

None of our algorithms so far considers different join implementations. An explic-
it consideration of commutativity for non-symmetric cost functions could also help to
produce better join trees. The reader is asked to work out thedetails of these exten-
sions. In general, the heuristics do not produce the optimalplan. The reader is advisedEX
to find examples where the heuristics are far off the best possible plan.EX

3.2.2 Determining the Optimal Join Order in Polynomial Time

Since the general problem of join ordering is NP-hard, we cannot expect to find a
polynomial solution for it. However, for special cases, we can expect to find solutions
that work in polynomial time. These solutions can also be used as heuristics for the
general case, either to find a not-that-bad join tree or to determine an upper bound for
the costs that is then fed into a search procedure to prune thesearch space.

The most general case for which a polynomial solution is known is charactized by
the following features:

• the query graph must be acyclic

• no cross products are considered

3.2. DETERMINISTIC ALGORITHMS 47

• the search space is restricted to left-deep trees

• the cost function must have the ASI property

The algorithm was presented by Ibaraki and Kameda [402]. Later Krishnamurthy,
Boral, and Zaniolo presented it again for some other cost functions (still having the
ASI property) [471]. They also observed that the upper boundO(n2 log n) of the
original algorithm could be improved toO(n2). In any case, the algorithm is based on
an algorithm discovered by Monma and Sidney for job scheduling [487, 564] . Let us
call the (unimproved) algorithm IKKBZ-Algorithm.

The IKKBZ-Algorithm considers only join operations that have a cost function of
the form:

cost(Ri 1 Rj) = |Ri| ∗ hj(|Rj |)
where eachRj can have its own cost functionhj. We denote the set ofhj by H and
parameterize cost functions with it. Example instanciations are

• hj ≡ 1.2 for main memory hash-based joins

• hj ≡ id for nested-loop joins

where id is the identity function. Let us denote byni the cardinality of the relationRi

(ni := |Ri|). Then, thehi(ni) represent the costs per input tuple to be joined withRi.
The algorithm works as follows. For every relationRk it computes the optimal

join order under the assumption thatRk is the first relation in the join sequence. The
resulting subproblems then resemble a job-scheduling problem that can be solved by
the Monma-Sidney-Algorithm [564].

In order to present this algorithm, we need the notion of aprecedence graph. A
precedence graphis formed by taking a node in the (undirected) query graph and
making this node a root node of a (directed) tree where the edges point away from
the selected root node. Hence, for acyclic query graphs—those we consider in this
section—a precedence graph is a tree. We construct the precedence graph of a query
graphG = (V,E) as follows:

• Make some relationRk ∈ V the root node of the precedence graph.

• As long as not all relations are included in the precedence graph: Choose a
relationRi ∈ V , such that(Rj , Ri) ∈ E is an edge in the query graph andRj

is already contained in the (partial) precedence graph constructed so far andRi

is not. AddRj and the edgeRj → Ri to the precedence graph.

A sequenceS = v1, . . . , vk of nodes conforms to a precedence graphG = (V,E) if
the following conditions are satisfied:

1. for all i (2 ≤ i ≤ k) there exists aj (1 ≤ j < i) with (vj , vi) ∈ E and

2. there is no edge(vi, vj) ∈ E for i > j.

For non-empty sequencesU andV in a precedence graph, we writeU → V if, ac-
cording to the precedence graph,U must occur beforeV . This requiresU andV to be
disjoint. More precisely, there can only be paths from nodesin U to nodes inV and at
least one such path exists.

Consider the following query graph:

48 CHAPTER 3. JOIN ORDERING

R2

R1

R3 R4

R6

R5

For this query graph, we can derive the following precedencegraphs:

R1

R
R3

?	
R2 R4

R	
R5 R6

R2

R
R3

?	
R1 R4

R	
R5 R6

R3

R?	
R1 R2 R4

R	
R6R5

R4

R?	
R3 R5 R6

R	
R3 R5

R5

?
R4

R	
R6 R3

R	
R1 R2

R6

?
R4

R	
R5 R3

R	
R1 R2

The IKKBZ-Algorithm takes a single precedence graph and produces a new one
that is totally ordered. From this order it is very simple to construct a corresponding
join graph. The following figure contains a precedence graph(left-hand side) as gen-
erated by the IKKBZ-Algorithm and the corresponding join graph on the right-hand
side.

R1

R2

R3

R4

R5

R6

?

?

?

?

?

1

1

1

1

1

	

	

	

	

	

R

R

R

R

R

R6

R5

R4

R3

R2R1

3.2. DETERMINISTIC ALGORITHMS 49

Define

R1,2,...,k := R1 1 R2 1 · · · 1 Rk

n1,2,...,k := |R1,2,...,k|
For a given precedence graph, letRi be a relation andRi be the set of relations from
which there exists a path toRi. Then, in any join tree adhering to the precedence
graph, all relations inRi and only those will be joined beforeRi. Hence, we can
definesi =

∏

Rj∈Ri
fi,j for i > 1. Note that for anyi only onej with fi,j 6= 1 exists

in the product. If the precedence graph is a chain, then the following holds:

n1,2,...,k+1 = n1,2...,k ∗ sk+1 ∗ nk+1

We defines1 = 1. Then we have

n1,2 = s2 ∗ (n1 ∗ n2) = (s1 ∗ s2) ∗ (n1 ∗ n2)

and, in general,

n1,2,...,k =
k∏

i=1

(si ∗ ni).

We call thesi selectivities, although they depend on the precedence graph.
The costs for a totally ordered precedence graphG can thus be computed as fol-

lows:

CostH(G) =

n∑

i=2

[n1,2,...,i−1 ∗ hi(ni)]

=

n∑

i=2

[(

i−1∏

j=1

sj ∗ nj) ∗ hi(ni)]

If we definehi(ni) = sini, then CostH ≡ Cout. The factorsini determines by how
much the input relation to be joined withRi changes its cardinality after the join has
been performed. Ifsini is less than one, we call the joindecreasing, if it is larger
than one, we call the joinincreasing. This distinction plays an important role in the
heuristic discussed in Section 3.2.3.

The cost function can also be defined recursively.

Definition 3.2.1 Define the cost functionCH as follows:

CH(ǫ) = 0

CH(Rj) = 0 if Rj is the root

CH(Rj) = hj(nj) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ǫ) = 1

T (S) =
∏

Ri∈S

(si ∗ ni)

50 CHAPTER 3. JOIN ORDERING

It is easy to prove by induction thatCH is well-defined and thatCH(G) = CostH(G).
EX

Definition 3.2.2 Let A and B be two sequences andV and U two non-empty se-
quences. We say that a cost functionC has theadjacent sequence interchange property
(ASI property) if and only if there exists a functionT and a rank function defined for
sequencesS as

rank(S) =
T (S)− 1

C(S)

such that for non-empty sequencesS = AUV B the following holds

C(AUV B) ≤ C(AV UB) ≺≻ rank(U) ≤ rank(V) (3.1)

if AUV B andAV UB satisfy the precedence constraints imposed by a given prece-
dence graph.

Lemma 3.2.3 The cost functionCH defined in Definition 3.2.1 has the ASI property.

The proof is very simple. Using the definition ofCH , we have

CH(AUV B) = CH(A)

+T (A)CH(U)

+T (A)T (U)CH(V)

+T (A)T (U)T (V)CH(B)

and, hence,

CH(AUV B)− CH(AV UB) = T (A)[CH(V)(T (U) − 1)− CH(U)(T (V)− 1)]

= T (A)CH(U)CH(V)[rank(U)− rank(V)]

The proposition follows. 2

Definition 3.2.4 LetM = {A1, . . . , An} be a set of node sequences in a given prece-
dence graph. Then,M is a called amoduleif for all sequencesB that do not overlap
with the sequences inM one of the following conditions holds:

• B → Ai, ∀ 1 ≤ i ≤ n

• Ai → B, ∀ 1 ≤ i ≤ n

• B 6→ Ai andAi 6→ B, ∀ 1 ≤ i ≤ n

Lemma 3.2.5 LetC be any cost function with the ASI property and{A,B} a module.
If A → B and additionallyrank(B) ≤ rank(A), then we find an optimal sequence
among those in whichB directly followsA.

3.2. DETERMINISTIC ALGORITHMS 51

Proof Every optimal permutation must have the form(U,A, V,B,W), sinceA →
B. Assumption:V 6= ǫ. If rank(V) ≤ rank(A), then we can exchangeV andA
without increasing the costs. Ifrank(A) ≤ rank(V), we haverank(B) ≤ rank(V)
due to the transitivity of≤. Hence, we can exchangeB andV without increasing the
costs. Both exchanges produce legal sequences obeying the precedence graph, since
{A,B} is a module. 2

If the precedence graph demandsA → B but rank(B) ≤ rank(A), we speak
of contradictory sequencesA andB. Since the lemma shows that no non-empty sub-
sequence can occur betweenA andB, we will combineA andB into a new single
node replacingA andB. This node represents acompound relationcomprising all
relations inA andB. Its cardinality is computed by multiplying the cardinalities of all
relations occurring inA andB, and its selectivitys is the product of all the selectiv-
ities si of the relationsRi contained inA andB. The continued process of this step
until no more contradictory sequence exists is callednormalization. The opposite step,
replacing a compound node by the sequence of relations it wasderived from, is called
denormalization.

We can now present the algorithmIKKBZ .

IKKBZ(G)
Input: an acyclic query graph G for relations R1, . . . , Rn

Output: the best left-deep tree
R = ∅;
for (i = 1; i ≤ n; + + i) {

Let Gi be the precedence graph derived from G and rooted at Ri;
T = IKKBZ-Sub(Gi);
R+ = T ;

}
return best of R;

IKKBZ-Sub(Gi)
Input: a precedence graph Gi for relations R1, . . . , Rn rooted at some Ri

Output: the optimal left-deep tree under Gi

while (Gi is not a chain) {
let r be the root of a subtree in Gi whose subtrees are chains;
IKKBZ-Normalize(r);
merge the chains under r according to the rank function

in ascending order;
}
IKKBZ-Denormalize(Gi);
return Gi;

IKKBZ-Normalize(r)
Input: the root r of a subtree T of a precedence graph G = (V,E)
Output: a normalized subchain
while (∃ r′, c ∈ V , r →∗ r′, (r′, c) ∈ E: rank(r′) > rank(c)) {

replace r′ by a compound relation r′′ that represents r′c;

52 CHAPTER 3. JOIN ORDERING

};

We do not give the details ofIKKBZ-Denormalize , as it is trivial.

.................................

1
2

................................. 1
4

R1

10
.................................

1
3

.................................1
2R3

100
R6

10
R7

20

................................. 1
4

.................................

.................................

.................................

s

....................................N+

	 R

s

....................................N+

s

....................................N+

	 R

?

s

....................................N+

?

?

s

....................................N+

?

- - - - - --- -

R4

100

1
5

1
10

A)

R2

100

R1

R2 R3 R4

R6,7R5

19
20

24
25

5
6

9
10

49
50

C)

R1

R2 R3 R4,5,6,7

49
50

1119
1200

24
25

R1

R2 R3 R4

R6

R7

R55
6

24
25

49
50

B)

19
20

4
5

1
2

G) H)

F)

R1

R2 R3 R4

R6,7

R5

D)

9
10

49
50

24
25

5
6

19
20

R1

R2 R3 R4,5

R6,7

49
50

24
25

119
120

9
10

E)

R5

18

R4,5,6,7R1 R3 R2 R7R3 R2 R4 R5 R6R1

Figure 3.3: Illustrations for the IKKBZ Algorithm

Let us illustrate the algorithmIKKBZ-Sub by a simple example. We use the cost
function Cout. Figure 3.3 A) shows a query graph. The relations are annotated with
their sizes and the edges with the join selectivities. Chosing R1 as the root of the
precedence graph results in B). There, the nodes are annotated by the ranks of the
relations. R4 is the root of a subtree all of whose subtrees are chains. Hence, we
normalize it. ForR5, there is nothing to do. The ranks ofR6 andR7 are contradictory.
We form a compound relationR6,7, calculate its cardinality, selectivity, and rank. The

3.2. DETERMINISTIC ALGORITHMS 53

latter is shown in C). Merging the two subchains underR4 results in D). NowR1 is
the root of a subtree with only chains underneath. Normalization detects that the ranks
for R4 andR5 are contradictory. E) shows the tree after introducing the compound
relationR4,5. Now R4,5 andR6,7 have contradictory ranks, and we replace them by
the compound relationR4,5,6,7 (F). Merging the chains underR1 gives G. Since this is
a chain, we leave the loop and denormalize. The final result isshown in H.

We can use the IKKBZ-Algorithm to derive a heuristics also for cyclic queries, i.e.
for general query graphs. In a first step, we determine a minimal spanning tree of the
query graph. It is then used as the input query graph for the IKKBZ-Algorithm. Let us
call this theIKKBZ-based Heuristics.

3.2.3 The Maximum-Value-Precedence Algorithm

Lee, Shih, and Chen proposed a very interesting heuristics for the join ordering prob-
lem [488]. They use aweighted directed join graph(WDJG) to represent queries.
Within this graph, every join tree corresponds to a spanningtree. Given a conjunctive
query with join predicatesP . For a join predicatep ∈ P , we denote byR(p) the
relations whose attributes are mentioned inp.

Definition 3.2.6 Thedirected join graphof a conjunctive query with join predicates
P is a triple G = (V,Ep, Ev), whereV is the set of nodes andEp andEv are sets of
directed edges defined as follows. For any two nodesu, v ∈ V , if R(u) ∩ R(v) 6= ∅
then (u, v) ∈ Ep and (v, u) ∈ Ep. If R(u) ∩ R(v) = ∅, then (u, v) ∈ Ev and
(v, u) ∈ Ev. The edges inEp are calledphysical edges, those inEv virtual edges.

Note that inG for every two nodesu, v, there is an edge(u, v) that is either physical
or virtual. Hence,G is a clique.

Let us see how we can derive a join tree from a spanning tree of adirected join
graph. Figure 3.4 I) gives a simple query graphQ corresponding to a chain and Part II)
presentsQ’s directed join graph. Physical edges are drawn by solid arrows, virtual
edges by dotted arrows. Let us first consider the spanning tree shown in Part III a).
It says that we first executeR1 1p1,2 R2. The next join predicate to evaluate isp2,3.
Obviously, it does not make much sense to executeR2 1p2,3 R3, sinceR1 andR2

have already been joined. Hence, we replaceR2 in the second join by the result of
the first join. This results in the join tree(R1 1p1,2 R2) 1p2,3 R3. For the same
reason, we proceed by joining this result withR4. The final join tree is shown in
Part III b). Part IV a) shows another spanning tree. The two joins R1 1p1,2 R2 and
R3 1p3,4 R4 can be executed independently and do not influence each other. Next,
we have to considerp2,3. Both R2 andR3 have already been joined. Hence, the last
join processes both intermediate results. The final join tree is shown in Part IV b).
The spanning tree shown in Part V a) results in the same join tree shown in Part V b).
Hence, two different spanning trees can result in the same join tree. However, the
spanning tree in Part IV a) is more specific in that it demandsR1 1p1,2 R2 to be
executed beforeR3 1p3,4.

Next, take a look at Figure 3.5. Part I), II), and III a) show a query graph, its
directed join tree and a spanning tree. To build a join tree from the spanning tree we
proceed as follows. We have to executeR2 1p2,3 R3 andR3 1 R4 first. In which way
we do so is not really fixed by the spanning tree. So let us do both in parallel. Next is

54 CHAPTER 3. JOIN ORDERING

6

6

III a)

p2,3

p1,2

p3,4

R4

R3

R2R1

III b)

-..........................
�..........................

	

�
R

I

p3,4

p2,3

p1,2

II

R4R3R2R1

IV b)

R4R3R2R1

V b)

6

6
..
..
..
..
..
..
..
.

� I

I R2 R3R1 R4

IV a)

p3,4

p2,3

p1,2

V a)

p1,2 p3,4

p2,3

Figure 3.4: A query graph, its directed join graph, some spanning trees and join trees

p1,2. The only dependency the spanning tree gives us is that it should be executed after
p3,4. Since there is no common relation between those two, we perform R1 1p1,2 R2.
Last isp4,5. Since we findp3,4 below it, we use the intermediate result produced by
it as a replacement forR4. The result is shown in Part III b). It has three loose ends.
Additional joins are required to tie the partial results together. Obviously, this is not
what we want. A spanning tree that avoids this problem of additional joins is called
effective. It can be shown that a spanning treeT = (V,E) is effective if it satisfies the
following conditions [488]:

1. T is a binary tree,

2. for all inner nodesv and nodeu with (u, v) ∈ E it holds thatR∗(T (u)) ∩
R(v) 6= ∅, and

3.2. DETERMINISTIC ALGORITHMS 55

-
�p1,2

-
�p2,3

-
�p3,4

.................................

.................................

.................................

.................................

.................................

.................................

R4R3

R5

.................................

R2R1

R4 R5

6

..

..

..

..

..

..

..

..

..

.

p3,4

�
........................

I
.....................

I R2 R3R1

II p4,5

III b)

R3R2

?III a)

p1,2

p4,5

p2,3

...........
............

.
...........

............
.

...........
............

.
...........

............
.

...........
............

.
...........

............
.

...........
............

.
...........

............
.

Figure 3.5: A query graph, its directed join tree, a spanningtree and its problem

3. for all nodesv, u1, u2 with u1 6= u2, (u1, v) ∈ E, and(u2, v) ∈ E one of the
following two conditions holds:

(a) ((R∗(T (u1)) ∩R(v)) ∩ (R∗(T (u2)) ∩R(v))) = ∅ or

(b) (R∗(T (u1)) ∩R(v) = R(v)) ∨ (R∗(T (u2)) ∩R(v) = R(v)).

Thereby, we denote byT (v) the partial tree rooted atv and byR∗(T ′) = ∪v∈T ′R(v)
the set of all relations in subtreeT ′.

We see that the spanning tree in Figure 3.5 III a) is ineffective since, for example,
R(p2,3) ∩ R(p4,5) = ∅. The spanning tree in Figure 3.4 IV a) is also ineffective.
During the algorithm we will take care—by checking the aboveconditions—that only
effective spanning trees are generated.

We now assign weights to the edges of the directed join graph.For two nodes
v, u ∈ V defineu⊓v := R(u)∩R(v). For simplicity, we assume that every predicate
involves exactly two relations. Then for allu, v ∈ V , u ⊓ v contains a single relation.
Let v ∈ V be a node withR(v) = {Ri, Rj}. We abbreviateRi 1v Rj by 1v. Using
these notations, we can attach weights to the edges to define theweighted directed join
graph.

Definition 3.2.7 LetG = (V,Ep, Ev) be a directed join graph for a conjunctive query
with join predicatesP . Theweighted directed join graphis derived fromG by attach-
ing a weight to each edge as follows:

• Let (u, v) ∈ Ep be a physical edge. The weightwu,v of (u, v) is defined as

wu,v =
| 1u |
|u ⊓ v| .

• For virtual edges(u, v) ∈ Ev, we definewu,v = 1.

56 CHAPTER 3. JOIN ORDERING

(Lee, Shih, and Chen actually attach two weights to each edge: one additional weight
for the size of the tuples (in bytes) [488].)

The weights of physical edges are equal to thesi of the dependency graph used
in the IKKBZ-Algorithm (Section 3.2.2). To see this, assumeR(u) = {R1, R2},
R(v) = {R2, R3}. Then

wu,v =
| 1u |
|u ⊓ v|

=
|R1 1u R2|
|R2|

=
f1,2 |R1| |R2|
|R2|

= f1,2 |R1|

Hence, if the joinR1 1u R2 is executed before the joinR2 1v R3, the input size to
the latter join changes by a factorwu,v. This way, the influence of a join on another
join is captured by the weights. Since those nodes connectedby a virtual edge do not
influence each other, a weight of1 is appropriate.

Additionally, we assign weights to the nodes of the directedjoin graph. The weight
of a node reflects the change in cardinality to be expected when certain other joins have
been executed before. They are specified by a (partial) spanning treeS. GivenS, we
denote by1S

pi,j
the result of the join1pi,j if all joins precedingpi,j in S have been

executed. Then the weight attached to nodepi,j is defined as

w(pi,j, S) =
| 1S

pi,j
|

|Ri 1pi,j Rj |
.

For empty sequencesǫ, we definew(pi,j , ǫ) = |Ri 1pi,j Rj|. Similarly, we define
the cost of a nodepi,j depending on other joins preceding it in some given spanning
treeS. We denote this bycost(pi,j, S) . The actual cost function can be one we
have introduced so far or any other one. In fact, if we have a choice of several join
implementations, we can take the minimum over all their costfunctions. This then
choses the most effective join implementation.

The maximum value precedence algorithm works in two phases.In the first phase,
it searches for edges with a weight smaller than one. Among these, the one with
the biggest impact is chosen. This one is then added to the spanning tree. In other
words, in this phase, the costs of expensive joins are minimized by making sure that
(size) decreasing joinsare executed first. The second phase adds edges such that the
intermediate result sizes increase as little as possible.

MVP(G)
Input: a weighted directed join graph G = (V,Ep, Ev)
Output: an effective spanning tree
Q1.insert(V); / * priority queue with smallest node weights w(·) first * /
Q2 = ∅; / * priority queue with largest node weights w(·) first * /
G′ = (V ′, E′) with V ′ = V and E′ = Ep; / * working graph * /

3.2. DETERMINISTIC ALGORITHMS 57

S = (VS , ES) with VS = V and ES = ∅; / * resulting effective spanning tree * /
while (! Q1.empty() && |ES | < |V | − 1) { / * Phase I * /

v = Q1.head();
among all (u, v) ∈ E′, wu,v < 1 such that

S′ = (V,E′
S) with E′

S = ES ∪ {(u, v)} is acyclic and effective
select one that maximizes cost(1v, S) - cost(1v, S

′);
if (no such edge exists) {

Q1.remove(v);
Q2.insert(v);
continue;

}
MvpUpdate((u, v));
recompute w(·) for v and its ancestors; / * rearranges Q1 * /

}
while (! Q2.empty() && |ES | < |V | − 1) { / * Phase II * /

v = Q2.head();
among all (u, v), (v, u) ∈ E′ denoted by (x, y) henceforth

such that
S′ = (V,E′

S) with E′
S = ES ∪ {(x, y)} is acyclic and effective

select the one that minimizes cost(1v, S
′) - cost(1v, S);

MvpUpdate((x, y));
recompute w(·) for y and its ancestors; / * rearranges Q2 * /

}
return S;

MvpUpdate((u, v))
Input: an edge to be added to S
Output: side-effects on S, G′,

ES ∪ = {(u, v)};
E′ \ = {(u, v), (v, u)};
E′ \ = {(u,w)|(u,w) ∈ E′}; / * (1) * /
E′ ∪ = {(v,w)|(u,w) ∈ Ep, (v,w) ∈ Ev}; / * (3) * /
if (v has two inflowing edges in S) { / * (2) * /

E′ \ = {(w, v)|(w, v) ∈ E′};
}
if (v has one outflowing edge in S) { / * (1) in paper but not needed * /

E′ \ = {(v,w)|(v,w) ∈ E′};
}

Note that in order to test for the effectiveness of a spanningtree in the algorithm,
we just have to check the conditions for the node the selectededge leads to.

MvpUpdate first adds the selected edge to the spanning tree. It then eliminates
edges that need not to be considered for building an effective spanning tree. Since
(u, v) has been added, both(u, v) and(v, u) do not have to be considered any longer.
Also, since effective spanning trees are binary trees, (1) every node must have only
one parent node and (2) at most two child nodes. The edges leading to a violation are

58 CHAPTER 3. JOIN ORDERING

eliminated byMvpUpdate in the lines commented with the corresponding numbers.
For the line commented (3) we have the situation thatu→ v 99K w andu→ w in G.
This means thatu andw have common relations, butv andw do not. Hence, the result
of performingv on the result ofu will have a common relation withw. Thus, we add
a (physical) edgev → w.

3.2.4 Dynamic Programming

Algorithms

Consider the two join trees

(((R1 1 R2) 1 R3) 1 R4) 1 R5

and
(((R3 1 R1) 1 R2) 1 R4) 1 R5.

If we know that((R1 1 R2) 1 R3) is cheaper than((R3 1 R1) 1 R2), we know
that the first join tree is cheaper than the second. Hence, we could avoid generating
the second alternative and still won’t miss the optimal jointree. The general principle
behind this is theoptimality principle(see [190]). For the join ordering problem, it can
be stated as follows.1

Let T be an optimal join tree for relationsR1, . . . , Rn. Then, every sub-
treeS of T must be an optimal join tree for the relations it contains.

To see why this holds, assume that the optimal join treeT for relationsR1, . . . , Rn

contains a subtreeS which is not optimal. That is, there exists another join treeS′

for the relations contained inS with strictly lower costs. Denote byT ′ the join tree
derived by replacingS in T by S′. SinceS′ contains the same relations asS, T ′ is a
join tree for the relationsR1, . . . , Rn. The costs of the join operators inT andT ′ that
are not contained inS andS′ are the same. Then, since the total cost of a join tree is
the sum of the costs of the join operators andS′ has lower costs thanS, T ′ has lower
costs thanT . This contradicts the optimality ofT .

The idea of dynamic programming applied to the generation ofoptimal join trees
now is to generate optimal join trees for subsets ofR1, . . . , Rn in a bottom-up fashion.
First, optimal join trees for subsets of size one, i.e. single relations, are generated.
From these, optimal join trees of size two, three and so on until n are generated.

Let us first consider generating optimal left-deep trees. There, join trees for subsets
of sizek are generated from subsets of sizek−1 by adding a new join operator whose
left argument is a join tree fork − 1 relations and whose right argument is a single
relation. Exchanging left and right gives us the procedure for generating right-deep
trees. If we want to generate zig-zag trees since our cost function is asymmetric, we
have to consider both alternatives and take the cheapest one. We capture this in a pro-
cedureCreateJoinTree that takes two join trees as arguments and generates the
above-mentioned alternatives. In case we want to consider different implementations
for the join, we have to perform the above steps for all of themand return the cheapest
alternative. Summarizing, the pseudo-code forCreateJoinTree looks as follows:

1The optimality principle does not hold in the presence of properties.

3.2. DETERMINISTIC ALGORITHMS 59

CreateJoinTree(T1, T2)
Input: two (optimal) join trees T1 and T2.

for linear trees, we assume that T2 is a single relation
Output: an (optimal) join tree for joining T1 and T2.
BestTree = NULL;
for all implementations impl do {

if (!RightDeepOnly) {
Tree = T1 1

i mpl T2

if (BestTree == NULL || cost(BestTree) > cost(Tree)) {
BestTree = Tree;

}
}
if (!LeftDeepOnly) {

Tree = T2 1
i mpl T1

if (BestTree == NULL || cost(BestTree) > cost(Tree)) {
BestTree = Tree;

}
}

}
return BestTree;

The boolean variablesRightDeepOnly andLeftDeepOnly are used to restrict
the search space to right-deep trees and left-deep trees. Ifboth are false, zig-zag trees
are generated. However,CreateJoinTree also generates bushy trees, if none of
the input trees is a single relation.

In case of linear trees,T2 will be the single relation in all of our algorithms.
CreateJoinTree should not copyT1 or T2. Instead, the newly generated join
trees should shareT1 andT2 by using pointers. Further, the join trees generated do
not really need to be generated except for the final (best) join tree: the cost functions
should be implemented such that they can be evaluated if theyare given the left and
right argument of the join.

Using CreateJoinTree , we are now ready to present our first dynamic pro-
gramming algorithm in pseudo-code.

DP-Linear-1({R1, . . . , Rn})
Input: a set of relations to be joined
Output: an optimal left-deep (right-deep, zig-zag) join tree
for (i = 1; i <= n; ++i) {

BestTree({Ri}) = Ri;
}
for (i = 1; i < n; ++i) {

for all S ⊆ {R1, . . . , Rn}, |S| = i do {
for all Rj ∈ {R1, . . . , Rn}, Rj 6∈ S do {

60 CHAPTER 3. JOIN ORDERING

R1
R4R3R2

R3R1 R2 R4}{

R1 R2 R4{ }

R1 R2 R3{ }

R1 R3

R1 R4{ }

R1 R3
R2 R3

R1 R3 R4{ }

R2 R3 R4

R2
R4

R4{ }
{ }
{ }

{ }

{ }
}{ R3

Figure 3.6: Search space with sharing under optimality principle

if (NoCrossProducts && !connected({Rj}, S)) {
continue;

}
CurrTree = CreateJoinTree(BestTree(S), Rj);
S′ = S ∪ {Rj};
if (BestTree(S′) == NULL || cost(BestTree(S′)) > cost(CurrTree)) {

BestTree(S′) = CurrTree;
}

}
}

}
return BestTree({R1, . . . , Rn});
NoCrossProducts is a boolean variable indicating whether cross products should
be investigated. Of course, if the join graph is not connected, there must be a cross
product, but forDP-Linear-1 and subsequent algorithms we assume that it is con-
nected. The boolean functionconnected returns true, if there is a join predicate
between one of the relations in its first argument and one of the relations in its second.
The variableBestTree keeps track of the best join trees generated for every subset
of the relations{R1, . . . , Rn}. How this is done may depend on several parameters.
The approaches are to use a hash table or an array of size2n(−1). Another issue isXC search space

size difference
problem

how to represent the sets of relations. Typically, bitvector representations are used.

3.2. DETERMINISTIC ALGORITHMS 61

Then, testing for membership, computing a set’s complement, adding elements and
unioning is cheap. Yet another issue is the order in which join trees are generated. The
procedureDP-Linear-1 takes the approach to generate the join trees for subsets of
size1, 2, . . . , n. To do so, it must be able to access the subsets of{R1, . . . , Rn} or
their respective join trees by their size. One possibility is to chain all the join trees for
subsets of a given sizek (1 ≤ k ≤ n) and to use an array of sizen to keep pointers
to the start of the lists. In this case, to every join tree the set of relations it contains
is attached, in order to be able to perform the testRi 6∈ S. One way to do this is to
embed a bitvector into each join tree node.

Excursion If dynamic programming uses a static hash table, determining its size in
advance is necessary as the search space sizes differ vastlyfor different query graphs.
In general, for every connected subgraph of the query graph one entry must exist.
Chains require far fewer entrie than cliques. It would be helpful to have a small routine
solving the following problem: given a query graph, how manyconnected subgraph
are there? Unfortunatly, this problem is #-P hard as Sutner,Satyanarayana, and Suffel
showed [782]. They build on results by Valiant [815] and Lichtenstein [505]. (For a
definition of #P-hard see the book by Lewis and Papadimitriou[503] or the original
paper by Valiant [814].)

Figure 3.6 illustrates how the procedureDP-Linear-1 works. In its first loop,
it initializes the bottom row of join trees of size one. Then it computes the join trees
joining exactly two relations. This is indicated by the nextgroup of join trees. Since
the figure leaves out commutativity, only one alternative join tree for every subset of
size two is generated. This changes for subsets of size three. There, three alternative
join trees are generated. Only the best join tree is retained. This is indicated by the
ovals that encircle three join trees. Only this best join tree of size three is used to
generate the final best join tree.

The short clarification after the algorithm already adumbrated that the order in
which join trees are generated is not compulsory. The only necessary condition is the
following.

Let S be a subset of{R1, . . . , Rn}. Then, before a join tree forS can
be generated, the join trees for all relevant subsets ofS must already be
available.

Note that this formulation is general enough to also capturethe generation of bushy
trees. It is, however, a little vague due to its reference to “relevance”. For the different
join tree classes, this term can be given a precise semantics. EX

Let us take a look at an alternative order to join tree generation. Assume that sets
of relations are represented as bitvectors. A bitvector is nothing more than a base two
integer. Successive increments of an integer/bitvector lead to different subsets. Further,
the above condition is satisfied. We illustrate this by a small example. Assume that
we have three relationsR1, R2, R3. The i-th bit from the right in a three-bit integer
indicates the presence ofRi for 1 ≤ i ≤ 3.

62 CHAPTER 3. JOIN ORDERING

000 {}
001 {R1}
010 {R2}
011 {R1, R2}
100 {R3}
101 {R1, R3}
110 {R2, R3}
111 {R1, R2, R3}

This observation leads to another formulation of our dynamic programming algo-
rithm. For this algorithm, it is very convenient to use an array of size2n to represent
BestTree(S) for subsetsS of {R1, . . . , Rn}.

DP-Linear-2({R1, . . . , Rn})
Input: a set of relations to be joined
Output: an optimal left-deep (right-deep, zig-zag) join tree
for (i = 1; i <= n; ++i) {

BestTree(1 << i) = Ri;
}
for (S = 1; S < 2n; ++S) {

if (BestTree(S) != NULL) continue;
for all i ∈ S do {

S′ = S \ {i};
CurrTree = CreateJoinTree(BestTree(S′), Ri);
if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {

BestTree(S) = CurrTree;
}

}
}
return BestTree(2n− 1);

DP-Linear-2 differs fromDP-Linear-1 not only in the order in which join trees
are generated. Another difference is that it takes cross products into account. As
an exercise, design a variant of it that does not produce jointrees containing cross
products for connected query graphs.EX

FromDP-Linear-2 , it is easy to derive an algorithm that explores the space of
bushy trees.

DP-Bushy({R1, . . . , Rn})
Input: a set of relations to be joined
Output: an optimal bushy join tree
for (i = 1; i <= n; ++i) {

BestTree(1 << i) = Ri;
}
for (S = 1; S < 2n; ++S) {

3.2. DETERMINISTIC ALGORITHMS 63

if (BestTree(S) != NULL) continue;
for all S1 ⊂ S do {

S2 = S \ S1;
CurrTree = CreateJoinTree(BestTree(S1), BestTree(S2));
if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {

BestTree(S) = CurrTree;
}

}
}
return BestTree(2n− 1);

This algorithm also takes cross products into account. The critical part is the generation EX
of all subsets ofS. Fortunately, Vance and Maier [816] provide a code fragmentwith
which subset bitvector representations can be generated very efficiently. In C, this
fragment looks as follows:

S1 = S & - S;
do {

/ * do something with subset S1 * /
S1 = S & (S1 - S);

} while (S1 != S);

S represents the input set.S1 iterates through all subsets ofS whereS itself and the
empty set are not considered. Analogously, all supersets anbe generated as follows:

S1 = ˜S & - ˜S;
/ * do something with first superset S1 * /
while (S1) {

S1 = ˜S & (S1 - ˜S)
/ * do something with superset S1

}
S represents the input set.S1 iterates through all supersets ofS includingS itself.

Excursion Problem: exploiting orderings devastates the optimality principle. Ex-
ample:. . . XC ToDo

Excursion Pruning. . . XC ToDo

Number of Join Trees Explored

The number of join trees investigated by dynamic programming was extensively stud-
ied by Ono and Lohman [585, 586]. In order to estimate these numbers, we assume
thatCreateJoinTree produces a single join tree and hence counts as one although
it may evaluate the costs for several join alternatives. We further do not count the
initial join trees containing only a single relation.

64 CHAPTER 3. JOIN ORDERING

Join Trees With Cartesian Product The numbers of linear and bushy join trees with
cartesian product is easiest to determine. They are independent of the query graph. For
linear join trees, the number of join trees generated by dynamic programming is

n2n−1 − n(n + 1)

2

Proof?ToDo/EX?
Dynamic programming investigates the following number of bushy trees if cross

products are considered.
(3n − 2n+1 + 1)

2

Proof?ToDo/EX?

Join Trees without Cross Products Consider a chain query containingn relations.
If we advise dynamic programming to produce a bushy tree not considering cross
products, then it generates

n∑

k=2

(k − 1)(n − k + 1) =
n3 − n

6

alternative join trees. This can be seen as follows. Fork = 2, . . . , n, dynamic pro-
gramming performs the following step: It produces a join tree containingk relations.
Since cross products are not considered, thesek relations must induce a connected
subgraph of the query graph. That is, they must be subchains.In order to generate a
subtree fork relations, we must chose join trees for subchains of sizei ∈ {1, . . . , k−1}
and for a subchain of lengthj = k − i to build a join tree fork relations. We have
k − 1 possibilities for this choice. Further, there aren− k + 1 subchains of the query
graph containingk relations. This leaves us with(k − 1)(n − k + 1) join trees that
need to be considered for constructing join trees of sizek. It remains to show that the
above equality holds. For the base casen = 0, this is obvious. The inductive step goes
as follows:

n∑

k=2

(k − 1)(n − k + 1) = (n− 1)(n − n + 1) +
n−1∑

k=2

(k − 1)(n − k + 1)

= (n− 1) +

n−1∑

k=2

(k − 1)(n − 1− k + 1) +

n−1∑

k=2

(k − 1)

=
6n− 6

6
+

(n− 1)3 − (n− 1)

6
+

(n− 2)(n− 1)

2

=
6n− 6

6
+

n3 − 3n2 + 3n− 1− n + 1

6
+

3n2 − 9n + 6

6

=
n3 − n

6

Consider again a chain query withn relations. In order to produce a linear join
tree where cross products are not considered, dynamic programming investigates

(n− 1)2

3.2. DETERMINISTIC ALGORITHMS 65

alternative join trees. This follows from the previous proof. First, we observe that for
a join tree withk−1 relations there exists only a limited number of extensions to form
a linear join tree of sizek:

• Fork = 2, there exists only one possibility to form a linear join treeand

• for k > 2, there exist exactly two possibilities to form a linear jointree.

Therefore, dynamic programming considers the following number of linear join trees:

(n− 1) +
n∑

k=3

2(n − k + 1) = (n− 1) + 2
n∑

k=3

(n− k + 1)

= (n− 1) + 2
n−2∑

k=1

k

= (n− 1) + 2
(n − 1)(n − 2)

2
= (n− 1) + (n2 − 3n + 2)

= n2 − 2n + 1

= (n− 1)2

Let us come to star queries withn relations. Dynamic programming then considers

(n− 1)2n−2

linear join trees when it avoids cross products. Note that wecannot construct bushy
trees for star queries if we want to avoid cross products. To see this, we observe the
following. In order to joink relations, we can chosek − 1 relations arbitrarily among
then− 1 relations. This holds since the center of the star always hasto be among the
k relations. Hence, there are

(n−1
k−1

)
subsets of relations to consider. Further, there are

k−1 possibilities to construct them from smaller join trees by adding a single relation.
Therefore, the number of considered join trees is

n∑

k=2

(k − 1)

(
n− 1

k − 1

)

= (n− 1)2n−2

That the equality holds can be seen as follows. Using standard equations for binomial
coefficients (see Appendix E), we have

∑n
k=2(k − 1)

(
n−1
k−1

)
= (n− 1)

∑n
k=2

(
n−2
k−2

)
by E.4

= (n− 1)
∑n−2

k=0

(n−2
k

)

= (n− 1)2n−2 by E.9

The following table presents some results for the above formulas.

66 CHAPTER 3. JOIN ORDERING

without cross products with cross products
chain star any query graph

linear bushy linear linear bushy
n (n− 1)2 (n3 − n)/6 (n − 1)2n−2 n2n−1 − n(n + 1)/2 (3n − 2n+1 + 1)/2

2 1 1 1 1 1
3 4 4 4 6 6
4 9 10 12 22 25
5 16 20 32 65 90
6 25 35 80 171 301
7 36 56 192 420 966
8 49 84 448 988 3025
9 64 120 1024 2259 9330

10 81 165 2304 5065 28501

Compare this table with the actual sizes of the search spacesin Section 3.1.5.
The dynamic programming algorithms can be implemented veryefficiently and

often form the core of commercial plan generators. However,they have the disadvan-
tage that no plan is generated if they run out of time or space since the search space
they have to explore is too big. One possible remedy goes as follows. Assume that a
dynamic programming algorithm is stopped in the middle of its way through its actual
search space. Further assume that the largest plans generated so far involvek relations.
Then the cheapest of the plans withk relations is completed by applying any heuristics
(e.g. MinSel). The completed plan is then returned. In Section 3.4.5, we will see two
alternative solutions.

3.2.5 Memoization

Whereas dynamic programming constructs the join trees iteratively from small trees
to larger trees, i.e. works bottom up, memoization works recursively. For a given
set of relationsS, it produces the best join tree forS by recursively calling itself for
every subsetS1 of S and considering all join trees betweenS1 and its complement
S2. The best alternative is memoized (hence the name). The reason is that two (even
different) (sub-) sets of all relations may very well have the common subsets. For
example,{R1, R2, R3, R4, R5} and {R2, R3, R4, R5, R6} have the common subset
{R2, R3, R4, R5}. In order to avoid duplicate work, memoization is essential.

In the following variant of memoization, we explore the search space of all bushy
trees and consider cross products. We split the functionality across two functions. TheEX
first one initializes theBestTree data structure with single relation join trees forRi

and then calls the second one. The second one is the core memoization procedure
which calls itself recursively.

MemoizationJoinOrdering(R)
Input: a set of relations R
Output: an optimal join tree for R
for (i = 1; i <= n; ++i) {

3.2. DETERMINISTIC ALGORITHMS 67

BestTree({Ri}) = Ri;
}
return MemoizationJoinOrderingSub(R);

MemoizationJoinOrderingSub(S)
Input: a (sub-) set of relations S
Output: an optimal join tree for S
if (NULL == BestTree(S)) {

for all S1 ⊂ S do {
S2 = S \ S1;
CurrTree = CreateJoinTree(MemoizationJoinOrderingSub(S1), MemoizationJoin
if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {

BestTree(S) = CurrTree;
}

}
}
return BestTree(S);

Again, pruning techniques can help to speed up plan generation [724]. ToDo?

3.2.6 Join Ordering by Generating Permutations

For any set of cost functions, we can directly generate permutations. Generating all
permutations is clearly too expensive for more than a coupleof relations. However, we
can safely neglect some of them. Consider the join sequenceR1R2R3R4. If we know
thatR1R3R2 is cheaper thanR1R2R3, we do not have to considerR1R2R3R4. The
idea of the following algorithm is to construct permutations by successively adding
relations. Thereby, an extended sequence is only explored if exchanging the last two
relations does not result in a cheaper sequence.

ConstructPermutations(Query Specification)
Input: query specification for relations {R1, . . . , Rn}
Output: optimal left-deep tree
BestPermutation = NULL;
Prefix = ǫ;
Rest = {R1, . . . , Rn};
ConstructPermutationsSub(Prefix, Rest);
return BestPermutation

ConstructPermutationsSub(Prefix, Rest)
Input: a prefix of a permutation and the relations to be added (Rest)
Ouput: none, side-effect on BestPermutation
if (Rest == ∅) {

if (BestPermutation == NULL || cost(Prefix) < cost(BestPermutation)) {
BestPermutation = Prefix;

}

68 CHAPTER 3. JOIN ORDERING

return
}
foreach (Ri, Rj ∈ Rest) {

if (cost(Prefix ◦ 〈Ri, Rj〉) ≤ cost(Prefix ◦ 〈Rj , Ri〉)) {
ConstructPermutationsSub(Prefix ◦ 〈Ri〉, Rest \ {Ri});

}
if (cost(Prefix ◦ 〈Rj , Ri〉) ≤ cost(Prefix ◦ 〈Ri, Rj〉)) {

ConstructPermutationsSub(Prefix ◦ 〈Rj〉, Rest \ {Rj});
}

}
return

The algorithm can be made more efficient, if theforeach loop considers only a sin-
gle relation and performs the swap test with this relation and the last relation occurring
in Prefix .

The algorithm has two main advantages over dynamic programming and memo-
ization. The first advantage is that it needs only linear space opposed to exponential
space for the two mentioned alternatives. The other main advantage over dynamic
programming is that it generates join trees early, whereas with dynamic programming
we only generate a plan after the whole search space has been explored. Thus, if the
query contains too many joins—that is, the search space cannot be fully explored in
reasonable time and space—dynamic programming will not generate any plan at all.
If stopped,ConstructPermutations will not necessarily compute the best plan,
but still some plans have been investigated. This allows us to stop it after some time
limit has exceeded. The time limit itself can be fixed, like 100 ms, or variable, like 5%
of the execution time of the best plan found so far.

The predicates in theif statement can be made more efficient if a (local) ranking
function is available. Further speed-up of the algorithm can be achieved if additionally
the idea of memoization is applied.

Worst Case AnalysisToDo/EX
Pruning/memoization/propagationToDo/EX

3.2.7 A Dynamic Programming based Heuristics for Chain Queries

In Section 3.1.6, we saw that the complexity of producing optimal left-deep trees pos-
sibly containing cross products for chain queries is an openproblem. However, the
case does not seem to be hopeless. In fact, Scheufele and Moerkotte present two al-
gorithms [691, 693] for this problem. For one algorithm, it can be proven that it has
polynomial runtime, for the other, it can be proven that it produces the optimal join
tree. However, for none of them both could be proven so far.

Basic Definitions and Lemmata

An instance of thejoin-ordering problem for chain queries(or achain queryfor short)
is fully described by the following parameters. First,n relationsR1, . . . , Rn are given.
The size of relationRi (1 ≤ i ≤ n) is denoted by|Ri| or nRi . Second, the query

3.2. DETERMINISTIC ALGORITHMS 69

graphG on the set of relationsR1, . . . , Rn must be a chain. That is, its edges are
{(Ri, Ri+1) | 1 ≤ i < n}:

R1 — R2 — . . . — Rn

For every edge(Ri, Ri+1), there is an associated selectivityfi,i+1 = |Ri 1 Ri+1|/|Ri×
Ri+1|. We define all other selectivitiesfi,j = 1 for |i − j| 6= 1. They correspond to
cross products.

In this section we consider only left-deep processing trees. However, we allow
them to contain cross products. Hence, any permutation is a valid join tree. There
is a unique correspondence not only between left-deep join trees but also between
consecutive parts of a permutation and segments of a left-deep tree. Furthermore, if
a segment of a left-deep tree does not contain cross products, it uniquely corresponds
to a consecutive part of the chain in the query graph. In this case, we also speak
of (sub)chains or connected (sub)sequences. We say that tworelationsRi and Rj

areconnectedif they are adjacent inG; more generally, two sequencess and t are
connected if there exist relationsRi in s andRj in t such thatRi andRj are connected.
A sequence of relationss is connected if for all subsequencess1 and s2 satisfying
s = s1s2 it holds thats1 is connected tos2.

Given a chain query, we ask for a permutations = r1 . . . rn of then relations (i.e.
there is a permutationπ such thatri = Rπ(i) for 1 ≤ i ≤ n) that produces minimal
costs under the cost functionCout.

Remember that the dynamic programming approach considersn2n−1−n(n+1)/2
alternatives for left-deep processing trees with cross products—independently of the
query graph and the cost function. The question arises whether it is possible to lower
the complexity in case of simple chain queries.

The IKKBZ algorithm solves the join ordering problem for tree queries by decom-
posing the problem into polynomially many subproblems which are subject to tree-like
precedence constraints. The precedence constraints ensure that the cost functions of
the subproblems now have the ASI property. The remaining problem is to optimize the
constrained subproblems under the simpler cost function. Unfortunately, this approach
does not work in our case, since no such decomposition seems to exist.

Let us introduce some notions used for the algorithms. We have to generalize the
rank used in the IKKBZ algorithm torelativized ranks. We start by relativizing the
cost function. The costs of a sequences relative to a sequenceu are defined as

Cu(ǫ) := 0

Cu(Ri) := 0 if u = ǫ

Cu(Ri) := (
∏

Rj<uRi
Ri

fj,i)ni if u 6= ǫ

Cu(s1s2) := Cu(s1) + Tu(s1) ∗ Cus1(s2)

with

Tu(ǫ) := 1

Tu(s) :=
∏

Ri∈s

(
∏

Rj<usRi

fj,i) ∗ ni

70 CHAPTER 3. JOIN ORDERING

Here,Ri <s Rj is true if and only ifRi appears beforeRj in s. As usual, empty
products evaluate to 1. Several things should be noted. First, Cus(t) = Cu(t) holds
if there is no connection between relations ins and t. Second,Tǫ(Ri) = |Ri| and
Tǫ(s) = |s|. That is,Tu generalizes the size of a single relation or of a sequence of
relations. Third, note thatCu(ǫ) = 0 for all u butCǫ(s) = 0 only if s does not contain
more than one relation. The special case thatCǫ(R) = 0 for a single relationR causes
some problems in the homogeneity of definitions and proofs. Hence, we abandon this
case from all definitions and lemmata of this section. This will not be repeated in every
definition and lemma, but will implicitly be assumed. Further, the two algorithms will
be presented in two versions. The first version is simpler andrelies on a modified cost
functionC ′, and only the second version will apply to the original cost functionC. As
we will see,C ′ differs fromC in exactly the problematic case in which it is defined as
C ′

u(Ri) := |Ri|. Now,C ′
ǫ(s) = 0 holds if and only ifs = ǫ holds. Within subsequent

definitions and lemmata,C can also be replaced byC ′ without changing their validity.
Last, we abbreviateCǫ by C for convenience.

Example 1: Consider a chain query involving the relationsR1, R2, R3. The param-
eters are|R1| = 1, |R2| = 100, |R3| = 10 andf1,2 = f2,3 = 0.9. The expected size
of the query result is independent of the ordering of the relations. Hence, we have

T (R1R2R3) = · · · = T (R3R2R1) = 100 ∗ 10 ∗ 1 ∗ .9 ∗ .9 = 810.

There are 6 possible orderings of the relations with the following costs:

C(R1R2R3) = 1 ∗ 100 ∗ 0.9 + 1 ∗ 100 ∗ 10 ∗ 0.9 ∗ 0.9 = 900
C(R1R3R2) = 1 ∗ 10 + 1 ∗ 10 ∗ 100 ∗ 0.9 ∗ 0.9 = 820
C(R2R3R1) = 100 ∗ 10 ∗ 0.9 + 100 ∗ 10 ∗ 1 ∗ 0.9 ∗ 0.9 = 1710
C(R2R1R3) = C(R1R2R3)
C(R3R1R2) = C(R1R3R2)
C(R3R2R1) = C(R2R3R1)

Note that the cost function is invariant with respect to the order of the first two rela-
tions. The minimum over all costs is 820, and the corresponding optimal join ordering
is R1R3R2.

2

Using the relativized cost function, we can define the relativized rank.

Definition 3.2.8 (rank) Therankof a sequences relative to a non-empty sequenceu
is given by

ranku(s) :=
Tu(s)− 1

Cu(s)

In the special case thats consists of a single relationRi, the intuition behind the
rank function becomes transparent. Letfi be the product of the selectivities between
relations inu and Ri. Then ranku(Ri) = fi|Ri|−1

fi|Ri| . Hence, therank becomes a

function of the formf(x) = x−1
x . This function is monotonously increasing inx for

x > 0. The argument to the functionf(x) is (for the computation of the size of a

3.2. DETERMINISTIC ALGORITHMS 71

single relationRi) fi|Ri|. But this is the factor by which the next intermediate result
will increase (or decrease). Since we sum up intermediate results, this is an essential
number. Furthermore, it follows from the monotonicity off(x) that ranku(Ri) ≤
ranku(Rj) if and only if fi|Ri| ≤ fj|Rj | wherefj is the product of all selectivities
betweenRj and relations inu.

Example 1 (cont’d): Supposing the query given in Example 1, the optimal sequence
R1R3R2 gives rise to the following ranks.

rankR1(R2) =
TR1

(R2)−1

CR1
(R2) = 100∗0.9−1

100∗0.9 ≈ 0.9888

rankR1(R3) =
TR1

(R3)−1

CR1
(R3) = 10∗1.0−1

10∗1.0 = 0.9

rankR1R3(R2) =
TR1R3

(R2)−1

CR1R3
(R2) = 100∗0.9∗0.9−1

100∗0.9∗0.9 ≈ 0.9877

Hence, within the optimal sequence, the relation with the smallest rank (hereR3, since
rankR1(R3) < rankR1(R2)) is preferred. As the next lemma will show, this is no
accident.

2

Using the rank function, the following lemma can be proved.

Lemma 3.2.9 For sequences

S = r1 · · · rk−1rkrk+1rk+2 · · · rn

S′ = r1 · · · rk−1rk+1rkrk+2 · · · rn

the following holds:

C(S) ≤ C(S′)⇔ ranku(rk) ≤ ranku(rk+1)

whereu = r1 · · · rk−1. Equality only holds if it holds on both sides.

Example 1 (cont’d): Since the ranks of the relations in Example 1 are ordered with
ascending ranks, Lemma 3.2.9 states that, whenever we exchange two adjacent rela-
tions, the costs cannot decrease. In fact, we observe thatC(R1R3R2) ≤ C(R1R2R3).
2

An analogous lemma still holds for two unconnected subchains:

Lemma 3.2.10 Letu, x andy be three subchains wherex andy are not interconnect-
ed. Then we have:

C(uxy) ≤ C(uyx)⇔ ranku(x) ≤ ranku(y)

Equality only holds if it holds on both sides.

Next, we define the notion of acontradictory chain, which will be essential to the
algorithms. The subsequent lemmata will allow us to cut downthe search space to be
explored by any optimization algorithm.

72 CHAPTER 3. JOIN ORDERING

Definition 3.2.11 (contradictory pair of subchains) Letu, x, y be nonempty sequences.
We call(x, y) a contradictory pair of subchainsif and only if

Cu(xy) ≤ Cu(yx) ∧ ranku(x) > rankux(y)

A special case occurs whenx andy are single relations. Then the above condition
simplifies to

rankux(y) < ranku(x) ≤ ranku(y)

To explain the intuition behind the definition of contradictory subchains, we need an-
other example.

Example 2: Suppose a chain query involvingR1, R2, R3 is given. The relation sizes
are |R1| = 1, |R2| = |R3| = 10 and the selectivities aref1,2 = 0.5, f2,3 = 0.2.
Consider the sequencesR1R2R3 andR1R3R2, which differ in the order of the last
two relations. We have

rankR1(R2) = 0.8

rankR1R2(R3) = 0.0

rankR1(R3) = 0.9

rankR1R3(R2) = 0.5

and

C(R1R2R3) = 15

C(R1R3R2) = 20

Hence,

rankR1(R2) > rankR1R2(R3)

rankR1(R3) > rankR1R3(R2)

C(R1R2R3) < C(R1R3R2)

and(R2, R3) is a contradictory pair withinR1R2R3. Now the use of the termcontra-
dictory becomes clear: the costs do not behave as could be expected from the ranks.
2

The next (obvious) lemma states that contradictory chains are necessarily connect-
ed.

Lemma 3.2.12 If there is no connection between two subchainsx and y, then they
cannot build a contradictory pair(x, y).

Now we present the fact that between a contradictory pair of relations, there cannot be
any other relation not connected to them without increasingcost.

Lemma 3.2.13 Let S = usvtw be a sequence. If there is no connection between
relations ins andv and relations inv and t, andranku(s) ≥ rankus(t), then there
exists a sequenceS′ not having higher costs, wheres immediately precedest.

3.2. DETERMINISTIC ALGORITHMS 73

Example 3: Consider five relationsR1, . . . , R5. The relation sizes are|R1| = 1,
|R2| = |R3| = |R4| = 8, and |R5| = 2. The selectivities aref1,2 = 1

2 , f2,3 = 1
4 ,

f3,4 = 1
8 , andf4,5 = 1

2 . RelationR5 is not connected to relationsR2 andR3. Fur-
ther, within the sequenceR1R2R5R3R4 relationsR2 andR3 have contradictory ranks:
rankR1(R2) = 4−1

4 = 3
4 andrankR1R2R5(R3) = 2−1

2 = 1
2 . Hence, at least one of

R1R5R2R3R4 and R1R2R3R5R4 must be of no greater cost thanR1R2R5R3R4.
This is indeed the case:

C(R1R2R3R5R4) = 4 + 8 + 16 + 8 = 36
C(R1R2R5R3R4) = 4 + 8 + 16 + 8 = 36
C(R1R5R2R3R4) = 2 + 8 + 16 + 8 = 34

2

The next lemma shows that, if there exist two sequences of single rank-sorted
relations, then their costs as well as their ranks are necessarily equal.

Lemma 3.2.14 Let S = x1 · · · xn and S′ = y1 · · · yn be two different rank-sorted
chains containing exactly the relationsR1, . . . , Rn, i.e.

rankx1···xi−1(xi) ≤ rankx1···xi(xi+1) for all 1 ≤ i ≤ n,

ranky1···yi−1(yi) ≤ ranky1···yi(yi+1) for all 1 ≤ i ≤ n,

thenS andS′ have equal costs and, furthermore,

rankx1···xi−1(xi) = ranky1···yi−1(yi) for all 1 < i ≤ n

One could conjecture that the following generalization of Lemma 3.2.14 is true,
although no one has proved it so far.

Conjecture 3.2.1 Let S = x1 · · · xn andS′ = y1 · · · ym be two different rank-sorted
chains for the relationsR1 . . . , Rn where thex′

is andy′is are subsequences such that

rankx1···xi−1(xi) ≤ rankx1···xi(xi+1) for all 1 ≤ i < n,

ranky1···yi−1(yi) ≤ ranky1···yi(yi+1) for all 1 ≤ i < m,

and the subsequencesxi and yj are all optimal (with respect to the fixed prefixes
x1 . . . xi−1 andy1 . . . yj−1), thenS andS′ have equal costs.

Consider the problem of merging two optimal unconnected chains. If we knew
that the ranks of relations in an optimal chain are always sorted in ascending order, we
could use the classical merge procedure to combine the two chains. The resulting chain
would also be rank-sorted in ascending order and, accordingto Lemma 3.2.14, it would
be optimal. Unfortunately, this does not work, since there are optimal chains whose
ranks are not sorted in ascending order: those containing sequences with contradictory
ranks.

Now, as shown in Lemma 3.2.13, between contradictory pairs of relations there
cannot be any other relation not connected to them. Hence, inthe merging process,
we have to take care that we do not merge a contradictory pair of relations with a
relation not connected to the pair. In order to achieve this,we apply the same trick as
in the IKKBZ algorithm: we tie the relations of a contradictory subchain together by

74 CHAPTER 3. JOIN ORDERING

building acompound relation. Assume that we tie together the relationsr1, . . . , rn to
a new relationr1,...,n. Then we define the size ofr1,...,n as|r1,...,n| = |r1 1 . . . 1 rn|
Further, if someri (1 ≤ i ≤ n) does have a connection to somerk 6∈ {r1, . . . , rn} then
we define the selectivity factorfr1,...,n,rk

betweenrk andr1,...,n asfr1,...,n,rk
= fi,k.

If we tie together contradictory pairs, the resulting chainof compound relations
still does not have to be rank-sorted with respect to the compound relations. To over-
come this, we iterate the process of tying contradictory pairs of compound relations
together until the sequence of compound relations is rank-sorted, which will eventual-
ly be the case. That is, we apply thenormalizationas used in the IKKBZ algorithm.
However, we have to reformulate it for relativized costs andranks:

Normalize(p, s)
while (there exist subsequences u, v (u 6= ǫ) and

compound relations x, y such that s = uxyv
and Cpu(xy) ≤ Cpu(yx)
and rankpu(x) > rankpux(y)) {

replace xy by a compound relation (x, y);
}
return (p, s);

The compound relations in the result of the procedureNormalize are calledcon-
tradictory chains. A maximal contradictory subchainis a contradictory subchain that
cannot be made longer by further tying steps. Resolving the tyings introduced in the
procedurenormalize is calledde-normalization. It works the same way as in the
IKKBZ algorithm. The cost, size and rank functions can now beextended to sequences
containing compound relations in a straightforward way. Wedefine the cost of a se-
quence containing compound relations to be identical with the cost of the correspond-
ing de-normalized sequence. The size and rank functions aredefined analogously.

The following simple observation is central to the algorithms: every chain can be
decomposed into a sequence of adjacent maximal contradictory subchains. For con-
venience, we often speak of chains instead of subchains and of contradictory chains
instead of maximal contradictory subchains. The meaning should be clear from the
context. Further, we note that the decomposition into adjacent maximal contradicto-
ry subchains is not unique. For example, consider an optimalsubchainr1r2r3 and
a sequenceu of preceding relations. Ifranku(r1) > rankur1(r2) > rankur1r2(r3)
one can easily show that both(r1, (r2, r3)) and ((r1, r2), r3) are contradictory sub-
chains. Nevertheless, this ambiguity is not important since in the following we are on-
ly interested in contradictory subchains which areoptimal. In this case, the condition
Cu(xy) ≤ Cu(yx) is certainly true and can therefore be neglected. One can show that
for the case of optimal subchains the indeterministically defined normalization process
is well-defined, that is, ifS is optimal,normalize(P,S) will always terminate with
a unique “flat” decomposition ofS into maximal contradictory subchains (flat means
that we remove all but the outermost parenthesis, e.g.(R1R2)(((R5R4)R3)R6) be-
comes(R1R2)(R5R4R3R6)).

3.2. DETERMINISTIC ALGORITHMS 75

The next two lemmata and the conjecture show a possible way toovercome the
problem that if we consider cross products, we have an unconstrained ordering prob-
lem and the idea of Monma and Sidney as exploited in the IKKBZ algorithm is no
longer applicable. The next lemma is a direct consequence ofthe normalization pro-
cedure.

Lemma 3.2.15 LetS = s1 . . . sm be an optimal chain consisting of the maximal con-
tradictory subchainss1, . . . , sm (as determined by the functionnormalize). Then

rank(s1) ≤ ranks1(s2) ≤ ranks1s2(s3)

≤ · · · ≤ ranks1...sm−1(sm),

in other words, the (maximal) contradictory subchains in anoptimal chain are always
sorted by ascending ranks.

The next result shows how to build an optimal sequence from two optimal non-
interconnected sequences.

Lemma 3.2.16 Let x andy be two optimal sequences of relations wherex andy are
not interconnected. Then the sequence obtained by merging the maximal contradictory
subchains inx andy (as obtained bynormalize) according to their ascending rank
is optimal.

Merging two sequences in the way described in Lemma 3.2.16 isa fundamental
process. We henceforth refer to it by simply saying that wemerge by the ranks.

We strongly conjecture that the following generalization of Lemma 3.2.14 is true,
although it is yet unproven. It uses the notion ofoptimal recursive decomposable
subchainsdefined in the next subsection.

Conjecture 3.2.2 Consider two sequencesS and T containing exactly the relations
R1,. . . ,Rn. Let S = s1 . . . sk and T = t1 . . . tl be such that each of the maximal
contradictory subchainssi, i = 1, . . . , k and tj, j = 1, . . . , l are optimal recursively
decomposable. ThenS andT have equal costs.

The first algorithm

We first use a slightly modified cost functionC ′, which additionally respects the size
of the first relation in the sequence, i.e.C andC ′ relate via

C ′
u(s) =

{
C(s) + |nR|, if u = ǫ ands = Rs′

Cu(s), otherwise

This cost function can be treated in a more elegant way thanC. The new rank function
is now defined asranku(s) := (Tu(s)− 1)/C ′

u(s). Note that the rank function is now
defined even ifu = ǫ ands is a single relation. The size function remains unchanged.
At the end of this subsection, we describe how our results canbe adapted to the original
cost functionC.

The rank of a contradictory chain depends on the relative position of the rela-
tions that are directly connected to it. For example, the rank of the contradictory

76 CHAPTER 3. JOIN ORDERING

subchain(R5R3R4R2) depends on the position of the neighbouring relationsR1 and
R6 relative to(R5R3R4R2). That is, whether they appear before or after the sequence
(R5R3R4R2). Therefore, we introduce the following fundamental definitions:

Definition 3.2.17 (neighbourhood)We call the set of relations that are directly con-
nected to a subchain (with respect to the query graphG) thecomplete neighbourhood
of that subchain. Aneighbourhoodis a subset of the complete neighbourhood. The
complementof a neighbourhoodu of a subchains is defined asv \u, wherev denotes
the complete neighbourhood ofs.

Note that the neighbourhood of a subchains within a larger chainus is uniquely de-
termined by the subsequenceu of relations preceding it. For convenience, we will
often use sequences of preceding relations to specify neighbourhoods. We henceforth
denote a pair consisting of a connected sequences and a neighbourhoodu by [s]u.

Definition 3.2.18 (contradictory subchain, extent)A contradictory subchain[s]u is
inductively defined as follows.

1. For a single relations, [s]u is a contradictory subchain.

2. There is a decompositions = vw such that(v,w) is a contradictory pair with
respect to the preceding subsequenceu and both[v]u and [w]uv are contradic-
tory subchains themselves.

Theextentof a contradictory chain[s]u is defined as the pair consisting of the neigh-
bourhoodu and the set of relations occurring ins. Since contradictory subchains are
connected, the set of occurring relations has always the form {Ri, Ri+1, . . . , Ri+l}
for some1 ≤ i ≤ n, 0 ≤ l ≤ n − i. An optimal contradictory subchainto a given
extent is a contradictory subchain with lowest cost among all contradictory subchains
of the same extent.

The number of different extents of contradictory subchainsfor a chain query of
n relations is2n2 − 2n + 1. Each contradictory chain can be completely recursively
decomposed into adjacent pairs of connected subchains. Subchains with this property
are defined next (similar types of decompositions occur in [399, 725]).

Definition 3.2.19 ((optimal) recursively decomposable subchain) A recursively de-
composable subchain[s]u is inductively defined as follows.

1. If s is a single relation, then[s]u is recursively decomposable.

2. There is a decompositions = vw such thatv is connected tow and both[v]u
and [w]uv are recursively decomposable subchains.

The extent of a recursively decomposable chain is defined in the same way as for
contradictory chains. Note that every contradictory subchain is recursively decom-
posable. Consequently, the set of all contradictory subchains for a certain extent is a
subset of all recursively decomposable subchains of the same extent.

3.2. DETERMINISTIC ALGORITHMS 77

Example 4: Consider the sequence of relations

s = R2R4R3R6R5R1.

Using parentheses to indicate the recursive decompositions, we have the following two
possibilities

(((R2(R4R3))(R6R5))R1)

((R2((R4R3)(R6R5)))R1)

The extent of the recursively decomposable subchain
R4R3R6R5 of s is ({R2}, {R3, R4, R5, R6}). 2

The number of different recursively decomposable chains involving the relations
R1, . . . , Rn is rn, wherern denotes then-th Schröder number [725]. Hence, the total
number of recursively decomposable chains isrn + 2(n− 1)rn−1 + 4

∑n−2
i=1

(
n−2

i

)
ri.

It can be shown that

rn ≈
C(2 +

√
8)n

n3/2

whereC = 1/2

√

2
√

2−4
π . Using Stirling’s formula forn! it is easy to show that

limn→∞ rn
n! = 0. Thus, the probability of a random permutation to be recursively

decomposable strives to zero for largen.
An optimal recursively decomposable subchainto a given extent is a recursively

decomposable subchain with lowest cost among all recursively decomposable sub-
chains of the same extent. There is an obvious dynamic programming algorithm to
compute optimal recursive decomposable subchains. It is not hard to see thatBell-
man’s optimality principle[553, 191] holds and every optimal recursively decompos-
able subchain can be decomposed into smaller optimal recursively decomposable sub-
chains.

Example 5: In order to compute an optimal recursively decomposable subchain for
the extent

({R2, R7}, {R3, R4, R5, R6})
the algorithm makes use of optimal recursively decomposable subchains for the extents

({R2}, {R3}) ({R7, R3}, {R4, R5, R6})
({R2}, {R3, R4}) ({R7, R4}, {R5, R6})

({R2}, {R3, R4, R5}) ({R5, R7}, {R6})
({R7}, {R4, R5, R6}) ({R2, R4}, {R3})

({R7}, {R5, R6) ({R2, R5}, {R3, R4})
({R7}, {R6}) ({R2, R6}, {R3, R4, R5})

which have been computed in earlier steps2. A similar dynamic programming algo-
rithm can be used to determine optimal contradictory subchains. 2

Let E be the set of all possible extents. We define the following partial order
P = (E,≺) on E. For all extentse1, e2 ∈ E, we havee1 ≺ e2 if and only if

2The splitting of extents induces a partial order on the set ofextents.

78 CHAPTER 3. JOIN ORDERING

e1 can be obtained by splitting the extente2. For example,({R7}, {R5, R6}) ≺
({R2, R7}, {R3, R4, R5, R6}). The set of maximal extentsM then corresponds to
a set of incomparable elements (antichain) inP such that for all extentse enumerated
so far, there is an extente′ ∈M with e ≺ e′.

Now, since every optimal join sequence has a representationas a sequence of con-
tradictory subchains, we only have to determine this representation. Consider a con-
tradictory subchainc in an optimal join sequences. What can we say aboutc? Obvi-
ously, c has to be optimal with respect to the neighbourhood defined bythe relations
precedingc in s. Unfortunately, identifying contradictory subchains that are optimal
sequences seems to be as hard as the whole problem of optimizing chain queries.
Therefore, we content ourselves with the following weaker condition which may lead
to multiple representations. Nevertheless, it seems to be the strongest condition for
which all subchains satisfying the condition can be computed in polynomial time. The
condition says thats should be optimal both with respect to all contradictory chains of
the same extent ass and with respect to all recursively decomposable subchainsof the
same extent. So far it is not clear whether these conditions lead to multiple representa-
tions. Therefore, we have no choice but to enumerate all possible representations and
select the one with minimal costs. Next we describe the first algorithm.

Algorithm Chain-I’:

1. Use dynamic programming to determine all optimal contradictory subchains.
This step can be made faster by keeping track of the setM of all maximal extents
(with respect to the partial order induced by splitting extents).

2. Determine all optimal recursively decomposable subchains for all extents in-
cluded in some maximal extent inM .

3. Compare the results from steps 1 and 2 and retain only matching subchains.
4. Sort the contradictory subchains according to their ranks.
5. Eliminate contradictory subchains that cannot be part ofa solution.
6. Use backtracking to enumerate all sequences of rank-ordered optimal contradic-

tory subchains and keep track of the sequence with lowest cost.

In step 5 of the algorithm, we eliminate contradictory subchains that do not con-
tribute to a solution. Note that the contradictory subchains in an optimal sequence are
characterized by the following two conditions.

1. The extents of all contradictory subchains in the representation build a partition
of the set of all relations.

2. The neighbourhoods of all contradictory subchains are consistent with the rela-
tions occurring at earlier and later positions in the sequence.

Note that any contradictory subchain occurring in the optimal sequence (except at the
first and last positions) necessarily has matching contradictory subchains preceding
and succeeding it in the list. In fact, every contradictory subchainX occurring in the
optimal join sequence must satisfy the following two conditions.

1. For every relationR in the neighbourhood ofX, there exists a contradictory
subchainY at an earlier position in the list which itself meets condition 1, such
thatR occurs inY , andY can be followed byX.

3.2. DETERMINISTIC ALGORITHMS 79

2. For every relationR in the complementary neighbourhood ofX, there exists a
contradictory subchainY at a later position in the list which itself meets condi-
tion 2, such thatR occurs in the neighbourhood ofY , andX can be followed by
Y .

Using these two conditions, we can eliminate “useless” contradictory chains from the
rank-ordered list by performing a reachability algorithm for each of the DAGs defined
by the conditions 1 and 2. In the last step of our algorithm, backtracking is used to
enumerate all representations. Suppose that at some step ofthe algorithm we have
determined an initial sequence of contradictory subchainsand have a rank-sorted list
of the remaining possible contradictory subchains. In addition to the two conditions
mentioned above, another reachability algorithm can be applied to determine the set of
reachable relations from the list (with respect to the givenprefix). With the use of this
information, all branches that do not lead to a complete joinsequence can be pruned.

Let us analyze the worst case time complexity of the algorithm. The two dynamic
programming steps both iterate overO(n2) different extents, and each extent gives
rise to O(n) splittings. Moreover, for each extent one normalization isnecessary,
which requires linear time (cost, size and rank can be computed in constant time using
recurrences). Therefore, the complexity of the two dynamicprogramming steps is
O(n4). SortingO(n2) contradictory chains can be done in timeO(n2 log n). The
step where all “useless” contradictory subchains are eliminated, consists of two stages
of a reachability algorithm which has complexityO(n4). If conjecture 3.2.2 is true,
the backtracking step requires linear time, and the total complexity of the algorithm is
O(n4). Otherwise, if conjecture 3.2.2 is false, the algorithm might exhibit exponential
worst case time complexity.

We now describe how to reduce the problem for our original cost function C to
the problem for the modified cost functionC ′. One difficulty with the original cost
function is that the ranks are defined only for subsequences of at least tworelations.
Hence, for determining the first relation in our solution we do not have sufficient infor-
mation. An obvious solution to this problem is to try every relation as starting relation,
process each of the two resulting chain queries separately and choose the chain with
minimum costs. The new complexity will increase by about a factor of n. This first
approach is not very efficient, since the dynamic programming computations overlap
considerably, e.g. if we perform dynamic programming on thetwo overlapping chains
R1R2R3R4R5R6 andR2R3R4R5R6R7, for the intersecting chainR2R3R4R5R6 ev-
erything is computed twice. The cue is that we can perform thedynamic programming
calculations before we consider a particular starting relation. Hence, the final algo-
rithm can be sketched as follows:

Algorithm CHAIN-I:

1. Compute all optimal contradictory chains by dynamic programming (corresponds
to the steps 1-4 of Algorithm I’)

2. For each starting relationRi, perform the following steps:

(a) LetL1 be the result of applying steps 5 and 6 of Algorithm I’ to all con-
tradictory subchains whose extent(N,M) satisfiesRi ∈ N and M ⊆
{R1, . . . , Ri}.

80 CHAPTER 3. JOIN ORDERING

(b) Let L2 be the result of applying steps 5 and 6 of Algorithm I’ to all con-
tradictory subchains whose extent(N,M) satisfiesRi ∈ N and M ⊆
{Ri, . . . , Rn}.

(c) For all(l1, l2) ∈ L1 × L2, perform the following steps:

i. Let L be the result of mergingl1 andl2 according to their ranks.

ii. UseRiL to update the current-best join ordering.

Suppose that conjecture 3.2.2 is true, and we can replace thebacktracking part by a
search for the first solution. Then the complexity of the step1 is O(n4), whereas
the complexity of step 2 amounts to

∑n
i=1(O(i2) + O(n − i)2 + O(n)) = O(n3).

Hence, the total complexity would beO(n4) in the worst case. Of course, if our
conjecture is false, the necessary backtracking step mightlead to an exponential worst
case complexity.

The second algorithm

The second algorithm is much simpler than the first one but proves to be less efficient
in practice. Since the new algorithm is very similar to some parts of the old one, we just
point out the differences between both algorithms. The new version of the algorithm
works as follows.

Algorithm CHAIN-II’:

1. Use dynamic programming to compute an optimal recursive decomposable chain
for the whole set of relations{R1, . . . , Rn}.

2. Normalize the resulting chain.

3. Reorder the contradictory subchains according to their ranks.

4. De-normalize the sequence.

Step 1 is identical to step 2 of our first algorithm. Note that Lemma 3.2.15 cannot be
applied to the sequence in Step 2, since an optimal recursivedecomposable chain is
not necessarily an optimal chain. Therefore, the question arises whether Step 3 really
makes sense. One can show that the partial order defined by theprecedence relation
among the contradictory subchains has the property that allelements along paths in the
partial order are sorted by rank. By computing a greedy topological ordering (greedy
with respect to the ranks), we obtain a sequence as requestedin step 3.

Let us briefly analyze the worst case time complexity of the second algorithm. The
first step requires timeO(n4), whereas the second step requires timeO(n2). The third
step has complexityO(n log n). Hence, the total complexity isO(n4).

Algorithm II’ is based on the cost functionC ′. We can now modify the algorithm
for the original cost functionC as follows.

Algorithm CHAIN-II:

1. Compute all optimal recursive decomposable chains by dynamic programming
(corresponds to step 1 of Algorithm II’)

2. For each starting relationRi, perform the following steps:

3.2. DETERMINISTIC ALGORITHMS 81

(a) LetL1 be the result of applying the steps 2 and 3 of Algorithm II’ to all
optimal recursive decomposable subchains whose extent(N,M) satisfies
Ri ∈ N andM ⊆ {R1, . . . , Ri}.

(b) Let L2 be the result of applying the steps 2 and 3 of Algorithm II’ to all
optimal recursive decomposable subchains whose extent(N,M) satisfies
Ri N andM ⊆ {Ri, . . . , Rn}.

(c) LetL be the result of mergingL1 andL2 according to their ranks.

(d) De-normalizeL.

(e) UseRiL to update the current-best join ordering.

The complexity of Step 1 isO(n4), whereas the complexity of Step 2 amounts
to
∑n

i=1(O(i2) + O(n − i)2 + O(n)) = O(n3). Hence, the time complexity of
Algorithm II is O(n4).

Summarizing, we are now left with one algorithm that produces the optimal result
but whose worst-case runtime behavior is unknown and one algorithm with polyno-
mial runtime but producing a result which has not been provento be optimal. Due to
this lack of hard facts, Moerkotte and Scheufele ran about 700,000 experiments with
random queries of sizes up to 30 relations and fewer experiments for random queries
with up to 300 relations to compare the results of our algorithms. Forn ≤ 15, they
additionally compared the results with a standard dynamic programming algorithm.
Their findings can be summarized as follows.

• All algorithms yielded identical results.

• Backtracking always led to exactly one sequence of contradictory chains.

• In the overwhelming majority of cases the first algorithm proved to be faster
than the second.

Whereas the run time of the second algorithm is mainly determined by the number
of relations in the query, the run time of the first also heavily depends on the number
of existing optimal contradictory subchains. In the worst case, the first algorithm is
slightly inferior to the second. Additionally, Hamalainenreports on an independent
implementation of the second algorithm [362]. He could not find an example where
the second algorithm did not produce the optimal result either. We encourage the
reader to prove that it produces the optimal result. EX

3.2.8 Transformation-Based Approaches

The idea of transformation-based algorithms can be described as follows. Starting
from an arbitrary join tree, equivalences (such as commutativity and associativity) are
applied to it to derive a set of new join trees. For each of the join trees, the equiva-
lences are again applied to derive even more join trees. Thisprocedure is repeated until
no new join tree can be derived. This procedure exhaustivelyenumerates the set of all
bushy trees. Furthermore, before an equivalence is applied, it is difficult to see whether
the resulting join tree has already been produced or not (seealso Figure 2.6). Thus, this
procedure is highly inefficient. Hence, it does not play any role in practice. Neverthe-
less, we give the pseudo-code for it, since it forms the basisfor several of the following

82 CHAPTER 3. JOIN ORDERING

algorithms. We split the exhaustive transformation approach into two algorithms. One
that applies all equivalences to a given join tree (ApplyTransformations) and
another that does the loop (ExhaustiveTransformation). A transformation is
applied in a directed way. Thus, we reformulate commutativity and associativity as
rewrite rules using; to indicate the direction.

The following table summarizes all rules commonly used in transformation-based
and randomized join ordering algorithms. The first three aredirectly derived from
the commutativity and associativity laws for the join. The other rules are shortcuts
used under special circumstances. For example, left associativity may turn a left-deep
tree into a bushy tree. When only left-deep trees are to be considered, we need a
replacement for left associativity. This replacement is called left join exchange.

R1 1 R2 ; R2 1 R1 Commutativity
(R1 1 R2) 1 R3 ; R1 1 (R2 1 R3) Right Associativity
R1 1 (R2 1 R3) ; (R1 1 R2) 1 R3 Left Associativity
(R1 1 R2) 1 R3 ; (R1 1 R3) 1 R2 Left Join Exchange
R1 1 (R2 1 R3) ; R2 1 (R1 1 R3) Right Join Exchange

Two more rules are often used to transform left-deep trees. The first operation (swap)
exchanges two arbitrary relations in a left-deep tree. The second operation (3Cycle)
performs a cyclic rotation of three arbitrary relations in aleft-deep tree. To account for
different join methods, a rule calledjoin method exchangeis introduced.

The first rule set (RS-0) we are using contains the commutativity rule and both
associativity rules. Applying associativity can lead to cross products. If we do notRS-0
want to consider cross products, we only apply any of the two associativity rules
if the resulting expression does not contain a cross product. It is easy to extend
ApplyTransformations to cover this by extending theif conditions with

and (ConsiderCrossProducts || connected(·))

where the argument ofconnected is the result of applying a transformation.

ExhaustiveTransformation({R1, . . . , Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅; // contains all trees processed
ToDo = {T}; // contains all trees to be processed
while (!empty(ToDo)) {

Let T be an arbitrary tree in ToDo
ToDo \ = T ;
Done ∪ = T ;
Trees = ApplyTransformations(T);
for all T ∈ Trees do {

if (T 6∈ ToDo ∪ Done) {
ToDo + = T ;

}

3.2. DETERMINISTIC ALGORITHMS 83

}
}
return cheapest tree found in Done;

ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅;
Subtrees = all subtrees of T rooted at inner nodes
for all S ∈ Subtrees do {

if (S is of the form S1 1 S2) {
Trees + = S2 1 S1;

}
if (S is of the form (S1 1 S2) 1 S3) {

Trees + = S1 1 (S2 1 S3);
}
if (S is of the form S1 1 (S2 1 S3)) {

Trees + = (S1 1 S2) 1 S3;
}

}
return Trees;

Besides the problems mentioned above, this algorithm also has the problem that the
sharing of subtrees is a non-trivial task. In fact, we assumethatApplyTransformations
produces modified copies ofT . To see howExhaustiveTransformation works,
consider again Figure 2.6. Assume that the top-left join tree is the initial join tree.
Then, from this join treeApplyTransformations produces all trees reachable by
some edge. All of these are then added toToDo. The next call toApplyTransformations
with any to the produced join trees will have the initial jointree contained inTrees .
The complete set of visited join trees after this step is determined from the initial join
tree by following at most two edges.

Let us reformulate the algorithm such that it uses a data structure similar to dy-
namic programming or memoization in order to avoid duplicate work. For any sub-
set of relations, dynamic programming remembers the best join tree. This does not
quite suffice for the transformation-based approach. Instead, we have to keep all join
trees generated so far including those differing in the order of the arguments or a join
operator. However, subtrees can be shared. This is done by keeping pointers into
the data structure (see below). So, the difference between dynamic programming
and the transformation-based approach becomes smaller. The main remaining dif-
ference is that dynamic programming only considers these join trees while with the
transformation-based approach we have to keep the considered join trees since other
join trees (more beneficial) might be generatable from them.

The data structure used for remembering trees is often called the MEMO structure.
For every subset of relations to be joined (except the empty set), aclassexists in the
MEMO structure. Each class contains all the join trees that join exactly the relations
describing the class. Here is an example for join trees containing three relations.

84 CHAPTER 3. JOIN ORDERING

{R1, R2, R3} {R1, R2} 1 R3, R3 1 {R1, R2},
{R1, R3} 1 R2, R2 1 {R1, R3},
{R2, R3} 1 R1, R1 1 {R2, R3}

{R2, R3} {R2} 1 {R3}, {R3} 1 {R2}
{R1, R3} {R1} 1 {R3}, {R3} 1 {R1}
{R1, R2} {R1} 1 {R2}, {R2} 1 {R1}
{R3} R3

{R2} R2

{R1} R1

Here, we used the set notation{. . .} as an argument to a join to denote a reference to
the class of join trees joining the relations contained in it.

We reformulate our transformation-based algorithm such that it fills in and uses
the MEMO structure [614]. In a first step, the MEMO structure is initialized by cre-
ating an arbitrary join tree for the class{R1, . . . , Rn} and then going down this join
tree and creating an entry for every join encountered. Then,we callExploreClass
on the root class comprising all relations to be joined.ExploreClass then ap-
plies ApplyTransformations2 to every member of the class it is called upon.
ApplyTransformations2 then applies all rules to generate alternatives.

ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . , Rn}.
Output: an optimal join tree

initialize MEMO structure
ExploreClass({R1, . . . , Rn})
return best of class {R1, . . . , Rn}

ExploreClass(C)
Input: a class C ⊆ {R1, . . . , Rn}
Output: none, but has side-effect on MEMO-structure

while (not all join trees in C have been explored) {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

}
return

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure

ExploreClass(left-child(T));
ExploreClass(right-child(T));
foreach transformation T and class member of child classes {

foreach T ′ resulting from applying T to T {

3.2. DETERMINISTIC ALGORITHMS 85

if T ′ not in MEMO structure {
add T ′ to class C of MEMO structure

}
}

}
return

ApplyTransformations2 uses a set of transformations to be applied. We dis-
cuss now the effect of different transformation sets on the complexity of the algorithm.
Applying ExhaustiveTransformation2 with a rule set consisting of Commu-
tativity and Left and Right Associativity generates4n−3n+1+2n+2−n−2 duplicates
for n relations. Contrast this with the number of join trees contained in a completely
filled MEMO structure3: 3n − 2n+1 + n + 1. This clearly shows the problem.

The problem of generating the same join tree several times was considered by Pel-
lenkoft, Galindo-Legaria, and Kersten [614, 615, 616]. Thesolution lies in parameter-
izing ExhaustiveTransformation2 by an appropriate set of transformations.
The basic idea is to remember for every join operator which rules are applicable to it.
For example, after applying commutativity to a join operator, we disable commutativ-
ity for it.

For acyclic queries, the following rule set guarantees thatall bushy join trees are
generated, but no duplicates [616]. Thereby, cross products are not considered. That
is, a rule is only applicable if it does not result in a cross product. This restricts the
applicability of the above algorithm to connected queries.We useCi to denote some
class of the MEMO structure. We call the following rule set RS-1: RS-1

T1: Commutativity C1 10 C2 ; C2 11 C1

Disable all transformationsT1, T2, andT3 for 11.

T2: Right Associativity (C1 10 C2) 11 C3 ; C1 12 (C2 13 C3)
Disable transformationsT2 andT3 for 12 and enable all rules for13.

T3: Left associativity C1 10 (C2 11 C3) ; (C1 12 C2) 13 C3

Disable transformationsT2 andT3 for 13 and enable all rules for12.

In order to be able to follow these rules, the procedureApplyTransformations2
has to be enhanced such that it is able to keep track of the application history of the
rules for every join operator. The additional memory requirement is neglectible, since
a single bit for each rules suffices.

As an example, let us consider the chain queryR1 − R2 − R3 − R4. Figure 3.7
shows the MEMO structure. The first column gives the sets of the relations identifying
each class. We leave out the single relation classes assuming that{Ri} hasRi as its
only join tree which is marked as explored.

The second column shows the initialization with an arbitrarily chosen join tree.
The third column is the one filled by theApply Transformation2 procedure.
We apply the rule set RS-1, which consists of three transformations. Each join is an-
notated with three bits, where the i-th bit indicates whether Ti is applicable (1) or not

3The difference to the according number for dynamic programming is due to the fact that we have to
keep alternatives generated by commutativity and that jointrees for single relations are counted.

86 CHAPTER 3. JOIN ORDERING

Class Initialization Transformation Step

{R1, R2, R3, R4} {R1, R2} 1111 {R3, R4} {R3, R4} 1000 {R1, R2} 3

R1 1100 {R2, R3, R4} 4
{R1, R2, R3} 1100 R4 5
{R2, R3, R4} 1000 R1 8
R4 1000 {R1, R2, R3} 10

{R2, R3, R4} R2 1111 {R3, R4} 4
{R3, R4} 1000 R2 6
{R2, R3} 1100 R4 6
R4 1000 {R2, R3} 7

{R1, R3, R4}
{R1, R2, R4}
{R1, R2, R3} {R1, R2} 1111 R3 5

R3 1000 {R1, R2} 9
R1 1100 {R2, R3} 9
{R2, R3} 1000 R1 9

{R3, R4} R3 1111 R4 R4 1000 R3 2
{R2, R4}
{R2, R3}
{R1, R4}
{R1, R3}
{R1, R2} R1 1111 R2 R2 1000 R1 1

Figure 3.7: Example of rule transformations (RS-1)

(0). After initializing the MEMO structure,ExhaustiveTransformation2 calls
ExploreClass for {R1, R2, R3, R4}. The only (unexplored) join tree is{R1, R2} 1111

{R3, R4}, which will become the argument ofApplyTransformations2 . Next,
ExploreClass is called on{R1, R2} and{R3, R4}. In both cases,T1 is the only
applicable rule, and the result is shown in the third column under steps 1 and 2. Now
we have to apply all transformations on{R1, R2} 1111 {R3, R4}. Commutativity
T1 gives us{R3, R4} 1000 {R1, R2} (Step 3). For right associativity, we have two
elements in class{R1, R2}. Substituting them and applyingT2 gives

1. (R1 1 R2) 1 {R3, R4}; R1 1100 (R2 1111 {R3, R4})

2. (R2 1 R1) 1 {R3, R4}; R2 1111 (R1 × {R3, R4})
The latter contains a cross product. This leaves us with the former as the result of
Step 4. The right argument of the top most join isR2 1111 {R3, R4}. Since we do not
find it in class{R2, R3, R4}, we add it (4).

T3 is next.

1. {R1, R2} 1 (R3 1 R4) ; ({R1, R2} 1111 R3) 1100 R4

2. {R1, R2} 1 (R4 1 R3) ; ({R1, R2} ×R4) 1100 R3

3.2. DETERMINISTIC ALGORITHMS 87

The latter contains a cross product. This leaves us with the former as the result of
Step 5. We also add{R1, R2} 1111 R3. Now that {R1, R2} 1111 {R3, R4} is
completely explored, we turn to{R3, R4} 1000 {R1, R2}, but all transformations
are disabled here.

R1 1100 {R2, R3, R4} is next. First,{R2, R3, R4} has to be explored. The only
entry isR2 1111 {R3, R4}. Remember that{R3, R4} is already explored.T2 is not
applicable. The other two transformations give us

T1 {R3, R4} 1000 R2

T3 (R2 1000 R3) 1100 R4 and(R2 ×R4) 1100 R3

Those join trees not exhibiting a cross product are added to the MEMO structure under
6. Applying commutativity to{R2, R4} 1100 R3 gives 7. Commutativity is the only
rule enabled forR1 1100 {R2, R3, R4}. Its application results in 8.
{R1, R2, R3} 1100 R4 is next. It is simple to explore the class{R1, R2, R3} with

its only entry{R1, R2} 1111 R3:

T1 R3 1000 {R1, R2}

T2 R1 1100 (R2 1111 R3) andR2 1100 (R1 ×R3)

Commutativity can still be applied toR1 1100 (R2 1111 R3). All the new entries are
numbered 9. Commutativity is the only rule enabled for{R1, R2, R3} 1100 R4 Its
application results in 10.

2

The next two sets of transformations were originally intended for generating all
bushy/left-deep trees for a clique query [615]. They can, however, also be used to
generate all bushy trees when cross products are considered. The rule set RS-2 for
bushy trees is

T1: Commutativity C1 10 C2 ; C2 11 C1

Disable all transformationsT1, T2, T3, andT4 for 11.

T2: Right Associativity (C1 10 C2) 11 C3 ; C1 12 (C2 13 C3)
Disable transformationsT2, T3, andT4 for 12.

T3: Left Associativity C1 10 (C2 11 C3) ; (C1 12 C2) 13 C3

Disable transformationsT2, T3 andT4 for 13.

T4: Exchange (C1 10 C2) 11 (C3 12 C4) ; (C1 13 C3) 14 (C2 15 C4)
Disable all transformationsT1, T2, T3, andT4 for 14.

If we initialize the MEMO structure with left-deep trees, wecan strip down the above
rule set to Commutativity and Left Associativity. The reason is an observation made
by Shapiro et al.: from a left-deep join tree we can generate all bushy trees with only
these two rules [724].

If we want to consider only left-deep trees, the following rule set RS-3 is appro-
priate:

88 CHAPTER 3. JOIN ORDERING

T1 Commutativity R1 10 R2 ; R2 11 R1

Here, theRi are restricted to classes with exactly one relation.T1 is disabled for
11.

T2 Right Join Exchange (C1 10 C2) 11 C3 ; (C1 12 C3) 13 C2

DisableT2 for 13.

3.3 Probabilistic Algorithms

3.3.1 Generating Random Left-Deep Join Trees with Cross Products

The basic idea of the algorithms in this section and the following sections is to generate
a set of randomly chosen join trees, evaluate their costs, and return the best one. The
problem with this approach lies in the random generation of join trees: every join
tree has to be generated with equal probability. Although there are some advocates of
the pure random approach [262, 263, 265, 261], typically a random join tree or a set
of random join trees is used in subsequent algorithms like iterative improvement and
simulated annealing.

Obviously, if we do not consider cross products the problem is really hard, since
the query graph plays an important role. So let us start with the simplest case where
random join trees are generated that might contain cross products even for connected
query graphs. Then, any join tree is a valid join tree.

The general idea behind all algorithms is the following. Assume that the number of
join trees in the considered search space is known to beN . Then, instead of generating
a random join tree directly, a bijective mapping from the interval of non-negative inte-
gers[0, N [to a join tree in the search space is established. Then, a random join tree can
be generated by (1) generating a random number in[0,N [and (2) mapping the number
to the join tree. The problem of bijectively mapping an interval of non-negative inte-
gers to elements of a set is usually calledunranking. The opposite mapping is called
ranking. Obviously, the crux in our case is the efficiency of the unranking problem.

We start with generating random left-deep join trees forn relations. This problem
is identical to generating random permutations. That is, welook for a fast unrank-
ing algorithm that maps the non-negative integers in[0, n![to permutations. Let us
consider permutations of the numbers{0, . . . , n−1}. A mapping between these num-
bers and relations is established easily, e.g. via an array.The traditional approach to
ranking/unranking of permutations is to first define an ordering on the permutations
and then find a ranking and unranking algorithm relative to that ordering. For the
lexicographic order, algorithms requireO(n2) time [506, 653]. More sophisticated al-
gorithms separate the ranking/unranking algorithms into two phases. For ranking, first
the inversion vectorof the permutation is established. Then, ranking takes place for
the inversion vector. Unranking works in the opposite direction. Theinversion vector
of a permutationπ = π0, . . . , πn−1 is defined to be the sequencev = v0, . . . , vn−1,
wherevi is equal to the number of entriesπj with πj > πi andj < i. Inversion vectors
uniquely determine a permutation [798]. However, naive algorithms of this approach
again requireO(n2) time. Better algorithms requireO(n log n). Using an elaborated
data structure, Dietz’ algorithm requiresO((n log n)/(log log n)) [218]. Other orders
like the Steinhaus-Johnson-Trotter order have been exploited for ranking/unranking

3.3. PROBABILISTIC ALGORITHMS 89

but do not yield any run-time advantage over the above mentioned algorithms (see
[470, 653]).

Since it is not important for our problem that any order constraints are satisfied for
the ranking/unranking functions, we use the fastest possible algorithm established by
Myrvold and Ruskey [575]. It runs inO(n) which is also easily seen to be a lower
bound.

The algorithm is based on the standard algorithm to generaterandom permutations
[204, 224, 567]. An arrayπ is initialized such thatπ[i] = i for 0 ≤ i ≤ n− 1. Then,
the loop

for (k = n− 1; k >= 0; −− k) swap(π[k], π[r andom(k)]);

is executed whereswap exchanges two elements andrandom(k) generates a ran-
dom number in[0, k]. This algorithm randomly picks any of the possible permuta-
tions. Assume the random elements produced by the algorithmarern−1, . . . , r0 where
0 ≤ ri ≤ i. Obviously, there are exactlyn(n − 1)(n − 2) . . . 1 = n! such sequences
and there is a one-to-one correspondence between these sequences and the set of all
permutations. We can thus unrankr ∈ [0, n![by turning it into a unique sequence of
valuesrn−1, . . . , r0. Note that after executing the swap withrn−1, every value in[0, n[
is possible at positionπ[n − 1]. Further,π[n − 1] is never touched again. Hence, we
can unrankr as follows. We first setrn−1 = r mod n and perform the swap. Then,
we definer′ = ⌊r/n⌋ and iteratively unrankr′ to construct a permutation ofn − 1
elements. The following algorithm realizes this idea.

Unrank(n, r) {
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output: a permutation π

for (i = 0; i < n; + + i) π[i] = i;
Unrank-Sub(n, r, π);
return π;
}

}

Unrank-Sub(n, r, π) {
for (i = n; i > 0; −− i) {

swap(π[i− 1], π[r mod i]);
r = ⌊r/i⌋;

}
}

3.3.2 Generating Random Join Trees with Cross Products

Next, we want to randomly construct bushy plans possibly containing cross products.
This is done in several steps:

90 CHAPTER 3. JOIN ORDERING

1. Generate a random numberb in [0, C(n − 1)[.

2. Unrankb to obtain a bushy tree withn− 1 inner nodes.

3. Generate a random numberp in [0, n![.

4. Unrankp to obtain a permutation.

5. Attach the relations in orderp from left to right as leaf nodes to the binary tree
obtained in Step 2.

The only step that we still have to discuss is Step 2. It is a little involved and we
can only try to bring across the general idea. For details, the reader is referred to the
literature [506, 507, 508].

Consider Figure 3.8. It contains all 14 possible trees with four inner nodes. The
trees are ordered according to the rank we will consider. Thebottom-most number
below any tree is its rank in[0, 14[. While unranking, we do not generate the trees
directly, but an encoding of the tree instead. This encodingworks as follows. Any
binary tree corresponds to a word in a Dyck language with one pair of parenthesis.
The alphabet hence consists ofΣ = {′(′, ′)′}. For join trees withn inner nodes, we
use Dyck words of length2n whose parenthesization is correct. That is, for every
′(′, we have a subsequent′)′. From a given join tree, we obtain the Dyck word by a
preorder traversal. Whenever we encounter an inner node, weencode this with a′(′.
All but the last leaf nodes are encoded by a′)′. Appending all these2n encodings
gives us a Dyck word of length2n. Figure 3.8 shows directly below each tree its
corresponding Dyck word. In the line below, we simply changed the representation by
substituting every′(′ by a′1′ and every′)′ by a′0′. The encoding that will be generated
by the unranking algorithm is shown in the third line below each tree: we remember
the places (index in the bit-string) where we find a′1′.

In order to do the unranking, we need to do some counting. Therefor, we map
Dyck words to paths in a triangular grid. Forn = 4 this grid is shown in Figure 3.9.
We always start at(0, 0) which means that we have not opened a parenthesis. When
we are at(i, j), opening a parenthesis corresponds to going to(i+1, j+1) and closing
a parenthesis to going to(i + 1, j − 1). We have thus established a bijective mapping
between Dyck words and paths in the grid. Thus counting Dyck words corresponds to
counting paths.

The number of different paths from(0, 0) to (i, j) can be computed by

p(i, j) =
j + 1

i + 1

(
i + 1

1
2(i + j) + 1

)

These numbers are called theBallot numbers[110]. The number of paths from(i, j)
to (2n, 0) can thus be computed as (see [507, 508]):

q(i, j) = p(2n− i, j)

Note the special caseq(0, 0) = p(2n, 0) = C(n). In Figure 3.9, we annotated nodes
(i, j) by p(i, j). These numbers can be used to assign (sub-) intervals to paths (Dyck
words, trees). For example, if we are at(4, 4), there exists only a single path to(2n, 0).
Hence, the path that travels the edge(4, 4) → (5, 3) has rank0. From(3, 3) there are

3.3. PROBABILISTIC ALGORITHMS 91

(((())))
11110000
1, 2, 3, 4
0

(() (()))
11011000
1, 2, 4, 5
43

((())) ()
11100010
1, 2, 3, 7

2

((()) ())
11100100
1, 2, 3, 6

(() ()))
11010100
1, 2, 4, 6
5 6

(() ()) ()
11010010
1, 2, 4, 7

7

(()) (())
11001100
1, 2, 5, 6

8

(()) () ()
11001010
1, 2, 5, 7

() ((()))
10111000
1, 3, 4, 5
9

() (() ())
10110100
1, 3, 4, 6
10 11

() (()) ()
10110010
1, 3, 4, 7

() () (())
10101100
1, 3, 5, 6
12

() () () ()
10101010
1, 3, 5, 7
13

1

11101000
1, 2, 3, 5

((()()))

Figure 3.8: Encoding Trees

four paths to(2n, 0), one of which we already considered. This leaves us with three
paths that travel the edge(3, 3) → (4, 2). The paths in this part as assigned ranks in
the interval[1, 4[. Figure 3.9 shows the intervals near the edges. For unranking, we can
now proceed as follows. Assume we have a rankr. We consider opening a parenthesis
(go from (i, j) to (i + 1, j + 1)) as long as the number of paths from that point does
no longer exceed our rankr. If it does, we close a parenthesis instead (go from(i, j)
to (i− 1, j + 1)). Assume, that we went upwards to(i, j) and then had to go down to
(i − 1, j + 1). We subtract the number of paths from(i + 1, j + 1) from our rankr

92 CHAPTER 3. JOIN ORDERING

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Figure 3.9: Paths

and proceed iteratively from(i − 1, j + 1) by going up as long as possible and going
down again. Remembering the number of parenthesis opened and closed along our
way results in the required encoding. The following algorithm finalizes these ideas.

UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0, C(n − 1)]
Output: encoding of the inner leaves of a tree
lNoParOpen = 0;
lNoParClose = 0;
i = 1; // current encoding
j = 0; // current position in encoding array
while (j < n) {

k = q(lNoParOpen + lNoParClose + 1, lNoParOpen - lNoParClose + 1);
if (k ≤ r) {

r -= k;
++lNoParClose;

} else {
aTreeEncoding[j++] = i;
++lNoParOpen;

}
++i;

}

Given an array with the encoding of a tree, it is easy to construct the tree from it.
The following procedure does that.

TreeEncoding2Tree(n, aEncoding) {
Input: the number of internal nodes of the tree n

3.3. PROBABILISTIC ALGORITHMS 93

Output: root node of the result tree
root = new Node; / * root of the result tree * /
curr = root; / * curr: current internal node whose subtrees are to be created
i = 1; / * pointer to entry in encoding * /
child = 0; / * 0 = left , 1 = right: next child whose subtree is to be created
while (i < n) {

lDiff = aEncoding[i] - aEncoding[i− 1];
for (k = 1; k < l Diff ; + + k) {

if (child == 0) {
curr->addLeftLeaf();
child = 1;

} else {
curr->addRightLeaf();
while (curr->right() != 0) {

curr = curr->parent();
}
child = 1;

}
}
if (child == 0) {

curr->left(new Node(curr)); // curr becomes parent of new n ode
curr = curr->left();
++i;
child = 0;

} else {
curr->right(new Node(curr));
curr = curr->right();
++i;
child = 0;

}
}
while (curr != 0) {

curr->addLeftLeaf(); // addLeftLeaf adds leaf if no left-c hild exists
curr->addRightLeaf(); // analogous
curr = curr->parent();

}
return root;
}

3.3.3 Generating Random Join Trees without Cross Products

A general solution for randomly generating join trees without cross products is not
known. However, if we restrict ourselves to acyclic queries, we can apply an algo-
rithm developed by Galindo-Legaria, Pellenkoft, and Kersten [263, 262, 265]. For this
algorithm to work, we have to assume that the query graph is connected and acyclic.

For the rest of this section, we assume thatG = (V,E) is the query graph and
|V | = n. That is,n relations are to be joined. No join tree contains a cross product.

94 CHAPTER 3. JOIN ORDERING

With every node in a join tree, we associate alevel. The root has level0. Its children
have level1, and so on. We further use lower-case letters for relations.

For a given query graphG, we denote byTG the set of join trees forG. Let
T v(k)

G ⊆ TG be the subset of join trees where the leaf node (i.e. relation) v occurs at
level k. Some trivial observations follow. If the query graph consists of a single node
(n = 1), then|TG| = |T v(0)

G | = 1. If n > 1, the top node in the join tree is a join and

not a relation. Hence,|T v(0)
G | = 0. Obviously, the maximum level that can occur in

any join tree isn−1. Hence,|T v(k)
G | = 0 if k ≥ n. Since the level at which a leaf node

v occurs in some join tree is unique, we haveTG = ∪n
k=0T

v(k)
G andT v(i)

G ∩ T v(j)
G = ∅

for i 6= j. This gives us|TG| =
∑n

k=0 |T
v(k)

G |.
The algorithm generates an unordered tree withn leaf nodes. If we wish to have a

random ordered tree, we have to pick one of the2n−1 possibilities to order the(n− 1)
joins within the tree. We proceed as follows. We start with some notation for lists,
discuss how two lists can be merged, describe how a specific merge can be specified,
and count the number of possible merges. This is important, since join trees will be
described as lists of trees. Given a leaf nodev, we simply traverse the path from
the root tov. Thereby, subtrees that branch off can be collected into a list of trees.
After these remarks, we start developing the algorithm in several steps. First, we
consider two operations with which we can construct new jointrees: leaf-insertion
introduces a new leaf node into a given tree andtree-mergingmerges two join trees.
Since we do not want to generate cross products in this section, we have to apply these
operations carefully. Therefor, we need a description of how to generateall valid join
trees for a given query graph. The central data structure forthis purpose is thestandard
decomposition graph(SDG). Hence, in the second step, we define SDGs and introduce
an algorithm that derives an SDG from a given query graph. In the third step, we start
counting. The fourth and final step consists of the unrankingalgorithm. We do not
discuss the ranking algorithm. It can be found in [265].

We use the Prolog notation| to separate the first element of a list from its tail. For
example, the list〈a|t〉 hasa as its first element and a tailt. Assume thatP is a property
of elements. A listl′ is theprojectionof a list L on P , if L′ contains all elements of
L satisfying the propertyP . Thereby, the order is retained. A listL is a mergeof
two disjoint listsL1 andL2 if L contains all elements fromL1 andL2 and both are
projections ofL.

A merge of a listL1 with a list L2 whose respective lengths arel1 and l2 can be
described by an arrayα = [α0, . . . , αl2] of non-negative integers whose sum is equal
to l1. The non-negative integerαi−1 gives the number of elements ofL1 which precede
the i-th element ofL2 in the merged list. We obtain the merged listL by first taking
α0 elements fromL1. Then, an element fromL2 follows. Thenα1 elements fromL1

and the next element ofL2 follow and so on. Finally follow the lastαl2 elements of
L1. Figure 3.10 illustrates possible merges.

Compare list merges to the problem of non-negative (weak) integer composition
[?]. There, we ask for the number of compositions of a non-negative integern into k
non-negative integersαi with

∑k
i=1 αk = n. The answer is

(
n+k−1

k−1

)
[755]. Since we

have to decomposel1 into l2 +1 non-negative integers, the number of possible merges
is M(l1, l2) =

(l1+l2
l2

)
. The observationM(l1, l2) = M(l1 − 1, l2) + M(l1, l2 − 1)

3.3. PROBABILISTIC ALGORITHMS 95

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2

Figure 3.10: Tree-merge

allows us to construct an array of sizen ∗ n in O(n2) that materializes the values for
M . This array will allow us to rank list merges inO(l1 + l2).

The idea for establishing a bijection between[1,M(l1, l2)] and the possibleαs is
a general one and used for all subsequent algorithms of this section. Assume that we
want to rank the elements of some setS andS = ∪n

i=0Si is partitioned into disjoint
Si. If we want to rankx ∈ Sk, we first find thelocal rankof x ∈ Sk. The rank ofx is
then defined as

k−1∑

i=0

|Si|+ local-rank (x, Sk)

To unrank some numberr ∈ [1, N], we first findk such that

k = min
j

(r ≤
j
∑

i=0

|Si|)

Then, we proceed by unranking with the new local rank

r′ = r −
k−1∑

i=0

|Si|

within Sk.
Accordingly, we partition the set of all possible merges into subsets. Each subset

is determined byα0. For example, the set of possible merges of two listsL1 andL2

with lengthl1 = l2 = 4 is partitioned into subsets withα0 = j for 0 ≤ j ≤ 4. In each
partition, we haveM(j, l2 − 1) elements. To unrank a numberr ∈ [1,M(l1, l2)], we
first determine the partition by computingk = minj r ≤ ∑j

i=0 M(j, l2 − 1). Then,
α0 = l1−k. With the new rankr′ = r−∑k

i=0 M(j, l2−1), we start iterating all over.
The following table gives the numbers for our example and canbe used to understand
the unranking algorithm. The algorithm itself can be found in Figure 3.11.

96 CHAPTER 3. JOIN ORDERING

k α0 (k, l2 − 1) M(k, l2 − 1) rank intervals
0 4 (0, 3) 1 [1, 1]
1 3 (1, 3) 4 [2, 5]
2 2 (2, 3) 10 [6, 15]
3 1 (3, 3) 20 [16, 35]
4 0 (4, 3) 35 [36, 70]

UnrankDecomposition(r, l1, l2)
Input: a rank r, two list sizes l1 and l2
Output: a merge specification α.
for (i = 0; i ≤ l2; + + i) {

alpha[i] = 0;
}
i = k = 0;
while (l1 > 0 && l2 > 0) {

m = M(k, l2 − 1);
if (r ≤ m) {

alpha[i + +] = l1 − k;
l1 = k;
k = 0;
−− l2;

} else {
r− = m;
+ + k;

}
}
alpha[i] = l1;
return alpha;

Figure 3.11: AlgorithmUnrankDecomposition

We now turn to theanchored list representationof join trees.

Definition 3.3.1 LetT be a join tree andv be a leaf ofT . Theanchored list represen-
tationL of T is constructed as follows:

• If T consists of the single leaf nodev, thenL = 〈〉.

• If T = (T1 1 T2) and without loss of generalityv occurs inT2, thenL =
〈T1|L2〉, whereL2 is the anchored list representation ofT2.

We then writeT = (L, v).

Observe that ifT = (L, v) ∈ TG, thenT ∈ T v(k)
G ≺≻ |L| = k.

The operationleaf-insertionis illustrated in Figure 3.12. A new leafv is inserted
into the tree at levelk. Formally, it is defined as follows.

3.3. PROBABILISTIC ALGORITHMS 97

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)

Figure 3.12: Leaf-insertion

Definition 3.3.2 LetG = (V,E) be a query graph,T a join tree ofG. v ∈ V be such
thatG′ = G|V \{v} is connected,(v,w) ∈ E, 1 ≤ k < n, and

T = (〈T1, . . . , Tk−1, v, Tk+1, . . . , Tn〉, w) (3.2)

T ′ = (〈T1, . . . , Tk−1, Tk+1, . . . , Tn〉, w). (3.3)

Then we call(T ′, k) an insertion pairon v and say thatT is decomposed into(or
constructed from) the pair(T ′, k) onv.

Observe that leaf-insertion defines a bijective mapping betweenT v(k)
G and insertion

pairs(T ′, k) onv, whereT ′ is an element of the disjoint union∪n−2
i=k−1T

w(i)
G′ .

The operationtree-mergingis illustrated in Figure 3.10. Two treesR = (LR, w)
and S = (LS , w) on a common leafw are merged by merging their anchored list
representations.

Definition 3.3.3 LetG = (V,E) be a query graph,w ∈ V , T = (L,w) a join tree of
G, V1, V2 ⊆ V such thatG1 = G|V1 andG2 = G|V2 are connected,V1∪V2 = V , and
V1 ∩ V2 = {w}. For i = 1, 2:

• Define the propertyPi to be “every leaf of the subtree is inVi”,

• LetLi be the projection ofL onPi.

• Ti = (Li, w).

Letα be the integer composition such thatL is the result of mergingL1 andL2 on α.
Then we call(T1, T2, α) amerge triplet. We say thatT isdecomposed into(constructed
from) (T1, T2, α) onV1 andV2.

Observe that thetree-mergingoperation defines a bijective mapping betweenT w(k)
G

and merge triplets(T1, T2, α), whereT1 ∈ T w(i)
G1

, T2 ∈ T w(k−i)
G2

, andα specifies a
merge of two lists of sizesi andk − i. Further, the number of these merges (i.e. the
number of possibilities forα) is

(i+(k−i)
k−i

)
=
(k

i

)
.

98 CHAPTER 3. JOIN ORDERING

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

∗c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]

Figure 3.13: A query graph, its tree, and its standard decomposition graph

A standard decomposition graphof a query graph describes the possible construc-
tions of join trees. It is not unique (forn > 1) but anyone can be used to construct all
possible unordered join trees. For each of our two operations it has one kind of inner
nodes. A unary node labeled+v stands for leaf-insertion ofv. A binary node labeled
∗w stands for tree-merging its subtrees whose only common leafis w.

The standard decomposition graph of a query graphG = (V,E) is constructed in
three steps:

1. pick an arbitrary noder ∈ V as its root node;

2. transformG into a treeG′ by directing all edges away fromr;

3. callQG2SDG(G′, r)

with

QG2SDG(G′, r)
Input: a query tree G′ = (V,E) and its root r
Output: a standard query decomposition tree of G′

Let {w1, . . . , wn} be the children of v;
switch (n) {

case 0: label v with " v";
case 1:

label v as " +v";
QG2SDG(G′, w1);

otherwise:
label v as " ∗v";
create new nodes l, r with label +v;
E \ = {(v,wi)|1 ≤ i ≤ n};
E ∪ = {(v, l), (v, r), (l, w1)} ∪ {(r, wi)|2 ≤ i ≤ n};
QG2SDG(G′, l);
QG2SDG(G′, r);

}
return G′;

3.3. PROBABILISTIC ALGORITHMS 99

Note thatQG2SDGtransforms the original graphG′ into its SDG by side-effects.
Thereby, then-ary tree is transformed into a binary tree similar to the procedure de-
scribed by Knuth [460, Chap 2.3.2]. Figure 3.13 shows a querygraphG, its treeG′

rooted ate, and its standard decomposition tree.

For an efficient access to the number of join trees in some partition T v(k)
G in the

unranking algorithm, we materialize these numbers. This isdone in thecount array.
The semantics of acount array[c0, c1, . . . , cn] of a nodeu with label◦v (◦ ∈ {+, ∗})
of the SDG is thatu can constructci different trees in which leafv is at leveli. Then,
the total number of trees for a query can be computed by summing up all theci in the
count array of the root node of the decomposition tree.

To compute thecount and an additionalsummandadornment of a node labeled
+v, we use the following lemma.

Lemma 3.3.4 Let G = (V,E) be a query graph withn nodes,v ∈ V such that
G′ = G|V \v is connected,(v,w) ∈ E, and1 ≤ k < n. Then

|T v(k)
G | =

∑

i≥k−1

|T w(i)
G′ |

This lemma follows from the observation made after the definition of the leaf-insertion
operation.

The setsT w(i)
G′ used in the summands of Lemma 3.3.4 directly correspond to sub-

setsT v(k),i
G (k − 1 ≤ i ≤ n− 2) defined such thatT ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the insertion pair onv of T is (T ′, k), and

3. T ′ ∈ T w(i)
G′ .

Further,|T v(k),i
G | = |T w(i)

G′ |. For efficiency, we materialize the summands in an array
of arrayssummands.

To compute thecount andsummandadornment of a node labeled∗v , we use the
following lemma.

Lemma 3.3.5 LetG = (V,E) be a query graph,w ∈ V , T = (L,w) a join tree ofG,
V1, V2 ⊆ V such thatG1 = G|V1 andG2 = G|V2 are connected,V1 ∪ V2 = V , and
V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑

i

(
k

i

)

|T v(i)
G1
| |T v(k−i)

G2
|

This lemma follows from the observation made after the definition of the tree-merge
operation.

The setsT w(i)
G′ used in the summands of Lemma 3.3.5 directly correspond to sub-

setsT v(k),i
G (0 ≤ i ≤ k) defined such thatT ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

100 CHAPTER 3. JOIN ORDERING

2. the merge triplet onV1 andV2 of T is (T1, T2, α), and

3. T1 ∈ T v(i)
G1

.

Further,|T v(k),i
G | =

(k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|.

Before we come to the algorithm for computing the adornmentscount andsummands,
let us make one observation that follows directly from the above two lemmata. Assume
a nodev whosecount array is[c1, . . . , cm] and whosesummands is s = [s0, . . . , sn]
with si = [si

0, . . . , s
i
m], thenci =

∑m
j=0 si

j holds. Figure 3.14 contains the algorithm
to adorn SDG’s nodes withcount and summands. It has worst-case complexity
O(n3). Figure 3.13 shows thecount adornment for the SDG. Looking at thecount
array of the root node, we see that the total number of join trees for our example query
graph is 18.

Adorn(v)
Input: a node v of the SDG
Output: v and nodes below are adorned by count and summands
Let {w1, . . . , wn} be the children of v;
switch (n) {

case 0: count(v) := [1]; // no summands for v
case 1:

Adorn(w1);
assume count(w1) = [c1

0, . . . , c
1
m1

];
count(v) = [0, c1, . . . , cm1+1] where ck =

∑m1
i=k−1 c1

i ;
summands(v) = [s0, . . . , sm1+1] where sk = [sk

0, . . . , s
k
m1+1] and

sk
i =

{
c1
i if 0 < k and k − 1 ≤ i

0 else
case 2:

Adorn(w1);
Adorn(w2);
assume count(w1) = [c1

0, . . . , c
1
m1

];
assume count(w2) = [c2

0, . . . , c
2
m2

];
count(v) = [c0, . . . , cm1+m2] where

ck =
∑m1

i=0

(k
i

)
c1
i c

2
k−i; // c2

i = 0 for i 6∈ {0, . . . ,m2}
summands(v) = [s0, . . . , sm1+m2] where sk = [sk

0 , . . . , s
k
m1

] and

sk
i =

{ (k
i

)
c1
i c

2
k−i if 0 ≤ k − i ≤ m2

0 else
}

Figure 3.14: AlgorithmAdorn

The algorithmUnrankLocalTreeNoCross called byUnrankTreeNoCross
adorns the standard decomposition graph withinsert-at andmerge-using an-
notations. These can then be used to extract the join tree.

3.3. PROBABILISTIC ALGORITHMS 101

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output: adorned SDG
let count(v) = [x0, . . . , xm];

k := minj r ≤∑j
i=0 xi; // efficiency: binary search on materialized sums.

r′ := r −∑k−1
i=0 xi;

UnrankLocalTreeNoCross(v, r′, k);

The following table shows the intervals associated with thepartitionsT e(k)
G for the

standard decomposition graph in Figure 3.13:

Partition Interval

T e(1)
G [1, 5]

T e(2)
G [6, 10]

T e(3)
G [11, 15]

T e(4)
G [16, 18]

The unranking procedure makes use of unranking decompositions and unranking
triples. For the latter and a givenX,Y,Z, we need to assign each member in

{(x, y, z)|1 ≤ x ≤ X, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z}

a unique number in[1,XY Z] and base an unranking algorithm on this assignment. We
leave this as a simple exercise to the reader and call the function UnrankTriplet (r,X, Y, Z).
Here,r is the rank andX, Y , andZ are the upper bounds for the numbers in the triplets.
The code for unranking looks as follows:

UnrankingTreeNoCrossLocal(v, r, k)
Input: an SDG node v, a rank r, a number k identifying a partition
Output: adornments of the SDG as a side-effect
Let {w1, . . . , wn} be the children of v
switch (n) {

case 0:
assert(r = 1 && k = 0);
// no additional adornment for v

case 1:
let count(v) = [c0, . . . , cn];
let summands(v) = [s0, . . . , sn];
assert(k ≤ n && r ≤ ck);

k1 = minj r ≤∑j
i=0 sk

i ;

r1 = r −∑k1−1
i=0 sk

i ;
insert-at(v) = k;
UnrankingTreeNoCrossLocal(w1, r1, k1);

case 2:
let count(v) = [c0, . . . , cn];

102 CHAPTER 3. JOIN ORDERING

let summands(v) = [s0, . . . , sn];
let count(w1) = [c1

0, . . . , c
1
n1

];
let count(w2) = [c2

0, . . . , c
2
n2

];
assert(k ≤ n && r ≤ ck);

k1 = minj r ≤∑j
i=0 sk

i ;

q = r −∑k1−1
i=0 sk

i ;
k2 = k − k1;

(r1, r2, a) = UnrankTriplet(q, c1
k1

, c2
k2

,
(k

i

)
);

α = UnrankDecomposition(a);
merge-using(v) = α;
UnrankingTreeNoCrossLocal(w1, r1, k1);
UnrankingTreeNoCrossLocal(w2, r2, k2);

}

3.3.4 Quick Pick

The QuickPick algorithm of Waas and Pellenkoft [825, 826] does not generate random
join trees in the strong sense but comes close to it and is far easier to implement and
more broadly applicable. The idea is to randomly select an edge in the query graph
and to construct a join tree corresponding to this edge.

QuickPick(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a bushy join tree
BestTreeFound = any join tree
while stopping criterion not fulfilled {

E′ = E;
Trees = {R1, . . . , Rn};
while (|Trees | > 1) {

choose e ∈ E′;
E′− = e;
if (e connects two relations in different subtrees T1, T2 ∈ Trees) {

Trees -= T1;
Trees -= T2;
Trees += CreateJoinTree(T1, T2);

}
}
Tree = single tree contained in Trees;
if (cost(Tree) < cost(BestTreeFound)) {

BestTreeFound = Tree;
}

}
return BestTreeFound

3.3. PROBABILISTIC ALGORITHMS 103

3.3.5 Iterative Improvement

Swami and Gupta [786], Swami [785] and Ioannidis and Kang [410] applied the idea
of iterative improvement to join ordering [410]. The idea isto start from a random plan
and then to apply randomly selected transformations from a rule set if they improve
the current join tree, until not further improvement is possible.

IterativeImprovementBase(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree
do {

JoinTree = random tree
JoinTree = IterativeImprovement(JoinTree)
if (cost(JoinTree) < cost(BestTree)) {

BestTree = JoinTree;
}

} while (time limit not exceeded)
return BestTree

IterativeImprovement(JoinTree)
Input: a join tree
Output: improved join tree
do {

JoinTree’ = randomly apply a transformation to JoinTree;
if (cost(JoinTree’) < cost(JoinTree)) {

JoinTree = JoinTree’;
}

} while (local minimum not reached)
return JoinTree

The number of variants of iterative improvements is large. The first parameter is
the used rule set. To restrict search to left-deep trees, a rule set consisting ofswapand
3cycleis appropriate [786]. If we consider bushy trees, a completeset consisting of
commutativity, associativity, left join exchange and right join exchange makes sense.
This rule set (proposed by Ioannidis and Kang) is appropriate to explore the whole
space of bushy join trees. A second parameter is how to determine whether the local
minimum has been reached. Considering all possible neighbor states of a join tree is
expensive. Therefor, a subset of sizek is sometimes considered. Then, for example,k
can be limited to the number of edges in the query graph [786].

3.3.6 Simulated Annealing

Iterative Improvement suffers from the drawback that it only applies a move if it im-
proves the current plan. This leads to the problem that one isoften stuck in a local
minimum. Simulated annealing tries to avoid this problem byallowing moves that

104 CHAPTER 3. JOIN ORDERING

result in more expensive plans [415, 410, 786]. However, instead of considering every
plan, only those whose cost increase does not exceed a certain limit are considered.
During time, this limit decreases. This general idea is castinto the notion tempera-
tures and probabilities of performing a selected transformation. A generic formulation
of simulated annealing could look as follows:

SimulatedAnnealing(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree
BestTreeSoFar = random tree;
Tree = BestTreeSoFar;
do {

do {
Tree’ = apply random transformation to Tree;
if (cost(Tree’) < cost(Tree)) {

Tree = Tree’;
} else {

with probability e−(cost(Tree′)−cost(Tree))/t emperature

Tree = Tree’;
}
if (cost(Tree) < cost(BestTreeSoFar)) {

BestTreeSoFar = Tree’;
}

} while (equilibrium not reached)
reduce temperature;
} while (not frozen)
return BestTreeSoFar

Besides the rule set used, the initial temperature, the temperature reduction, and the
definitions of equilibrium and frozen determine the algorithm’s behavior. For each of
them several alternatives have been proposed in the literature. The starting temperature
can be calculated as follows: determine the standard deviation σ of costs by sampling
and multiply it with a constant value ([786] use 20). An alternative is to set the starting
temperature twice the cost of the first randomly selected join tree [410] or to deter-
mine the starting temperature such that at least 40% of all possible transformations are
accepted [760].

For temperature reduction, we can apply the formula temp∗ = 0.975 [410] or
max(0.5, e−

λt
σ) [786].

The equilibrium is defined to be reached if for example the cost distribution of
the generated solutions is sufficiently stable [786], the number of iterations is sixteen
times the number of relations in the query [410], or number ofiterations is the same as
the number of relations in the query [760].

We can establish frozenness if the difference between the maximum and minimum
costs among all accepted join trees at the current temperature equals the maximum
change in cost in any accepted move at the current temperature [786], the current

3.3. PROBABILISTIC ALGORITHMS 105

solution could not be improved in four outer loop iterationsand the temperature has
been fallen below one [410], or the current solution could not be improved in five outer
loop iterations and less than two percent of the generated moves were accepted [760].

Considering databases are used in mission critical applitions. Would you bet your
business on these numbers?

3.3.7 Tabu Search

Morzy, Matyasiak and Salza applied Tabu Search to join ordering [566]. The general
idea is that among all neighbors reachable via the transformations, only the cheapest
is considered even if its cost are higher than the costs of thecurrent join tree. In order
to avoid running into cycles, a tabu set is maintained. It contains the last join trees
generated, and the algorithm is not allowed to visit them again. This way, it can escape
local minima, since eventually all nodes in the valley of a local minimum will be in
the tabu set.

Tabu Search looks as follows:

TabuSearch(Query Graph)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree
Tree = random join tree;
BestTreeSoFar = Tree;
TabuSet = ∅;
do

Neighbors = all trees generated by applying a transformatio n to Tree;
Tree = cheapest in Neighbors \ TabuSet;
if (cost(Tree) < cost(BestTreeSoFar)) {

BestTreeSoFar = Tree;
}
if (|TabuSet | > limit) remove oldest tree from TabuSet;
TabuSet += Tree;

return BestTreeSoFar;

3.3.8 Genetic Algorithms

Genetic algorithms are inspired by evolution: only the fittest survives [299]. They
work with a population that evolves from generation to generation. Successors are
generated by crossover and mutation. Further, a subset of the current population (the
fittest) are propagated to the next generation (selection).The first generation is gener-
ated by a random generation process.

The problem is how to represent each individual in a population. The following
analogies are used:

• Chromosome←→ string

• Gene←→ character

106 CHAPTER 3. JOIN ORDERING

In order to solve an optimization problem with genetic algorithms, an encoding is
needed as well as a specification for selection, crossover, and mutation.

Genetic algorithms for join ordering have been considered in [66, 760]. We first
introduce alternative encodings, then come to the selection process, and finally discuss
crossover and mutation.

Encodings We distinguishordered listandordinal numberencodings. Both encod-
ings are used for left-deep and bushy trees. In all cases we assume that the relations
R1, . . . , Rn are to be joined and use the indexi to denoteRi.

1. Ordered List Encoding

(a) left-deep trees
A left-deep join tree is encoded by a permutation of1, . . . , n. For instance,
(((R1 1 R4) 1 R2) 1 R3) is encoded as “1423”.

(b) bushy trees
Bennet, Ferris, and Ioannidis proposed the following encoding scheme [66,
67]. A bushy join-tree without cartesian products is encoded as an ordered
list of the edges in the join graph. Therefore, we number the edges in
the join graph. Then the join tree is encoded in a bottom-up, left-to-right
manner. See Figure 3.15 for an example.

2. Ordinal Number Encoding

(a) left-deep trees
A join tree is encoded by using a list of relations that is shortened when-
ever a join has been encoded. We start with the listL = 〈R1, . . . , Rn〉.
Then withinL we find the index of first relation to be joined. Let this re-
lation beRi. Ri is thei-th relation inL. Hence, the first character in the
chromosome string isi. We eliminateRi from L. For every subsequent
relation joined, we again determine its index inL, remove it fromL and
append the index to the chromosome string. For instance, starting with
〈R1, R2, R3, R4〉, the left-deep join tree(((R1 1 R4) 1 R2) 1 R3) is
encoded as “1311”.

(b) bushy trees
Again, we start with the listL = 〈R1, . . . , Rn〉 and encode a bushy join
tree in a bottom-up, left-to-right manner. LetRi 1 Rj be the first join
in the join tree under this ordering. Then we look up their positions in
L and add them to the encoding. Next we eliminateRi andRj from L
and pushRi,j to the front of it. We then proceed for the other joins by
again selecting the next join which now can be between relations and/or
subtrees. We determine their position withinL, add these positions to
the encoding, remove them fromL, and insert a composite relation intoL
such that the new composite relation directly follows thosealready present.
For instance, starting with the list〈R1, R2, R3, R4〉, the bushy join tree
((R1 1 R2) 1 (R3 1 R4)) is encoded as “12 23 12”.

The encoding is completed by adding join methods.

3.3. PROBABILISTIC ALGORITHMS 107

...

R21

2

4

12431 1

1

R2R1

R4

R3 R5R4

1

R5

R1

3

R3

Figure 3.15: A query graph, a join tree, and its encoding

Crossover A crossover generates a new solution from two individuals. Therefore,
two partial solutions are combined. Obviously, its definition depends on the encoding.
Two kinds of crossovers are distinguished: the subsequenceand the subset exchange.

The subsequence exchange for the ordered list encoding works as follows. As-
sume two individuals with chromosomesu1v1w1 andu2v2w2. From these we generate
u1v

′
1w1 andu2v

′
2w2, wherev′i is a permutation of the relations invi such that the order

of their appearence is the same as inu3−iv3−iw3−i. In order to adapt the subsequence
exchange operator to the ordinal number encoding, we have torequire that thevi are of
equal length (|v1| = |v2|) and occur at the same offset (|u1| = |u2|). We then simply
swap thevi. That is, we generateu1v2w1 andu2v1w2.

The subset exchange is defined only for the ordered list encoding. Within the two
chromosomes, we find two subsequences of equal length comprising the same set of
relations. These sequences are then simply exchanged.

Mutation A mutation randomly alters a character in the encoding. If duplicates must
not occur — as in the ordered list encoding — swapping two characters is a perfect
mutation.

Selection The probability of a join tree’s survival is determined by its rank in the
population. That is, we calculate the costs of the join treesencoded for each member
of the population. Then we sort the population according to their associated costs and
assign probabilities to each individual such that the best solution in the population has
the highest probability to survive and so on. After probabilities have been assigned,
we randomly select members of the population taking these probabilities into account.
That is, the higher the probability of a member, the higher isits chance to survive.

Algorithm The genetic algorithm then works as follows. First, we create a random
population of a given size (say 128). We apply crossover and mutation with a given
rate, for example such that 65% of all members of a populationparticipate in crossover,
and 5% of all members of a population are subject to random mutation. Then we apply
selection until we again have a population of a given size. Westop after we have not
seen an improvement within the population for a fixed number of iterations (say 30).

108 CHAPTER 3. JOIN ORDERING

3.4 Hybrid Algorithms

All the algorithms we have seen so far can be combined to result in new approaches to
join ordering. Some of the numerous possibilities have beendescribed in the literature.
We present them.

3.4.1 Two Phase Optimization

Two phase optimization combines Iterative Improvement with Simulated Annealing
[410]. For a number of randomly generated initial trees, Iterative Improvement is used
to find a local minimum. Then Simulated Annealing is started to find a better plan in
the neighborhood of the local minima. The initial temperature of Simulated Annealing
can be lower as is its original variants.

3.4.2 AB-Algorithm

The AB-Algorithm was developed by Swami and Iyer [787, 788].It builds on the
IKKBZ-Algorithm by resolving its limitations. First, if the query graph is cyclic, a
spanning tree is selected. Second, two different cost functions for joins (join methods)
are supported by the AB-Algorithm: nested loop join and sortmerge join. In order
to make the sort merge join’s cost model fit the ASI property, it is simplified. Third,
join methods are assigned randomly before IKKBZ is called. Afterwards, an iterative
improvement phase follows. The algorithm can be formulatedas follows:

AB(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a left-deep join tree
while (number of iterations ≤ n2) {

if G is cyclic take spanning tree of G
randomly attach a join method to each relation
JoinTree = result of IKKBZ
while (number of iterations ≤ n2) {

apply Iterative Improvement to JoinTree
}

}
return best tree found

3.4.3 Toured Simulated Annealing

Lanzelotte, Valduriez, and Zäit introducedtoured simulated annealingas a search
strategy useful in distributed databases where the search space is even larger than in
centralized systems [482]. The basic idea is that simulatedannealing is calledn times
with different initial join trees, ifn is the number of relations to be joined. Each join
sequence in the setSolutions produced byGreedyJoinOrdering-3 is used to
start an independent run of simulated annealing. As a result, the starting temperature
can be decreased to 0.1 times the cost of the initial plan.

3.5. ORDERING ORDER-PRESERVING JOINS 109

3.4.4 GOO-II

GOO-II appends an Iterative Improvement step to the GOO-Algorithm.

3.4.5 Iterative Dynamic Programming

Iterative Dynamic Programming combines heuristics with dynamic programming in
order to overcome the deficiencies of both. It comes in two variants [467, 732]. The
first variant,IDP-1 (see Figure 3.16), first creates all join trees which containup tok
relations wherek is a parameter of the algorithm. After this step, it selects the cheapest
join tree comprisingk relations, replaces it by a new compound relation and startsall
over again. The iteration stops, when only one compound relation representing a join
tree for all relations remains in theToDo list.

The second variant,IDP-2 (see Figure 3.17), works the other way round. It first
applies a greedy heuristics to build join trees of size up tok. To the larger subtree it
applies dynamic programming to improve it. The result of theoptimized outcome of
the greedy algorithm is then encapsulated in a new compound relation which replaces
its constituent relations in theToDo list. The algorithm then iterates until only one
entry remains in theToDo list.

Obviously, from these two basic variants several others canbe derived. A system-
atic investigation of the basic algorithms and their variants is given by Kossmann and
Stocker [467]. It turns out that the most promising variantsexist for IDP-1 .

3.5 Ordering Order-Preserving Joins

This section covers an algorithm for ordering order-preserving joins [561]. This is
important for XQuery and other languages that require order-preservation. XQuery
specifies that the result of a query is a sequence. If nounordered or order by
instruction is given, the order of the output sequence is determined by the order of the
input sequences given in thefor clauses of the query. If there are several entries in
a for clause or severalfor clauses, order-preserving join operators [168] can be a
natural component for the evaluation of such a query.

The order-preserving join operator is used in several algebras in the context of

• semi-structured data and XML (e.g. SAL [62], XAL [253]),

• OLAP [747], and

• time series data [495].

We give a polynomial algorithm that produces bushy trees fora sequence of order-
preserving joins and selections. These trees may contain cross products even if the join
graph is connected. However, we apply selections as early aspossible. The algorithm
then produces the optimal plan among those who push selections down. The cost
function is a parameter of the algorithm, and we do not need torestrict ourselves to
those having the ASI property. Further, we need no restriction on the join graph, i.e.
the algorithm produces the optimal plan even if the join graph is cyclic.

Before defining the order-preserving join, we need some preliminaries. The above
algebras work on sequences of sets of variable bindings, i.e. sequences of unordered

110 CHAPTER 3. JOIN ORDERING

IDP-1({R1, . . . , Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output: a join tree
for (i = 1; i <= n; ++i) {

BestTree({Ri}) = Ri;
}
ToDo = {R1, . . . , Rn};
while (|ToDo| > 1) {

k = min(k, |ToDo|);
for (i = 2; i < k; ++i) {

for all S ⊆ ToDo, |S| = i do {
for all O ⊂ S do {

BestTree(S) = CreateJoinTree(BestTree(S), BestTree(O));
}

}
}
find V ⊂ ToDo, |V | = k
with cost(BestTree(V)) = min {cost(BestTree(W)) | W ⊂ ToDo, |W | = k};
generate new symbol T ;
BestTree({T}) = BestTree(V);
ToDo = (ToDo \ V) ∪ {T};
for all O ⊂ V do delete(BestTree(O));

}
return BestTree({R1, . . . , Rn});

Figure 3.16: Pseudo code forIDP-1

tuples where every attribute corresponds to a variable. (See Chapter 6.3 for a general
discussion.) Single tuples are constructed using the standard [·] brackets. Concate-
nation of tuples and functions is denoted by◦. The set of attributes defined for an
expressione is defined asA(e). The set of free variables of an expressione is defined
asF(e). For sequencese, we useα(e) to denote the first element of a sequence. We
identify single element sequences with elements. The function τ retrieves the tail of a
sequence, and⊕ concatenates two sequences. We denote the empty sequence byǫ.

We define the algebraic operators recursively on their inputsequences. The order-
preserving join operator is defined as the concatenation of an order-preserving selec-
tion and an order-preserving cross product. For unary operators, if the input sequence
is empty, the output sequence is also empty. For binary operators, the output sequence
is empty whenever the left operand represents an empty sequence.

The order-preserving join operator is based on the definition of an order-preserving
cross product operator defined as

e1×̂e2 := (α(e1)×̂e2)⊕ (τ(e1)×̂e2)

3.5. ORDERING ORDER-PRESERVING JOINS 111

where

e1×̂e2 :=

{
ǫ if e2 = ǫ

(e1 ◦ α(e2))⊕ (e1×̂τ(e2)) else

We are now prepared to define the join operation on ordered sequences:

e11̂pe2 := σ̂p(e1×̂e2)

where the order-preserving selection is defined as

σ̂p(e) :=

ǫ if e = ǫ
α(e) ⊕ σ̂p(τ(e)) if p(α(e))
σ̂p(τ(e)) else

As usual, selections can be reordered and pushed inside order-preserving joins.
Besides, the latter are associative. The following equivalences formalize this.

σ̂p1(σ̂p2(e)) = σ̂p2(σ̂p1(e))
σ̂p1(e11̂p2e2) = σ̂p1(e1)1̂p2e2 if F(p1) ⊆ A(e1)
σ̂p1(e11̂p2e2) = e11̂p2σ̂p1(e2) if F(p1) ⊆ A(e2)
e11̂p1(e21̂p2e3) = (e11̂p1e2)1̂p2e3 if F(pi) ⊆ A(ei) ∪A(ei+1)

While being associative, the order-preserving join is not commutative, as the fol-
lowing example illustrates. Given two tuple sequencesR1 = 〈[a : 1], [a : 2]〉 and
R2 = 〈[b : 1], [b : 2]〉, we have

R11̂trueR2 = 〈[a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2]〉
R21̂trueR1 = 〈[a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2]〉

Before introducing the algorithm, let us have a look at the size of the search space.
Since the order-preserving join is associative but not commutative, the input to the
algorithm must be a sequence of join operators or, likewise,a sequence of relations to
be joined. The output is then a fully parenthesized expression. Given a sequence of
n binary associative but not commutative operators, the number of fully parenthesized
expressions is (see [190])

P (n) =

{
1 if n = 1
∑n−1

k=1 P (k)P (n − k) if n > 1

We have thatP (n) = C(n − 1), whereC(n) are the Catalan numbers defined as
C(n) = 1

n+1

(2n
n

)
. SinceC(n) = Ω(4n

n3/2), the search space is exponential in size.
The algorithm is inspired by the dynamic programming algorithm for finding opti-

mal parenthesized expressions for matrix-chain multiplication [190]. The differences
are that we have to encapsulate the cost function and deal with selections. We give a
detailed example application of the algorithm below. This example illustrates (1) the
optimization potential, (2) that cross products can be favorable, (3) how to plug in a
cost function into the algorithm, and (4) the algorithm itself.

The algorithm itself is broken up into several subroutines.The first isapplica-
ble-predicates (see Fig. 3.18). Given a sequence of relationsRi, . . . , Rj and a
set of predicates, it retrieves those predicates applicable to the result of the join of the

112 CHAPTER 3. JOIN ORDERING

relations. Since joins and selections can be reordered freely, the only condition for a
predicate to be applicable is that all its free variables arebound by the given relations.

The second subroutine is the most important and intrigued. It fills several arrays
with values in a bottom-up manner. The third subroutine thenbuilds the query evalua-
tion plan using the data in the arrays.
The subroutineconstruct-bushy-tree takes as input a sequenceR1, . . . , Rn of
relations to be joined and a setP of predicates to be applied. For every possible subse-
quenceRi, . . . , Rj , the algorithm finds the best plan to join these relations. Therefor,
it determines somek such that the cheapest plan joins the intermediate results for
Ri, . . . , Rk andRk+1, . . . , Rj by its topmost join. For this it is assumed that for allk
the best plans for joiningRi, . . . , Rk andRk+1, . . . , Rj are known. Instead of directly
storing the best plan, we remember (1) the costs of the best plan forRi, . . . , Rj for all
1 ≤ i ≤ j ≤ n and (2) thek where the split takes place. More specifically, the array
c[i, j] contains the costs of the best plan for joiningRi, . . . , Rj , and the arrayt[i, j]
contains thek such that this best plan joinsRi, . . . , Rk andRk+1, . . . , Rj with its top-
most join. For every sequenceRi, . . . , Rj , we also remember the set of predicates that
can be applied to it, excluding those that have been applied earlier. These applicable
predicates are contained inp[i, j]. Still, we are not done. All cost functions we know
use some kind of statistics on the argument relation(s) in order to compute the costs
of some operation. Since we want to be generic with respect tothe cost function, we
encapsulate the computation of statistics and costs withinfunctionsS0, C0, S1, and
C1. The functionS0 retrieves statistics for base relations. The functionC0 computes
the costs of retrieving (part of) a base relation. Both functions take a set of applicable
predicates as an additional argument. The functionS1 computes the statistics for inter-
mediate relations. Since the result of joining some relationsRi, . . . , Rj may occur in
many different plans, we compute it only once and store it in the arrays. C1 computes
the costs of joining two relations and applying a set of predicates. Below, we show
how concrete (simple) cost and statistics functions can look like.

Given the above, the algorithm (see Fig. 3.19) fills the arrays in a bottom-up man-
ner by first computing for every base relation the applicablepredicates, the statistics
of the result of applying the predicates to the base relationand the costs for computing
these intermediate results, i.e. for retrieving the relevant part of the base relation and
applying the predicates (lines 02-07). Note that this is notreally trivial if there are
several index structures that can be applied. Then computing C0 involves considering
different access paths. Since this is an issue orthogonal tojoin ordering, we do not
detail on it.

After we have the costs and statistics for sequences of length one, we compute the
same information for sequences of length two, three, and so on until n (loop starting
at line 08). For every length, we iterate over all subsequences of that length (loop
starting at line 09). We compute the applicable predicates and the statistics. In order
to determine the minimal costs, we have to consider every possible split point. This is
done by iterating the split pointk from i to j − 1 (line 16). For everyk, we compute
the cost and remember thek that resulted in the lowest costs (lines 17-20).

The last subroutine takes the relations, the split points (t), and the applicable pred-
icates (p) as its input and extracts the plan. The whole plan is extracted by calling
extract-plan . This is done by instructingextract-subplan to retrieve the
plan for all relations. This subroutine first determines whether the plan for a base re-

3.5. ORDERING ORDER-PRESERVING JOINS 113

lation or that of an intermediate result is to be constructed. In both cases, we did a
little cheating here to keep things simple. The plan we construct for base relations
does not take the above-mentioned index structures into account but simply applies a
selection to a base relation instead. Obviously, this can easily be corrected. We also
give the join operator the whole set of predicates that can beapplied. That is, we do
not distinguish between join predicates and other predicates that are better suited for a
selection subsequently applied to a join. Again, this can easily be corrected.

Let us have a quick look at the complexity of the algorithm. Givenn relations with
m attributes in total andp predicates, we can implementapplicable-predicates
in O(pm) by using a bit vector representation for attributes and freevariables and
computing the attributes for each sequenceRi, . . . , Rj once upfront. The latter takes
O(n2m).

The complexity of the routineconstruct-bushy-tree is determined by the
three nested loops. We assume thatS1 and C1 can be computed inO(p), which
is quite reasonable. Then, we haveO(n3p) for the innermost loop,O(n2) calls to
applicable-predicates , which amounts toO(n2pm), andO(n2p) for calls of
S1. Extracting the plan is linear inn. Hence, the total runtime of the algorithm is
O(n2(n + m)p)

In order to illustrate the algorithm, we need to fix the functions S0, S1, C0 and
C1. We use the simple cost functionCout. As a consequence, the arrays simply stores
cardinalities, andS0 has to extract the cardinality of a given base relation and multiply
it by the selectivities of the applicable predicates.S1 multiplies the input cardinalities
with the selectivities of the applicable predicates. We setC0 to zero andC1 to S1. The
former is justified by the fact that every relation must be accessed exactly once and
hence, the access costs are equal in all plans. Summarizing,we define

S0(R,B) := |R|
∏

p∈B
f(p)

S1(x, y,B) := xy
∏

p∈B
f(p)

C0(R,B) := 0

C1(x, y,B) := S1(x, y,B)

whereB is a set of applicable predicates and for a single predicatep, f(p) returns its
selectivity.

We illustrate the algorithm by an example consisting of fourrelationsR1, . . . , R4

with cardinalities|R1| = 200, |R2| = 1, |R3| = 1, |R4| = 20. Besides, we have
three predicatespi,j with F(pi,j) ⊆ A(Ri)∪A(Rj). They arep1,2, p3,4, andp1,4 with
selectivities 1/2, 1/10, 1/5.

Let us first consider an example plan and its costs. The plan

((R11̂p1,2R2)1̂trueR3)1̂p1,4∧p3,4R4

has the costs240 = 100 + 100 + 40.
For our simple cost function, the algorithmconstruct-bushy-tree will fill

the arrays with the initial values:

114 CHAPTER 3. JOIN ORDERING

s

200
1

1
20

After initilization, the arrayc has0 everywhere in its diagonal and the arrayp empty
sets.

For l = 2, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

2 1 2 1 100 100 100 1
2 2 3 2 1 1 1 2
2 3 4 3 2 2 2 3

For l = 3, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

3 1 3 1 200 101 101 1
3 1 3 2 200 200 101 1

3 2 4 2 2 4 4 2
3 2 4 3 2 3 3 3

For l = 4, the algorithm produces the following values:

l i j k s[1,4] q current c[1,4] current t[1,4]

4 1 4 1 40 43 43 1
4 1 4 2 40 142 43 1
4 1 4 3 40 141 43 1

where for eachk the value ofq (in the following table denoted byqk) is determined as
follows:

q1 = c[1, 1] + c[2, 4] + 40 = 0 + 3 + 40 = 43
q2 = c[1, 2] + c[3, 4] + 40 = 100 + 2 + 40 = 142
q3 = c[1, 3] + c[4, 4] + 40 = 101 + 0 + 40 = 141

Collecting all the abovet[i, j] values leaves us with the following array as input
for extract-plan :

i \ j 1 2 3 4

1 1 1 1

2 2 3

3 3

4

The functionextract-plan merely callsextract-subplan . For the latter,
we give the call hierarchy and the result produced:

3.6. CHARACTERIZING SEARCH SPACES 115

000 extract-plan(. . ., 1, 4)
100 extract-plan(. . ., 1, 1)
200 extract-plan(. . ., 2, 4)
210 extract-plan(. . ., 2, 3)
211 extract-plan(. . ., 2, 2)
212 extract-plan(. . ., 3, 3)
210 return (R21̂true R3)
220 extract-plan(. . ., 4, 4)
200 return ((R21̂true R3)1̂p3,4R4)
000 return (R11̂p1,2∧p1,4((R21̂true R3)1̂p3,4R4))

The total cost of this plan isc[1, 4] = 43.

3.6 Characterizing Search Spaces

3.6.1 Complexity Thresholds

The complexity results presented in Section 3.1.6 show thatmost classes of join order-
ing problems are NP-hard. However, it is quite clear that some instances of the join
ordering problem are simpler than others. For example, consider a query graph which
is a clique inn relationsR1, . . . , Rn. Further assume that eachRi has cardinality2i

and all join selectivities are1/2 (i.e.fi,j = 1/2 for all 1 ≤ i, j ≤ n, i 6= j). Obviously,
this problem is easy to optimize although the query graph is clique. In this section we
present some ideas on how the complexity of instances of the join ordering problem is
influenced by certain parameters.

How can we judge the complexity of a single instance of a join ordering problem?
Using standard complexity theory, for single problem instances we easily derive an al-
gorithm that works inΘ(1). Hence, we must define other complexity measures. Con-
sider our introductory join ordering problem. A simple greedy algorithm that orders
relations according to their cardinality produces an optimal solution for it. Hence, one
possibility to define the problem complexity would be how fara solution produced by
typical heuristics for join ordering differ from the optimal solution. Another possibil-
ity is to use randomized algorithms like iterative improvement of simulated annealing
and see how far the plans generated by them deviate from the optimal plan. These
approaches have the problem that the results may depend on the chosen algorithm.
This can be avoided by using the following approach. For eachjoin ordering problem
instance, we compute the fraction of good plans compared to all plans. Therefor, we
need a measure of “good”. Typical examples thereof would be to say a plan is “good”
if it does not deviate more than 10% or a factor of two from the optimal plan.

If these investigations were readily available, there are certain obvious benefits
[465]:

1. The designer of an optimizer can classify queries such that heuristics are applied
where they guarantee success; cases where they are bound to fail can be avoided.
Furthermore, taking into account the vastly different run time of the different
join ordering heuristics and probabilistic optimization procedures, the designer
of an optimizer can choose the method that achieves a satisfactory result with
the least effort.

116 CHAPTER 3. JOIN ORDERING

2. The developer of search procedures and heuristics can usethis knowledge to de-
sign methods solving hard problems (as exemplified for graphcoloring problems
[394]).

3. The investigator of different join ordering techniques is able to (1) consciously
design challenging benchmarks and (2) evaluate existing benchmarks according
to their degree of challenge.

The kind of investigation presented in this section first started in the context of arti-
ficial intelligence where a paper by Cheeseman, Kanefsky, and Taylor [139] spurred a
whole new branch of research where the measures to judge the complexity of problem
instances was investigated for many different NP-completeproblems like satisfiabil-
ity [139, 193, 294, 554], graph coloring [139], Hamiltoniancircuits [139], traveling
salesman [139], and constraint satisfaction [848].

We only present a small fraction of all possible investigations. The restrictions are
that we do not consider all parameters that possibly influence the problem complexity,
we only consider left-deep trees, and we restrict ourselvesto the cost functionChj. The
join graphs are randomly generated. Starting with a circle,we randomly added edges
until a clique is reached. The reader is advised to carry out his or her own experiments.
Therefor, the following pointer into the literature might be useful. Lanzelotte and
Valduriez provide an object-oriented design for search strategies [480]. This allows
easy modification and even the exchange of the plan generator’s search strategy.

Search Space Analysis

The goal of this section is to determine the influence of the parameters on the search
space of left-deep join trees. More specifically, we are interested in how a variation
of the parameters changes the percentage of good solutions among all solutions. The
quality of a solution is measured by the factor its cost deviates from the optimal per-
mutation. For this, all permutations have to be generated and evaluated. The results
of this experiment are shown in Figures 3.21 and 3.22. Each single curve accumu-
lates the percentage of all permutations deviating less than a certain factor (given as
the label) from the optimum. The accumulated percentages are given at the y-axes,
the connectivity at the x-axes. The connectivity is given bythe number of edges in
the join graph. The curves within the figures are organized asfollows. Figure 3.21
(3.22) shows varying mean selectivity values (relation sizes) and variances where the
mean selectivity values (relation sizes) increase from topto bottom and the variances
increase from left to right.

Note that the more curves are visible and the lower their y-values, the harder is the
problem. We observe the following:

• all curves exhibit a minimum value at a certain connectivity

• which moves with increasing mean values to the right;

• increasing variances does not have an impact on theminimum connectivity,

• problems become less difficult with increasing mean values.

These findings can be explained as follows. With increasing connectivity, the join
ordering problem becomes more complex up to a certain point and then less complex

3.6. CHARACTERIZING SEARCH SPACES 117

again. To see this, consider the following special though illustrative case. Assume
an almost equal distribution of the costs of all alternatives between the worst case
and optimal costs, equal relation sizes, and equal selectivities. Then the optimization
potentialworst case/optimumis 1 for connectivity 0 and cliques. In between, there
exists a connectivity exhibiting the maximum optimizationpotential. This connectivity
corresponds to the minimum connectivity of Figures 3.21 and3.22.

There is another factor which influences the complexity of a single problem in-
stance. Consider joiningn relations. The problem becomes less complex if after
joining i < n relations the intermediate result becomes so small that theaccumulated
costs of the subsequentn− i joins are small compared to the costs of joining the first
i relations. Hence, the ordering of the remainingn − i relations does not have a big
influence on the total costs. This is the case for very small relations, small selectivi-
ties, or high connectivities. The greater selectivities and relation sizes are, the more
relations have to be joined to reach this critical size of theintermediate result. If the
connectivity is enlarged, this critical size is reached earlier. Since the number of se-
lectivities involved in the first few joins is small regardless of the connectivity, there is
a lower limit to the number of joined relations required to arrive at the critical inter-
mediate result size. If the connectivity is larger, this point is reached earlier, but there
exists a lower limit on the connectivity where this point is reached. The reason for this
lower limit is that the number of selectivities involved in the joins remains small for
the first couple of relations, independent of their connectivity. These lines of argument
explain subsequent findings, too.

The reader should be aware of the fact that the number of relations joined is quite
small (10) in our experiments. Further, as observed by several researchers, if the num-
ber of joins increases, the number of “good” plans decreases[261, 784]. That is,
increasing the number of relations makes the join ordering problem more difficult.

Heuristics

For analyzing the influence of the parameters on the performance of heuristics, we
give the figures for four different heuristics. The first two are very simple. TheminSel
heuristic selects those relations first of which incident join edges exhibit the minimal
selectivity. TherecMinRelheuristic chooses those relations first which result in the
smallest intermediate relation.

We also analyzed the two advanced heuristicsIKKBZ andRDC. TheIKKBZ heuris-
tic [471] is based on an optimal join ordering procedure [402, 471] which is applied
to the minimal spanning tree of the join graph where the edgesare labeled by the se-
lectivities. The family ofRDCheuristics is based on the relational difference calculus
as developed in [382]. Since our goal is not to benchmark different heuristics in order
to determine the best one, we have chosen the simplest variant of the family ofRDC
based heuristics. Here, the relations are ordered according to a certain weight whose
actual computation is—for the purpose of this section—of nointerest. The results of
the experiments are presented in Figure 3.23.

On a first glance, these figures look less regular than those presented so far. This
might be due to the non-stable behavior of the heuristics. Nevertheless, we can extract
the following observations. Many curves exhibit a peak at a certain connectivity. Here,
the heuristics perform worst. The peak connectivity is dependent on the selectivity

118 CHAPTER 3. JOIN ORDERING

size but not as regular as in the previous curves. Further, higher selectivities flatten the
curves, that is, heuristics perform better at higher selectivities.

Probabilistic Optimization Procedures

Figure 3.24 shows four pictures corresponding to simulatedannealing (SA), iterative
improvement (II), iterative improvement applied to the outcome of the IKKBZ heuris-
tic (IKKBZ/II) and the RDC heuristic (RDC/II) [382]. The patterns shown in Fig-
ure 3.24 are very regular. All curves exhibit a peak at a certain connectivity. The
peak connectivities typically coincide with the minimum connectivity of the search
space analysis. Higher selectivities result in flatter curves; the probabilistic procedures
perform better. These findings are absolutely coherent withthe search space analy-
sis. This is not surprising, since the probabilistic procedures investigate systematically
—although with some random influence— a certain part of the search space.

Given a join ordering problem, we can describe its potentialsearch space as a
graph. The set of nodes consists of the set of join trees. For every two join treesa and
b, we add an edge(a, b) if b can be reached froma by one of the transformation rules
used in the probabilistic procedure. Further, with every node we can associate the cost
its corresponding join tree.

Having in mind that the probabilistic algorithms are alwaysin danger of being
stuck in a local minima, the following two properties of the search space are of interest:

1. the cost distribution of local minima, and

2. the connection cost of low local minima.

Of course, if all local minima are of about the same cost, we donot have to worry,
otherwise we do. It would be very interesting to know the percentage of local minima
that are close to the global minima.

Concerning the second property, we first have to define the connection cost. Let
a andb be two nodes andP be the set of all paths froma to b. Theconnection cost
of a and b is then defined asminp∈P maxs∈p{cost(s)|s 6= a, s 6= b}. Now, if the
connection costs are high, we know that if we have to travel from one local minima to
another, there is at least one node we have to pass which has high costs. Obviously, this
is bad for our probabilistic procedures. Ioannidis and Kang[411] call a search graph
that is favorable with respect to the two properties awell. Unfortunately, investigating
these two properties of real search spaces is rather difficult. However, Ioannidis and
Kang, later supported by Zhang, succeeded in characterizing cost wells in random
graphs [411, 412]. They also conclude that the search space comprising bushy trees is
better w.r.t. our two properties than the one for left-deep trees.

3.7 Discussion

Choose one of dynamic programming, memoization, permutations as the core of your
plan generation algorithm and extend it with the rest of book.ToDo

3.8. BIBLIOGRAPHY 119

3.8 Bibliography

ToDo: Oezsu, Meechan [596, 597]

120 CHAPTER 3. JOIN ORDERING

IDP-2({R1, . . . , Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output: a join tree
for (i = 1; i <= n; ++i) {

BestTree({Ri}) = Ri;
}
ToDo = {R1, . . . , Rn};
while (|ToDo| > 1) {

// apply greedy algorithm to select a good building block
B = ∅;
for all v ∈ ToDo, do {

B += BestTree({v});
}
do {

find L,R ∈ B
with cost(CreateJoinTree(L, R))

= min {cost(CreateJoinTree(L′, R′)) | L′, R′ ∈ B};
P = CreateJoinTree(L, R));
B = (B \ {L,R}) ∪ {P};

} while (P involves no more than k relations and |B| > 1);
// reoptimize the bigger of L and R,
// selected in the last iteration of the greedy loop
if (L involves more tables than R) {

ReOpRels = relations involved in L;
} else {

ReOpRels = relations involved in R;
}
P = DP-Bushy(ReOpRels);
generate new symbol T ;
BestTree({T}) = P ;
ToDo = (ToDo \ ReOpRels) ∪ {T};
for all O ⊂ V do delete(BestTree(O));

}
return BestTree({R1, . . . , Rn});

Figure 3.17: Pseudocode for IDP-2

3.8. BIBLIOGRAPHY 121

applicable-predicates(R, P)

01 B = ∅
02 foreach p ∈ P
03 IF (F(p) ⊆ A(R))
04 B+ = p
05 return B

Figure 3.18: Subroutineapplicable-predicates

construct-bushy-tree(R, P)

01 n = |R|
02 for i = 1 to n
03 B =applicable-predicates(Ri, P)
04 P = P \ B
05 p[i, i] = B
06 s[i, i] = S0(Ri,B)
07 c[i, i] = C0(Ri,B)
08 for l = 2 to n
09 for i = 1 to n− l + 1
10 j = i + l − 1
11 B = applicable-predicates(Ri...j , P)
12 P = P \ B
13 p[i, j] = B
14 s[i, j] = S1(s[i, j − 1], s[j, j],B)
15 c[i, j] =∞
16 for k = i to j − 1
17 q = c[i, k] + c[k + 1, j] + C1(s[i, k], s[k + 1, j],B)
18 IF (q < c[i,j])
19 c[i, j] = q
20 t[i, j] = k

Figure 3.19: Subroutineconstruct-bushy-tree

122 CHAPTER 3. JOIN ORDERING

extract-plan(R, t, p)

01 return extract-subplan(R, t, p, 1, |R|)

extract-subplan(R, t, p, i, j)

01 IF (j > i)
02 X = extract-subplan(R, t, p, i, t[i, j])
03 Y = extract-subplan(R, t, p, t[i, j] + 1, j)
04 return X1̂p[i,j]Y

05 else
06 return σ̂p[i,i](Ri)

Figure 3.20: Subroutineextract-plan and its subroutine

3.8. BIBLIOGRAPHY 123

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.05,SelVar:0

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100

50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.05,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000
5000
1000

500
100
50
10

5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.1,SelVar:0

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100

50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.1,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000
5000
1000

500
100
50
10

5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.15,SelVar:0

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100

50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000
5000
1000

500
100
50
10

5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.2,SelVar:0

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100

50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

Sel:0.2,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000
5000
1000

500
100
50
10

5
2

1.5
1.1

Figure 3.21: Impact of selectivity on the search space

124 CHAPTER 3. JOIN ORDERING

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

RelSize:2480,RelVar:0,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100
50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
pe

rc
en

ta
ge

 o
f s

ol
ut

io
ns

Connectivity

RelSize:2480,RelVar:8.832e+06,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000

500
100
50
10

5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

RelSize:24805,RelVar:0,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100
50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

RelSize:24805,RelVar:8.832e+08,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000

500
100
50
10

5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

RelSize:248050,RelVar:0,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000
500
100
50
10
5
2

1.5
1.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f s
ol

ut
io

ns

Connectivity

RelSize:248050,RelVar:8.832e+10,SelSize:0.15,SelVar:1/1200

1e+10
5e+09
1e+09
5e+08
1e+08
5e+07
1e+07
5e+06
1e+06

500000
100000
50000
10000

5000
1000

500
100
50
10

5
2

1.5
1.1

Figure 3.22: Impact of relation sizes on the search space

3.8. BIBLIOGRAPHY 125

1

10

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,LDRecursive_MinSel

Sel: 0.05
Sel: 0.1

Sel: 0.15
Sel: 0.2

1

10

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,LDRecursive_MinRel

Sel: 0.05
Sel: 0.1

Sel: 0.15
Sel: 0.2

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:1/1200,LDRecursive_MinSel

Sel: 0.00001-0.1
Sel: 0.05-0.15

Sel: 0.1-0.2
Sel: 0.15-0.25

1

10

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:1/1200,LDRecursive_MinRel

Sel: 0.00001-0.1
Sel: 0.05-0.15

Sel: 0.1-0.2
Sel: 0.15-0.25

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,KBZ

Sel: 0.05
Sel: 0.1

Sel: 0.15
Sel: 0.2

1

10

100

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,RDC_Sort_pure

Sel: 0.05
Sel: 0.1

Sel: 0.15
Sel: 0.2

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:1/1200,KBZ

Sel: 0.00001-0.1
Sel: 0.05-0.15

Sel: 0.1-0.2
Sel: 0.15-0.25

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:1/1200,RDC_Sort_pure

Sel: 0.00001-0.1
Sel: 0.05-0.15

Sel: 0.1-0.2
Sel: 0.15-0.25

Figure 3.23: Impact of parameters on the performance of heuristics

126 CHAPTER 3. JOIN ORDERING

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,SA

Sel: 0.01
Sel: 0.02
Sel: 0.03
Sel: 0.04
Sel: 0.05

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,II

Sel: 0.01
Sel: 0.02
Sel: 0.03
Sel: 0.04
Sel: 0.05

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,KBZII

Sel: 0.01
Sel: 0.02
Sel: 0.03
Sel: 0.04
Sel: 0.05

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

C
os

t o
f O

pt
im

iz
er

/C
os

t o
f O

pt
im

al

Connectivity

SelVar:0,RDC_sort_pureII

Sel: 0.01
Sel: 0.02
Sel: 0.03
Sel: 0.04
Sel: 0.05

Figure 3.24: Impact of selectivities on probabilistic procedures

Chapter 4

Database Items, Building Blocks,
and Access Paths

In this chapter we go down to the storage layer and discuss leaf nodes of query exe-
cution plans and plan fragments. We briefly recap some notions, but reading a book
on database implementation might be helpful [371, 275]. Although alternative stor-
age technologies exist and are being developed [689], databases are mostly stored on
disks. Thus, we start out by introducing a simple disk model to capture I/O costs.
Then, we say some words about database buffers, physical data organization, slotted
pages and tuple identifiers (TIDs), physical record layout,physical algebra, and the
iterator concept. These are the basic notions in order to start with the main purpose of
this section: giving an overview over the possibilities available to structure the low lev-
el parts of a physical query evaluation plan. In order to calculate the I/O costs of these
plan fragments, a more sophisticated cost model for severalkinds of disk accesses is
introduced.

4.1 Disk Drive

Figure 4.1 shows a top and a side view of a typical disk. A disk consists of several
platters that rotate around the spindle at a fixed speed. The platters are coated with
a magnetic material on at least one of their surfaces. All coated sides are organized
into the same pattern of concentric circles. One concentriccircle is called a track.
All the tracks residing exactly underneath and above each other form a cylinder. We
assume that there is only one read/write head for every coated surface.1 All tracks
of a cylinder can be accessed with only minor adjustments at the same time by their
respective heads. By moving the arm around the arm pivot, other cylinders can be
accessed. Each track is partitioned into sectors. Sectors have a disk specific (almost)
fixed capacity of 512 B. The read and write granularity is a sector. Read and write
accesses take place while the sector passes under the head.

The top view of Figure 4.1 shows that the outer sectors are longer than the inner
sectors. The highest density (e.g. in bits per centimeter) at which bits can be separated
is fixed for a given disk. For storing 512 B, this results in a minimum sector length

1This assumption is valid for most but not all disks.

127

128CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

arm
pivot

arm
assembly

top viewb.

platter

arm head spindle

cylinder

sector track

head

arm

side viewa.

Figure 4.1: Disk drive assembly

which is used for the tracks of the innermost cylinder. Thus,since sectors on outer
tracks are longer, storage capacity is wasted there. To overcome this problem, disks
have a varying number of sectors per track. (This is where thepicture lies.) Therefore,
the cylinders are organized into zones. Every zone containsa fixed number of consec-
utive cylinders, each having a fixed number of sectors per track. Between zones, the
number of sectors per track varies. Outer zones have more sectors per track than inner
zones. Since the platters rotate with a fixed angular speed, sectors of outer cylinders
can be read faster than sectors of inner cylinders. As a consequence, the throughput
for reading and writing outer cylinders is higher than for inner cylinders.

Assume that we sequentially read all the sectors of all tracks of some consecutive
cylinders. After reading all sectors of some track, we must proceed to the next track.
If it is contained in the same cylinder, then we must (simply)use another head: ahead
switchoccurs. Due to calibration, this takes some time. Thus, if all sectors start at
the same angular position, we come too late to read the first sector of the next track
and have to wait. To avoid this, the angular start positions of the sectors of tracks
in the same cylinder are skewed such that thistrack skewcompensates for the head
switch time. If the next track is contained in another cylinder, the heads have to switch
to the next cylinder. Again, this takes time and we miss the first sector if all sectors
of a surface start at the same angular positions.Cylinder skewis used such that the
time needed for this switch does not make us miss to start reading the next sector. In
general, skewing works in only one direction.

A sector can be addressed by a triple containing its cylinder, head (surface), and
sector number. This triple is called the physical address ofa sector. However, disks
are accessed using logical addresses. These are calledlogical block numbers(LBN)
and are consecutive numbers starting with zero. The disk internally maps LBNs to
physical addresses. This mapping is captured in the following table:

4.1. DISK DRIVE 129

Host sends
command

Controller
decodes it

Rotational
latency

Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time

Figure 4.2: Disk drive read request processing

cylinder track LBN number of sectors per track

0 0 0 573
1 573 573

.
5 2865 573

1 0 3438 573
.

15041 0 35841845 253
.

However, this ideal view is disturbed by the phenomenon of bad blocks. Abad block
is one with a defect and it cannot be read or written. After a block with a certain LBN
is detected to be bad, it is assigned to another sector. The above mapping changes.
In order to be able redirect LBNs, extra space on the disk mustexist. Hence, some
cylinders, tracks, and sectors are reserved for this purpose. They may be scattered all
over the platters. Redirected blocks cause hiccups during sequential read.

Building (see e.g. [579]) and modeling (see e.g. [537, 677, 737, 738, 802, 846])
disk drives is challenging. Whereas the former is not reallyimportant when building
query compiler, the latter is, as we have to attach costs to query evaluation plans. These
costs reflect the amount of time we occupy the resource disk. Since disks are relatively
slow, they may become the bottleneck of a database server. Modeling and minimizing
disk access (time) is thus an important topic. Consider the case where we want to read
a block from a SCSI disk. Simplified, the following actions take place and take their
time (see also Fig. 4.2):

1. The host sends the SCSI command.

2. The disk controller decodes the command and calculates the physical address.

3. During the seek the disk drive’s arm is positioned such that the according head is
correctly placed over the cylinder where the requested block resides. This step
consists of several phases.

(a) The disk controller accelerates the arm.

130CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

(b) For long seeks, the arm moves with maximum velocity (coast).

(c) The disk controller slows down the arm.

(d) The disk arm settles for the desired location. The settletimes differ for read
and write requests. For reads, an aggressive strategy is used. If, after all, it
turns out that the block could not be read correctly, we can just discard it.
For writing, a more conservative strategy is in order.

4. The disk has to wait until the sector where the requested block resides comes
under the head (rotation latency).

5. The disk reads the sector and transfers data to the host.

6. Finally, it sends a status message.

Note that the transfers for different read requests are interleaved. This is possible since
the capacity of the SCSI bus is higher than the read throughput of the disk. Also note
that we did not mention the operating system delay and congestions on the SCSI bus.

Disk drives apply several strategies to accelerate the above-mentioned round-trip
time and access patterns like sequential read. Among them are caching, read-ahead,
and command queuing. (discuss interleaving?)ToDo

The seek and rotation latency times highly depend on the head’s position on the
platter surface. Let us consider seek time. A good approximation of the seek time
whered cylinders have to be travelled is given by

seektime(d) =

{
c1 + c2

√
d d <= c0

c3 + c4d d > c0

where the constantsci are disk-specific. The constantc0 indicates the maximum num-
ber of cylinders where no coast takes place: seeking over a distance of more thanc0

cylinders results in a phase where the disk arm moves with maximum velocity.
For disk accesses, the database system must be able to estimate the time they take

to be executed. First of all, we need the parameters of the disk. It is not too easy to
get hold of them, but we can make use of several tools to extract them from a given
disk [219, 270, 791, 696, 858, 859]. However, then we have a big problem: when
calculating I/O costs, the query compiler has no idea where the head will be when
the query evaluation plan emits a certain read (or write) command. Thus, we have to
find another solution. In the following, we will discuss a rather simplistic cost model
that will serve us to get a feeling for disk behavior. Later, we develop a more realistic
model (Section 4.17).

The solution is rather trivial: we sum up all command sendingand interpreting
times as well the times for positioning (seek and rotation latency) which form by far
the major part. Let us call the resultlatency time. Then, we assume an average latency
time. This, of course, may result in large errors for a singlerequest. However, on aver-
age, the error can be as “low” as 35% [677]. The next parameteris thesustained read
rate. The disk is assumed to be able to deliver a certain amount of bytes per second
while reading data stored consecutively. Of course, considering multi-zone disks, we
know that this is oversimplified, but we are still in our simplistic model. Analogously,
we have a sustained write rate. For simplicity, we will assume that this is the same

4.1. DISK DRIVE 131

as the sustained read rate. Last, the capacity is of some interest. A hypothetical disk
(inspired by disks available in 2004) then has the followingparameters:

Model 2004
Parameter Value Abbreviated Name

capacity 180 GB Dcap

average latency time 5 ms Dlat

sustained read rate 100 MB/s Dsrr

sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfern bytes is then approximated byDlat +
n/Dsrr. Again, this is overly simplistic: (1) due to head switches and cylinder switch-
es, long reads have lower throughput than short reads and (2)multiple zones are not
modelled correctly. However, let us use this very simplistic model to get some feeling
for disk costs.

Database management system developers distinguish between sequentialI/O and
random I/O. For sequential I/O, there is only one positioning at thebeginning and
then, we can assume that data is read with the sustained read rate. For random I/O,
one positioning for every unit of transfer—typically a pageof say 8 KB—is assumed.
Let us illustrate the effect of positioning by a small example. Assume that we want to
read 100 MB of data stored consecutively on a disk. Sequential read takes 5 ms plus
1 s. If we read in blocks of 8 KB where each block requires positioning then reading
100 MB takes 65 s.

Assume that we have a relation of about 100 MB in size, stored on a disk, and we
want to read it. Does it take 1 s or 65 s? If the blocks on which itis stored are randomly
scattered on disk and we access them in a random order, 65 s is agood approximation.
So let us assume that it is stored on consecutive blocks. Assume that we read in chunks
of 8 KB. Then,

• other applications,

• other transactions, and

• other read operations of the same query evaluation plan

could move the head away from our reading position. (Congestion on the SCSI bus
may also be problem.) Again, we could be left with 65 s. Reading the whole relation
with one read request is a possibility but may pose problems to the buffer manager.
Fortunately, we can read in chunks much smaller than 100 MB. Consider Figure 4.3.
If we read in chunks of 100 8 KB blocks we are already pretty close to one second
(within a factor of two).

Note that the interleaving of actions does not necessarily mean a negative impact.
This depends on the point of view, i.e. what we want to optimize. If we want to
optimize response time for a single query, then obviously the impact of concurrent
actions is negative. If, however, we want to optimize resource (here: disk) usage,
concurrent actions might help. ToDo?

There are two important things to learn here. First, sequential read is much faster
than random read. Second, the runtime system should secure sequential read. The
latter point can be generalized: the runtime system of a database management system
has, as far as query execution is concerned, two equally important tasks:

132CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

1

2

4

8

16

32

64

1 4 16 64 256 1024

Figure 4.3: Time to read 100 MB from disk (depending on the number of 8 KB blocks
read at once)

• allow for efficient query evaluation plans and

• allow for smooth, simple, and robust cost functions.

Typical measures on the database side are

• carefully chosen physical layout on disk
(e.g. cylinder or track-aligned extents [697, 698, 695], clustering),

• disk scheduling, multi-page requests
[207, 416, 704, 705, 712, 733, 766, 850, 857],

• (asynchronous) prefetching,

• piggy-back scans,

• buffering (e.g. multiple buffers, replacement strategy from [63] to [547]), and
last but not least

• efficient and robust algorithms for algebraic operators [312].

Let us take yet another look at it. 100 MB can be stored on 128008 KB pages.
Figure 4.4 shows the time to readn random pages. In our simplistic cost model,
reading 200 pages randomly costs about the same as reading 100 MB sequentially.
That is, reading 1/64th of 100 MB randomly takes as long as reading the 100 MB
sequentially. Let us denote bya the positioning time,s the sustained read rate,p
the page size, andd some amount of consecutively stored bytes. Let us calculatethe

4.1. DISK DRIVE 133

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

Figure 4.4: Time needed to readn random pages

break-even point

n ∗ (a + p/s) = a + d/s

n = (a + d/s)/(a + p/s)

= (as + d)/(as + p)

a and s are disk parameters and, hence, fixed. For a fixedd, the break-even point
depends on the page size. This is illustrated in Figure 4.5. The x-axis is the page size
p in multiples of 1 K and the y-axis is(d/p)/n for d = 100 MB.

For sequential reads, the page size does not matter. (Be aware that our simplistic
model heavily underestimates sequential reads.) For random reads, as long as a single
page is read, it matters neither: reading a single page of 1 KBlasts 5.0097656 ms,
for an 8 KB page the number is 5.0781250 ms. From all this, we could draw the
conclusion that the larger the page the better. However, this is only true for the disk,
not, e.g., for the buffer or the SCSI bus. If we need to access only 500 B of a page,
then the larger the page the higher the fraction that is wasted. This is not as severe as it
sounds. Other queries or transactions might need other parts of the page during a single
stay in the buffer. Let us call the fraction of the page that isread by some transaction
during a stay in the buffer by utilization. Obviously, the higher the utilization the better
is our usage of the main memory in which the buffer resides. For smaller pages, the
utilization is typically higher than for larger pages. The frequency by which pages are
used is another factor. [332, 333].

Excursion. Consider the root page of a B-tree. It is accessed quite frequently and
most of its parts will be used, no matter how large it is. Hence, utilization is always
good. Thus, the larger the root page of a B-tree the better. Onthe other hand, consider

134CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

8

16

32

64

128

256

512

1 2 4 8 16 32 64

Figure 4.5: Break-even point in fraction of total pages depending on page size

a leaf page of a B-tree that is much bigger than main memory. During a single stay
of it, only a small fraction of the page will be used. That is, smaller leaf pages are
typically better. By converting everything to money instead of time, Gray and Graefe
[332] as well as Lomet [519] come to the conclusion that a pagesize between 8 and
16 KB was a good choice at the end of the last century.

For the less simplistic model of disk access costs developedin Section 4.17, we
need to describe a disk drive by a set of parameters. These parameters are summarized
in Table 4.1.

Let us close this section by giving upper bounds on seek time and rotational laten-
cy. Qyang proved the following theorem which gives a tight upper bound of disk seek
time if several cylinders of a consecutive range of cylinders have to be visited [635].

Theorem 4.1.1 (Qyang)If the disk arm has to travel over a region ofC cylinders,
it is positioned on the first of theC cylinders and has to stop ats − 1 of them, then
sDseek(C/s) is an upper bound for the seek time.

The time required fors consecutive sectors in a track of zonei to pass by the head
is

Drot(s, i) = sDZscan(i) = s
Drot

DZspt(i)
(4.1)

A trivial upper bound for the rotational delay is a full rotation.

4.2 Database Buffer

The database buffer

1. is a finite piece of memory,

4.3. PHYSICAL DATABASE ORGANIZATION 135

Dcyl total number of cylinders
Dtrack total number of tracks
Dsector total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch

DZone total number of zones
DZcyl(i) number of cylinders in zonei
DZspt(i) number of sectors per track in zonei
DZspc(i) number of sectors per cylinder in zonei (= DtpcDZspt(i))
DZscan(i) time to scan a sector in zonei (= Drot/DZspt(i))

Davgseek average seek costs
Dc0 parameter for seek cost function
Dc1 parameter for seek cost function
Dc2 parameter for seek cost function
Dc3 parameter for seek cost function
Dc4 parameter for seek cost function

Dseek(d) cost of a seek ofd cylinders

Dseek(d) =

{
Dc1 + Dc2

√
d if d ≤ Dc0

Dc3 + Dc4d if d > Dc0

Drot(s, i) rotation cost fors sectors of zonei (= sDZscan(i))

Table 4.1: Disk drive parameters and elementary cost functions

2. typically supports a limited number of different page sizes (mostly one or two),

3. is often fragmented into several buffer pools,

4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup. Accesses
to the hash table and the buffer frame need to be synchronized. Before accessing a
page in the buffer, it must be fixed. These points account for the fact that the costs of
accessing a page in the buffer are, therefore, greater than zero.

4.3 Physical Database Organization

We call everything that is stored in the database and relevant for answering queries
a database item. Let us exclude meta data. In a relational system, a databaseitem
can be a relation, a fragment of a relation (if the relation ishorizontally or vertically

136CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

fragmented), a segment, an index, a materialized view, or anindex on a materialized
view. In object-oriented databases, a database item can be the extent of a class, a named
object, an index and so forth. In XML databases, a database item can be a named
document, a collection of documents, or an index. Access operations to database items
form the leaves of query evaluation plans.

Partition

Segment

Page

contains

consists of

Record

stores

Partition

Segment

Page

contains

consists of

Record

stores

Relation

Fragment

fragmented

contains

Tuplerepresented

mapped

1

N

1

1

M

N

1

N

N 1

M

N

N

N

Figure 4.6: Physical organization of a relational database

The physical algebra implemented in the query execution engine of some runtime
systems allow to access database items. Since most databaseitems consist of several
data items (tuples, objects, documents), these access operations produce astreamof
data items. This kind of collection-valued access operation is called ascan. Consider
the simple query

select *
from Student

This query is valid only if the database item (relation)Student exists. It could

4.3. PHYSICAL DATABASE ORGANIZATION 137

be accessible via arelation scan operationrscan(Student) . However, in
reality we have to consider the physical organization of thedatabase.

Figure 4.6 gives an overview of how relations can be stored ina relational database
system. Physical database items can be found on the left-hand side, logical database
items on the right-hand side. A fraction of a physical disk isa partition. It can be an
operating system file or a raw partition. A partition is organized into several segments.
A segment consists of several pages. The pages within a segment are typically accessi-
ble by a non-negative integer in[0, n[, wheren is the number of pages of the segment2.
Iterative access to all pages of a segment is typically possible. The access is called a
scan. As there are several types of segments (e.g. data segments,index segments),
several kinds of scans exist. Within a page,physical recordsare stored. Each physical
record represents a (part of a) tuple of a fragment of a relation.

Fragments are mapped to segments and relations are partitioned into fragments.
In the simplest and most common organization, every relation has only one frag-
ment with a one-to-one mapping to segments, and for every tuple there exists exactly
one record representing only this tuple. Hence, both of relationshipsmapped and
represented are one-to-one. However, this organization does not scale well. A
relation could be larger than a disk. Even if a large relation, say 180 GB fits on a disk,
scanning it takes half an hour (Model 2004). Horizontal partitioning and allocation of
the fragments on several disks reduces the scan time by allowing for parallelism. Verti-
cal partitioning is another means of reducing I/O [188]. Here, a tuple is represented by
several physical records, each one containing a subset of the tuple’s attributes. Since
the relationshipmappedis N:M, tuples from different relations can be stored in the
same segment. Furthermore, in distributed database systems some fragments might be
stored redundantly at different locations to improve access times [114, 466, 636, 598].
Some systems support clustering of tuples of different relations. For example, depart-
ment tuples can be clustered with employee tuples such that those employees belong-
ing to the department are close together and close to their department tuple. Such an
organization speeds up join processing.

To estimate costs, we need a model of a segment. We assume an extent-based
implementation. That is, a segment consists of several extents3. Each extent occupies
consecutive sectors on disk. For simplicity, we assume thatwhole cylinders belong
to a segment. Then, we can model segments as follows. Each segment consists of
a sequence ofextents. Each extent is stored onconsecutive cylinders. Cylinders are
exclusively assigned to a segment. We then describe each extent j as a pair(Fj , Lj)
whereFj is the first andLj the last cylinder of a consecutive sequence of cylinders.
A segment can then be described by a sequence of such pairs. Weassume that these
pairs are sorted in ascending order. In such a description, an extent may include a zone
boundary. Since cost functions are dependent on the zone, webreak up cylinder ranges
that are not contained in a single zone. The result can be described by a sequence of
triples (Fi, Li, zi) whereFi andLi mark a range of consecutive cylinders in a zone
zi. Although thezi’s can be inferred from the cylinder numbers, we include themfor
clarity. Also of interest are the total number of sectors in asegment and the number of
cylindersScpe(i) in an extenti. Summarizing, we describe a segment by the parameter

2This might not be true. Alternatively, the pages of a partition can be consecutively numbered.
3Extents are not shown in Fig. 4.6. They can be included between Partitions and Segments.

138CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

-

-

-

-

- 827

273 827

1

273 2

Figure 4.7: Slotted pages and TIDs

given in Table 4.2.

Sext number of extents in the segment
Ssec total number of sectors in the segment (=

∑Sext
i=1 Scpe(i)DZspc(Szone(i)))

Sfirst(i) first cylinder in extent i
Slast(i) last cylinder in extent i
Scpe(i) number of cylinders in extent i (= Slast(i)− Sfirst(i) + 1)
Szone(i) zone of extenti

Table 4.2: Segment parameters

4.4 Slotted Page and Tuple Identifier (TID)

Let us briefly reviewslotted pagesand the concept oftuple identifiers (TIDs)(see
Figure 4.7) [37, 36, 520, 773]. Sometimes,record identiferor row identifier (RID) is
used in the literature. A TID consists of (at least) two parts. The first part identifies a
page, the second part a slot on aslotted page. The slot contains—among other things,
e.g. the record’s size—a (relative) pointer to the actual record. This way, the record can
be moved within the page without invalidating its TID. When arecord grows beyond
the available space, it is moved to another page and leaves a forward pointer (again
consisting of a page and a slot identifier) in its original position. This happened to the
TID [273, 1] in Figure 4.7. If the record has to be moved again, the forwardpointer is
adjusted. This way, at most two page accesses are needed to retrieve a record, given
its TID. For evaluating the costs of record accesses, we willassume that the fraction
of moved records is known.

4.5 Physical Record Layouts

A physical record represents a tuple, object, or some other logical entity or fraction
thereof. In case it represents a tuple, it consists of several fields, each representing

4.5. PHYSICAL RECORD LAYOUTS 139

size size size

offset offsetoffset

fixed−length variable−length variable−length variable−length

fixed−length variable−lengthvariable−length

strings

codes data

fixed−length variable−length

encoding for dictionary−based compression

length and offset encoding

Figure 4.8: Various physical record layouts

the value of an attribute. These values can be integers, floating point numbers, or
strings. In case of object-oriented or object-relational systems, the values can also be
of a complex type. Tuple identifiers are also possible as attribute values [658]. This
can, for example, speed up join processing.

In any case, we can distinguish between types whose values all exhibit the same
fixed length and those whose values may vary in length. In a physical record, the
values of fixed-length attributes are concatenated and the offset from the beginning
of the record to the value of some selected attribute can be inferred from the types
of the values preceding it. This differs for values of varying length. Here, several
encodings are possible. Some simple ones are depicted in Figure 4.8. The topmost
record encodes varying length values as a sequence of pairs of the form [size, value].
This encoding has the disadvantage that access to an attribute of varying length is
linear in the number of those preceding it. This disadvantage is avoided in the solution
presented in the middle. Instead of storing the sizes of the individual values, there is an
array containing relative offsets into the physical record. They point to the start of the
values. The length of the values can be inferred from these offsets and, in case of the
last value, from the total length of the physical record, which is typically stored in its
slot. Access to a value of varying size is now simplified to an indirect memory access
plus some length calculations. Although this might be cheaper than the first solution,
there is still a non-negligible cost associated with an attribute access.

The third physical record layout can be used to represent compressed attribute val-
ues and even compressed length information for parts of varying size. Note that if
fixed size fields are compressed, their length becomes varying. Access to an attribute
now means decompressing length/offset information and decompressing the value it-
self. The former is quite cheap: it boils down to an indirect memory access with some
offset taken from a matrix [841]. The cost of the latter depends on the compression
scheme used. It should be clear that accessing an attribute value now is even more
expensive. To make the costs of an attribute access explicitwas the sole purpose of

140CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

this small section.
Remark Westmann et al. discuss an efficient implementation of compression and

evaluate its performance [841]. Yiannis and Zobel report onexperiments with several
compression techniques used to speed up the sort operator. For some of them, the CPU
usage is twice as large [?].

4.6 Physical Algebra (Iterator Concept)

Physical algebraic operators are mostly implemented asiterators. This means that
they support the the interface operationsopen , next , andclose . With open , the
stream of items (e.g. tuples) is initialized. Withnext , the next item on the stream
is fetched. When no more items are available, e.g.next returns false,close can
be called to clean up things. The iterator concept is explained in many text books
(e.g. [275, 371, 442]) and the query processing survey by Graefe [312]. This basic
iterator concept has been extended to better cope with nested evaluation by Westmann
in his thesis [839], Westmann et al. [841], and Graefe [316].The two main issues are
separation of storage allocation and initialization, and batched processing. The former
splitsopen into resource allocation, initialization of the operator,and initialization of
the iterator.

4.7 Simple Scan

Let us come back to the scan operations. A logical operation for scanning relations
(which could be calledrscan) is rarely supported by relational database manage-
ment systems. Instead, they provide (physical) scans on segments. Since a (data)
segment is sometimes calledfile, the correct plan for the above query is often denoted
by fscan(Student) . Several assumptions must hold: theStudent relation is not
fragmented, it is stored in a single segment, the name of thissegment is the same as
the relation name, and no tuples from other relations are stored in this segment. Until
otherwise stated, we will assume that relations are not partitioned, are stored in a sin-
gle segment and that the segment can be inferred from the relation’s name. Instead of
fscan(Student) , we could then simply useStudent to denote leaf nodes in a
query execution plan. If we want to use a variable that is bound subsequently to each
tuple in a relation, the query

select *
from Student

can be expressed asStudent[s] instead ofStudent. In this notation, the output stream
contains tuples having a single attributes bound to a tuple. Physically,s will not hold
the whole tuple but, for example, a pointer into the buffer where the tuple can be found.
An alternative is a pointer to a slot of a slotted page contained in the buffer.

A simple scan is an example for abuilding block. In general, a building block is
something that is used as a bottommost operator in a query evaluation plan. Hence,
every leaf node of a query evaluation plan is a building blockor a part thereof. This
is not really a sharp definition, but is sometimes useful to describe the behavior of a

4.8. SCAN AND ATTRIBUTE ACCESS 141

query compiler: after their determination, it will leave building blocks untouched even
if reorderings are hypothetically possible. Although a building block can be more than
a leaf node (scan) of a query evaluation plan, it will never include more than a single
database item. As soon as more database items are involved, we use the notion of
access path, a term which will become more precise later on when we discuss index
usage.

The disk access costs for a simple scan can be derived from theconsiderations in
Section 4.1 and Section 4.17.

4.8 Scan and Attribute Access

Strictly speaking, a plan likeσage>30(Student[s]) is invalid, since the tuple stream
produced byStudent[s] contains tuples with a single attributes. We have a choice.
Either we assume that attribute access takes place implicitly, or we make it explic-
it. Whether this makes sense or not depends on the database management system for
which we generate plans. Let us discuss the advantages of explicit attribute retrieval.
Assumes.age retrieves the age of a student. Then we can writeσs.age>30(Student[s]),
where there is some non-neglectable cost fors.age . The expressionσs.age>30∧s.age<40(Student[s])
executess.age twice. This is a bad idea. Instead, we would like to retrieve it once
and reuse it later.

This purpose is well-served by themapoperator (χ). It adds new attributes to a
given tuple and is defined as

χa1:e1,...,an:en(e) := {t ◦ [a1 : c1, . . . , an : cn]|t ∈ e, ci = ei(t) ∀ (1 ≤ i ≤ n)}

where◦ denotes tuple concatenation and theai must not be inA(e). (Remember that
A(e) is the set of attributes produced bye.) Every input tuplet is extended by new
attributesai, whose values are computed by evaluating the expressionei, in which free
variables (attributes) are bound to the attributes (variables) provided byt.

The above problem can now be solved by

σage>30∧age<40(χage:s.age(Student[s])).

In general, it is beneficial to load attributes as late as possible. The latest point at which
all attributes must be read from the page is typically just before a pipeline breaker4.

To see why this is useful, consider the simple query

select name
from Student
where age> 30

The plan
Πn(χn:s.name(σa>30(χa:s.age(Student[s]))))

makes use of this feature, while

Πn(σa>30(χn:s.name,a:s.age(Student[s])))

4The page on which the physical record resides must be fixed until all attributes are loaded. Hence,
an earlier point in time might be preferable.

142CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

does not. In the first plan thename attribute is only accessed for those students with
age over 30. Hence, it should be cheaper to evaluate. If the database management sys-
tem does not support this selective access mechanism, we often find the scan enhanced
by a list of attributes that is projected and included in the resulting tuple stream.

In order to avoid copying attributes from their storage representation to some main
memory representation, some database management systems apply another mecha-
nism. They support the evaluation of some predicates directly on the storage repre-
sentation. These are boolean expressions consisting of simple predicates of the form
Aθc for attributesA, comparison operatorsθ, and constantsc. Instead of a constant,
c could also be the value of some attribute or expression thereof given that it can be
evaluated before the access toA.

Predicates evaluable on the disk representation are calledSARGablewhereSARG
is an acronym forsearch argument. Note that SARGable predicates may also be good
for index lookups. Then they are calledindex SARGable. In case they can not be
evaluated by an index, they are calleddata SARGable[707, 789, 287].

Since relation or segment scans can evaluate predicates, wehave to extend our
notation for scans. LetI be a database item like a relation or segment. Then,I[v; p]
scansI, binds each item inI successively tov and returns only those items for which
p holds. I[v; p] is equivalent toσp(I[v]), but cheaper to evaluate. Ifp is a conjunc-
tion of predicates, the conjuncts should be ordered such that the attribute access cost
reductions described above are reflected (for details see Chapter??). Syntactically,
we express this by separating the predicates by a comma as inStudent[s; age >
30, name like ‘%m%′]. If we want to make a distinction between SARGable and non-
SARGable predicates, we writeI[v; ps; pr], with ps being the SARGable predicate
andpr a non-SARGable predicate. Additional extensions like a projection list are also
possible.

4.9 Temporal Relations

Scanning a temporal relation or segment also makes sense. Whenever the result of
some (partial) query evaluation plan is used more than once,it might be worthwhile to
materialize it in some temporary relation. For this purpose, a tmp operator evaluates
its argument expression and stores the result relation in a temporary segment. Consider
the following example query.

select e.name, d.name
from Emp e, Dept d
where e.age> 30 and e.age< 40 and e.dno = d.dno

It can be evaluated by

Dept[d] 1
nl
e.dno=d.dno σe.age>30∧e.age<40(Emp[d]).

Since the inner (right) argument of the nested-loop join is evaluated several times (once
for each department), materialization may pay off. The planthen looks like

Dept[d] 1
nl
e.dno=d.dno Tmp(σe.age>30∧e.age<40(Emp[d])).

4.10. TABLE FUNCTIONS 143

If we choose to factorize and materialize a common subexpression, the query evalu-
ation plan becomes a DAG. Alternatively, we could write a small “program” that has
some statements materializing some expressions which are then used later on. The last
expression in a program determines its result. For our example, the program looks as
follows.

1. Rtmp = σe.age>30∧e.age<40(Emp[d]);

2. Dept[d] 1
nl
e.dno=d.dno Rtmp[e]

The disk costs of writing and reading temporary relations can be calculated using
the considerations of Section 4.1.

4.10 Table Functions

A table functionis a function that returns a relation [527]. An example isPrimes(int
from, int to) , which returns all primes betweenfrom andto , e.g. via a sieve-
method. It can be used in any place where a relation name can occur. The query

select *
from TABLE(Primes(1,100)) as p

returns all primes between 1 and 100. The attribute names of the resulting relation
are specified in the declaration of the table function. Let usassume that forPrimes
a single attributeprime is specified. Note that table functions may take parameters.
This does not pose any problems, as long as we know thatPrimes is a table function
and we translate the above query intoPrimes(1, 100)[p]. Although this looks exactly
like a table scan, the implementation and cost calculationsare different.

Consider the following query where we extract the years in which we expect a
special celebration of Anton’s birthday.

select *
from Friends f,

TABLE(Primes(
CURRENTYEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

where f.name = ‘Anton’

The result of the table function depends on our friend Anton.Hence, a join is
no solution. Instead, we have to introduce a new kind of join,thed-join where thed
stands for dependent. It is defined as

R < S >= {t ◦ s|t ∈ T, s ∈ S(t)}.

The above query can now be evaluted as

χb:EXTRACT Y EAR(f.birthday)+100(σf.name=‘Anton′(Friends[f])) < Primes(c, b)[p] >

where we assume that some global entityc holds the value ofCURRENTYEAR.
Let us do the above query for all friends. We just have to drop thewhere clause.

Obviously, this results in many redundant computations of primes. At the SQL level,
using the birthday of the youngest friend is beneficial:

144CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

select *
from Friends f,

TABLE(Primes(
CURRENTYEAR, (selectmax(birthday)from Friends) + 100)) as p

wherep.prime≥ f.birthday

At the algebraic level, this kind of optimizations will be considered in Section??.
Things can get even more involved if table functions can consume and produce

relations, i.e. arguments and results can be relations.ToDo?
Little can be said about the disk costs of table functions. They can be zero if the

function is implemented such that it does not access any disks (files stored there), but
it can also be very expensive if large files are scanned each time it is called. One
possibility is to let the database administrator specify the numbers the query optimizer
needs. However, since parameters are involved, this is not really an easy task. Another
possibility is to measure the table function’s behavior whenever it is executed, and
learn about its resource consumption.

4.11 Indexes

There exists a plethora of different index structures. In the context of relational database
management systems, the most versatile and robust index is the B-tree or variants/improvements
thereof (e.g. []). It is implemented in almost every commercial database management
system. Some support hash-indexes (e.g. []). Other data models or specific applica-
tions need specialized indexes. There exist special index structures for indexing path
expressions in object-oriented databases (e.g. []) and XMLdatabases (e.g. []). Special
purpose indexes include join indexes (e.g. [369, 811]) multi-dimensional indexes (e.g.
[]), variant (projection) indexes [584], small materialized aggregates [560], bitmap
indexes [], and temporal indexes (e.g. []). We cannot discuss all indexes and their ex-
ploitations for efficient query evaluation. This fills more than a single book. Instead,
we concentrate on B-tree indexes. In general, a B-tree can beused to index several
relations. We only discuss cases where B-trees index a single relation.

The search key(or key for short) of an index is the sequence of attributes ofthe
indexed relationover which the index is defined. A key is asimple keyif it consists
of a single attribute. Otherwise, it is acomplex key. Each entry in the B-tree’s leaf
page consists of pairs containing the key values and a sequence of tuple identifiers
(typically sorted by increasing page number). Every tuple with a TID in this list satis-
fies the condition that its indexed attribute’s values are equal to the key values. If for
every sequence of key values there is at most one such tuple, we have auniqueindex,
otherwise anon-unique index.

The leaf entries may contain values from additional (non-key) attributes. Then
we call the indexattribute data addedand the additional attributesdata attributes. If
the index contains all attributes of the indexed relation—in its key or data attributes—
storing the relation is no longer necessary. The result is anindex-only relation. In this
case, the concept of tuple identifiers is normally no longer used since tuples can now
be moved frequently, e.g. due to a leaf page split. This has two consequences. First,
the data part does not longer contain the TID. Second, other indexes on the index-only
relation cannot have tuple identifiers in their data part either. Instead, they use the key

4.12. SINGLE INDEX ACCESS PATH 145

Figure 4.9: Clustered vs. non-clustered index

of the index-only relation to uniquely reference a tuple. For this to work, we must have
a unique index.

B-trees can be eitherclusteredor non-clusteredindexes. In a clustered index, the
tuple identifiers in the list of leaf pages are ordered according to their page numbers.
Otherwise, it is anon-clusteredindex5. Figure 4.9 illustrates this. Range queries
result in sequential access for clustered indexes and in random access for non-clustered
indexes.

4.12 Single Index Access Path

4.12.1 Simple Key, No Data Attributes

Consider theexact match query

select name
from Emp
where eno = 1077

If there exists a unique index on the key attributeeno , we can first access the index to
retrieve the TID of the employee tuple satisfyingeno = 1077 . Another page access
yields the tuple itself which constitutes the result of the query. LetEmpeno be the index
on eno , then we can descend the B-tree, using 1077 as the search key.A predicate
that can be used to descend the B-tree or, in general, governing search within an index
structure, is called anindex sargable predicate.

For the example query, the index scan, denoted asEmpeno[x; eno = 1077], retrieves
a single leaf node entry with attributeseno andTID . Similar to the regular scan, we
assumex to be a variable holding a pointer to this index entry. We use the notations
x.eno andx.TID to access these attributes. To dereference the TID, we use the map
(χ) operator and a dereference functionderef (or ∗ for short). It turns a TID into a
pointer in the buffer area. This of course requires the page to be loaded, if it is not in
the buffer yet. The complete plan for the query is

Πname(χe:∗(x.TID),name:e.name(Empeno[x; eno = 1077]))

5Of course, any degree of clusteredness may occur and has to betaken into account in cost calcula-
tions.

146CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

where we computed several new attributes with oneχ operator. Note that they are
dependent on previously computed attributes and, hence, the order of evaluation does
matter.

We can make the dependency of the map operator more explicit by applying a
d-join. Denote by2 an operator that returns a single empty tuple. Then

Πname(Empeno[x; eno = 1077] < χe:∗(x.TID),name:e.name(2) >)

is equivalent to the former plan. Joins and indexes will be discussed in Section 4.14.
A range querylike

select name
from Emp
where age≥ 25and age≤ 35

specifies a range for the indexed attribute. It is evaluated by an index scan withstart
andstopconditions. In our case, the start condition isage ≥ 25 , and the stop con-
dition isage ≤ 35 . The start condition is used to retrieve the first tuple satisfying it
by searching within the B-tree. In our case, 25 is used to descend from the root to the
leaf page containing the key 25. Then, all records with keys larger than 25 within the
page are searched. Since entries in B-tree pages are sorted on key values, this is very
efficient. If we are done with the leaf page that contains 25 and the stop key has not
been found yet, we proceed to the next leaf page. This is possible since leaf pages of
B-trees tend to be chained. Then all records of the next leaf page are scanned and so
on until we find the stop key. The complete plan then is

Πname(χe:∗(x.TID),name:e.name(Empage[x; 25 ≤ age; age ≤ 35]))

If the index onage is non-clustered, this plan results in random I/O. We can
turn random I/O into sequential I/O by sorting the result of the index scan on its TID
attribute before dereferencing it6. This results in the following plan:

Πname(χe:∗(TID),name:e.name(SortTID(Empage[x; 25 ≤ age; age ≤ 35; TID])))

Here, we explicitly included the TID attribute of the index into the projection list.
Consider a similar query which demands the output to be sorted:

select name, age
from Emp
where age≥ 25 and age≤ 35
order by age

Since an index scan on a B-tree outputs its result ordered on the indexed attribute, the
following plan produces the perfect result:

Πname,age(χe:∗(x.TID),name:e.name(Empage[x; 25 ≤ age; age ≤ 35]))

6This might not be necessary, ifEmpfits main memory. Then, preferably asynchronous I/O should be
used.

4.12. SINGLE INDEX ACCESS PATH 147

On a clustered index this is most probably the best plan. On a non-clustered index,
random I/O disturbs the picture. We avoid that by sorting theresult of the index scan
on the TID attribute and, after accessing the tuples, restore the order onage as in the
following plan:

Πname,age(Sortage(χe:∗(TID),name:e.name(SortTID(Empage[x; 25 ≤ age; age ≤ 35; TID]))))

An alternative to this plan is not to sort on the original indexed attribute (age in our
example), but to introduce a new attribute that holds the rank in the sequence derived
from the index scan. This leads to the plan

Πname,age(
Sortrank(

χe:∗(TID),name:e.name(

SortTID(
χrank:counter++(

Empage[x; 25 ≤ age; age ≤ 35; TID])))))

This alternative might turn out to be more efficient since sorting on an attribute with
a dense domain can be implemented efficiently. (We admit thatin the above example
this is not worth considering.) There is another important application of this technique:
XQuery often demands output in document order. If this orderis destroyed during pro-
cessing, it must at the latest be restored when the output it produced [541]. Depending
on the implementation (i.e. the representation of documentnodes or their identifiers),
this might turn out to be a very expensive operation.

The fact that index scans on B-trees return their result ordered on the indexed
attributes is also very useful if a merge-join on the same attributes (or a prefix thereof,
see Chapter 24 for further details) occurs. An example follows later on.

Somepredicatesare not index SARGable, but can still be evaluated with the index
as in the following query

select name
from Emp
where age≥ 25and age≤ 35 and age6= 30

The predicateage 6= 30 is an example of aresidual predicate. We can once more
extend the index scan and compile the query into

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 ≤ age; age ≤ 35; age 6= 30]))

Some index scan implementations allow exclusive bounds forstart and stop conditions.
With them, the query

select name
from Emp
where age> 25and age< 35

148CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

can be evaluated using

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 < age; age < 35]))

If this is not the case, two residual predicates must be used as in

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 ≤ age; age ≤ 35; age 6= 25, age 6= 35]))

Especially for predicates on strings, this might be expensive.
Start and stop conditions are optional. To evaluate

select name
from Emp
where age≥ 60

we useage ≥ 60 as the start condition to find the leaf page containing the key60.
From there on, we scan all the leaf pages “to the right”.

If we have no start condition, as in

select name
from Emp
where age≤ 20

we descend the B-tree to the “leftmost” page, i.e. the page containing the smallest key
value, and then proceed scanning leaf pages until we encounter the key 20.

Having neither a start nor stop condition is also quite useful. The query

select count(*)
from Emp

can be evaluated by counting the entries in the leaf pages of aB-tree. Since a B-tree
typically occupies far fewer pages than the original relation, we have a viable alter-
native to a relation scan. The same applies to the aggregate functionssum andavg .
The other aggregate functionsmin andmax can be evaluated much more efficiently
by descending to the leftmost or rightmost leaf page of a B-tree. This can be used to
answer queries like

select min/max(salary)
from Emp

much more efficiently than by a relation scan. Consider the query

select name
from Emp
where salary = (select max(salary)

from Emp)

4.12. SINGLE INDEX ACCESS PATH 149

It can be evaluated by first computing the maximum salary and then retrieving the
employees earning this salary. This requires two descendants into the B-tree, while
obviously one is sufficient. Depending on the implementation of the index (scan), we
might be able to perform this optimization.

Further, the result of an index scan, whether it uses start and/or stop conditions
or not, is always sorted on the key. This property can be useful for queries with no
predicates. If we have neither a start nor a stop condition, the resulting scan is called
full index scan. As an example consider the query

select salary
from Emp
order by salary

which is perfectly answered by the following full index scan:

Empsalary

So far, we have only seen indexes on numerical attributes.

select name, salary
from Emp
where name≥ ’Maaa’

gives rise to a start condition′Maaa′ ≤ name. From the query

select name, salary
from Emp
where namelike ’M%’

we can deduce the start condition′M′ ≤ name.
To express all the different alternatives of index usage, weneed a powerful (and

runtime system dependent) index scan expression. Let us first summarize what we can
specify for an index scan:

1. the name of the variable for index entries (or pointers to them),

2. the start condition,

3. the stop condition,

4. a residual predicate, and

5. a projection list.

A projection list has entries of the forma : x.b for attribute namesa and b andx
being the name of the variable for the index entry.a : x.a is also allowed and often
abbreviated asa. We also often summarize start and stop conditions into a single
expression like in25 ≤ age ≤ 35.

For a full index specification, we list all items in the subscript of the index name
separated by a semicolon. Still, we need some extensions to express the queries
with aggregation. Leta andb be attribute names, then we allow entries of the form
b : aggr(a) in the projection list and start/stop conditions of the formmin/max(a).

150CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

The latter tells us to minimize/maximize the value of the indexed attributea. Only
a complete enumeration gives us the full details. On the other hand, extracting start
and stop conditions and residual predicates from a given boolean expression is rather
simple. Hence, we often summarize these three under a singlepredicate. This is espe-
cially useful when talking about index scans in general. If we have a full index scan,
we leave out the predicate. We use a star ‘*’ as an abbreviatedprojection list that
projects all attributes of the index. (So far, these are the key attribute and the TID.)
If the projection list is empty, we assume that only the variable/attribute holding the
pointer to the index entry is projected.

Using this notation, we can express some plan fragments. These fragments are
complete plans for the above queries, except that the final projection is not present. As
an example, consider the following fragment:

χe:∗TID,name:e.name(Empsalary[x; TID, salary])

All the plan fragments seen so far are examples of access paths. Anaccess pathis
a plan fragment with building blocks concerning a single database item. Hence, every
building block is an access path. The above plans touch two database items: a relation
and an index on some attribute of that relation. If we say thatan index concerns the
relation it indexes, such a fragment is an access path. For relational systems, the most
general case of an access path uses several indexes to retrieve the tuples of a single
relation. We will see examples of these more complex access paths in the following
section. An access to the original relation is not always necessary. A query that can be
answered solely by accessing indexes is called anindex only query.

A query with in like

select name
from Emp
where age in{28, 29, 31, 32}

can be evaluated by taking the minimum and the maximum found in the left-hand side
of in as the start and stop conditions. We further need to construct a residual predicate.
The residual predicate can be represented either asage = 28 ∨ age = 29 ∨ age =
31 ∨ age = 32 or asage 6= 30.

An alternative is to use a d-join. Consider the example query

select name
from Emp
where salary in{1111, 11111, 111111}

Here, the numbers are far apart and separate index accesses might make sense. There-
fore, let us create a temporary relationSal equal to{[s : 1111], [s : 11111], [s :
111111]}. When using it, the access path becomes

Sal[S] < χe:∗TID,name:e.name(Empsalary[x; salary = S.s; TID]) >

Some B-tree implementations allow efficient searches for multiple ranges and imple-
mentgap skipping[31, 32, 147, 287, 288, 435, 496].Gap skipping, sometimes also
called zig-zag skipping, continues the search for keys in a new key range from the

4.12. SINGLE INDEX ACCESS PATH 151

latest position visited. The implementation details vary but the main idea of it is that
after one range has been completely scanned, the current (leaf) page is checked for
its highest key. If it is not smaller than the lower bound of the next range, the search
continues in the current page. If it is smaller than the lowerbound of the next range,
alternative implementations are described in the literature. The simplest is to start a
new search from the root for the lower bound. Another alternative uses parent pointers
to go up a page as long as the highest key of the current page is smaller than the lower
bound of the next range. If this is no longer the case, the search continues downwards
again.

Gap skipping gives even more opportunities for index scans and allows efficient
implementations of various index nested loop join strategies.

4.12.2 Complex Keys and Data Attributes

In general, an index can have a complex key comprised of the key attributesk1, . . . , kn

and the data attributesd1, . . . , dm. One possibility is to use a full index scan on such
an index. Having more attributes in the index makes it more probable that queries are
index-only.

Besides a full index scan, the index can be descended to directly search for the
desired tuple(s). Let us take a closer look at this possibility.

If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constantsci and somej <= n, we can generate the start and stop condition

k1 = c1 ∧ . . . ∧ kj = cj .

This simple approach is only possible if the search predicates define values for all
search key attributes, starting from the first search key andthen for all keys up to the
j-th search key with no key attribute unspecified in between. Predicates concerning
the other key attributes after the first non-specified key attribute and the additional data
attributes only allow for residual predicates. This condition is often not necessary for
multi-dimensional index structures, whose discussion is beyond the book.

With ranges things become more complex and highly dependenton the implemen-
tation of the facilities of the B-tree. Consider a query predicate restricting key values
as follows

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3

Obviously, we can generate the start conditionk1 = c1∧k2 ≥ c2 and the stop condition
k1 = c1. Here, we neglected the condition onk3 which becomes a residual predicate.
However, with some care we can extend the start condition tok1 = c1∧k2 ≥ c2∧k3 =
c3: we only have to keepk3 = c3 as a residual predicate, since fork2 values larger
thanc2, values different fromc3 can occur fork3.

If closed ranges are specified for a prefix of the key attributes as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

152CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

we can generate the start keyk1 = a1∧ . . .∧kj = aj , the stop keyk1 = b1∧ . . .∧kj =
bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate. If for some search key attributekj the lower boundaj is not
specified, the start condition cannot containkj and anykj+i. If for some search key
attributekj the upper boundbj is not specified, the stop condition cannot containkj

and anykj+i.
Two further enhancements of the B-tree functionality possibly allow for alternative

start/stop conditions:

• The B-tree implementation allows to specify the order (ascending or descending)
for each key attribute individually.

• The B-tree implementation implements forward and backwardscans (e.g. im-
plemented in Rdb [31]).

So far, we are only able to exploit query predicates which specify value ranges for
a prefix of all key attributes. Consider querying a person on his/her height and his/her
hair color:haircolor = ’blond’ and height between 180 and 190 .
If we have an index onsex , haircolor , height , this index cannot be used by
means of the techniques described so far. However, since there are only the two values
male andfemale available forsex , we can rewrite the query predicate to (sex =
’m’ and haircolor = ’blond’ and height between 180 and 190)
or (sex = ’f’ and haircolor = ’blond’ and height between 180
and 190) and use two accesses to the index. This approach works fine for attributes
with a small domain and is described by Antoshenkov [32]. (See also the previous sec-
tion for gap skipping.) Since the possible values for key attributes may not be known
to the query optimizer, Antoshenkov goes one step further and shifts the construction
of search ranges to index scan time. Therefore, the index canbe provided with a com-
plex boolean expression which is then refined (rewritten) assoon as search key values
become known. Search ranges are then generated dynamically, and gap skipping is
applied to skip the intervals between the qualifying rangesduring the index scan.

4.13 Multi Index Access Path

We wish to buy a used digital camera and state the following query:

select *
from Camera
wheremegapixel> 5 and distortion< 0.05

and noise< 0.01
and zoomMin< 35and zoomMax> 105

We assume that on every attribute used in thewhere clause there exists an index.
Since the predicates are conjunctively connected, we can use a technique calledindex
and-ing. Every index scan returns a set (list) of tuple identifiers. These sets/lists are
then intersected. This operation is also calledAnd merge[515]. Using index and-ing,
a possible plan is

4.13. MULTI INDEX ACCESS PATH 153

((((
Cameramegapixel[c; megapixel > 5; TID]
∩
Cameradistortion[c; distortion < 0.05; TID])
∩
Cameranoise[c; noise < 0.01; TID])
∩
CamerazoomMin[c; zoomMin < 35; TID])
∩
CamerazoomMax[c; zoomMax > 105; TID])

This results in a set of tuple identifiers that only needs to bedereferenced to access the
accordingCamera tuples and produce the final result.

Since the costs of the expression clearly depend on the costsof the index scans and
the size of the intermediate TID sets, two questions arise:

• In which order do we intersect the TID sets resulting from theindex scans?

• Do we really apply all indexes before dereferencing the tuple identifiers?

The answer to the latter question is clearly“no” , if the next index scan is more expen-
sive than accessing the records in the current TID list. It can be shown that the indexes
in the cascade of intersections are ordered on increasing(fi − 1)/ci terms, wherefi

is the selectivity of the index andci its access cost. Further, we can stop as soon as EX
accessing the original tuples in the base relation becomes cheaper than intersecting
with another index and subsequently accessing the base relation.

Index or-ing is used to process disjunctive predicates. Here, we take theunion
of the TID sets to produce a set of TIDs containing referencesto all qualifying tu-
ples. Note that duplicates must be eliminated during the processing of the union. This
operation is also calledOr merge[515]. Consider the query

select *
from Emp
whereyearsOfEmployment≥ 30

or age≥ 65

This query can be answered by constructing a TID set using theexpression

EmpyearsOfEmployment [c; yearsOfEmployment ≥ 30; TID]∪ Empage[c; age ≥ 65; TID]

and then dereferencing the list of tuple identifiers. Again,the index accessing can be
ordered for better performance. Given a general boolean expression inand andor ,
constructing the optimal access path using index and-ing and or-ing is a challenging
task that will be discussed in Chapter??. This task is even more challenging, if some
simple predicates occur more than once in the complex boolean expression and fac-
torization has to be taken into account. This issue was first discussed by Chaudhuri,
Ganesan and Saragawi [127]. We will come back to this in Chapter ??.

The namesindex and-ingandor-ing become clear if bitmap indexes are consid-
ered. Then the bitwiseand andor operations can be used to efficiently compute the
intersection and union. ToDo

154CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Excursion on bitmap indexes.2
There are even more possibilities to work with TID sets. Consider the query

select *
from Emp
whereyearsOfEmployment6= 10

and age≥ 65

This query can be evaluated by scanning the index onage and then eliminating all
employees withyearsOfEmployment = 10 :

Empage[c; age ≥ 65; TID] \ EmpyearsOfEmployment [c; yearsOfEmployment 6= 10; TID]

Let us call the application of set difference on index scan resultsindex differencing.
Some predicates might not be very restrictive in the sense that more than half the

index has to be scanned. By negating these predicates and using index differencing,
we can make sure that at most half of the index needs to be scanned. As an example
consider the query

select *
from Emp
whereyearsOfEmployment≤ 5

and age≤ 65

Assume that most of our employees’ age is below 65. Then

EmpyearsOfEmployment [c; yearsOfEmployment ≤ 5; TID] \ Empage[c; age > 65; TID]

could be more efficient than

EmpyearsOfEmployment [c; yearsOfEmployment ≤ 5; TID] ∩ Empage[c; age ≤ 65; TID]

4.14 Indexes and Joins

There are two issues when discussing indexes and joins. The first is that indexes can be
used to speed up join processing. The second is that index accesses can be expressed
as joins. We discuss both of these issues, starting with the latter.

In our examples, we used the map operation to (implicitly) access the relation
by dereferencing the tuple identifiers. We can make the implicit access explicit by
exchanging the map operator by a d-join or even a join. Then, for example,

χe:∗TID,name:e.name(Empsalary[x; 25 ≤ age ≤ 35; TID])

becomes

Empsalary[x; 25 ≤ age ≤ 35; TID] < χe:∗TID,name:e.name(2) >

where2 returns a single empty tuple. Assume that every tuple contains an attribute
TID containing its TID. This attribute does not have to be stored explicitly but can

4.14. INDEXES AND JOINS 155

be derived. Then, we have the following alternative access path for the join (ignoring
projections):

Empsalary[x; 25 ≤ age ≤ 35] 1x.TID=e.TID Emp[e]

For the join operator, thepointer-based joinimplementation developed in the context
of object-oriented databases may be the most efficient way toevaluate the access path
[731]. Obviously, sorting the result of the index scan on thetuple identifiers can speed
up processing since it turns random into sequential I/O. However, this destroys the
order on the key which might itself be useful later on during query processing or re-
quired by the query7. Sorting the tuple identifiers was proposed by, e.g., Yao [878], ToDo
Makinouchi, Tezuka, Kitakami, and Adachi in the context of RDB/V1 [528]. The dif-
ferent variants (whether or not and where to sort, join order) can now be transparently
determined by the plan generator: no special treatment is necessary. Further, the join
predicates can not only be on the tuple identifiers but also onkey attributes. This often
allows to join with other than the indexed relations (or their indexes) before accessing
the relation.

Rosenthal and Reiner proposed to use joins to represent access paths with indexes
[666]. This approach is very elegant since no special treatment for index processing
is required. However, if there are many relations and indexes, the search space might
become very large, as every index increases the number of joins to be performed. This
is why Mohan, Haderle, Wang, and Cheng abondoned this approach and sketched a
heuristics which determines an access path in case multipleindexes on a single table
exist [563].

The query

select name,age
from Person
where name like ’R%’ and age between 40 and 50

is an index only query (assuming indexes onnameandage) and can be translated to

Πname,age(
Empage[a; 40 ≤ age ≤ 50; TIDa, age]

1TIDa=TIDn

Empname[n; name ≥′ R′; name ≤′ R′; TIDn, name])

Let us now discuss the former of the two issues mentioned in the section’s intro-
duction. The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=′Maier′(Emp[e]) 1e.dno=d.dno Dept[d]

7Restoring the order may be cheaper than typical sorting since tuples can be numbered before the first
sort on tuple identifiers, and this dense numbering leads to efficient sort algorithms.

156CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

If there are indexes onEmp.nameandDept.dno , we can replaceσe.name=′Maier′(Emp[e])
by an index scan as we have seen previously:

χe:∗(x.T ID),A(Emp):e.∗(Empname[x; name = ‘Maier′])

Here,A(Emp) : t.∗ abbreviates access to allEmpattributes. This especially includes
dno:t.dno . (Strictly speaking, we do not have to access thename attribute, since
its value is already known.)

As we have also seen, an alternative is to use a d-join instead:

Empname[x; name = ‘Maier′] < χt:∗(x.T ID),A(e)t.∗(2) >

Let us abbreviateEmpname[x; name = ‘Maier′] by Ei andχt:∗(x.T ID),A(e)t.∗(2) by Ea.
Now, for anye.dno , we can use the index onDept.dno to access the according

department tuple:

Ei < Ea >< Deptdno[y; y.dno = dno] >

Note that the inner expressionDeptdno[y; y.dno = dno] contains the free variable
dno , which is bound byEa. Dereferencing the TID of the department results in the
following algebraic modelling which models a completeindex nested loop join:

Ei < Ea >< Deptdno[y; y.dno = dno; dTID : y.TID] >< χu:∗dTID,A(Dept)u.∗(2) >

Let us abbreviateDeptdno[y; y.dno = dno; dTID : y.TID] byDi andχu:∗dTID,A(Dept)u.∗(2)
by Da. Fully abbreviated, the expression then becomes

Ei < Ea >< Di >< Da >

Several optimizations can possibly be applied to this expression. Sorting theouter
of a d-join is useful under several circumstances since it may

• turn random I/O into sequential I/O and/or

• avoid reading the same page twice.

In our example expression,

• we can sort the result of expressionEi on TID in order to turn random I/O into
sequential I/O, if there are many employees named “Maier”.

• we can sort the result of the expressionEi < Ea > on dno for two reasons:

– If there are duplicates fordno , i.e. there are many employees named “Maier”
in each department, then this guarantees that no index page (of the index
Dept.dno) has to be read more than once.

– If additionally Dept.dno is a clustered index orDept is an index-only
table contained inDept.dno , then large parts of the random I/O can be
turned into sequential I/O.

– If the result of the inner is materialized (see below), then only one result
needs to be stored. Note that sorting is not necessary, but grouping would
suffice to avoid duplicate work.

4.14. INDEXES AND JOINS 157

• We can sort the result of the expressionEi < Ea >< Di > on dTID for the
same reasons as mentioned above for sorting the result ofEi on TID .

The reader is advised to explicitly write down the alternatives. Another exercise is toEX
give plan alternatives for the different cases of DB2’s Hybrid Join [287] which can
now be decomposed into primitives like relation scan, indexscan, d-join, sorting, TID
dereferencing, and access to a unique index (see below).

Let us take a closer look at materializating the result of theinner of the d-join.
IBM’s DB2 for MVS considers temping (i.e. creating a temporary relation) the inner
if it is an index access [287]. Graefe provides a general discussion on the subject
[316]. Let us start with the above example. Typically, many employees will work in
a single department and possibly several of them are called “Maier”. For everyone
of them, we can be sure that there exists at most one department. Let us assume that
referential integrity has been specified. Then, there exists exactly one department for
every employee. We have to find a way to rewrite the expression

Ei < Ea >< Deptdno[y; y.dno = dno; dTID : y.TID] >

such that the mappingdno−−→dTID is explicitly materialized (or, as one could also
say,cached). For this purpose, Hellerstein and Naughton introduced a modified ver-
sion of the map operator that materializes its result [379].Let us denote this operator
by χmat. The advantage of using this operator is that it is quite general and can be
used for different purposes (see e.g. [89], Chap.??, Chap.??). Since the map operator
extends a given input tuple by some attribute values, which must be computed by an
expression, we need one to express the access to a unique index. For our example, we
write

IdxAcc
Dept
dno [y; y.dno = dno]

to express the lookup of a single (unique) entry in the index on Dept.dno . We
assume that the result is a (pointer to the) tuple containingthe key attributes and all
data attributes including the TID of some tuple. Then, we have to perform a further
attribute access (dereferenciation) if we are interested in only one of the attributes.

Now, we can rewrite the above expression to

Ei < Ea >< χmat

dTID:(IdxAccDept
dno [y;y.dno=dno]).TID

(2) >

If we further assume that the outer (Ei < Ea >) is sorted ondno , then it suffices
to remember only the TID for the latestdno . We define the map operatorχmat,1 to do
exactly this. A more efficient plan could thus be

Sortdno(Ei < Ea >) < χmat,1

dTID:(IdxAccDept
dno [y;y.dno=dno]).TID

(2) >

where, strictly speaking, sorting is not necessary: grouping would suffice.
Consider a general expression of the forme1 < e2 >. The free variables used in

e2 must be a subset of the variables (attributes) produced bye1, i.e.F(e2) ⊆ A(e1).
Even if e1 does not contain duplicates, the projection ofe1 on F(e2) may contain
duplicates. If so, materialization could pay off. However,in general, for every binding
of the variablesF(e2), the expressione2 may produce several tuples. This means that
usingχmat is not sufficient. Consider the query

158CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

If we have no indexes, we can answer this query by a simple joinwhere we only have
to decide the join method and which of the relations becomes the outer and which
the inner. Assume we have only wines from a few years. (Alternatively, some selec-
tion could have been applied.) Then it might make sense to consider the following
alternative:

Wine[w] < σe.yearOfBirth=w.year(Emp[e]) >

However, the relationEmpis scanned once for eachWine tuple. Hence, it might make
sense to materialize the result of the inner for everyyear value ofWine if we have
only a fewyear values. In other words, if we have many duplicates for theyear
attribute ofWine , materialization may pay off since then we have to scanEmponly
once for eachyear value ofWine . To achieve caching of the inner, in case every
binding of its free variables possibly results in many tuples, requires a new operator.
Let us call this operatormemoxand denote it byM [316, 89]. For the free variables
of its only argument, it remembers the set of result tuples produced by its argument
expression and does not evaluate it again if it is already cached. Using memox, the
above plan becomes

Wine[w] <M(σe.yearOfBirth=w.year(Emp[e])) >

It should be clear that for more complex inners, the memox operator can be applied at
all branches, giving rise to numerous caching strategies. Analogously to the material-
izing map operator, we are able to restrict the materialization to the results for a single
binding for the free variables if the outer is sorted (or grouped) on the free variables:

Sortw.yearOfBirth(Wine[w]) <M1(σe.yearOfBirth=w.year(Emp[e])) >

Things can become even more efficient if there is an index onEmp.yearOfBirth :

Sortw.yearOfBirth(Wine[w])
<M1(EmpyearOfBirth[x; x.yearOfBirth = w.year] < χe:∗(x.TID),A(Emp):∗e(2) >) >

So far we have seen different operators which materialize values: Tmp,M, and
χmat. The latter in two variants. As an exercise, the reader is advised to discuss the
differences between them.EX

Assume, we have indexes on bothEmp.yearOfBirth andWine.year . Be-
sides the possibilities to use eitherEmpor Wine as the outer, we now also have the
possibility to perform a join on the indexes before accessing the actualEmpandWine
tuples. Since the index scan produces its output ordered on the key attributes, a simple
merge join suffices (and we are back at the latter):

EmpyearOfBirth[x] 1
merge
x.yearOfBirth=y.year Wineyear[y]

This example makes clear that the order provided by an index scan can be used to speed
up join processing. After evaluating this plan fragment, wehave to access the actual
EmpandWine tuples. We can consider zero, one, or two sorts on their respective tuple
identifiers. If the join is sufficiently selective, one of these alternatives may prove moreEX
sufficient than the ones we have considered so far.

4.15. REMARKS ON ACCESS PATH GENERATION 159

4.15 Remarks on Access Path Generation

A last kind of optimization we briefly want to mention issideways information passing.
Consider a simple join between two relations:R 1R.a=S.b S. If we decide to perform
a sort merge join or a hash join, we can implement it by first sorting/partitioningR
before looking atS. While doing so, we can remember the minimum and maximum
value ofR.a and use these as a restriction onS such that fewer tuples ofS have to be
sorted/partitioned. In case we perform a blockwise nested loop join, after the first scan
of S we know the minimum and maximum value ofS.b and can use these to restrict
R.

If the number of distinct values ofR.a is small, we could also decide to remember
all these values and evaluate perform a semi-join before theactual join. Algebraically,
this could be expressed as

R 1R.a=S.b (S >�S.b=R.aΠR.a(R))

An alternative is to use a bitmap to represent the projectionof R ona.
The semi-join technique should be well-known from distributed database systems.

In deductive database systems, this kind of optimization often carries the attribute
magic. We will more deeply discuss this issue in Chapter??.

The following problem is not discussed in the book. Assume that we have fully
partitioned a relation vertically into a set of files which are chronologically ordered.
Then, the attributeai of thej-th tuple can be found at thej-th position of thei-th file.
This organizion is calledpartitioned transposed file[49]. (Compare this with variant
(projection) indexes [584] and small materialized aggregates [560].) The problem is
to find an access strategy to all the attribute required by thequery given a collection
of restriction on some of the relation’s attributes. This problem has been discussed in
depth by Batory [49]. Full vertical partitioning is also used as the organizing principle
of Monet []. Lately, it also gained some interest in the US [].

4.16 Counting the Number of Accesses

4.16.1 Counting the Number of Direct Accesses

After the index scan, we have a set of (distinct) tuple identifiers for which we have to
access the original tuples. The question we would like to answer is:

How many pages do we have to read?

Let R be the relation for which we have to retrieve the tuples. Thenwe use the follow-
ing abbreviations

N |R| number of tuples in the relationR
m ||R|| number of pages on which tuples ofR are stored
B N/m number of tuples per page (blocking factor)
k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformly distributed among the m pages. Then, each
page storesB = N/m tuples.B is calledblocking factor.

160CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Let us consider some borderline cases. Ifk > N − N/m or m = 1, then all
pages are accessed. Ifk = 1 then exactly one page is accessed. The answer to the
general question will be expressed in terms ofbuckets(pages in the above case) and
itemscontained therein (tuples in the above case). Later on, we will also use extents,
cylinders, or tracks as buckets and tracks or sectors/blocks as items.

We assume that a bucket contains items. The total number of items will beN and
the number of requested items will bek. The above question can then be reformulated
to how many buckets contain at least one of thek requested items, i.e. how many
qualifying buckets exist. We start out by investigating thecase where the items are
uniformly distributed among the buckets. Two subcases willbe distinguished:

1. k distinct items are requested

2. k non-distinct items are requested.

We then discuss the case where the items are non-uniformly distributed.
In any case, the underlying access model is random access. For example, given a

tuple identifier, we can directly access the page storing thetuple. Other access models
are possible. The one we will subsequently investigate is sequential access where the
buckets have to be scanned sequentially in order to find the requested items. After that,
we are prepared to develop a model for disk access costs.

Throughout this section, we will further assume that the probability that we request
a set withk items is 1

(N
k)

for all of the
(
N
k

)
possibilities to select ak-set.8 We often

make use of established equalities for binomial coefficients. For convenience, the most
frequently used equalities are listed in Appendix E.

Selectingk distinct items

Our first theorem was discovered independently by Waters [834] and Yao [875]. We
formulate it in terms of buckets containing items. We say a bucketqualifiesif it con-
tains at least one of thek items we are looking for.

Theorem 4.16.1 (Waters/Yao)Considerm buckets withn items each. Then there is
a total ofN = nm items. If we randomly selectk distinct items from all items, then
the number of qualifying buckets is

YN,m
n (k) = m ∗ YN

n (k) (4.2)

whereYN
n (k) is the probability that a bucket contains at least one item. This proba-

bility is equal to

YN
n (k) =

{
[1− p] k ≤ N − n
1 k > N − n

wherep is the probability that a bucket contains none of thek items. The following

8A k-set is a set with cardinalityk.

4.16. COUNTING THE NUMBER OF ACCESSES 161

alternative expressions can be used to calculatep:

p =

(N−n
k

)

(N
k

) (4.3)

=
k−1∏

i=0

N − n− i

N − i
(4.4)

=
n−1∏

i=0

N − k − i

N − i
(4.5)

The second expression (4.4) is due to Yao, the third (4.5) is due to Waters. Palvia and
March proved both formulas to be equal [601] (see also [35]).The fractionm = N/n
may not be an integer. For these cases, it is advisable to havea Gamma-function based
implementation of binomial coeffcients at hand (see [632] for details).

Depending onk andn, either the expression of Yao or the one of Waters is faster
to compute. After the proof of the above formulas and the discussion of some special
cases, we will give several approximations forp.

Proof The total number of possibilities to pick thek items from allN items is
(N

k

)
.

The number of possibilities to pickk items from all items not contained in a fixed
single bucket is

(N−n
k

)
. Hence, the probabilityp that a bucket does not qualify is

p =
(N−n

k

)
/
(N

k

)
. Using this result, we can do the following calculation

p =

(
N−n

k

)

(
N
k

)

=
(N − n)! k!(N − k)!

k!((N − n)− k)! N !

=

k−1∏

i=0

N − n− i

N − i

which proves the second expression. The third follows from

p =

(N−n
k

)

(N
k

)

=
(N − n)! k!(N − k)!

k!((N − n)− k)! N !

=
(N − n)! (N − k)!

N ! ((N − k)− n)!

=

n−1∏

i=0

N − k − i

N − i

2

Let us list some special cases:

162CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

If then YN
m (k) =

n = 1 k/N
n = N 1
k = 0 0
k = 1 B/N = (N/m)N = 1/m
k = N 1

We examine a slight generalization of the first case in more detail. Let N items be
distributed overN buckets such that every bucket contains exactly one item. Further
let us be interested in a subset ofm buckets (1 ≤ m ≤ N). If we pick k items, then
the number of buckets within the subset of sizem that qualify is

mYN
1 (k) = m

k

N
(4.6)

In order to see that the two sides are equal, we perform the following calculation:

YN
1 (k) = (1−

(N−1
k

)

(N
k

))

= (1−
(N−1)!

k!((N−1)−k)!

N !
k!(N−k)!

)

= (1− (N − 1)!k!(N − k)!

N !k!((N − 1)− k)!
)

= (1− N − k

N
)

= (
N

N
− N − k

N
)

=
N −N + k

N

=
k

N

Since the computation ofYN
n (k) can be quite expensive, several approximations

have been developed. The first one was given by Waters [833, 834]:

p ≈ (1− k/N)n

This approximation (also described elsewhere [283, 601]) turns out to be pretty good.
However, below we will see even better approximations.

ForYN,m
n (k) Whang, Wiederhold, and Sagalowicz gave the following approxima-

tion for faster calculation [845]:

m ∗ [(1− (1− 1/m)k)+
(1/(m2b) ∗ k(k − 1)/2 ∗ (1− 1/m)k−1)+
(1.5/(m3p4) ∗ k(k − 1)(2k − 1)/6 ∗ (1− 1/m)k−1)]

A rough estimate is presented by Bernstein, Goodman, Wong, Reeve, and Rothnie
[69]:

YN,m
n (k) ≈

k if k < m
2

k+m
2 if m

2 ≤ k < 2m
m if 2m ≤ k

4.16. COUNTING THE NUMBER OF ACCESSES 163

An interesting and useful result was derived by Dihr and Saharia [217]. They
give two formulas and show that they are lower and upper bounds to Water and Yao’s
formula. The upper and lower bounds forp are

plower = (1− k

N − n−1
2

)n

pupper = ((1− k

N
) ∗ (1− k

N − n + 1
))n/2

for n = N/m. Dihr and Saharia claim that the maximal difference resulting from
the use of the lower and the upper bound to compute the number of page accesses is
0.224—far less than a single page access.

Selectingk non-distinct items

So far, we assumed that we retrievek distinct items. We could ask the same question
for k non-distinctitems. This question demands a different urn model. In urn model
terminology, the former case is an urn model with anon-replacementassumption,
while the latter case is one with areplacementassumption. (Deeper insight into urn
models is given by Drmota, Gardy, and Gittenberger [223].)

Before presenting a theorem discovered by Cheung [152], we repeat a theorem
from basic combinatorics. We know that the number of subsetsof sizek of a set with
N elements is

(N
k

)
. The following lemma gives us the number ofk-multisets9.

Lemma 4.16.2 Let S be a set with|S| = N elements. Then, the number of multisets
with cardinalityk containing only elements fromS is

(
N + k − 1

k

)

For a proof we just note that there is a bijection between thek-multisets and thek-
subsets of aN + k − 1-set. We can go from a multiset to a set byf with f({x1 ≤
. . . ≤ xk}) = {x1 + 0 < x2 + 1 < . . . < xk + (k − 1)} and from a set to a multiset
via g with g({x1 < . . . < xk}) = {x1 − 0 < x2 − 1 < . . . < xk − (k − 1)}.

Theorem 4.16.3 (Cheung)Considerm buckets withn items each. Then there is a
total ofN = nm items. If we randomly selectk not necessarily distinct items from all
items, then the number of qualifying buckets is

Cheung
N,m
n (k) = m ∗CheungNn (k) (4.7)

where

CheungNn (k) = [1− p̃] (4.8)

9A k-multiset is a multiset withk elements.

164CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

with the following equivalent expressions forp̃:

p̃ =

(
N−n+k−1

k

)

(N+k−1
k

) (4.9)

=

k−1∏

i=0

N − n + i

N + i
(4.10)

=
n−1∏

i=0

N − 1− i

N − 1 + k − i
(4.11)

Eq. 4.9 follows from the observation that the probability that some bucket does not

contain any of thek possibly duplicate items is
(N−n+k−1

k)
(N+k−1

k)
. Eq. 4.10 follows from

p̃ =

(N−n+k−1
k

)

(N+k−1
k

)

=
(N − n + k − 1)! k!((N + k − 1)− k)!

k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N − n− 1 + k)! (N − 1)!

(N − n− 1)! (N − 1 + k)!

=
k−1∏

i=0

N − n + i

N + i

Eq. 4.11 follows from

p̃ =

(N−n+k−1
k

)

(
N+k−1

k

)

=
(N − n + k − 1)! k!((N + k − 1)− k)!

k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N + k − 1− n)! (N − 1)!

(N + k − 1)! (N − 1− n)!

=
n−1∏

i=0

N − n + i

N + k − n + i

=
n−1∏

i=0

N − 1− i

N − 1 + k − i

2

Cardenas discovered a formula that can be used to approximate p̃ [104]:

(1− n/N)k

As Cheung pointed out, we can use the theorem to derive the number of non-
distinct accessed items contained in ak-multiset.

4.16. COUNTING THE NUMBER OF ACCESSES 165

Corollary 4.16.4 Let S be ak-multiset containing elements from anN -setT . Then
the number of distinct items contained inS is

D(N, k) =
Nk

N + k − 1
(4.12)

if the elements inT occur with the same probability inS.

We apply the theorem for the special case where every bucket contains exactly one
item (n = 1). In this case,

∏0
i=0

N−1−i
N−1+k−i = N−1

N−1+k . And the number of qualifying

buckets isN(1− N−1
N−1+k) = N(N−1+k−N+1

N−1+k) = N k
N+k−1 . 2

A useful application of this formula is to calculate the sizeof a projection [152].
Another use is that calculating the number of distinct values contained in a multiset
allows us to shift from the model with replacement to a model without replacement.
However, there is a difference between

YN,m
n (Distinct(N, k)) ≈ Cheung

N,m
n (k)

even when computingY with Eq. 4.5. Nonetheless, forn ≥ 5, the error is less than
two percent. One of the problems when calculating the resultof the left-hand side is
that the number of distinct items is not necessarily an integer. To solve this problem,
we can implement all our formulas using the Gamma-function.But even then a small
difference remains.

Non-Uniform Distribution of Items

In the previous sections, we assumed that

1. every page contains the same number of records, and

2. every record is accessed with the same probability.

We now turn to relax the first assumption. Christodoulakis models the distribution by
m numbersni (for 1 ≤ i ≤ m) if there arem buckets. Eachni equals the number
of records in some bucketi [156]. Luk proposes Zipfian record distribution [522].
However, Ijbema and Blanken say that Water and Yao’s formulais still better, as Luk’s
formula results in too low values [403]. They all come up withthe same general for-
mula presented below. Vander Zander, Taylor, and Bitton [886] discuss the problem
of correlated attributes which results in some clusteredness. Zahorjan, Bell, and Sev-
cik discuss the problem where every item is assigned its own access probability [885].
That is, they relax the second assumption. We will come back to these issues in Sec-
tion 27.2.

We still assume that every item is accessed with the same probability. However, we
relax the first assumption. The following formula derived byChristodoulakis [156],
Luk [522], and Ijbema and Blanken [403] is a simple application of Waters’s and Yao’s
formula to a more general case.

Theorem 4.16.5 (Yao/Waters/Christodoulakis)Assume a set ofm buckets. Each
bucket containsnj > 0 items (1 ≤ j ≤ m). The total number of items isN =
∑m

j=1 nj. If we look upk distinct items, then the probability that bucketj qualifies is

WN
nj

(k, j) = [1−
(N−nj

k

)

(N
k

)] (= YN
nj

(k)) (4.13)

166CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

and the expected number of qualifying buckets is

WN,m
nj

(k) :=
m∑

j=1

WN
nj

(k, j) (4.14)

Note that the product formulation in Eq. 4.5 of Theorem 4.16.1 results in a more effi-
cient computation. We make a note of this in the following corollary.

Corollary 4.16.6 Assume a set ofm buckets. Each bucket containsnj > 0 items
(1 ≤ j ≤ m). The total number of items isN =

∑m
j=1 nj. If we look upk distinct

items, then the expected number of qualifying buckets is

WN,m
nj

(k) =

m∑

j=1

(1− pj) (4.15)

with

pj =

{
∏nj−1

i=0
N−k−i

N−i k ≤ nj

0 N − nj < k ≤ N
(4.16)

If we compute thepj after we have sorted thenj in ascending order, we can use the
fact that

pj+1 = pj ∗
nj+1−1
∏

i=nj

N − k − i

N − i
.

We can also use the theorem to calculate the number of qualifying buckets in case
the distribution is given by a histogram.

Corollary 4.16.7 For 1 ≤ i ≤ L let there beli buckets containingni items. Then the
total number of buckets ism =

∑L
i=1 li, and the total number of items in all buckets

is N =
∑L

i=1 lini. For k randomly selected items, the number of qualifying buckets is

WN,m
nj

(k) =

L∑

i=1

liYN
nj

(k) (4.17)

Last in this section, let us calculate the probability distribution for the number of
qualifying items within a bucket. The probability thatx ≤ nj items in a bucketj
qualify can be calculated as follows. The number of possibilities to selectx items in
bucketnj is

(
nj
x

)
. The number of possibilites to draw the remainingk − x items from

the other buckets is
(N−nj

k−x

)
. The total number of possibilities to distributek items over

the buckets is
(N

k

)
. This shows the following:

Theorem 4.16.8Assume a set ofm buckets. Each bucket containsnj > 0 items
(1 ≤ j ≤ m). The total number of items isN =

∑m
j=1 nj. If we look upk distinct

items, the probability thatx items in bucketj qualify is

XN
nj

(k, x) =

(nj
x

) (N−nj

k−x

)

(N
k

) (4.18)

4.16. COUNTING THE NUMBER OF ACCESSES 167

Further, the expected number of qualifying items in bucketj is

XN,m
nj

(k) =

min(k,nj)∑

x=0

xXN
nj

(k, x) (4.19)

In standard statistics books the probability distributionXN
nj

(k, x) is calledhypergeo-
metric distribution.

Let us consider the case where allnj are equal ton. Then we can calculate the
average number of qualifying items in a bucket. Withy := min(k, n) we have

XN,m
nj

(k) =

min(k,n)
∑

x=0

xXN
n (k, x)

=

min(k,n)
∑

x=1

xXN
n (k, x)

=
1
(N

k

)

y
∑

x=1

x

(
n

x

)(
N − n

k − x

)

=
1
(N

k

)

y
∑

x=1

(
x

1

)(
n

x

)(
N − n

k − x

)

=
1
(N

k

)

y
∑

x=1

(
n

1

)(
n− 1

x− 1

)(
N − n

k − x

)

=

(n
1

)

(N
k

)

y−1
∑

x=0

(
n− 1

0 + x

)(
N − n

(k − 1)− x

)

=

(
n
1

)

(
N
k

)

(
n− 1 + N − n

0 + k − 1

)

=

(n
1

)

(N
k

)

(
N − 1

k − 1

)

= n
k

N
=

k

m

Let us consider the even more special case where every bucketcontains a single
item. That is,N = m andni = 1. The probability that a bucket contains a qualifying
item reduces to

XN
1 (k, x) =

(
1
x

) (
N−1
k−1

)

(N
k

)

=

(N−1
k−1

)

(N
k

)

=
k

N
(=

k

m
)

Since x can then only be zero or one, the average number of qualifying items a bucket
contains is alsok

N .

168CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

The formulas presented in this section can be used to estimate the number of
block/page accesses in case of random direct accesses. As wewill see next, other
kinds of accesses occur and need different estimates.

4.16.2 Counting the Number of Sequential Accesses

Vector of Bits

When estimating seek costs, we need to calculate the probability distribution for the
distance between two subsequent qualifying cylinders. We model the situation as a
bitvector of lengthB with b bits set to 1. ThenB corresponds to the number of
cylinders and a 1 indicates that a cylinder qualifies.

Theorem 4.16.9Assume a bitvector of lengthB. Within it b ones are uniformly dis-
tributed. The remainingB − b bits are zero. Then the probability distribution of the
numberj of zeros

1. between two consecutive ones,

2. before the first one, and

3. after the last one

is given by

BB
b (j) =

(B−j−1
b−1

)

(B
b

) (4.20)

A more general theorem (see Theorem 4.16.13) was first presented by Yao [876]. The
above formulation is due to Christodoulakis [163].

To see why the formula holds, consider the total number of bitvectors having a one
in position i followed by j zeros followed by a one. This number is

(B−j−2
b−2

)
. We

can choseB − j − 1 positions fori. The total number of bitvectors is
(B

b

)
and each

bitvector hasb− 1 sequences of the form that a one is followed by a sequence of zeros
is followed by a one. Hence,

BB
b (j) =

(B − j − 1)
(B−j−2

b−2

)

(b− 1)
(B

b

)

=

(B−j−1
b−1

)

(
B
b

)

Part 1. of the theorem follows. To prove part 2., we count the number of bitvectors
that start withj zeros before the first one. There areB − j − 1 positions left for the
remainingb − 1 ones. Hence, the number of these bitvectors is

(
B−j−1

b−1

)
and part 2

follows. Part 3 follows by symmetry.

4.16. COUNTING THE NUMBER OF ACCESSES 169

We can derive a less expensive way to evaluate the formula forBB
b (j) as follows.

For j = 0, we haveBB
b (0) = b

B . If j > 0, then

BB
b (j) =

(
B−j−1

b−1

)

(B
b

)

=

(B−j−1)!
(b−1)!((B−j−1)−(b−1))!

B!
b!(B−b)!

=
(B − j − 1)! b!(B − b)!

(b− 1)!((B − j − 1)− (b− 1))! B!

= b
(B − j − 1)! (B − b)!

((B − j − 1)− (b− 1))! B!

= b
(B − j − 1)! (B − b)!

(B − j − b)! B!

=
b

B − j

(B − j)! (B − b)!

(B − b− j)! B!

=
b

B − j

j−1
∏

i=0

(1− b

B − i
)

This formula is useful whenBB
b (j) occurs in sums overj because we can compute the

product incrementally.

Corollary 4.16.10 Using the terminology of Theorem 4.16.9, the expected valuefor
the number of zeros

1. before the first one,

2. between two successive ones, and

3. after the last one

is

BB
b =

B−b∑

j=0

jBB
b (j) =

B − b

b + 1
(4.21)

170CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Let us calculate:

B−b∑

j=0

j

(
B − j − 1

b− 1

)

=

B−b∑

j=0

(B − (B − j))

(
B − j − 1

b− 1

)

= B
B−b∑

j=0

(
B − j − 1

b− 1

)

−
B−b∑

j=0

(B − j)

(
B − j − 1

b− 1

)

= B
B−b∑

j=0

(
b− 1 + j

b− 1

)

− b
B−b∑

j=0

(
B − j

b

)

= B
B−b∑

j=0

(
b− 1 + j

j

)

− b
B−b∑

j=0

(
b + j

b

)

= B

(
(b− 1) + (B − b) + 1

(b− 1) + 1

)

− b

(
b + (B − b) + 1

b + 1

)

= B

(
B

b

)

− b

(
B + 1

b + 1

)

= (B − b
B + 1

b + 1
)

(
B

b

)

With

B − b
B + 1

b + 1
=

B(b + 1)− (Bb + b)

b + 1

=
B − b

b + 1

the claim follows.

Corollary 4.16.11 Using the terminology of Theorem 4.16.9, the expected totalnum-
ber of bits from the first bit to the last one, both included, is

Btot(B, b) =
Bb + b

b + 1
(4.22)

To see this, we subtract fromB the average expected number of zeros between the last
one and the last bit:

B − B − b

b + 1
=

B(b + 1)

b + 1
− B − b

b + 1

=
Bb + B −B + b

b + 1

=
Bb + b

b + 1

An early approximation of this formula was discovered by Kollias [462].

4.16. COUNTING THE NUMBER OF ACCESSES 171

Corollary 4.16.12 Using the terminology of Theorem 4.16.9, the number of bits from
the first one and the last one, both included, is

B1-span(B, b) =
Bb−B + 2b

b + 1
(4.23)

We have two possibilities to argue here. The first subtracts fromB the number of zeros
at the beginning and the end:

B1-span(B, b) = B − 2
B − b

b + 1

=
Bb + B − 2B + 2b

b + 1

=
Bb−B + 2b

b + 1

The other possibility is to add the number of zeros between the first and the last one
and the number of ones:

B1-span(B, b) = (b− 1)BB
b + b

= (b− 1)
B − b

b + 1
+

b(b + 1

b + 1

=
Bb− b2 −B + b + b2 + b

b + 1

=
Bb−B + 2b

b + 1

The number of bits from the first bit to the last one including both . . . The distance
between the first and the last one. . . EX or Cor?

Let us have a look at some possible applications of these formulas. If we look up
one record in an array ofB records and we search sequentially, how many array entries
do we have to examine on average if the search is successful?

In [535] we find these formulas used for the following scenario. Let a file consist
of B consecutive cylinders. We search fork different keys, all of which occur in the
file. Thesek keys are distributed overb different cylinders. Of course, we can stop as
soon as we have found the last key. What is the expected total distance the disk head
has to travel if it is placed on the first cylinder of the file at the beginning of the search?

Another interpretation of these formulas can be found in [393, 536]. Assume we
have an array consisting ofB different entries. We sequentially go through all entries
of the array until we have found all the records forb different keys. We assume that the
B entries in the array and theb keys are sorted. Further, allb keys occur in the array.
On the average, how many comparisons do we need to find all keys?

Vector of Buckets

A more general scenario is as follows. Consider a sequence ofm buckets containing
ni items each. Yao [876] developed the following theorem.

Theorem 4.16.13 (Yao)Consider a sequence ofm buckets. For1 ≤ i ≤ m, let ni be
the number of items in a bucketi. Then there is a total ofN =

∑m
i=1 ni items. Let

172CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

ti =
∑i

l=0 ni be the number of items in the firsti buckets. If the buckets are searched
sequentially, then the number of buckets that have to be examined untilk distinct items
have been found is

CN,m
ni

(k, j) =

(tj
k

)
−
(tj−1

k

)

(N
k

) (4.24)

Thus, the expected number of buckets that need to be examinedin order to retrievek
distinct items is

CN,m
ni

(k) =

m∑

j=1

jCN,m
ni

(k, j) = m−
∑m

j=1

(tj−1

k

)

(N
k

) (4.25)

Applications of this formula can be found in [156, 163, 535, 537, 802]. Manolopoulos
and Kollias describe the analogue for the replacement model[535].

Lang, Driscoll, and Jou discovered a general theorem which allows us to estimate
the expected number of block accesses for sequential search.

Theorem 4.16.14 (Lang/Driscoll/Jou)Consider a sequence ofN items. For a batched
search ofk items, the expected number of accessed items is

A(N, k) = N −
N−1∑

i=1

Prob[Y ≤ i] (4.26)

whereY is a random variable for the last item in the sequence that occurs among the
k items searched.

proof??
With the help of this theorem, it is quite easy to derive many average sequential

accesses for different models.Cor or EX?

4.16.3 Pointers into the Literature

Segments containing records can be organized differently.Records can be placed ran-
domly in the segment, they can be ordered according to some key, or the segment is
organized as a tree. Accordingly, the segment is called random, sequential, or tree-
structure. From a segment, records are to be retrieved for a given bag ofk keys. The
general question then is: how many pages do we have to access?The answer depends
on whether we assume the replacement or non-replacement model. Six cases occur.
For sequential and tree-structured segments, it also makessense to distinguish between
successful, partially (un-) successful, and (totally) unsuccessfull searches. These no-
tions capture the different possibilities where for all, some, none of thek keys records
are found. The following table provides some entry points into the literature. It is
roughly organized around the above categories. (Remember that we discussed the
random file organization at length in Section 4.16.1.)

non-replacement replacement
random [152, 156, 522, 618, 845, 875] [104, 156, 601, 618]
sequential [56, 156, 477, 537, 601, 600, 736, 876][156, 477, 537, 736]
tree-structured [477, 476, 537, 600, 623] [477, 476, 537, 736]

4.17. DISK DRIVE COSTS FORN UNIFORM ACCESSES 173

4.17 Disk Drive Costs forN Uniform Accesses

The goal of this section is to derive estimates for the costs (time) for retrievingN
cache-missed sectors of a segmentS from disk. We assume that theN sectors are read
in their physical order on disk. This can be enforced by the DBMS, by the operating
system’s disk scheduling policy (SCAN policy), or by the disk drive controller.

Remembering the description of disk drives, the total costscan be described as

Cdisk = Ccmd + Cseek+ Csettle+ Crot + Cheadswitch (4.27)

For brevity, we omitted the parameterN and the parameters describing the segment
and the disk drive on which the segment resides. Subsequently, we devote a (some-
times tiny) section to each summand. Before that, we have to calculate the number of
qualifying cylinders, tracks, and sectors. These numbers will be used later on.

4.17.1 Number of Qualifying Cylinders, Tracks, and Sectors

If N sectors are to be retrieved, we have to find the number of cylinders qualifying
in an extenti. Let Ssec denote the total number of sectors our segment contains and
Scpe(i) = Li−Fi+1 be the number of cylinders of the extent. If theN sectors we want
to retrieve are uniformly distributed among theSsecsectors of the segment, the number
of cylinders that qualifies in(Fi, Li, zi) is Scpe(i) times 1 minus the probability that
a cylinder does not qualify. The probability that a cylinderdoes not qualify can be
computed by deviding the total number of possibilities to chose theN sectors from
sectors outside the cylinder by the total number of possibilities to choseN sectors
from all Ssecsectors of the segment. Hence, the number of qualifying cylinders in the
considered extent is:

Qc(i) = Scpe(i)YSsec
DZspc(i)

(N) = Scpe(i)(1 −
(Ssec−DZspc(i)

N

)

(
Ssec
N

)) (4.28)

We could also have used Theorem 4.16.13.
Let us also calculate the number of qualifying tracks in a partion i. It can be

calculated byScpe(i)Dtpc(1 − Prob(a track does not qualify)). The probability
that a track does not qualify can be computed by dividing the number of ways to pick
N sectors from sectors not belonging to a track divided by the number of possible
ways to pickN sectors from all sectors.

Qt(i) = Scpe(i)DtpcYSsec
DZspt(i)

(N) = Scpe(i)Dtpc(1−
(Ssec−DZspt(i)

N

)

(Ssec
N

)) (4.29)

Just for fun, we calculate the number of qualifying sectors of an extent in zonei.
It can be approximated by

Qs(i) = Scpe(i)DZspc(i)
N

Ssec
(4.30)

Since allScpe(i) cylinders are in the same zone, they have the same number of sectors
per track, and we could also use Waters/Yao to approximate the number of qualifying
cylinders by

Qc(i) = YScpe(i)DZspc(Szone(i)),Scpe(i)

DZspc(Szone(i))
(Qs(i)) (4.31)

174CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

︸︷︷︸

Ξ
︸︷︷︸

Ξ
︸︷︷︸

Ξ

︸ ︷︷ ︸

Scpe

︸ ︷︷ ︸

Scpe

︸ ︷︷ ︸

Scpe

? ? ?

...

...seek ∆gap ...

The upper path illustratesCseekgap, the lower braces indicate those parts for which
Cseekextis responsible.

Figure 4.10: Illustration of seek cost estimate

This is a good approximation, as long asQs(i) is not too small (e.g.> 4).

4.17.2 Command Costs

The command costsCcmd are easy to compute. Every read of a sector requires the
execution of a command. Hence

Ccmd = NDcmd

estimates the total command costs.

4.17.3 Seek Costs

We give different alternative possibilities to estimate seek costs. We start with an
upper bound by exploring Theorem 4.1.1. The first cylinder wehave to visit requires
a random seek with costDavgseek. (Well this does not really give us an upper bound.
For a true upper bound we should useDseek(Dcyl− 1).) After that, we have to visit the
remainingQc(i) − 1 qualifying cylinders. The segment spans a total ofSlast(Sext) −
Sfirst(1) + 1 cylinders. Let us assume that the first qualifying cylinder is the first
cylinder and the last qualifying cylinder is the last cylinder of the segment. Then
applying Theorem 4.1.1 gives us the upper bound

Cseek(i) ≤ (Qc(i)− 1)Dseek(
Slast(Sext)− Sfirst(1) + 1

Qc(i) − 1
)

after we have found the first qualifying cylinder.
We can be a little more precise by splitting the seek costs into two components.

The first componentCseekgapexpresses the costs of finding the first qualifying cylinder
and jumping from the last qualifying cylinder of extenti to the first qualifying cylinder

4.17. DISK DRIVE COSTS FORN UNIFORM ACCESSES 175

of extenti + 1. The second componentCseekext(i) calculates the seek costs within an
extenti. Figure 4.10 illustrates the situation. The total seek costs then are

Cseek(i) = Cseekgap+

Sext∑

i=1

Cseekext(i)

Since there is no estimate in the literature forCseekgap, we have to calculate it ourselves.
After we have done so, we present several alternatives to calculateCseekext(i).

The average seek cost for reaching the first qualifying cylinder isDavgseek. How far
are we now within the first extent? We use Corollary 4.16.10 toderive that the number
of non-qualifying cylinders preceding the first qualifyingone in some extenti is

BScpe(i)

Qc(i)
=

Scpe(i)−Qc(i)

Qc(i) + 1
.

The same is found for the number of non-qualifying cylindersfollowing the last qual-
ifying cylinder. Hence, for every gap between the last and the first qualifying cylinder
of two extentsi andi + 1, the disk arm has to travel the distance

∆gap(i) := BScpe(i)
Qc(i)

+ Sfirst(i + 1)− Slast(i)− 1 + BScpe(i+1)
Qc(i+1)

Using this, we get

Cseekgap= Davgseek+

Sext−1∑

i=1

Dseek(∆gap(i))

Let us turn toCseekext(i). We first need the number of cylinders between the first
and the last qualifying cylinder, both included, in extenti. It can be calculated using
Corollary 4.16.12:

Ξext(i) = B1-span(Scpe(i), Qc(i))

Hence,Ξ(i) is the minimal span of an extent that contains all qualifyingcylinders.
UsingΞ(i) and Theorem 4.1.1, we can derive an upper bound forCseekext(i):

Cseekext(i) ≤ (Qc(i)− 1)Dseek(
Ξ(i)

Qc(i)− 1
) (4.32)

Alternatively, we could formulate this as

Cseekext(i) ≤ (Qc(i) − 1)Dseek(BScpe(i)
Qc(i)

) (4.33)

by applying Corollary 4.16.10.
A seemingly more precise estimate for the expected seek costwithin the qualifying

cylinders of an extent is derived by using Theorem 4.16.9:

Cseekext(i) = Qc(i)

Scpe(i)−Qc(i)∑

j=0

Dseek(j + 1)BScpe(i)
Qc(i)

(j) (4.34)

There are many more estimates for seek times. Older ones relyon a linear disk
model but also consider different disk scan policies. A goodentry point is the work by
Theorey and Pinkerton [795, 796].

176CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

4.17.4 Settle Costs

The average settle cost is easy to calculate. For every qualifying cylinder, one head
settlement takes place:

Csettle(i) = Qc(i)Drdsettle (4.35)

4.17.5 Rotational Delay Costs

Let us turn to the rotational delay. For some given track in zonei, we want to read the
Qt(i) qualifying sectors contained in it. On average, we would expect that the read
head is ready to start reading in the middle of some sector of atrack. If so, we have
to wait for 1

2DZscan(Szone(i)) before the first whole sector occurs under the read head.
However, due to track and cylinder skew, this event does not occur after a head switch
or a cylinder switch. Instead of being overly precise here, we ignore this half sectorEX
pass by time and assume that we are always at the beginning of asector. This is also
justified by the fact that we model the head switch time explicitly.

Assume that the head is ready to read at the beginning of some sector of some track.
Then, in front of us is a — cyclic, which does not matter — bitvector of qualifying and
non-qualifying sectors. We can use Corollary 4.16.11 to estimate the total number
of qualifying and non-qualifying sectors that have to pass under the head until all
qualifying sectors have been seen. The total rotational delay for the tracks of zonei is

Crot(i) = Qt(i) DZscan(Szone(i)) Btot(DZspt(Szone(i)), Qspt(i)) (4.36)

whereQspt(i) = WSsec,DZspt(Szone(i))
1 (N) = DZspt(Szone(i))

N
Ssec

is the expected number
of qualifying sectors per track in extenti. In caseQspt(i) < 1, we setQspt(i) := 1.

A more precise model is derived as follows. We sum up for allj the product of (1)
the probability thatj sectors in a track qualify and (2) the average number of sectors
that have to be read ifj sectors qualify. This gives us the number of sectors that have
to pass the head in order to read all qualifying sectors. We only need to multiply this
number by the time to scan a single sector and the number of qualifying tracks. We
can estimate (1) using Theorem 4.16.8. For (2) we again use Corollary 4.16.11.

Crot(i) = Scpe(i) Dtpc DZscan(Szone(i))

·
min(N,DZspt(Szone(i)))

∑

j=1

X Ssec
DZspt(Szone(i))

(N, j) Btot(DZspt(Szone(i)), j)(4.37)

Another approach is taken by Triantafillou, Christodoulakis, and Georgiadis [802].
They split the total rotational delay into two components. The first component (Crotpass)
measures the time needed to skip unqualifying sectors and the second (Crotread) that for
(scanning and transferring) the qualifying sectors to the host.

Let us deal with the first component. Assume thatj sectors of a track in extent
i qualify. The expected position on a track where the head is ready to read is the
middle between two qualifying sectors. Since the expected number of sectors between
two qualifying sectors isDZspt(Szone(i))/j, the expected number of sectors scanned

before the first qualifying sector comes under the head isDZspt(Szone(i))
2j . The expected

4.17. DISK DRIVE COSTS FORN UNIFORM ACCESSES 177

positions ofj qualifying sectors on the same track is such that the number of non-
qualifying sectors between two successively qualifying sectors is the same. Hence,

after having read a qualifying sector,DZspt(Szone(i))
j unqualifying sectors must pass by

until the next qualifying sector shows up. The total number of unqualifying sectors to
be passed ifj sectors qualify in a track of zonei is

Ns(j, i) =
DZspt(Szone(i))

2j
+ (j − 1)

DZspt(Szone(i)) − j

j
(4.38)

Using again Theorem 4.16.8, the expected rotational delay for the unqualifying
sectors then is

Crotpass(i) = Scpe(i) Dtpc DZscan(Szone(i))

·
min(N,DZspt(Szone(i)))

∑

j=1

X Ssec
DZspt(Szone(i))

(N, j)Ns(j, i) (4.39)

We have to sum up this number for all extents and then add the time needed to scan
theN sectors. Hence

Crot =

Sext∑

i=1

Crotpass(i) + Crotread(i)

where the total transfer cost for the qualifying sectors of an extent can be estimated as

Crotread(i) = Qs(i) DZscan(Szone(i))

4.17.6 Head Switch Costs

The average head switch cost is equal to the average number ofhead switches that
occur times the average head switch cost. The average numberof head switch is equal
to the number of tracks that qualify minus the number of cylinders that qualify since a
head switch does not occur for the first track of each cylinder. Summarizing

Cheadswitch=

Sext∑

i=1

(Qt(i)−Qc(i)) Dhdswitch (4.40)

whereQt is the average number of tracks qualifying in an extent.

4.17.7 Discussion

The disk drive cost model derived depends on many parameters. The first bunch of
parameters concerns the disk drive itself. These parameters can (and must be) extracted
from disk drives by using (micro-) benchmarking techniques[270, 791, 552, 696]. The
second bunch of parameters concerns the layout of a segment on disk. The database
system is responsible for providing these parameters. The closer it is to the disk, the
easier these parameters are extracted. Building a runtime system atop the operating
system’s file system is obviously a bad idea from the cost model perspective. If instead
the storage manager of the runtime system implements cylinder aligned extents (or at
least track aligned extents) using a raw I/O interface, the cost model will be easier to

178CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

develop and much more precise. Again, providing reliable cost models is one of the
most important tasks of the runtime system.

We have neglected many problems in our disk access model: partially filled cylin-
ders, pages larger than a block, disk drive’s cache, remapping of bad blocks, non-
uniformly distributed accesses, clusteredness, and so on.Whereas the first two items
are easy to fix, the rest is not so easy. In general, database systems ignore the disk
drive cache. The justifying argument is that the database buffer is much larger than
the disk drive’s cache and, hence, it is very unlikely that weread a page that is not in
the database buffer but in the disk cache. However, this argument falls short for non-
random accesses. Nevertheless, we will ignore the issue in this book. The interested
reader is referred to Shriver’s thesis for disk cache modeling [737].

Remapping of bad sectors to other sectors really prevents the development of a
precise cost model for disk accesses. Modelling disk drivesbecomes already a night-
mare since a nice partitioning of the disk into zones is no longer possible since some
sectors, tracks and even cylinders are reserved for the remapping. So even if no remap-
ping takes place (which is very unlikely), having homogeneous zones of hundreds of
cylinders is a dream that will never come true. The result is that we do not have dozens
of homogeneous zones but hundreds (if not thousands) of zones of medium homo-
geneity. These should be reduced to a model of dozens of homogeneous zones such
that the error does not become too large. The remaining issues will be discussed laterEX
in the book.

There is even more to say about our cost model. A very practical issue arises if the
number of qualifying cylinders is small. Then for some extent i, the expected number
of qualifying cylinders could beQc(i) = 0.38. For some of our formulas this is a big
problem. As a consequence, special cases for smallN , smallQc, smallQt have to be
developed and implemented.EX

Another issue is the performance of the cost model itself. The query compiler
might evaluate the cost model’s formulas thousands or millions of times. Hence, they
should be fast to evaluate.

So far, we can adequately model the costs ofN disk accesses. Some questions
remain. For example, how do we derive the numberN of pages we have to access?
Do we really need to fetch allN pages from disk or will we find some of them in the
buffer? If yes, how many? Further, CPU costs are also an important issue. Deriving
a cost model for CPU costs is even more tedious than modellingdisk drive costs. The
only choice available is to benchmark all parts of a system and then derive a cost model
using the extracted parameters. To give examples of parameters to be extracted: we
need the CPU costs for accessing a page present in the buffer,for accessing a page
absent in the buffer, for a next call of an algebraic operator, for executing an integer
addition, and so on. Again, this cannot be done without tools[42, 220, 377, 424, 617].

The bottom line is that a cost model does not have to be accurate, but must lead to
correct decisions. In that sense, it must be accurate at the break even points between
plan alternatives. Let us illustrate this point by means of our motivating example. If
we know that the index returns a single tuple, it is quite likely that the sequential scan
is much more expensive. The same might be true for 2, 3, 4, and 5tuples. Hence,
an accurate model for smallN is not really necessary. However, as we come close
to the costs of a sequential scan, both the cost model for the sequential scan and the
one for the index-based access must be correct since the product of their errors is

4.18. CONCLUDING REMARKS 179

the factor a bad choice is off the best choice. This is a crucial point, since it is easy
to underestimate sequential access costs by a factor of 2-3 and overestimate random
access cost by a factor of 2-5.

4.18 Concluding Remarks

Learned:
Open Cost: I/O costs: non-uniform stuff, CPU costs: nothingdone
Wrong cardinality estimates: Open, leads to dynamic qo

4.19 Bibliography

ToDo:

• CPU Costs for B-tree search within inner and leaf pages [474]

• Index/Relations: only joins between building blocks [666]

• RDB/V1: predicate push down (views), 2 phase optimization (local: traditional,
global: sharing of tables), five categories for predicates,nested loops evaluation
for nested correlated subqueries, use of transitivity of equality, conjunctive nor-
mal form, use of min/max value of join column to reduce join cardinality by
adding another selection to the other relation (min(a)<= b <= max(a)) for join
predicate a=b.

• K accesses to unique index: how many page faults if buffer hassize b? [679]

• buffer mgmt: [227]

• buffer mgmt: [735]

• buffer mgmt: [478]

• buffer mgmt: [680, 681]

• buffer mgmt: [94]

• buffer mgmt: [154]

• structured, semi-structured, unstructured data: [302] cited in Dono76

• B-trees and their improvements [194]

• Vertical partitioning: [231, 538, 49]

• Horizontal and vertical partitioning: [113]

• set oriented disk access to large complex objects [838, 837], assembly operator:
[441],

• large objects: [78, 105, 493]

180CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Part II

Foundations

181

Chapter 5

Logic and Null Duplicates

5.1 Two-valued logic

The Boolean algebra with its operationsnot (¬), and (∧), andor (∨) is well-known.
The truth tables for these operations is given in Figure 5.1.

5.2 NULL values and two valued logic

5.3 Three valued logic

5.4 Simplifying Boolean Expressions

5.5 Optimizing Boolean Expressions

5.6 Bibliography

NULL-values: [674, 498, 675, 499]

¬ true false
false true

∨ true false
true true true
false true false

∧ true false
true true false
false false false

Figure 5.1: Truth tables for two-valued logic

183

184 CHAPTER 5. LOGIC AND NULL DUPLICATES

¬true =⇒ false
¬false =⇒ true

p ∨ p =⇒ p
p ∨ ¬p =⇒ true
p1 ∨ (p1 ∧ p2) =⇒ p1

p ∨ false =⇒ p
p ∨ true =⇒ true

p ∧ p =⇒ p
p ∧ ¬p =⇒ false
p1 ∧ (p1 ∨ p2) =⇒ p1

p ∧ true =⇒ p
p ∨ false =⇒ false

Figure 5.2: Simplification Rules

5.6. BIBLIOGRAPHY 185

Commutativity

p1 ∨ p2 ⇐⇒ p2 ∨ p1 p1 ∧ p2 ⇐⇒ p2 ∧ p1

∃e1 ∃e2 p ⇐⇒ ∃e2 ∃e1 p ∀e1 ∀e2 p ⇐⇒ ∀e2 ∀e1 p

Associativity

(p1 ∨ p2) ∨ p3 ⇐⇒ p1 ∨ (p2 ∨ p3) (p1 ∧ p2) ∧ p3 ⇐⇒ p1 ∧ (p2 ∧ p3)

Distributivity

p1 ∨ (p2 ∧ p3) ⇐⇒ (p1 ∨ p2) ∧ (p1 ∨ p3) p1 ∧ (p2 ∨ p3) ⇐⇒ (p1 ∧ p2) ∨ (p1 ∧ p3)
∃e (p1 ∨ p2) ⇐⇒ (∃e p1) ∨ (∃ p2) ∀e (p1 ∧ p2) ⇐⇒ (∀e p1) ∧ (∀e p2)

Idempotency

p ∨ p ⇐⇒ p p ∧ p ⇐⇒ p
p ∨ ¬p ⇐⇒ true p ∧ ¬p ⇐⇒ false
p1 ∨ (p1 ∧ p2) ⇐⇒ p1 p1 ∧ (p1 ∨ p2) ⇐⇒ p1

p ∨ false ⇐⇒ p p ∧ true ⇐⇒ p
p ∨ true ⇐⇒ true p ∧ false ⇐⇒ false

De Morgan

¬(p1 ∨ p2) ⇐⇒ ¬(p1) ∧ ¬(p2) ¬(p1 ∧ p2) ⇐⇒ ¬(p1) ∨ ¬(p2)

Negation of Quantifiers

¬(∀e p) ⇐⇒ ∃e(¬p) ¬(∃e p) ⇐⇒ ∀e (¬p)

Elimination of Negation

¬(¬(p)) ⇐⇒ p ¬t1θt2 =⇒ t1θt2

Conditioned Distributivity(F(p1) ∩ A(e) = ∅)

p1 ∨ (∀e p2) ⇐⇒ ∀e (p1 ∨ p2) p1 ∧ (∃e p2) ⇐⇒ ∃e (p1 ∧ p2)

p1 ∨ (∃e p2) ⇐⇒
[
∃e(p1 ∨ p2) if e 6= {}
p1 if e = {}

p1 ∧ (∀e p2) ⇐⇒
[
∀e(p1 ∧ p2) if e 6= {}
p1 if e = {}

Figure 5.3: Laws for two-valued logic

186 CHAPTER 5. LOGIC AND NULL DUPLICATES

¬ true false ⊥
false true ⊥

∨ true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

Figure 5.4: Truth tables for three-valued logic

Chapter 6

An Algebra for Sets, Bags, and
Sequences

6.1 Sets, Bags, and Sequences

6.1.1 Sets

Sets and their laws (see Figure 6.1) should be well-known. A set contains elements
drawn from some domainD. In our case, the domain will often be tuples and we only
consider finite sets.

The set operations we are interested in are union (∪), intersection (∩), and set dif-
ference (\). If the domain consists of tuples, we assume that both arguments have the
same schema. That is, the attributes and their domains are the same in both arguments.
Otherwise, the expression is not well-typed. In any case, set union and intersection are
commutative and associative. Set difference is neither of them. Expressions containing

X ∪ ∅ = X
X ∪X = X
X ∪ Y = Y ∪X (commutativity)
(X ∪ Y) ∪ Z = X ∪ (Y ∪ Z) (associativity)
X ∩ ∅ = ∅
X ∩ x = X
X ∩ Y = y ∩X (commutativity)
(X ∩ Y) ∩ Z = X ∩ (Y ∩ z) (associativity)
X \ ∅ = X
∅ \X = ∅
X \ Y 6= Y \X (∗ ∗ ∗wrong ∗ ∗∗)
(X \ Y) \ Z 6= X \ (Y \ Z) (∗ ∗ ∗wrong ∗ ∗∗)
X ∪ (Y ∩ Z) = (X ∩ Y) ∪ (X ∩ Z) (distributivity)
X ∩ (Y ∪ Z) = (X ∪ Y) ∩ (X ∪ Z) (distributivity)
(X ∪ Y) \ Z = (X \ Z) ∪ (Y \ Z) (distributivity)

Figure 6.1: Laws for Set Operations

187

188 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

the empty set can simplified. Further, some distributivity laws hold.
As we have seen in Chapter 2, algebraic equivalences that reorder algebraic opera-

tors form the fundamental core for query optimization. One could discuss the reorder-
ability of each pair of operators resulting inn2 investigations if the number of operators
in the algebra isn. In order to simplify this, we introduce a general argument covering
most of the cases. The observation will be thatset-linearityof set operators implies
their reorderability easily.

A unary functionf from sets to sets is calledset-linear (or homomorph), if and
only if the following two conditions hold for all setsX andY :

f(∅) = ∅
f(X ∪ Y) = f(X) ∪ f(Y)

An n-ary mapping from sets to a set is calledset-linear in its i-th argument, if and only
if for all setsX1, . . . ,Xn andX ′

i the following conditions hold:

f(X1, . . . ,Xi−1, ∅,Xi+1, . . . ,Xn) = ∅
f(X1, . . . ,Xi−1,Xi ∪X ′

i,Xi+1, . . . ,Xn) = f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)

∪f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn)

It is calledset-linear, if it is linear in all its arguments. For a binary function oroperator
where we can distinguish between the left and the right argument, we call it left (right)
set-linear if it is set-linear in its first (second) argument. Note that if an equivalence
with linear mappings on both sides has to be proven, it suffices to proof it for disjoint
singleton sets, i.e. sets with one element only.

Set intersecion is set-linear, set difference is left set-linear but not right set-linear
and set union is neither left nor right set-linear.

A set of elements from a domainD can be seen a function fromD to {0, 1}. For
a given setS, this function is called thecharacteristic functionof S. It can be de-

fined asχS(s) =

{
0 if s 6∈ S
1 if s ∈ S

Of course their is a bijection between characteristic

functions and sets.

6.1.2 Duplicate Data: Bags

A bag or multisetis can contain every element more than once. It cannot contain an
element less than zero times. A typical bag is{{a, b, b}}. Another example is{{a, b}}.
The latter bag does not contain any duplicates. Hence, it could also be considered a
set.

Hence, for a given bagB, the characteristic function for bags maps every element
of a domainD to the set of non-negative integersIN0. The characteristic function
gives the number of occurrences of each element in the bag. Again, there is a bijection
between bags and their characteristic functions. We will only consider finite bags.

The bag unionX∪̄Y of two bags is defined such that the number of occurrences
of some element in the union is the sum of its occurrences inX andY : The number
of occurrences of some element in the bag intersectionX∩̄Y is the minimum of the

6.1. SETS, BAGS, AND SEQUENCES 189

X∪̄∅̄ = X
X∪̄X = X
X∪̄Y = Y ∪̄X (commutativity)
(X∪̄Y)∪̄Z = X∪̄(Y ∪̄Z) (associativity)

X∩̄∅̄ = ∅̄
X∩̄x = X
X∩̄Y = Y ∩̄X (commutativity)
(X∩̄Y)∩̄Z = X∩̄(Y ∩̄Z) (associativity)

X\̄∅̄ = X

∅̄\̄X = ∅̄
X\̄Y 6= Y \̄X (∗ ∗ ∗wrong ∗ ∗∗)
(X\̄Y)\̄Z 6= X\̄(Y \̄Z) (∗ ∗ ∗wrong ∗ ∗∗)
X∪̄(Y ∩̄Z) = (X∩̄Y)∪̄(x∩̄Z) (distributivity)
X∩̄(Y ∪̄Z) 6= (X∪̄Y)∩̄(X∪̄Z) (∗ ∗ ∗wrong ∗ ∗∗)
(X∪̄Y)\̄Z 6= (X\̄Z)∪̄(Y \̄Z) (∗ ∗ ∗wrong ∗ ∗∗)

Figure 6.2: Laws for Bag Operations

number its occurrences inX andY . In the bag differenceX\̄Y the number of occur-
rences of some element is the difference (−̇) of its occurrences inX andY wherea−̇b
is defined asmax(0, a − b). Using characteristic functions, we can define

χX∪̄Y (z) = χX(z) + χY (z)

χX∩̄Y (z) = min(χX(z), χY (z))

χX\̄Y (z) = χX(z)−̇χY (z)

The laws for sets do not necessarily hold for bags (see Figure6.2). We will have
that bag union and bag intersection are both commutative andassociative. Bag differ-
ence is neither of them. The only distributivity law that holds for bags is the one that
distributes a union over an intersection.

Having every operation twice, once for bags and once for setsis quite inconve-
nient. Fortunately, for some operations we only need the onefor bags. We can get
rid of some set operations as follows. Every set can be seen asa bag whose the char-
acteristic function never exceeds one. LetĪ(S) turn a setS into a bag with identical
characteristic function. The partial function̄I−1(B) return a bag into a set if the bag’s
characteristic function does not exceed one. Otherwise letĪ−1 be undefined. LetX
andY be two sets. For the intersection function we then have

Ī−1(Ī(X)∪̄Ī(Y)) = X ∪ Y

That is, for any two setsX andY bag union and set union are the same. This gives
rise to the notion ofset-faithfulness. We call a unary function on setsf set-faithtulif
and only if

Ī−1(f(Ī(X))) = f(X)

holds for all setsX. Analogously, binary functionsg areset-faithfulif and only if

Ī−1(g(Ī(X), Ī(Y))) = f(X,Y)

190 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

holds for all setsX andY .
\̄ and ∩̄ are set-faithful. Hence, we can (and often will) simply use\ and∩ to

denote set or bag difference and intersection. However,∪̄ is not. Hence, we have to
carefully distinguish between̄∪ and∪.

To go from a bag to a set, we have to eliminate duplicates. Let us denote byΠD

the duplicate elimination operation. For a given bagB we then haveχΠD(B)(z) =
min(1, χB(z)).

Instead of working with sets and bags, we can work with bags only by identifying
every setS with the bagĪ(S). We can annotate all bags with a property indicating
whether it contains duplicates or not. If at some place a set is required and we cannot
infer that the bag in that place is duplicate free, we can useΠD as an enforcer of
the set property. Note that for every setS we haveΠD(S) = S. Hence,ΠD does
not do any harm except for the resources it takes. The reasoning whether a given
expression produces duplicates or not will be very important, especially in the context
of XPath/XQuery.

A unary functionf from bags to bags is calledbag-linear(or homomorph), if and
only if the following two conditions hold for all bagsX andY :

f(∅̄) = ∅̄
f(X∪̄Y) = f(X)∪̄f(Y)

An n-ary mapping from bags to a bag is calledbag-linear in its i-th argument, if and
only if for all bagsX1, . . . ,Xn andX ′

i the following conditions hold:

f(X1, . . . ,Xi−1, ∅̄,Xi+1, . . . ,Xn) = ∅̄
f(X1, . . . ,Xi−1,Xi ∪X ′

i,Xi+1, . . . ,Xn) = f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)

∪̄f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn)

It is called bag-linear, if it is linear in all its arguments. For a binary function or
operator where we can distinguish between the left and the right argument, we call it
left (right) bag-linear if it is bag-linear in its first (second) argument. Note that if an
equivalence with linear mappings on both sides has to be proven, it suffices to proof it
for disjoint singleton bags, i.e. bags with one element only.

None of bag union, intersection, and difference are left or right bag-linear.

6.1.3 Ordered Data: Sequences

A sequence is ordered and may contain duplicates. An examplesequence is〈a, b, b, c, b〉.
The length of the sequence is the number of elements it contains. For any sequenceS,
the length of the sequence is denoted by|S|. The above sequence has length five. The
empty sequence (ǫ) contains zero elements and has length zero.

As we consider only finite sequences, a sequence of lengthn ≥ 0 has a character-
istic functionχ from an interval[0, n[to a domainD. Outside[0, n[, χ is undefined
(⊥). Let S be a sequence. Thenα(S) gives us the first element of the sequence,
i.e. α(S) = χS(0). For our example sequence,α(〈a, b, b, c, b〉) = a. The rest or
tail of a sequenceS of lengthn is denoted byτ(S) and contains all but the first el-
ement in the sequence. That isχτ(S)(i) = χS(i + 1). For our example sequence,
τ(〈a, b, b, c, b〉) = 〈b, b, c, b〉.

6.1. SETS, BAGS, AND SEQUENCES 191

Concatenation of two sequences is denoted by⊕. The characteristic function of the

concatenation of two sequencesS andT is χS⊕T (i) =

{
χS(i) if i < |S|
χT (i− |S|) if i ≥ |S|

As an example,〈a, b, b, c, b〉 ⊕ 〈a, b, c〉 = 〈a, b, b, c, b, a, b, c〉.
We can easily go from a sequence to a bag by just forgetting theorder. To convert

a bag into a sequence, we typically have to apply aSort operator. In reality however,
bags are often represented as (ordered) streams, i.e. they are sequences. This is due to
fact that most physical algebras are implemented using the iterator concept introduced
in Section 4.6.

Analogously to set and bag linearity, we can introducesequence linearityof unary
and n-ary functions on sequences. In the definition, we only have to exchange the set
(bag) union operator by concatentation:

A unary functionf from sequences to sequences is calledsequence-linear, if and
only if the following two conditions hold for all sequencesX andY :

f(ǫ) = ǫ

f(X ⊕ Y) = f(X)⊕ f(Y)

An n-ary mapping from sequences to a sequence is calledsequence-linear in its i-th
argument, if and only if for all sequencesX1, . . . ,Xn andX ′

i the following conditions
hold:

f(X1, . . . ,Xi−1, ǫ,Xi+1, . . . ,Xn) = ǫ

f(X1, . . . ,Xi−1,Xi ∪X ′
i,Xi+1, . . . ,Xn) = f(X1, . . . ,Xi−1,Xi,Xi+1, . . . ,Xn)

⊕f(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn)

It is calledsequence-linear, if it is sequence-linear in all its arguments. For a binary
function or operator where we can distinguish between the left and the right argument,
we call it left (right) sequence-linear if it is sequence-linear in its first (second) argu-
ment. Note that if an equivalence with linear mappings on both sides has to be proven,
it suffices to proof it for disjoint singleton sequences, i.e. sequences with one element
only.

192 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

6.2 Algebra

Grouping Mapping and Commutativity Comment onΠA(R1 ∩ R2) 6≡ ΠA(R1) ∩ToDo
ToDo ΠA(R2) ΠA(R1 \R2) 6≡ ΠA(R1) \ΠA(R2)

This section summarizes a logical algebra that is sufficent to express plans for SQL,
OQL and XPath/XQuery queries. The algebra is an extension ofa union of algebras
developed by many people [60, 62, 174, 175, 445, 446, 495, 747]. The most prominent
features of the algebra are:

• All operators are polymorphic and can deal with (almost) anykind of complex
arguments.

• The operators take arbitrary complex expressions as subscripts. This includes
algebraic expressions.

• The algebra is redundant since some special cases of the operators can be im-
plemented much more efficiently. These cases are often introduced as abbrevia-
tions.

The remainder of this subsection is organized by operator. The core of the algebra
consists of the following operators that are all defined on sets, bags, and sequences. We
have already seen the union, intersubsection, and difference operators. The others are
selection (σ), projection (Π), map (χ), join(1), semi-join (>�), anti-join (⊲), left-outer
join (1), d-join (< · >), map (χ), unnest (µ), and unary (Γ) and binary grouping
(Γ). For every algebraic operator we have a subsection discussing it.

While some of the operators are simple extensions of standard operators, others are
not widely spread. This forces us to reconsider existing algebraic equivalences as well
as to discover new ones. The main question here is reorderability of operators since
reorderability is fundamental to any optimization process. Hence, we will discuss
reorderability results. Thereby, we will make use of the notion of linearity.

Since the join remains the most expensive operator in our algebra, subsubsection 6.2.11ToDo
discusses simplifications of expressions containing joins.

6.2.1 The Operators

The set operators as well as the selection operator and the different join operators (ex-
cept for the d-join) are known from the relational context. As we will see, the only
difference in their definition is that they are extended to express nested queries. For
this, we allow the subscripts of these operators to contain full algebraic expressions.
Further, to adjust them to the object-oriented context, they do not only deal with rela-
tions, but with sets, bags, and sequences of items, where items can be simple tuples,
tuples where attributes are allowed to have complex values,and even non-tuple items
(e.g. objects or document nodes). This means, that the attribute values are in no way
restricted to atomic types but can carry also objects, sets,bags, sequences and so on.

The left-outer join additionally needs some tuning in orderto exploit the possibili-
ty to have sets as attribute values. For this, it carries a superscript giving a default value
for some attribute for those tuples in the left argument for which there is no matching
tuple in the right argument. The d-join operation is used forperforming a join between

6.2. ALGEBRA 193

two bulk valued items, where the second one is dependent on the first one. This oper-
ator can be used for unnesting nested queries and is in many cases equivalent to a join
between two sets with a membership predicate [730]. In some cases (as we will see
later on), it corresponds to an unnest operation. We introduced the d-join in order to
cope with the values of types that do not have extensions (i.e. there exist no explicit
set on which a join could be applied). The d-join is also useful for introducing index
structures.

The map operatorχ ([445]) is well-known from the functional programming lan-
guage context. A special case of it, where it adds derived information in form of an
added attribute with an according value (e.g. by object-base lookup or by method calls)
to each tuple of a set has been proposed in [444, 445]. Later, this special case was given
the namematerialization operator[81].

The unnest operator is known from NF2 [690, 673]. It will come in two different
flavors allowing us to perform unnesting not only on nested relations but also on at-
tributes whose value is a bulk of elements which are not tuples. The last operator—the
groupingoperator—generalizes the nest operator quite a bit. That iswhy we renamed
it. In fact, there exist two grouping operators, one unary grouping operator and one
binary grouping operator. The unary grouping operator groups one set of tuples ac-
cording to a grouping condition. Further, it can apply an arbitrary expression to the
newly formed group. This allows an efficient implementationby saving on interme-
diate results. The binary grouping operator adds a group to each element in the first
argument set. This group is formed from the second argument.The grouping operator
will exploit the fact that in the object-oriented context attributes can have set-valued at-
tributes. As we will see, this is useful for both, unnesting nested queries and producing
nested results. A variant of the binary grouping operator isalso callednest-join[757].
Implementations of it are discussed in [124]. There, the binary grouping operator is
calledMD-Join.

6.2.2 Preliminaries

As already mentioned, our algebraic operators can deal not only with standard relations
but are polymorphic in the general sense. In order to fix the domain of the operators
we need some technical abbreviations and notations. Let us introduce these first.

Since our operators are polymorphic, we need variables for types. We useτ pos-
sibly with a subscript to denote types. To express that a certain expression is of type
e, we writee :: τ . Starting from concrete names for types and type variables,we can
build type expressions the standard way by using type constructors to build tuple tupes
([·]), set types{·}, bag types{{·}} and sequence types< · >. Having two type ex-
pressionst1 andt2, we denote byt1 ≤ t2, thatt1 is a subtype oft2. It is important to
note that this subtype relationship is not based on the sub-/superclass hierarchy found
in most object-oriented models. Instead, it simply denotessubstitutability. That is the
typet1 provides at least all the attributes and member functions that t2 provides [103].

Most of our algebraic operators are tuned to work on bulks of tuples. The most
important information here is the attributes provided. Forthis we introduceA(A). The
functionA is defined as follows.A(e) = {a1, . . . , an} if e :: {[a1 : τ1, . . . , an : τn]},
e :: {{[a1 : τ1, . . . , an : τn]}}, e :: 〈[a1 : τ1, . . . , an : τn]〉, or e :: [a1 : τ1, . . . , an :
τn]. Giving a set of attributesA, we are sometimes interested in the attributes provided

194 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

by an expressione which are not inA. For this complement we use the notationA(e)
defined asA(e) \A. Whene is clear from the context, we useA as a shorthand.

Often, we are not only interested in the set of attributes an expression provides, but
also in the set of free variables occurring in an expressione. For this, we introduce
F(e) denoting the set of all free variables ofe.

Since the subscripts of our algebraic operators can containarbitrary expressions,
they may contain variables or even free variables. Then, there is a need to get bindings
for these variables before the subscript expression can be evaluated. These bindings
are taken from the argument(s) of the operator. In order to doso, we need a specified
binding mechanism. Theλ-notation is such a mechanism and can be used e.g., in case
of ambiguities. For our purpose, it suffices if we stick to thefollowing convention.

• For an expressione with free variablesF(e) = {a1, . . . , an} and a tuplet with
F(e) ⊆ A(t) we definee(t) := e[a1 ← t.a1, . . . , an ← t.an].1 Similarily, we
definee(t1, . . . , tn) for more than a single tuple. Note that the attribute names
of theti have to be distinct to avoid name conflicts.

• For an expressione with only one free variablex, we definee(t) = e[x← t].

The mechanism is very much like the standard binding for the relational algebra. Con-
sider for example a select operationσa=3(R), then we assume thata, the free variable
of the subscript expressiona = 3 is bound to the value of the attributea of the tuples
of the relationR. To express this binding explicitly, we would write for a tuple t ∈ R
(a = 3)(t). Sincea is an attribute ofR and hence oft, by our conventiona is replaced
by t.a, the value of attributea of tuple t. Since we want to avoid name conflicts right
away, we assume that all variable/attribute names used in a query are distinct. This can
be achieved in a renaming step.

Application of a functionf to argumentsei is denoted by either regular (e.g.,
f(e1, . . . , en)) or dot (e.g.,e1.f(e2, . . . , en)) notation. The dot notation is used for
type associated methods occurring in the object-oriented context.

Last, we introduce the heavily overloaded symbol◦. It denotes function concate-
nation and (as a special case) tuple concatenation as well asthe concatenation of tuple
types to yield a tuple type containing the union of the attributes of the two argument
tuple types.

Sometimes it is useful to be able to produce a set/bag/sequence containing only a
single tuple with no attributes. This is done by thesingleton scanoperator denoted by
2.

Very often, we are given some database item which is a bulk of other items. Bind-
ing these to variables or equivalently, embedding the itemsinto a tuple, we use the
notatione[x] for an expressione and a variable/attribute namex. For set valued ex-
pressionse, e[x] is defined ase[x] = {[x : y]|y ∈ e}. For bags the definition is
analogous. For sequence valued expressionse, we definee[a] = ǫ if e is empty and
e[a] = 〈[a : α(e)]〉 ⊕ τ(e)[a] otherwise.

By id we denote the identity function.

1e[v1 ← e1, . . . , vn ← en] denotes a substitution of the variablesvi by the expressionsei within an
expressione.

6.2. ALGEBRA 195

6.2.3 Operator Signatures

We are now ready to define the signatures of the operators of our algebra. Their seman-
tics is defined in a subsequent step. Remember that we consider all operators as being

196 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

polymorphic. Hence, their signatures are polymorphic and contain type variables.

∪ : {τ}, {τ} → {τ}
∩ : {τ}, {τ} → {τ}
\ : {τ}, {τ} → {τ}

σp : {τ} → {τ}
if p : τ → B

1p : {τ1}, {τ2} → {τ1 ◦ τ2}
if τi ≤ [], p : τ1, τ2 → B, and

A(τ1) ∩ A(τ2) = ∅
�<p : {τ1}, {τ2} → {τ1}

if τi ≤ [], p : τ1, τ2 → B
�p : {τ1}, {τ2} → {τ1}

if τi ≤ [], p : τ1, τ2 → B
1

g=c
p : {τ1}, {τ2} → {τ1 ◦ τ+

2 }
if τ1 < [], c :: τ , τ2 < [g : τ],

+ just adds a null value to the domain ofτ2,

if it does not already contain one,

p : τ1, τ2 → B
< · > : {τ1}||{τ2} → {τ1 ◦ τ2}

if τi ≤ [],

A(τ1) ∩ A(τ2) = ∅
χf : {τ1} → {τ2}

if f : τ1 → τ2

Γg;θA;f : {τ} → {τ ◦ [g : τ ′]}
if τ ≤ [], f : {τ} → τ ′, A ⊆ A(τ)

Γg;A1θA2;f : {τ1}, {τ2} → {τ1 ◦ [g : τ ′]}
if τ1 ≤ [], f : {τ2} → τ ′, Ai ⊆ A(τi) for i = 1, 2

µg : {τ} → {τ ′}
if τ = [a1 : τ1, . . . , an : τn, g : {τ0}],
τ0 ≤ [],

τ ′ = [a1 : τ1, . . . , an : τn] ◦ τ0,

µg;c : {τ} → {τ ′}
if τ = [a1 : τ1, . . . , an : τn, g : {τ0}],
τ0 6≤ [],

τ ′ = [a1 : τ1, . . . , an : τn] ◦ [c : τ0],

flatten : {{τ}} → {τ}
maxg;m;aθ;f : {τ} → [m : τa, g : τf]

if τ ≤ [a : τa], f : {τ} → τf

6.2. ALGEBRA 197

6.2.4 Selection

Note that in the following definition there is no restrictionon the selection predicate.
It may contain path expressions, method calls, nested algebraic operators, etc.

σp(e) = {x|x ∈ e, p(x)}
σ̄p(e) = {{x|x ∈ e, p(x)}}

6.2.5 Projection

6.2.6 Map

These operators are fundamental to the algebra. As the operators mainly work on sets
of tuples, sets of non-tuples (mostly sets of objects) must be transformed into sets of
tuples. This is one purpose of the map operator. Other purposes are dereferenciation,
method and function application. Our translation process also pushes all nesting into
map operators.

The first definition corresponds to the standard map as definedin, e.g., [445]. The
second definition concerns the special case of a materializeoperator [444, 81]. The
third definition handles the frequent case of constructing aset of tuples with a single
attribute out of a given set of (non-tuple) values.

χe2(e1) = {e2(x)|x ∈ e1}
χa:e2(e1) = {y ◦ [a : e2(y)]|y ∈ e1}

e[a] = {[a : x]|x ∈ e}

Note that the oo map operator obviates the need of a relational projection. Sometimes
the map operator is equivalent to a simple projection (or renaming). In these cases, we
will useπ (or ρ) instead ofχ.

6.2.7 Join Operators

The algebra features five join operators. Besides the complex join predicate, the first
four of them are rather standard: join, semi-join, anti-join and left-outer join are de-
fined similarly to their relational counterparts. One difference is that the left-outer
join accepts a default value to be given, instead of null, to one attribute of its right
argument.

e1 1p e2 = {y ◦ x|y ∈ e1, x ∈ e2, p(y, x)}
e1�<p e2 = {y|y ∈ e1,∃x ∈ e2, p(y, x)}
e1 �p e2 = {y|y ∈ e1,¬∃x ∈ e2 p(y, x)}

e1 1
g=c
p e2 = {y ◦ x|y ∈ e1, x ∈ e2, p(y, x)} ∪

{y ◦ z|y ∈ e1,¬∃x ∈ e2 p(y, x),A(z) = A(e2), g ∈ A(e2),

z.g = c,∀a ∈ A(e2) (z.a 6= NULL =⇒ a = g)}

Remember that the functionA used in the last definition returns the set of attributes of
a relation.

198 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

The last join operator is calledd-join (< · >). It is a join between two sets, where
the evaluation of the second set may dependent on the first set. It is used to translate
from clauses into the algebra. Here, the range definition of a variable may depend on
the value of a formerly defined variable. Whenever possible,d-joins are rewritten into
standard joins.

e1 < e2 > = {y ◦ x|y ∈ e1, x ∈ e2(y)}

Grouping Operators Two grouping operators will be used for unnesting purposes.
The first one — calledunary grouping— is defined on a set and its subscript indicates
(i) the attribute receiving the grouped elements (ii) the grouping criterion, and (iii) a
function that will be applied to each group.

Γg;θA;f(e) = {y.A ◦ [g : G]|y ∈ e,

G = f({x|x ∈ e, x.Aθy.A})}
Note that the traditional nest operator [690] is a special case of unary grouping. It is
equivalent toΓg;A=;id. Note also that the grouping criterion may be defined on several
attributes. Then,A andθ represent sequences of attributes and comparators.

The second grouping operator — calledbinary grouping— is defined on two sets.
The elements of the second set are grouped according to a criterion that depends on
the elements of the first argument.

e1Γg;A1θA2;fe2 = {y ◦ [g : G]|y ∈ e1, G = f({x|x ∈ e2, y.A1θx.A2})}
In the sequel, the following abbreviations will be used:Γg;A;f for Γg;A=;f , Γg;A for
Γg;A;id.

New implementation techniques have to be developed for these grouping opera-
tors. Obviously, those used for the nest operator can be usedfor simple grouping when
θ stands for equality. For the other cases, implementations based on sorting seem
promising. We also consider adapting algorithms for non-equi joins, e.g. those devel-
oped for the band-width join [215]. A very promissing approach is the use ofθ-tables
developed for efficient aggregate processing [176].

Unnest Operators The unnest operators come in two different flavor. The first one
is responsible for unnesting a set of tuples on an attribute being a set of tuples itself.
The second one unnests sets of tuples on an attribute not being a set of tuples but a set
of something else, e.g., integers.

µg(e) = {y.[A(y) \ {g}] ◦ x|y ∈ e, x ∈ y.g}
µg;c(e) = {y.[A(y) \ {g}] ◦ [c : x]|y ∈ e, x ∈ y.g}

Flatten Operator The flatten operator flattens a set of sets by unioning the elements
of the sets contained in the outer set.

flatten(e) = {y|x ∈ e, y ∈ x}

6.2. ALGEBRA 199

Max Operator TheMax operator has a very specific use that will be explained in
the sequel. Note that an analogousMin operator can be defined.

Maxg;m;aθ;f (e) = [m : max({x.a|x ∈ e}), g : f({x|x ∈ e, x.aθm})]

This definition is a generalization of theMax operator as defined in [174]. Since the
equivalences don’t care whether we useMax or Min, we writeAgg to denote either of
them.

Remarks Note that, apart from theχ andflatten operations, all these operations
are defined on sets of tuples. This guarantees some nice properties among which is
the associativity of the join operations. Note also that theoperators may take complex
expressions in their subscript, therefore allowing nestedalgebraic expressions. This is
the most fundamental feature of the algebra when it comes to express nested queries
at the algebraic level. Unnesting is then expressed by algebraic equivalences moving
algebraic expression out of the superscript.

TheΓ, flatten andMax operations are mainly needed for optimization purposes,
as we will see in the sequel, but do not add power to the algebra. Note that aMin
operation similar to theMax operation can easily be defined.

The algebra is defined on sets whereas most OBMS also manipulate lists and bags.
We believe that our approach can easily be extended by considering lists as set of
tuples with an added positional attribute and bags as sets oftuples with an added key
attribute.

6.2.8 Linearity and Reorderability

Linearity of Algebraic Operators

As already mentioned, the core argument for optimizabilityof algebraic expressions
is the reorderability of their operators. One could discussthe reorderability of each
two operators resulting inn2 investigations if the number of operators in the algebra is
n. In order to avoid this, we introduce a general argument covering most of the cases.
This argument is that linearity of operators implies their reorderability easily. Hence,
let us first look at the linearity property.

A unary mappingf : {τ} → {τ ′} is calledlinear (or homomorph), if and only if

f(∅) = ∅
f(A ∪B) = f(A) ∪ f(B)

If τ , τ ′ andτi are collection types, ann-ary mapping

f : τ1, . . . , τi−1, {τ}, τi+1, . . . , τn → {τ ′}

is calledlinear in its i-th argument, iff for all e1, . . . , en, e′i

f(e1, . . . , ei−1, ∅, ei+1, . . . , en) = ∅
f(e1, . . . , ei−1, ei ∪ e′i, ei+1, . . . , en) = f(e1, . . . , ei−1, ei, ei+1, . . . , en)

∪f(e1, . . . , ei−1, e
′
i, ei+1, . . . , en)

200 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

It is called linear, if it is linear in all its arguments. Note that if an equivalence with
linear mappings on both sides has to be proven, it suffices to proof it for disjunct
singletons, i.e. sets with one element only.

The following summarizes the findings on the linearity of thealgebraic operators:

∪

∩

\

π

πd

χf is linear.

χf (∅) = ∅
χf (e1 ∪ e2) = {f(x)|x ∈ e1 ∪ e2}

= {f(x)|x ∈ e1} ∪ {f(x)|x ∈ e2}
= χf (e1) ∪ χf (e2)

σ is linear (for a proof see [822])

1p is linear (for a proof see [822]). Similarly,�< is linear. � is linear in its first
argument but obviously not in its second.

1 is linear in its first argument.

∅ 1
g=c
p e = ∅

(e1 ∪ e2) 1
g=c
p e = {y ◦ x|y ∈ e1 ∪ e2, x ∈ e, p(y, x)} ∪

{y ◦ z|y ∈ e1 ∪ e2,¬∃x ∈ e p(y, x),A(z) = A(e),

∀a a 6= g ≻ z.a = NULL, a.g = c}
= (e1 1

g=c
p e) ∪ (e2 1

g=c
p e)

To see that 1 is not linear in its second argument consider

e1 1
g=c
p ∅ = ∅ iff e1 = ∅

< > is linear in its first argument:

∅ < e > = ∅
(e1 ∪ e2) < e > = {y ◦ x|y ∈ e1 ∪ e2, x ∈ e(y)}

= {y ◦ x|y ∈ e1, x ∈ e(y)} ∪ {y ◦ x|y ∈ e2, x ∈ e(y)}
= (e1 < e >) ∪ (e2 < e >)

Note that the notion of linearity cannot be applied to the second (inner) argument
of the d-join, since, in general, it cannot be evaluated independently of the first
argument. Below, we summarize some basic observations on the d-join.

6.2. ALGEBRA 201

Γg;A;f is not linear.
Consider the following counterexample:

Γg;a({[a : 1, b : 1], [a : 1, b : 2]})
= {[a : 1, g : {[a : 1, b : 1], [a : 1, b : 2]}]}
6= {[a : 1, g : {[a : 1, b : 1]}]} ∪ {[a : 1, g : {[a : 1, b : 2]}]}
= Γg;a({[a : 1, b : 1]}) ∪ Γg;a({[a : 1, b : 2]})

µg is linear.

µg(∅) = ∅
µg(e1 ∪ e2) = {x.[g] ◦ y|x ∈ e1 ∪ e2, y ∈ x.g}

= {x.[g] ◦ y|x ∈ e1, y ∈ x.g} ∪ {x.[g] ◦ y|x ∈ e2, y ∈ x.g}
= µg(e1) ∪ µg(e2)

µg;c is also linear. This is shown analogously to the linearity ofµg.

flatten is linear.

flatten(e1 ∪ e2)

= {x|y ∈ e1 ∪ e2, x ∈ y}
= {x|y ∈ e1, x ∈ y} ∪ {x|y ∈ e2, x ∈ y}
= flatten(e1) ∪ flatten(e2)

Note that the notion of linearity does not apply to themaxoperator, since it does not
return a set.

The concatenation of linear mappings is again a linear mapping. Assumef andg
to be linear mappings. Then

f(g(∅)) = ∅
f(g(x ∪ y)) = f(g(x) ∪ g(y))

= f(g(x)) ∪ f(g(y))

Reorderability Laws

From the linearity considerations of the previous subsection, it is easy to derive re-
orderability laws.

Let f : {τ f
1 } → {τ f

2 } and g : {τ g
1 } → {τ g

2 } be two linear mappings. If
f(g({x})) = g(f({x})) for all singletons{x} then

f(g(e)) = g(f(e)) (6.1)

For the linear algebraic operators working on sets of tuples, we can replace the
semantic conditionf(g({x})) = g(f({x})) by a set of syntactic criterions. The

202 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

main issue here is to formalize that two operations do not interfere in their con-
sumer/producer/modifier relationship on attributes. In the relational algebra we have
the same problem. Nevertheless, it is often neglected there. Consider for example the
algebraic equivalence

σp(R 1 S) = (σp(R)) 1 S

Then, this algebraic equivalence is true only if the predicate p accesses only those
attributes already present inR. Now, for our operators we can be sure thatf(g(e)) =
g(f(e)) for singleton setse, if g does not consume/produce/modify an attribute thatf
is going to access and iff is not going to consume/produce/modify an attribute that is
accessed byg. In fact, most of the conditions attached to the algebraic equivalences
given later on concern this point.

We now consider binary mappings. Letf1 be a binary mapping being linear in its
first argument,f2 a binary mapping being linear in its second argument, andg a unary
linear mapping. Iff1(g({x}), e′) = g(f1({x}, e′)) for all x ande′ then

f1(g(e), e′) = g(f1(e, e
′)) (6.2)

for all e. Again, we can recast the conditionf1(g({x}), e′) = g(f1({x}), e′) into
a syntactical criterion concerning the consumer/producer/modifier relationship of at-
tributes.

Analogously, iff2(e, g({x})) = g(f2(e, {x})) for all x ande then

f1(e, g(e′)) = g(f1(e, e
′)) (6.3)

for all e′.
Since the outerjoin is not linear in its second argument, we state at least some

reorderability results concerning the reordering of joinswith outerjoins since much
performance can be gained by chosing a (near-) optimal evaluation order. The results
are not original but instead taken from [663] and repeated here for convenience:

(e1 1p1,2 e2) 1 p2,3e3 = e1 1p1,2 (e2 1 p2,3e3) (6.4)

(e1 1 p1,2e2) 1 p2,3e3 = e1 1 p1,2(e2 1 p2,3e3) (6.5)

if p2,3 is strong w.r.t.e2

(e1 1 p1,2e2) 1 p2,3e3 = e1 1 p1,2(e2 1 p2,3e3) (6.6)

where an outer join predicatep is strong w.r.t. some expressione2, if it yields false if
all attributes of the relation to be preserved are NULL.

6.2.9 Reordering of joins and outer-joins

Whereas the join operator is commutative and associative, this is no longer true for
outer joins. Especially, joins and outer joins together do not behave associatively.
Further, not always are outerjoins and joins reorderable. In this subsection we discuss
the reorderability of outerjoins. For a full account on the topic see [663, 258, 267]

The occurance of an outer join can have several reasons. First, outer joins are part
of the SQL 2 specification. Second, outer joins can be introduced during query rewrite.

6.2. ALGEBRA 203

L
A B C

a1 b1 c1

a2 b2 c2

R
C D E

c1 d1 e1

c3 d2 e2

L 1 R
A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 – –

L 1 R
A B C D E

a1 b1 c1 d1 e1

– – c3 d2 e2

L 1 R
A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 – –
– – c3 d2 e2

Figure 6.3: Outer join examples

For example, unnesting nested queries or hierarchical views may result in outer joins.
Sometimes, it is also possible to rewrite universal quantifiers to outerjoins [805, 199].

The different outer joins can be defined using theouter unionoperator introduced
by Codd [183]. LetR1 andR2 be two relations andS1 andS2 their corresponding
attributes. The outerjoin is then defined by padding the union of the relations withnull
values to the schemaS1 ∪ S2:

R1
+∪ R2 = (R1 × {nullS2\S1

}) ∪ (R2 × {nullS1\S2
}) (6.7)

Given this definition of theouter unionoperator, we can define the outer join opera-
tions as follows:

R1 1 pR2 = R1 1p R2
+∪ (R1 \ πS1(R1 1p R2)) (6.8)

R1 1 pR2 = R1 1p R2
+∪ (R1 \ πS1(R1 1p R2))

+∪ (R2 \ πS2(R1 1p R2))(6.9)

R1 1 pR2 = R2 1 R1 (6.10)

Each outer join preserves the tuples on the according side. For example, the left-outer
join preserves the tuples of the relation on the left-hand side. Figure 6.3 gives example
applications of the different outer join operations. Anull value is indicated by a “-”.

Obviously, the left-outer join and the right-outer join arenot commutative. To
illustrate associativity problems consider the followingthree relations

R
A

a

S
B C

b -

T
D

d

The results of different left-outer join applications are

204 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

R 1 A=B S
A B C

a – –

S 1 C=D∨C=null T
B C D

b – c

(R 1 A=B S) 1 C=D∨C=null T
A B C D

a – – c

R 1 A=B (S 1 C=D∨C=null T)
A B C D

a – – –

Hence, in general(R 1 pRS
S) 1 pST

T 6= r 1 pRS
(S 1 pST

T). The problem is
that the predicatepST does not rejectnull values, where a predicaterejects null values
(or rejects nullsfor short) in attribute setA, if it evaluates tofalse or undefinedon
every tuple in which all attributes inA arenull. Using this definition, we have the
following identities

(R1 1p12 R2) 1 p23R3 = R1 1p12 (R2 1 p23R3) (6.11)

(R1 1 p12R2) 1 p23R3 = R1 1 p12(R2 1 p23R3)

if p23 rejects nulls onA(R2) (6.12)

(R1 1 p12R2) 1 p23R3 = R1 1 p12(R2 1 p23R3) (6.13)

(R1 1 p12R2) 1 p23R3 = R1 1 p12(R2 1 p23R3)

if p12 andp23 reject nulls onA(R2) (6.14)

(R1 1 p12R2) 1 p23R3 = R1 1 p12(R2 1 p23R3)

if p23 rejects nulls onA(R2) (6.15)

Further, we can rewrite an outer join to a regular join whenever null-padded tuples are
eliminated by some predicate. Equivalences that allow do soand some further ones
are given next.

R1 1 p1∧p2R2 = R1 1 p1(σp2(R2)) if F(p2) ⊆ A(R2) (6.16)

σp1(R1 1 p2R2) = σp1(R1) 1 p2R2 if F(p1) ⊆ A(R1) (6.17)

σp1(R1 1 p2R2) = σp1(R1 1p2 R2) if p1 rejects nulls onA(R2) (6.18)

σp1(R1 1 p2R2) = σp1(R1 1 p2R2) if p1 rejects nulls onA(R2) (6.19)

The expressionR1 1 p12(R2 1p23 R3) cannot be reordered given the equiva-
lences so far. It is equal to neither(R1 1 p12R2) 1p23 R3 not(R1 1 p12R2) 1p23 R3.
In order to allow reorderability on this expression, thegeneralized outer joinwas in-
troduced by Rosenthal and Galindo-Legaria [663]. It preserves attributes for a set
A ⊆ A(R1) and is defined as

R1 1
A
p R2 = (R1 1p R2)

+∪ (πA(R1) \ πA(R1 1p R2)) (6.20)

With this definition, we have the following equivalences:

R1 1 p12(R2 1p23 R3) = (R1 1 p12R2) 1
A(R1)
p23 R3 if p23 rejects nulls onA(R2)(6.21)

R1 1 p12(R2 1p23 R3) = (R1 1 p12R2) 1
A(R1)
p23 R3 if p23 rejects nulls onA(R2)(6.22)

(6.23)

6.2. ALGEBRA 205

The generalized outer join can be generalized to preserve disjoint sets of attributes in
order to derive more equivalences [267].

We only gave the basic equivalences for reordering algebraic expressions contain-
ing outer joins. General frameworks for dealing with these expressions in toto are
presented in [76, 267].

6.2.10 Basic Equivalences for d-Join and Grouping

The d-join and the grouping operators are not linear. Thus, so far, we do not have
any reorderability results of these operators. Since they are further quite new, we give
some algebraic equivalences which hold despite the fact that they are not linear. This
shows that there exist still some kind of optimization whichcan be performed in the
presence of these operators.

Already at the beginning of this subsection, we mentioned that d-join and unnest
are closely related. To be more precise, we state the following:

e1 < e2 > = µg(χg:e2(e1)) (6.24)

πA(e2)e1 < e2 > = µg(χ[g:e2](e1)) (6.25)

Betweenflattenand the d-join there also exists a correspondence:

flatten(χe2(e1)) = πA(e2)(e1 < e2 >) (6.26)

The following summarizes basic equivalences on the d-join:

e < e > = e (6.27)

e1 < e2 > = e1 × e2 (6.28)

if F(e2) ∩ A(e1) = ∅
e1 < e2 > = e1 1 (e1 < e2 >) (6.29)

e1 < e2 >< e3 > = e1 < e3 >< e2 > (6.30)

if (A(e2) \ F(e2)) ∩ F(e3) = ∅
and(A(e3) \ F(e3)) ∩ F(e2) 6= ∅

πA(e1)(e1 < e2 >) = σe2!=∅(e1) (6.31)

(6.32)

We call a function

f extending:≺≻ ∀x, y : f(x) ◦ y ↓=⇒ f(x ◦ y) = f(x) ◦ y

We call a function

f restricting:≺≻ ∀x, y : f(x) ↓, x ◦ y ↓=⇒ f(x ◦ y) = f(x)

πA′:A denotes projection on the attributesA and renaming toA′. Unnesting of opera-

206 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

tions burried in the d-join can be performed by applying the following equivalence:

e1 < σp(e2) > = σp(e1 < e2 >) (6.33)

e1 < σA1θA2(e2) > = e1 1A1θA2 e2 (6.34)

if F(e2) ∩ A(e1) = ∅, Ai ⊆ A(ei)

πA′:A(e) < f(σA=A′(e)) > = µg(πA:A′(Γg;A;f (e))) (6.35)

if A ⊆ A(⌉)
e1 < e2 1 e3 > = (e1 < e2 >) 1 e3 (6.36)

if F(e3) ∩ A(e1) = ∅
e1 < χf (e2) > = χf (e1 < e2 >) (6.37)

if f extending

πA(e1 < χf (e2) >) = πA(χf (e1 < e2 >)) (6.38)

if A ⊆ A(χf (e2)), andf restricting

e1 < µg(e2) > = µg(e1 < e2 >) (6.39)

e1 < µg;c(e2) > = µg;c(e1 < e2 >) (6.40)

Forf1 beingσ or χ and the non-linear unaryΓ we still have

f1(Γg;=A;f2(e)) = Γg;=A;f2(f1(e)) (6.41)

if F(f1) ∩ (A ∪ A(f2) ∪ {g}) = ∅, (A ∪ F(f2)) ⊆ A(f1(e))

This equivalence should, e.g., be used form left to right forselections, in order to
reduce the cardinality for theΓ operator. For the binaryΓ we have

f1(e1Γg;A1θA2;f2e2) = f1(e1)Γg;A1θA2;f2e2 (6.42)

since the binaryΓ is linear in its first argument.
Lately, work has been reported on the reordering of groupingand join operations

despite the fact that grouping is not linear [133, 866, 867, 868, 869]. Since pushing
grouping inside join operations can result in a tremendiousspeed up, let us sketch at
least the most basic equivalence:

Γg;A;agg(e)(e1 1 e2) ≡ e1 1 (Γg;A;agg(e)(e2))

This sketched equivalence only holds under certain conditions. For details on the
conditions and the correctness proof see [868] and Section 21.7.1.

6.2.11 Simplifying Expressions Containing Joins

Since the join operation is very expensive, it makes sense toinvestigate expressions
containing joins very intensely in order to discover optimization potential. In this
subsubsection, we do so.

6.2. ALGEBRA 207

Sometimes, redundant joins can be eliminated:

πA(e2)(e1 1A1=A2 e2) = e2 (6.43)

if A1 = A(e1), πA2(e2) ⊆ πA2:A1(e1)

e1 1
g:c
A1=A2,3

(e2 1A2=A3 e3) = e1 1
g:c
A1=A3

e3 (6.44)

if A1 ⊆ A(e1), A2 ⊆ A(e2), A3 ⊆ A(e3),

A2,3 ⊆ A(e2) ∪A(e3), A′
2 = A(e1) ∪ A(e3),

πA2:A′
2
(e1 1A1=A3 e3) ⊆ e2

e1Γg;A1=A2,3;f (e2 1A2=A3 e3) = e1Γg;A1=A2;fe3 (6.45)

if A1 ⊆ A(e1), A2 ⊆ A(e2), A3 ⊆ A(e3),

A2,3 ⊆ A(e2) ∪A(e3), A′
2 = A(e1) ∪ A(e3),

πA2:A′
2
(e1 1A1=A3 e3) ⊆ e2

Equivalences 6.44 and 6.45 bear similarity to equivalence EJA of [822] (p. 107), where
the outer-aggregation is used instead of semi-join and binary grouping, respectively.
Note that for checking conditions of the formπA2(e2) ⊆ πA2:A1(e1) subtyping imply-
ing subsetrelationships on type extensions plays a major role in object bases.

The following shows how to turn an outerjoin into a join:

e1 1
g:c
p e2 = e1 1p e2 (6.46)

if ¬p(c)

σps(e1 1
g:c
pj

e2) = σps(e1 1pj e2) (6.47)

if ¬ps(c)

σf1θf2(e1 1
g:c
pj

e2) = σf1θf2(e1 1pj e2) (6.48)

if ¬(f1θf2)(c)

We can easily check these conditions if some predicate(f1θf2)(c) is—after inserting
c for the free variable—,iθ0 with i constant, orf1 ∈ ∅, or a similar simple form. An
application of these equivalences can sometimes be followed by a removal of the join.

Note, that the latter equivalence depends on the knowledge we have on the selec-
tion predicate. Note also, that the special outerjoin is only introduced by unnesting
nestedχ operations. Hence, we could combine the equivalences introducing the out-
erjoin and replacing it by a join into one. In case we have evenmore information on
the selection predicate than above, more specifically, if itdepends on amaxor min
aggregate, we can do so in a very efficient way:

σa=m(e1)[m : agg(χb(e2))] = Aggg;m;a(e1).g (6.49)

if πa(e1) = πb(e2)

χg:σa=m(e2)(χm:agg(e1)(e)) = χAggg;m;a(e1)(e) (6.50)

if πa(e1) = πb(e2)

6.2.12 Reordering Joins and Grouping

Introduction

In general, join and grouping operations are not reorderable. Consider the following
relationsR andS

208 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

R A B
a 5
a 6

S A C
a 7
a 8

Joining these relationsR andS results in

R 1 S A B C
a 5 7
a 5 8
a 6 7
a 6 8

Applying ΓA;count(∗) to R andR 1 S yields

ΓA;count(∗) (R) A count (∗)
a 2

ΓA;count(∗) (R 1 S) A count (∗)
a 4

Compare this to the result ofΓA;count(∗)(R) 1 S:

ΓA;count(∗) (R) 1 S A count (∗) C
a 2 7
a 2 8

HenceΓA;count(∗) (R) 1 S 6= ΓA;count(∗) (R 1 S).
Since grouping and join operations are in general not reorderable, it is important

that a query language determines the order of grouping and join operators properly. In
SQL, the grouping operator is applied after the join operators of a query block.

For example, given the relations schemata

Emp (eid, name, age, salary) and
Sold (sid, eid, date, productid, price)

and the query

select e.eid,sum (s.price) as amount
from Emp e, Sold s
where e.eid = s.eidand

s.datebetween“2000-01-01”and “2000-12-31”
group by s.eid, s.name

results in the algebraic expression

Πe.eid,amount

(
Γs.eid;amount:sum(s.price) (Emp[e] 1e.eid=s.eid σp (Sold[s]))

)

wherep denotes

s.date ≥ ‘2000 − 01− 01′ ∧ s.date ≤ ‘2000 − 12− 31′

Figure 20.1(a) shows this plan graphically. Note that the grouping operator is
executed last in the plan.

6.2. ALGEBRA 209

Now consider the plan where we push the grouping operator down:

Πe.eid,amount

(
Emp[e] 1e.eid=s.eid

(
Γs.eid;amount:sum(s.price) (σp (Sold[s]))

))

This plan (see also Figure 20.1(b)) is equivalent to the former plan. Moreover, if
the grouping operator strongly reduces the cardinality of

σs.date≥...(Sold[s])

because every employee sells many items, then the latter plan might become cheaper
since the join inputs are smaller than in the former plan. This motivates the search for
conditions under which join and grouping operators can be reordered. Several papers
discuss this reorderability [134, 866, 867, 868, 869]. We will summarize their results
in subsequent subsections.

Emp[e]

Sold[s]

select[s.date between ...]

join[e.eid=s.eid]

group by[e.eid; amount:sum(price)]

project[e.eid, amount]

(a)

Emp[e]

Sold[s]

select[s.date ...]

group by[e.eid, amount:sum(price)]

join[e.eid = s.eid]

project[e.eid, amount]

(b)

Figure 6.4: Two equivalent plans

Lazy and eager group by

Lazy group by pulls a group operator up over a join operator [866, 867, 868, 869].
Eager group by does the opposite.

210 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Consider the query:

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

group by G

with
G = GR ∪GS , GR ⊆ A(R), GS ⊆ A(S),

F(pR) ⊆ A(R),F(pS) ⊆ A(S)

F(pR,S) ⊆ A(R) ∪ A(S)

B ⊆ A(R) A = AR ∪AS , AR ⊆ GR, AS ⊆ GS

αR = GR ∪ F(pR,S) \ A(S) κR key ofR

αS = GS ∪ F(pR,S) \ A(R) κS key ofS

We are interested in the conditions under which the query canbe rewritten into

select[all | distinct] A,FB
from R′, S′

where pR,S

with R′(αR, FB) ≡

select all αR,
⇀
F (B) asFB

from R
where pR

group by αR

and S′(αS) ≡

select all αR

from S
where pS

6.2. ALGEBRA 211

The following equivalence expresses this rewrite in algebraic terms.

Π
[d]
A,F

(

Γ
G;F :

⇀
F (B)

(
σpR

(R) 1pR,S
σpS

(S)
)
)

≡

Π
[d]
A,F

(

Γ
αR;F :

⇀
F (B)

(σpR
(R)) 1pR,S

σpS
(S)

)

holds iff in σpR∧pS∧pR,S
(R × S) the following functional dependencies hold:

FD1 : G→ αR

FD2 : αR, GS → κS

Note that sinceGS ⊆ G, this impliesG→ κS .
FD2 implies that for any group there is at most one join partner inS. Hence, each

tuple inΓ
αR;F :

⇀
F (B)

(σpR
(R)) contributes at most one row to the overall result.

FD1 ensures that each group of the expression on the left-hand side corresponds
to at most one group of the group expression on the right-handside.

We now consider queries with ahaving clause.
In addition to the assumptions above, we have that the tablesin thefrom clause can

be partitioned intoR andS such thatR contains all aggregated columns of both the
selectand thehaving clause. We further assume that conjunctive terms in thehaving
clause that do not contain aggregate functions have been moved to thewhereclause.

Let the predicate of thehaving clause have the formHR ∧H0 whereHR ⊆ A(R)
andH0 ⊆ R ∪ S whereH0 only contains non-aggregated columns fromS.

We now consider all queries of the form

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

group by G

having H0

(
⇀
F0 (B)

)

∧HR

(
⇀
FR (B)

)

where
⇀
F0 and

⇀
FR are vectors of aggregate functions on the aggregated columns B.

An alternative way to express such a query is

select[all | distinct] G,FB
from R′, S
where cS ∧ cR,S ∧H0(F0B)

where R′ (αR, FB,F0B) ≡

select all αR,
⇀
F (B) asFB,

⇀
F0(B) asF0B

from R
where cR

group by αR

having HR

(
⇀
FR (B)

)

212 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

The according equivalence is [868]:

ΠG,F

(

σHR∧H0

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B),F0:

⇀
F0(B)

(
σpR∧pS∧pR,S

(R× S)
)
))

≡
ΠG,F

(

σpR,S∧pS∧H0(F0)

)(

ΠG,F,F0

(

σHR

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B)F0:

⇀
F0(B)

(R)

))

× S

)

Coalescing Grouping

In this subsection we introducecoalescing groupingwhich slightly generalizessimple
coalescing groupingas introduced in [134].

We first illustrate the main idea by means of an example.
Given two relation schemes

Sales (pid, deptid, totalprice)
Department (did, name, region)

the query

select region,sum (total price) as s
from Sales, Department
where did = deptid
group by region

is straightforwardly translated into the following algebraic expression:

Γregion;s:sum(total price)(Sales1deptid=did Department)

Note that Equivalence?? cannot be applied here. However, if there are many sales
performed by a department, it might be worth reducing the cardinality of the left join
input by introducing an additional group operator. The result is

Γregion;s=sum(s′)

(
Γdeptid;s′:sum(total price)(Sales) 1deptid=did Department

)

Note that we must keep the outer grouping.
That is, we introduced an additional group operator to reduce the cardinality of

sales. This way, all subsequent joins (only one in this case)become cheaper and the
additional group operator may result in a better plan.

We have the following restrictions for this subsection:

1. There are no NULL-values allowed for attributes occurring in the query.

2. All queries are of the formselect all.
That isselect distinctis not allowed.

3. All aggregate functions agg must fulfill aggs1 ∪ s2 = agg{agg(s1), agg(s2)}
for bagss1 ands2.
This has two consequences:

• Allowed are only sum, min, max. Not allowed are avg and count.

6.2. ALGEBRA 213

• For any allowed aggregate function we only allow foragg(all . . .). Forbid-
den isagg(distinct . . .).

4. The query is a single-block conjunctive query with nohaving and noorder by
clause.

The above transformation is an application of the followingequivalence, whereR1

andR2 can be arbitrary algebraic expressions:

ΓG;A (R1 1p R2) ≡ ΓG;A2 (ΓG1;A1 (R1) 1p R2) (6.51)

with

A = A1 : agg1 (e1) , . . . , An : aggn (en)

A1 = A1
1 : agg1

1 (e1) , . . . , A1
n : agg1

n (en)

A2 = A1 : agg2
1

(
A1

1

)
, . . . , An : agg2

n

(
A2

n

)

G1 = (F (p) ∪G) ∩ A (R1)

Further, the following condition must hold for alli(1 ≤ i ≤ n):

aggi

(
⋃

k

Sk

)

= agg2
i

(
⋃

k

{agg1
i (Si)}

)

In the above example, we hadagg1 = agg1
1 = agg2

1 = sum.
We now prove the correctness of Equivalence 20.1.

Proof:
First, note that

R1 1p R2 =
⋃

t2∈R2

R1 1p {t2} (6.52)

Second, note that for a givent2

ΓG;A (R1[t1]) 1p {t2} = σp(t1◦t2) (ΓG;A (R1 [t1])) (6.53)

= ΓG;A

(
σp(t1◦t2) (R1 [t1])

)

= ΓG;A (R1 [t1] 1p {t2})

holds where we have been a little sloppy witht1. Applying (20.2) and (20.3) to
ΓG1;A1 (R1) 1p R2, the inner part of the right-hand side of the equivalence yields:

ΓG1;A1 (R1) 1p R2 =
⋃

t2∈R2

ΓG1;A1 (R1) 1p {t2} (6.54)

=
⋃

t2∈R2

ΓG1;A1 (R1 1p {t2})

Call the last expression X.

214 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Then the right-hand side of our equivalence becomes

ΓG;A2(X) = {t ◦ a2|t ∈ ΠG(X), a2 =
(
A1 : a2

1, . . . , An : a2
n

)
, (6.55)

a2
i = agg2

i

(
{s.A1

i |s ∈ X,S|G = t}
)
}

Applying (20.2) to the left-hand side of the equivalence yields:

ΓG;A (R1 1p R2) = ΓG;A

⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)}

 (6.56)

Abbreviate
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)} by Y.

Applying the definition ofΓG;A yields:

{t ◦ a | t ∈ ΠG(Y), a = (A1 : e1, . . . , An : en) , (6.57)

ai = aggi ({ei(s)|s ∈ Y, S|G = t})}
Compare (20.5) and (20.7). SinceΠG(X) = ΠG(Y), they can only differ in their
values ofAi.

Hence, it suffices to prove thata2
i = ai for 1 ≤ i ≤ n for any givent.

a2
i = agg2

i ({s.A1
i |s ∈ X,S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

ΓG1;A1(R1 1p {t2}), S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

{t1 ◦ t2 ◦ a1|t1 ∈ ΠG1(R1), p(t1 ◦ t2),

a1 = (A1
1 : a1

1, . . . , A
1
n : a1

n)

a1
i = agg1

i ({ei(s1 ◦ t2)|s1 ∈ R1, S1|G1=t1 , p(s1, t2)})
S|G = t}})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|t1 ∈ ΠG1(R1), p(t1 ◦ t2), s1 ∈ R1, S1|G1 = t1,

p(s1, t1), t1 ◦ t2|G = t})})
= agg2

i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|s1 ∈ R1, s1 ◦ t2|G = t, p(s1 ◦ t2)})})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(t1 ◦ t2)|t1 ∈ R1, t1 ◦ t2|G = t, p(t1 ◦ t2)})})

= aggi(
⋃

t2∈R2

{ei(t1 ◦ t2)|t1 ∈ R1, p(t1 ◦ t2), t1 ◦ t2|G = t})

= aggi({ei(s)|s ∈
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p(t1 ◦ t2)}, S|G = t})

= ai

Equivalence 20.1 can be used to add an additional coalescinggrouping in front
of any of a sequence of joins. Consider the schematic operator tree in Figure 20.2(a).
It is equivalent to the one in (b), which in turn is equivalentto the one in (c) if the
preconditions of Equivalence 20.1 hold. Performing a similar operation multiple times,
any of the join operations can be made to be preceded by a coalescing grouping.

6.3. LOGICAL ALGEBRA FOR SEQUENCES 215

(a) (b) (c)

e c

1 b

1 a

1

Γ

e

c b

1 a

1

1

Γ

e

Γc

c b

1 a

1

1

Γ

Figure 6.5: Applications of coalescing grouping

6.2.13 ToDo

[647]

6.3 Logical Algebra for Sequences

6.3.1 Introduction

The algebra (NAL) we use here extends the SAL-Algebra [62] developed by Beeri and
Tzaban. SAL is the order-preserving counterpart of the algebra used in [174, 175] and
in this book.

SAL and NAL work on sequences of sets of variable bindings, i.e., sequences of
unordered tuples where every attribute corresponds to a variable. We allow nested
tuples, i.e. the value of an attribute may be a sequence of tuples. Single tuples are
constructed by using the standard[·] brackets. The concatenation of tuples and func-
tions is denoted by◦. The set of attributes defined for an expressione is defined as
A(e). The set of free variables of an expressione is defined asF(e).

The projection of a tuple on a set of attributesA is denoted by|A. For an expression
e1 possibly containing free variables, and a tuplee2, we denote bye1(e2) the result of
evaluatinge1 where bindings of free variables are taken from variable bindings pro-
vided bye2. Of course this requiresF(e1) ⊆ A(e2). For a set of attributes we define
the tuple constructor⊥A such that it returns a tuple with attributes inA initialized to
NULL.

216 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

For sequencese we useα(e) to denote the first element of a sequence. We identify
single element sequences and elements. The functionτ retrieves the tail of a sequence
and⊕ concatenates two sequences. We denote the empty sequence byǫ. As a first
application, we construct from a sequence of non-tuple valuese a sequence of tuples
denoted bye[a]. It is empty ife is empty. Otherwisee[a] = [a : α(e)] ⊕ τ(e)[a].

By id we denote the identity function. In order to avoid special cases during the
translation of XQuery into the algebra, we use the special algebraic operator (̂2) that
returns a singleton sequence consisting of the empty tuple,i.e., a tuple with no at-
tributes.

We will only define order-preserving algebraic operators. For the unordered coun-
terparts see [175]. Typically, when translating a more complex XQuery into our al-
gebra, a mixture of order-preserving and not order-preserving operators will occur. In
order to keep the paper readable, we only employ the order-preserving operators and
use the same notation for them that has been used in [174, 175]and SAL [62].

Again, our algebra will allow nesting of algebraic expressions. For example, with-
in a selection predicate of a select operator we allow the occurrence of further nested
algebraic expressions. Hence, a join within a selection predicate is possible. This
simplifies the translation procedure of nested XQuery expressions into the algebra.
However, nested algebraic expressions force a nested loop evaluation strategy. Thus,
the goal of the paper will be to remove nested algebraic expressions. As a result, we
perform unnesting of nested queries not at the source level but at the algebraic level.
This approach is more versatile and less error-prone.

6.3.2 Algebraic Operators

We define the algebraic operators recursively on their inputsequences. For unary
operators, if the input sequence is empty, the output sequence is also empty. For binary
operators, the output sequence is empty whenever the left operand represents an empty
sequence.

The order-preserving selection operator is defined as

σ̂p(e) :=

ǫ if e = ǫ
α(e) ⊕ σ̂p(τ(e)) if p(α(e))
σ̂p(τ(e)) else

For a list of attribute namesA we define the projection operator as

Π̂A(e) :=

{
ǫ if e = ǫ

α(e)|A ⊕ Π̂A(τ(e)) else

We also define a duplicate-eliminating projectionΠ̂D
A . Besides the projection, it has

similar semantics as thedistinct-values function of XQuery: it does not pre-
serve order. However, we require it to be deterministic and idempotent. Sometimes we
just want to eliminate some attributes. When we want to eliminate the set of attributes
A, we denote this bŷΠA. We useΠ̂ also for renaming attributes. Then we writeΠ̂A′:A.
The attributes inA are renamed to those inA′. Attributes other than those inA remain
untouched.

6.3. LOGICAL ALGEBRA FOR SEQUENCES 217

The map operator is defined as follows:

χ̂a:e2(e1) :=

{
ǫ if e1 = ǫ
α(e1) ◦ [a : e2(α(e1))]⊕ χ̂a:e2(τ(e1)) else

It extends a given input tuplet1 ∈ e1 by a new attributea whose value is computed
by evaluatinge2(t1). For an example see Figure??.

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

χ̂a:σ̂A1=A2
(R2)(R1) =

A1 a

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉
3 〈 〉

Figure 6.6: Example for Map Operator

We define the cross product of two tuple sequences as

e1×̂e2 :=

{
ǫ if e1 = ǫ

(α(e1)×̂e2)⊕ (τ(e1)×̂e2) else

where

e1×̂e2 :=

{
ǫ if e2 = ǫ

(e1 ◦ α(e2))⊕ (e1×̂τ(e2)) else

We are now prepared to define the join operation on ordered sequences:

e11̂pe2 := σp(e1×̂e2)

We define the semijoin as

e1>̂�pe2 :=

{
α(e1)⊕ (τ(e1)>̂�pe2) if ∃x ∈ e2 p(α(e1) ◦ x)
τ(e1)>̂�pe2 else

and the anti-join as

e1⊲̂pe2 :=

{
α(e1)⊕ (τ(e1)⊲̂pe2) if 6 ∃x ∈ e2 p(α(e1) ◦ x)
(τ(e1)⊲̂pe2) else

The left outer join, which will play an essential role in unnesting, is defined as
e1 1̂

g:e

p e2 :=

(α(e1)1̂pe2)⊕ (τ(e1) 1̂
g:e

p e2) if (α(e1)1̂pe2) 6= ǫ
(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else

⊕(τ(e1) 1̂
g:e

p e2)

whereg ∈ A(e2). Our definition deviates slightly from the standard left outer join
operator, as we want to use it in conjunction with grouping and (aggregate) functions.
Consider the relationsR1 andR2 in Figure??. If we want to joinR1 (via left outer
join) to Rcount

2 that is grouped byA2 with counted values forB, we need to be able to

218 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

handle empty groups (forA1 = 3). e defines the value given to attributeg for values
in e1 that do not find a join partner ine2 (in this case0).

We define the dependency join (d-join for short) as

e1<̂e2>̂ :=

{
ǫ if e1 = ǫ

α(e1)×̂e2(e1)⊕ τ(e1)<̂e2>̂ else

Let θ ∈ {=,≤,≥, <,>, 6=} be a comparison operator on atomic values. The
grouping operator which produces a sequence-valued new attribute containing “the
group” is defined by using a binary grouping operator.

Γ̂g;θA;f(e) := Π̂A:A′(Π̂D
A′:A(Π̂A(e))Γ̂g;A′θA;fe)

where the binary grouping operator (sometimes called nest-join [757]) is defined as

e1Γ̂g;A1θA2;fe2 :=

{
ǫ if e1 = ǫ

α(e1) ◦ [g : G(α(e1)]⊕ (τ(e1)Γ̂g;A1θA2;fe2

Here,G(x) := f(σx|A1
θA2

(e2)) and functionf assigns a meaningful value to empty
groups. See also Figure?? for an example. The unary grouping operator processes a
single relation and obviously groups only on those values that are present. The binary
grouping operator works on two relations and uses the left hand one to determine the
groups. This will become important for the correctness of the unnesting procedure.

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

Γ̂g;=A2;count(R2) =
Rcount

2

A2 g

1 2
2 2

Γ̂g;=A2;id(R2) =
Rg

2

A2 g

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉

R1Γ̂g;A1=A2;id(R2) =
Rg

1,2

A1 g

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉
3 〈 〉

Figure 6.7: Examples for Unary and BinaryΓ̂

Given a tuple with a sequence-valued attribute, we can unnest it using the unnest
operator defined as

µ̂g(e) :=

{
ǫ if e = ǫ
(α(e)|{g}×̂α(e).g) ⊕ µ̂g(τ(e)) else

wheree.g retrieves the sequence of tuples of attributeg. In case thatg is empty, it
returns the tuple⊥A(e.g). (In our example in Figure??, µ̂g(R

g
2) = R2.)

We define the unnest map operator as follows:

Υ̂a:e2(e1) := µ̂g(χg:e2[a](e1))

6.4. BIBLIOGRAPHY 219

This operator is mainly used for evaluating XPath expressions. Since this is a very
complex issue [303, 305, 381], we do not delve into optimizing XPath evaluation but
instead take an XPath expression occurring in a query as it isand use it in the place
of e2. Optimized translation of XPath is orthogonal to our unnesting approach and not
covered in this paper. The interested reader is referred to [381].

6.3.3 Equivalences

To acquaint the reader with ordered sequences, we state somefamiliar equivalences
that still hold.

σ̂p1(σ̂p2(e)) = σ̂p2(σ̂p1(e)) (6.58)

σ̂p(e1×̂e2) = σ̂p(e1)×̂e2 (6.59)

σ̂p(e1×̂e2) = e1×̂σ̂p(e2) (6.60)

σ̂p1(e11̂p2e2) = σ̂p1(e1)1̂p2e2 (6.61)

σ̂p1(e11̂p2e2) = e11̂p2σ̂p1(e2) (6.62)

σ̂p1(e1>̂�p2e2) = σ̂p1(e1)>̂�p2e2 (6.63)

σ̂p1(e1 1̂
g:e

p2
e2) = σ̂p1(e1) 1̂

g:e

p2
e2 (6.64)

e1×̂(e2×̂e3) = (e1×̂e2)×̂e3 (6.65)

e11̂p1(e21̂p2e3) = (e11̂p1e2)1̂p2e3 (6.66)

σ̂p(e1×̂e2) = e11̂pe2 (6.67)

e1<̂e2>̂ = e1×̂e2 (6.68)

Υ̂a:f(χb(e))(2̂) = Π̂a:b(f(e)) (6.69)

Υ̂a:e2(e1) = e1×̂Υ̂a:e2(2̂) (6.70)

(6.71)

Of course, in the above equivalences the usual restrictionshold. For example, if
we want to push a selection predicate into the left part of a join, it may not reference
attributes of the join’s right argument. In other words,F(p1)∩A(e2) = ∅ is required.
As another example, equivalence 6.70 only holds ifF(e1) ∩ A(e1) = ∅ In Eqv. 6.69
the functionf may not alter the schema andb must be an attribute name. Please note
that cross product and join are still associative in the ordered context. However, neither
of them is commutative. Further, pushing selections into the second argument of a left-
outer join is (in general) not possible. For strict predicates we can do better but this is
beyond the scope of the paper.

6.4 Bibliography

Zaniolo [486]

6.5 Literature

• NF2: [4, 186, 395, 673, 674, 498, 675, 499, 702]

220 CHAPTER 6. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

• HAS: [109]

• Aggregates: [451, 459]

• SQL to Algebra: [822, 112]

• Calculus to Algebra: [822, 576]

• BAGs: [23]

• Algebra with control over duplicate elimination: [201]

• OO Algebra of Steenhagen et al. [757, 758, 756, 759]

• OO Algebra of Cluet and Moerkotte [174, 175].

• OO Algebra [150]

• OO Algebra [173]

• OO Algebra [344]

• OO Algebra [511]

• OO Algebra [686]

• OO Algebra [729, 728, 727, 730]

• OO Algebra [817, 818]

• OO Algebra [884]

• SAL [62]: works on lists. Intended for semistructured data.SAL can be thought
of as the order-preserving counterpart of the algebra presented in [174, 175]
extended to handle semistructured data. These extensions are similar to those
proposed in [5, 164]

• TAX [421]: The underlying algebra’s data model is based on sets of ordered
labeled trees. Intended for XML.

• XML: Construction: [247, 248]

• no-name [747]: order preserving algebra for OLAP-style queries

• [334]

• Document Processing Algebras: [167, 348]

• Geo: [349]

Chapter 7

Calculi

7.1 Calculus Representations

relational calculus originally introduced by Codd: [181, 180].
Variant for embedding in Pascal/R: [701]
calculus for complex objects: [44]

7.2 Tableaux Representation

Tableaus have been introduced by [19, 20, 21] Tableaus are able to represent a particuar
kind of queries, the so calledconjunctive queries([122], [660]).

Expressions containing disjunction (set union) and negation (set difference) can be
represented by sets of tableaus ([685],[431]).

query processing with tables: [592]

7.3 Expressiveness

transitivity: [622]. aggregates: [459]. complex object and nested relations: [3].

7.4 Monoid Comprehension

[99, 243, 244]

7.5 Bibliography

221

222 CHAPTER 7. CALCULI

Chapter 8

Containment and Factorization

[428, 425, 426]

8.1 Query containment

[143]

8.2 Detecting common subexpressions

[249, 361, 359]

8.2.1 Simple Expressions

Simple Non-Expensive Expressions

Simple Expensive Expressions

8.2.2 Algebraic Expressions

223

224 CHAPTER 8. CONTAINMENT AND FACTORIZATION

Chapter 9

Translation and Lifting

9.1 Query Language to Calculus

9.2 Query Language to Algebra

9.3 Calculus to Algebra

9.4 Bibliography

225

226 CHAPTER 9. TRANSLATION AND LIFTING

Chapter 10

Functional Dependencies

10.1 Functional Dependencies

10.2 Functional Dependencies in the presence of NULL val-
ues

10.3 Deriving Functional Dependencies over algebraic oper-
ators

10.4 Bibliography

227

228 CHAPTER 10. FUNCTIONAL DEPENDENCIES

Part III

Enabling Techniques

229

Chapter 11

Simple Rewrites

11.1 Simple Adjustments

11.1.1 Rewriting Simple Expressions

Constant Folding

Constant subexpressions are evaluated and the result replaces the subexpression. For
example an expression1/100 is replaced by0.01. Other expressions likea− 10 = 50
can be rewritten toa = 40. However, the latter kind of rewrite is rarely performed by
commercial systems.

Eliminate Between

A predicate of the formY BETWEEN X AND Zis replaced byX <= Y AND Y
<= Z. This step not only eliminates syntactic sugar but also enables transitivity rea-
soning to derive new predicates (see).

Eliminate IN

A predicate of the formx IN (c 1,...,c n) is rewritten tox = c 1 OR ...OR
x = c n. This eliminates on form of the IN predicate and enables multikey index
access.

Another possibility is to use a table function that producesa table with one column
whose values are exactly those in the IN-list. From thereon,regular optimization takes
place. This possibility is also investigated when several comparisons of a column with
a constants are disjunctively connected.

Eliminating LIKE

A predicate of the forma LIKE ’Guy’ can only be rewritten toa = ’Guy’ if a
is of type varchar. This is due to the different white space padding rules for LIKE and
=.

231

232 CHAPTER 11. SIMPLE REWRITES

Start and Stop conditions derived from LIKE predicates

A predicate of the forma LIKE ‘bla%‘ gives rise to a start conditiona >=
‘bla‘ . Which can enable subsequent index usage. A stop predicate of the form
a < ’blb’ can also be derived. completing a range predicate for an index scan.
Start and stop conditions can only be derived if there is no leading ‘%‘ in the pattern.

Pushing NOT operations down and eliminating them

NOT operations need to be pushed downwards for correctness reasons. Attention has
to be paid to the IS NOT NULL and IS NULL predicates. XXX complete set of rules
go into some table.

Merge AND, OR, and other associative operations

While parsing, AND and OR operations are binary. For simplerprocessing they are
often n-ary in the internal representation. Therefor (p AND(q AND r)) is rewritten to
(AND p q r).

In general, associative nested operations should be merged. Examples of other
associative operations are+ and∗.

Normalized Argument Order for Commutative Operations

enabling factorization, constant folding: move constantsto the left Speed up evaluationToDo
of equal.

Eliminate - and /

(x− y) ; x + (−y) x/y ; x ∗ (1/y)

Adjust join predicates

A = B + C becomesA − C = B if AandB are from one relation andC is from
another.

Simplifying boolean expressions

The usual simplification rules for boolean expressions can be applied. For example, if
a contradiction can be derived.

Eliminating ANY, SOME, and ALL

ANY and SOME operators in conjunction with a comparison operator are rewritten
into disjunction of comparison predicates. For examplea > ANY (c1, c 2) is
rewritten toa > c1 OR a > c2. Correspondingly, an ALL operator with a con-
stant list is rewritten into a conjunction of comparisons. For example,a > ALL(c 1,
c2) is rewritten toa > c1 AND a > c2.

If a subquery occurs, then the ANY or SOME expression is rewritten to a correlated
subquery in an EXIST predicate. Consider the querya > ANY (SELECT b FROM

11.2. DERIVING NEW PREDICATES 233

...WHERE p) . It is rewritten toEXISTS(SELECT ...FROM ...WHERE p AND
a > b) .

Correspondingly, a subquery within an ALL operator is rewritten into a NOT EX-
ISTS subquery. For example,a > (SELECT b FROM ...WHERE p) is rewrit-
ten intoNOT EXISTS (SELECT b FROM ...WHEREp and a <= b)

• CASE ¡==¿ UNION

11.1.2 Normal forms for queries with disjunction

Another step of the NFST component or the first step of the rewriting component
can be the transformation of boolean expressions found inwhereclauses in order to
account for NULL values. Pushingnot operators inside the boolean expression allows
to usetwo-valued logicinstead ofthree-valued logic. If we miss this step, we can get
wrong results.

Another possible step is the subsequent transformation of the boolean expressions
in where clauses into disjunctive normal form (DNF) or conjunctive normal form
(CNF). This step is not always necessary and really depends on which plan genera-
tion approach is taken. Hence, this step could take place as late as in a preparatory step
for plan generation. It is (obviously) only necessary if thequery contains disjunctions.
We discuss plan generation for queries with disjunctions inSection??.

11.2 Deriving new predicates

Given a set of conjunctive predicates, it is often possible to derive new predicates
which might be helpful during query plan generation.

This section discusses ways to infer new predicates.

11.2.1 Collecting conjunctive predicates

A query predicate may not only contain theand connector, but alsoor or not.
For the inference rules in this section we need base predicates thatoccur conjunc-

tively.
We say that a (base) predicateq occurs conjunctively in a (complex) predicatep if

p [q ← true] can be simplified tofalse. That is, if we replace every occurrence ofq by
true, the simplification rules in Figure 11.1 (Fig.??) simplify p [q ← true] to false.

These simplification rules can be used to implement a simple member function
occursConjunctivelyto determine whether a predicate occurs conjunctively in a predi-
cate or not. Together with a member function or visitorCollectBasePredicates, we can
compute the set of conjunctively occurring predicates. This set will form the basis for
the next subsections.

11.2.2 Equality

Equality is a reflexive, symmetric and transitive binary relationship (see Fig. 11.2).
Such a relation is called anequivalence relationHence, a set of conjunctively oc-
curring equality predicates implicitly partitions the setof composed terms (IUs) into
disjunctive equivalence classes.

234 CHAPTER 11. SIMPLE REWRITES

NOT true → false

NOT false → true

p AND true → p

p AND false → false

p OR true → true

p OR false → p

Figure 11.1: Simplification rules for boolean expressions

x = x
x = y =⇒ y = x
x = y ∧ y = z =⇒ x = z

Figure 11.2: Axioms for equality

Constants: LetX be an equivalence class of equal expressions. LetY be the set of
all equality expressions that contributed toX. Then, in the query predicate we replace
all expressionsx = y by x = c andy = c and subsequently eliminate redundant
expressions.

σx=c(e1 1x=y e2) ≡ σx=c(e1)× σy=c(e2)

replace all predicates by IU=C.IU’s equivalent to a constant In [190] an abstract
data structure is presented that helps computing the equivalence classes fast and also
allows for a fast check whether two terms (IUs) are in the sameequivalence class.
Since we are often interested in whether a given IU is equal toa constant - or, more
specifically, equal to another IU bound to a constant -, we have to modify these algo-
rithms such that the IU bound to a constant, if it exists, becomes the representative of
its equivalence class.

For the member functionsaddEqualityPredicate, getEqualityRepresentativeand
isInSameEqualityClasswe need an attributeequalityRepresentative in class IU that is
initialized such that it points to itself. Another memberequalityClassRank is initial-
ized to 0. The code for the two member functions is given in Figure 11.3.

By calling addEqualityPredicatefor all conjunctively occurring equality predi-
cates we can build the equivalence classes.

11.2.3 Inequality

Table 11.1 gives a set of axioms used to derive new predicatesfrom a set of conjunc-
tively occurring inequalitiesS (see [806], see Fig. 11.4).

These axioms have to be applied until no more predicates can be derived. The
following algorithm [806] performs this task efficiently:

11.2. DERIVING NEW PREDICATES 235

1. Convert eachX < Y into X 6= Y andX ≤ Y .

2. Compute the transitive closure of≤.

3. Apply axiom A8 until no more new predicates can be derived.

4. Reconstruct< by using axiom A4.

Step 3 can be performed as follows. For any true IUsX andY we find these IUsZ
with X ≤ Z ≤ Y .

Then we check whether any two suchZ ’s are related by6=. Here, it is sufficient to
check the original6= pairs inS and these derived in 1.

A1 : X ≤ X

A2 : X < Y ⇒ X ≤ Y

A3 : X < Y ⇒ X 6= Y

A4 : X ≤ Y ∧X 6= Y ⇒ X < Y

A5 : X 6= Y ⇒ Y 6= X

A6 : X < Y ∧ Y < Z ⇒ X < Z

A7 : X ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z

A8 : X ≤ Z ∧ Z ≤ Y ∧X ≤W ∧W ≤ Y ∧W 6= Z ⇒ X 6= Y

Table 11.1: Axioms for inequality

11.2.4 Aggregation

Let R1, . . . , Rn be relations or views,A1, . . . , Am attributes thereof,pw andph pred-
icates, anda1, . . . , al expressions of the formfj(Bj) for aggregate functionsfj and
attributesBj . For a query block of the form

select A1, . . . , Ak, a1, . . . , al

from R1, . . . , Rn

where pw

group byA1, . . . , Am

having ph

we consider the derivation of new predicates [502]. Obviously, the following predi-
cates are true:

min(B) ≤ B

max(B) ≥ B

max(B) ≥ min(B)

min(B) ≤ avg(B)

avg(B) ≤ max(B)

236 CHAPTER 11. SIMPLE REWRITES

If pw contains conjunctively a predicateBθc for some constantc, we can further in-

fer
min(B) θ c if θ ∈ {>,≥}
max(B) θ c if θ ∈ {<,≤}
avg(B) θ c if θ ∈ {<,≤, >,≥}

These predicates can then be used to

derive further predicates. The original and the derive predicates are usefule when the
query block is embedded in another query block since we are allowed to add them to
the embedding query block conjunctively (see Section 12.3).

If we know restrictions on the aggregates from some embedding query block, we
might be able to add predicates topw. The following table contains the restrictions
on an aggregate we know in the left column and the predicates we can infer in the

right column:

max(B) ≥ c ; B ≥ c if no other aggregation occurs
max(B) > c ; B > c if no other aggregation occurs
min(B) ≤ c ; B ≤ c if no other aggregation occurs
min(B) < c ; B < c if no other aggregation occurs

Note that

the aggregation occurring in the left column must be the onlyaggregation found in the
query block. That is,l = 1 andph contains no aggregation other thana1. To see why
this is necessary, consider the following query

select deptNo, max(salary), min(salary)
from Employee
group bydeptNo

Even if we know thatmax(salary) > 100.000, the above query block is not equiv-
alent to

select deptNo, max(salary), min(salary)
from Employee
where salary ¿ 100.000
group bydeptNo

Neither is

select deptNo, max(salary)
from Employee
group bydeptNo
having avg(salary) ¿ 50.000

equivalent to

select deptNo, max(salary)
from Employee
where salary ¿ 100.000
group bydeptNo
having avg(salary) ¿ 50.000

even if we know thatmax(salary) > 100.000.

11.3. ELIMINATING REDUNDANT JOINS 237

11.2.5 ToDo

[529]

11.3 Eliminating Redundant Joins

11.4 Distinct Pull-Up and Push-Down

11.5 Set-Valued Attributes

In this section, we investigate the effect of query rewriting on joins involving set-
valued attributes in object-relational database management systems. We show that
by unnesting set-valued attributes (that are stored in an internal nested representation)
prior to the actual set containment or intersection join we can improve the performance
of query evaluation by an order of magnitude. By giving example query evaluation
plans we show the increased possibilities for the query optimizer. This section is based
on [387].

11.5.1 Introduction

The growing importance of object-relational database systems (ORDBMS) [769] has
kindled a renewed interest in the efficient processing of set-valued attributes. One
particular problem in this area is the joining of two relations on set-valued attributes
[274, 384, 644]. Recent studies have shown that finding optimal join algorithms with
set-containment predicates is very hard [101]. Nevertheless, a certain level of efficien-
cy for joins on set-valued attributes is indispensable in practice.

Obviously, brute force evaluation via a nested-loop join isnot going to be very
efficient. An alternative is the introduction of special operators on the physical level of
a DBMS [384, 644]. Integration of new algorithms and data structures on the physical
level is problematic, however. On one hand this approach will surely result in tremen-
dous speed-ups, but on the other hand this efficiency is purchased dearly. It is very
costly to implement and integrate new algorithms robustly and reliably.

We consider an alternative approach to support set-containment and non-empty
intersection join queries by compiling these join predicates away. The main idea is to
unnest the set-valued attributes prior to the join. Thereby, we assume a nested internal
representation [643]. This is also the underlying representation for the specific join
algorithms proposed so far [384, 644]. Whereas [644] concentrates on set-containment
joins, we also consider joins based on non-empty intersections. Ramasamy et al. also
present a query rewrite for containment queries in [644], but on an unnested external
representation, which (as shown there) exhibits very poor performance. Further, the
special case of empty sets was not dealt with.

The goal of our paper is to show that by rewriting queries we can compile away the
original set-containment or intersection join. As our experiments with DB2 show, our
rewrite results in speed-up factors that grow linearly in the size of the input relations as
compared to quadratic growth for brute-force nested-loop evaluation. The advantage
of this approach—as compared to [384, 644]—is that no new join algorithms have to
be added to the database system.

238 CHAPTER 11. SIMPLE REWRITES

11.5.2 Preliminaries

In this section we give an overview of the definition of the settype. Due to the deferral
of set types to SQL-4 [251], we use a syntax similar to that of Informix 1. A possible
example declaration of a table with a set-valued attribute is:

create table ngrams (
setID integer not null primary key,
content set<char(3)>

);

setID is the key of the relation, whereascontent stores the actual set. The compo-
nents of a set can be any built-in or user-defined type. In our case we usedset<char(3)> ,
because we wanted to store 3-grams (see also Section??). We further assume that on
set-valued attributes the standard set operations and comparison operators are avail-
able.

Our rewriting method is based on unnesting the internal nested representation. The
following view defining the unnested version of the above table keeps our representa-
tion more concise:

create view view_ngrams(setID, d, card) as (
(select ngrams.setID, d.value, count(ngrams.content)

from ngrams, table(unnest<char(3)>(ngrams.content)) d)
union all
(select ngrams.setID, NULL, 0)

from ngrams
where count(ngrams.content) = 0)

);

where setID identifies the corresponding set,d takes on the different values in
content andcard is the cardinality of the set. We also needunnest<char(3)> ,
a table function that returns a set in the form of a relation. As unnest<char(3)>
returns an empty relation for an empty set, we have to consider this special case in the
second subquery of the union statement, inserting a tuple containing a dummy value.

11.5.3 Query Rewrite

We are now ready to describe the queries we used to compare thenested and unnested
approach. We concentrate on joins based on subset-equal andnon-empty intersection
predicates, because these are the difficult cases as shown in[101]. We have skipped
joins involving predicates based on equality, because the efficient evaluation of these
predicates is much simpler and can be done in a straightforward fashion (see [384]).

Checking Subset Equal Relation

Here is a query template for a join based on a subset-equal predicate:

1http://www.informix.com/documentation/

11.6. BIBLIOGRAPHY 239

select n_1.setID, n_2.setID
from ngrams n_1, ngrams n_2
where is_subseteq(n_1.content, n_2.content) <> 0;

(The comparison with 0 is only needed for DB2, which does not understand the type
bool.)

This query can be rewritten as follows. The basic idea is to join the unnested
version of the table based on the set elements, group the tuples by their set identifiers,
count the number of elements for every set identifier and compare this number with
the original counts. The filter predicatevn1.card <= vn2.card discards some
sets that cannot be in the result of the set-containment join. We also consider the case
of empty sets in the second part of the query. Summarizing therewritten query we get

(select vn1.setID, vn2.setID
from view_ngrams vn1, view_ngrams vn2
where vn1.d = vn2.d
and vn1.card <= vn2.card
group by vn1.setID, vn1.card, vn2.setID, vn2.card
having count(*) = vn1.card)

union all
(select vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2
where vn1.card = 0);

Checking Non-empty Intersection

Our query template for joins based on non-empty intersections looks as follows.

select n_1.setID, n_2.setID
from ngrams n_1, ngrams n_2
where intersects(n_1.content, n_2.content) <> 0;

The formulation of the unnested query is much simpler than the unnested query in
Section 11.5.3. Due to our view definition, not much rewriting is necessary. We just
have to take care of empty sets again, although this time in a different, simpler way.

select distinct vn1.setID, vn2.setID
from view_ngrams vn1, view_ngrams vn2
where vn1.d = vn2.d
and vn1.card > 0;

11.6 Bibliography

This section is based on the investigations by Helmer and Moerkotte [387]. There, we
also find a performance evaluation indicating that that the rewrites depending on the
relation sizes result in speed-up factors between 5 and 50 even for moderately sized
relations. Nevertheless, it is argued their, that support for set-valued attributes must be
build into the DBMS. A viable alternative to the rewrites presented here is the usage

240 CHAPTER 11. SIMPLE REWRITES

of special join algorithms for join predicates involving set-valued attributes [274, 383,
384, 531, 548, 549, 644]. Nevertheless, as has been shown by Cai, Chakaravarthy,
Kaushik, and Naughton, dealing with set-valued attributesin joins theoretically (and
of course practical) difficult issue [101]. Last, to efficiently support simple selection
predicates on set-valued attributes, special index structures should be incorporated into
the DBMS [385, 386, 388].

11.6. BIBLIOGRAPHY 241

IU::addEqualityClassUnderThis(IU * lIU){
IU * lRepresentativeThis = this -> getEqualityRepresentative IU;
IU * lRepresentativeArg = aIU -> getEqualityRepresentativeIU ;

lRepresentativeArg -> _equalityRepresentative =
lRepresentativeThis;
if(lRepresentativeArg -> _equalityClassRank >=

lRepresentativeThis -> _equalityClassRank){
lRepresentativeThis -> _equalityClassRank =
lRepresentativeArg -> _equalityClass Rank + 1;

}
}

IU::addEqualityPredicate(Compositing * p){
IU * lLeft = p -> leftIU;
IU * lRight = p -> rightIU;
if (p -> isEqualityPredicateIU &&

lLeft -> getEqualityRepresentativeIU ==
lRight -> getEqualityRepresentativeIU){

if(lLeft - > isBoundToConstantIU) {
lLeft -> addEqualityClassUnderThis(lRight);

}else
if(lRight -> isBoundToConstantIU){

lRight -> addEqualityClassUnderThis(lLeft),
}else
if (lLeft -> _equalityClassRank > lRight ->
_equalityClassRank){

lLeft -> addEqualityClassUnderThis(lRight)
}else{

lright -> addEqualityClassUnderThis(lLeft)
}

}
}

IU * IU:: getEqualityRepresentativeIU(){
if (this == _equalityRepresentative){

_equalityRepresentative = _equalityRepresentative ->
getEqualityRepresentativeIU;

}
return_equalityRepresentative;

}

Figure 11.3:

242 CHAPTER 11. SIMPLE REWRITES

A1 X ≤ X
A2 X < Y ⇒ X ≤ Y
A3 X < Y ⇒ X 6= Y
A4 X ≤ Y ∧X 6= Y ⇒ X < Y
A5 X 6= Y ⇒ Y 6= X
A6 X < Y ∧ Y < Z ⇒ X < Z
A7 X ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z
A8 X ≤ Z ∧ Z ≤ Y ∧X ≤W ∧W ≤ Y ∧W 6= Z ⇒ X 6= Y

Figure 11.4: Axioms for inequality

Chapter 12

View Merging

12.1 View Resolution

View merging can be as simple as replacing the view name in thefrom clause of a
query by the view definition. We would like to call this stepview resolution. This then
results in a query with nesting in thefrom clause that can subsequently be unnested
(see??). Consider the following example: XXX Example Other examples are given
below. One must be careful not to produce variable clashes. Especially if a view is
referenced several times, variables must be renamed.

12.2 Simple View Merging

Of course, these two steps can be merged into one step. The overall effect is then that
the view name is replaced by all the entries in thefrom clause of the view definition
and the predicate contained in thewhereclause of the view definition is conjunctively
added towhereclause of the query block whosefrom clause contained the view name.
Consider the following view definition

create view

which is refenced in the following query:

View merging resuls in

However, there are a few pitfalls. This simple version of view merging can only be
applied to simple select-project-join queries not containing duplicate elimination, set
operations, grouping or aggregation. In these cases, complex view merging must be
applied.

243

244 CHAPTER 12. VIEW MERGING

12.3 Predicate Move Around (Predicate pull-up and push-
down)

If unnesting is not implemented or not possible, several techniques like predicate move
around, semi-join techniques and magic rewriting allow thecopying of predicates from
one block into another block in order to reduce the number of qualifying tuples [502,
569, 570, 571, 715].

Let us briefly illustrate the main idea by means of a simple example query

select e.name
from Employee e,

(select d.name, d.dno
from Department d
where d.dno = e.dnoand

d.boss.name = e.nameand
d.boss.namelike ’%S’) as D(dname,ddno)

where e.dnobetween1 and 10

which can be rewritten by predicate move around to

select e.name
from Employee e,

(select d.name, d.dno
from Department d
where d.dno = e.dnoand

d.boss.name = e.nameand
d.dnobetween1 and 10 and
d.boss.namelike ’%S’) as D(dname,dd no)

where e.dnobetween1 and 10 and
e.namelike ’%S’

Predicate push-down and pull-up often occurs in conjunction with views. Let us
therefore consider some examples. The following view that cannot be simply merged
because it contains aunion operator. Consider the case where there are two different
employee tables that are unioned in a view.

create viewEmp(eno, name, salary, dno)as
select e1.eno, e1.name, e1.salary, e1.dno
from Emp1[e1]
union all
select e2.eno, e2.name, e2.salary, e2.dno
from Emp2[e2]

Simple view merging cannot be applied to the query

select e.eno, e.name
from Emp[e]
where e.salary> 150000

12.4. COMPLEX VIEW MERGING 245

but view resolution with a subsequent push-down of the predicate e.salary >
150.000 will result in

select e.eno, e.name
from (select e1.eno, e1.name, e1.salary, e1.dno

from Emp1[e1]
where e1.salary> 150000)

union all(select e2.eno, e2.name, e2.salary, e2.dno
from Emp2[e2]
where e2.salary> 150000)

Note that we did not eliminate unneeded columns/attributes. Further note that we can
now exploit possible indexes onEmp1.salary andEmp2.salary . In caseunion
would have been used in the view definition, the rewritten query would also contain
union requiring a duplicate elimination.

Here is another example where pushing a predicate down results in much more
efficient plans. Given the view

define viewEmpStatas
select e.dno,min(e.salary) minSal,max(e.salary) maxSal,avg(e.salary) avgSal
from Emp[e]
group by e.dno

the query

select *
from EmpStat[e]
where e.dno = 10

can be rewritten to

select e.dno,min(e.salary) minSal,max(e.salary) maxSal,avg(e.salary) avgSal
from Emp[e]
wheree.dno = 10
group by e.dno

which can be further simplified to

select e.dno,min(e.salary) minSal,max(e.salary) maxSal,avg(e.salary) avgSal
from Emp[e]
wheree.dno = 10

12.4 Complex View Merging

12.4.1 Views with Distinct

XXX TODO views with distinct

246 CHAPTER 12. VIEW MERGING

12.4.2 Views with Group-By and Aggregation

Consider the following view with a group-by clause and aggregation:

create viewAvgSalaryas
select e.dno,avg(e.salary)asavgSalary
from Emp[e]
group by e.dno

The following query uses this view:

select d.name, s.avgSalary)
from Dept[d], AvgSalary[s]
where d.location = ‘Paris‘and

d.dno = s.dno

Using the view definition, this query can be rewritten to

select d.name,avg(e.salary) as avgSalary
from Dept[d], Emp[e]
where d.location = ‘Paris‘and

d.dno = e.dno
group by d.ROWID, d.name

whered.ROWID is a either a key-attribute liked.dno or a unique row identifier of
the tuples in Dept. Or course, this transformation is not valid in general. The primary
condition here is that we have a key-foreign key join. More specifically, d.dno must
be the key of theDept table or it must be a unique attribute.

Applying simple view resolution results in:

select d.name, s.avgSalary)
from Dept[d], (select e.dno,avg(salary)asavgSalary

from Emp[e]
group by e.dno) [s]

where d.location = ‘Paris‘and
d.dno = s.dno

This query can then be unnested using the techniques of Section ??.
Sometimes strange results occur. Consider for example the view

define viewEmpStatas
select e.dno,min(e.salary) minSal,max(e.salary) maxSal,avg(e.salary) avgSal
from Emp[e]
group by e.dno

If the user issues the query

12.4. COMPLEX VIEW MERGING 247

select avg(minSal),avg(maxSal),avg(avgSal)
from EmpStat

view merging results in

select avg(min(e.salary)),avg(max(e.salary)),avg(avg(e.salary))
from Emp[e]
group by e.dno

This is perfectly o.k. You just need to think twice about it. The resulting plan will
contain two group operations: XXX Plan

12.4.3 Views in IN predicates

Consider a view that contains the minimum salary for each department

create viewMinSalaryas
select e.dno,min(e.salary)asminSalary
from Emp[e]
group by e.dno

and a query asking for all those employees together with their salaries in Parisian
departments earning the minimum salary:

select e.name, e.salary
from Emp[e], Dept[d]
where e.dno = d.dnoand

d.location = ‘Paris‘and
(e.dno, e.sal)in MinSalary

This query can be rewritten to:

select e.name, e.salary
from Emp[e], Dept[d], Emp[e2]
where e.dno = d.dnoand

d.location = ‘Paris‘and
e.dno = e2.dno

group by e.ROWID, d.ROWID, e.name, e.salary
having e.salary =min(e2.sal)

Note that the employee relation occurs twice. Avoiding to scan the employee relation
twice can be done as follows:

12.4.4 Final Remarks

Not all views can be merged. If for example arownum function that numbers rows
in a table is used in a view definition for a result column, thenthe view cannot be

248 CHAPTER 12. VIEW MERGING

merged. Unmerged views will remain as nested subqueries with two alternative eval-
uation strategies: Either they will be evaluated as nested queries, that is for every
row produced by some outer producer the view is evaluated, orthe view will be ma-
terialized into a temporary table. Whatever is more efficient must be chosen by the
plan generator. However, techniques for deriving additional predicates and subsequent
techniques such as predicate move around (predicate pull-down, push-down) are still
applicable.

12.5 Bibliography

Chapter 13

Unnesting Nested Queries

The first step in unnesting a query isview merging. This is simply the replacement of a
view name by the view definitionThe result will always be a nested query. Unnesting a
nested query that resulted from view merging is not different from unnesting any other
nested query. However, due to a lack of orthogonality, the kinds of nesting arising from
view merging can be different from that of “regular” nested queries. Several problems
add to the complexity of query unnesting.

• Special cases like empty results lead easily to bugs like thefamous count bug
[453, 459, 273, 572, 573].

• If the nested query contains a grouping, special rules are needed to pull up group-
ing operators [138].

• Special care has to be taken for a correct duplicate treatment [497, 620, 716,
717].

The main reason for the problems was that SQL lacked expressiveness and unnest-
ing took place at the query language level. The most important construct needed for
correctly unnesting queries are outer-joins [200, 273, 450, 235, 572]. After their intro-
duction into SQL and their usage for unnesting, reordering of outer-joins became an
important topic [76, 200, 267, 572, 663]. Lately, a unifyingframework for different
unnesting strategies was proposed in [573].

13.1 Classification of nested queries

We start by extending the classification of nested queries given by Kim [453]. We
restrict ourselves to a single nested block. Kim’s classification introduces five types of
nested queries one of which is not used here (Type D). The fourremaining types are

Type A nested queries have a constant inner block returning single elements.

Type N nested queries have a constant inner block returning sets.

Type J nested queries have an inner block that is dependent onthe outer block and
return a set.

Type JA nested queries have an inner block that is dependent on the outer block and
return a single element.

249

250 CHAPTER 13. UNNESTING NESTED QUERIES

Obviously, the need for extending the relational classification arises from the richness
of the oo model compared to the relational one and its impact on the query language.
The classification we propose has three dimensions: the original one plus two that
are required by the following oo characteristics. In the oo context, as opposed to the
relational, (i) nested blocks may be located in any clause ofaselect-from-wherequery
and (ii) a dependency (i.e., reference to a variable of the outer block) may be expressed
in any clause of a query’s inner block. We restrict the presentation to queries of type
A/N/J/JA with nesting and dependency (J/JA only) in thewhereclauses.

As in the relational context, the optimization of nested queries is done by unnest-
ing, using different kinds of joins and group operators. There are two good reasons for
unnesting nested queries. The first is that the underlying evaluation plan of a nested
query relies on nested loops that, as shown in [453], can be very inefficient. On the
other hand, we know of good algorithms for joins and group operations (using indexes,
sorting, hashing). The second reason is that algebraic operators have nice properties
that can be used for further rewriting whereas nested algebraic expressions don’t have
them a priori.

13.2 Queries of Type A

In this case, the nested query does not have any reference to any variable defined
outside its block. This is equivalent to say that the nested query does not contain any
free variables. This allows its independent evaluation. Itcan be moved outside the
query block and the result produced by the nested query can beplugged in later. This
way we avoid multiple evaluation of the nested query. The treatment is independent of
the place where the nesting occurred.

Consider the following simple example:

select x1
from x1 in Employee
wherex1.TotSales =

max (select x2.TotSales
from x2 in Employee)

definem = max(select x2s
from x2 in Employee)
definex2s= x2.TotSales

select x1
from x1 in Employee
wherex1s = m
definex1s = x1.TotSales

The original query is on the left-hand side. The rewritten query after NFST is shown
on the right-hand side—a convention holding throughout therest of this section. Note
that the firstdefine entry is independent of the second block. Hence, it is written
before it. Within the implementation of the query compiler it is convenient to have an
artificial outer SFWD-block to which the outerdefineclause then belongs.

TypeA nested queries can be unnested by moving them one block up (like in the
example). Sometimes, more efficient ways to to unnest these queries are possible. In
the example the extent ofStudenthas to be scanned twice. This can be avoided by
introducing the new algebraic operatorMAXdefined as

MAXf (e) := {x|x ∈ e, f(x) = maxy∈e(f(y))}

13.3. QUERIES OF TYPE N 251

The MAX operator can be computed in a single pass overe.
Using MAX the above query can be expressed in the algebra as

q ≡ MAXs.age(Student[s])

13.3 Queries of Type N

We discuss three different kinds of predicates occurring within the outerwhereclause:

1. f(~x) in select . . .

2. not (f(~x) in select . . .)

3. f(~x) = (⊆,⊇, . . .) select . . .

where~x represents variables of the outer block,f a function (or subquery) on these
variables and=,⊆,⊇, . . . are set comparisons. Other cases are possible but not neces-
sarily unnestable.

1. Type N queries with anin operator can be transformed into a semi-join by using
the following equivalence1:

σA1∈χA2
(e2)e1 ≡ e1�<A1=A2 e2 (13.1)

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅

The first condition is obvious, the second merely stipulatesthat expressione2

must be independent of expressione1. The interest for having this equivalence
and the following is obvious. As stated previously, semi-joins and anti-joins can
be implemented efficiently and they allow further rewriting. Note that special
care has to be taken in order to treat duplicates correctly. We use the annotations
introduced earlier, to indicate the correct treatment of duplicates.

2. Also inspired by the relational type N unnesting is the following equivalence
which turns a type N query with a negatedin operator into an antijoin:

σA1 6∈χA2
(e2)e1 ≡ e1 �A1=A2 e2 (13.2)

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅

We refer to [175, 756] for the third case.
These algebraic equivalences are not helpful in themselves. What is needed is

a rewrite of the internal representation. We illustrate this for the first equivalence.
Consider the example query

select e.name
from Employee e
where e.dnoin (select d.dno

from Department d
where d.namelike ’S%’)

1
A is the set of defined IUs,F is the set of free IUs

252 CHAPTER 13. UNNESTING NESTED QUERIES

and its internal representation in textual form:

select en
from Employee[e] (J)
where ed in dnos
define en = e.name

ed = d.dno
dnos = (select dd

from Department[d](J)
where dn like ’S%’
define dd = d.dno

dn = d.dname)

The equivalence allows us to replace thein predicate by a join. On the internal rep-
resentation, this is reflected by adding thefrom clause of the subquery to the outer
from clause, adding the subquery’sdefine clause entries to the outer query’sdefine
and adding the subquery’s predicate to the outer query’s predicate. The result is

select en
from Employee[e] (J)

Department[d] (SJ)
where ed = ddand

dn like ’S%’
define en = e.name

ed = e.dno
dd = d.dno
dn = d.dname

The equivalence allows us to replace thein predicate by a join. Note that we had
to be careful about possible duplicates that would have beenintroduced if we added
a simple join between departments and employees, since multiple department names
might have started with a ’S’. Adding adistinct would not have helped since multiple
employees might have the same name. Hence, the correct solution is to add a (SJ)
annotation to the departments.

In the presence of key or unique constraints on the inner joincolumn, no phantom
duplicates can be produced. Consider the following example:

select *
from Account[a]
where a.custno IN (selectc.custnoFROM Customer)

If c.custno is a key or there is a unique constraint on it, then no phantom duplicates
can be introduced. Hence, it is safe to rewrite the query as

select a.*
from Account[a], Customer[c]
where a.custno = c.custno

13.3. QUERIES OF TYPE N 253

If there further exists a reference constraint, we can eliminate the join altogether. For
example, if the create table statement for Account containsa references Customer
on custno constraint oncustno , then the query is equivalent to

select *
from Account[a]

Another possibility would be to eliminate duplicates on thesubqueries result. As
an example consider the following query:

select *
from Customer[c]
where c.locationin (select d.location

from Dept[d]

This query can be rewritten to

select *
from Customer[c],

(select distinctd.location
from Dept[d])

where c.location = d.location

Let us briefly consider queries nested in a set comparison predicate. This case does
not have a counterpart in SQL. However, if we formulate the corresponding queries on
a relational schema using the non-standard SQL found in [453], they would be of Type
D—resolved by a division. Using standard SQL, they would require a double nesting
usingEXISTS operations. Treating Type D queries by a relational division can only
treat very specific queries where the comparison predicate corresponds, in our context,
to a non-strict inclusion as in the example below. The query returns the employees
who have sold all the expensive products.

select x
from x in Employee
wherex.SoldItems⊇

select i
from i in Item
where i.price> 20000

define ExpItems =select i
from i in Item
where p > 20000
define p = i.price

selectx
from x in Employee
wherexsi⊇ ExpItems
definexsi = x.SoldItems

One solution to evaluate this query is to use a technique similar to that of [453] and
add to our algebra an object division. If the set of expensiveitems is important, a well
implemented division operation could do much compared to a nested loop evaluation.
However, we voted against this operation for three reasons.The first reason is, as we
stated before, that the division is based on a non-strict inclusion of the divider set.
There are no more reasons to have this inclusion than any other set comparison (⊆,

254 CHAPTER 13. UNNESTING NESTED QUERIES

⊃, . . .). Accordingly, to be coherent, we would have to introduce one operation per
set comparator (as a matter of fact, this also holds for the relational context). The
second reason is that division does not have particularly nice algebraic properties that
we would like to exploit. The third reason is that, since object models feature set
attributes, it seems more natural to add good algorithms fordealing with selections
involving set comparisons than to add new algebraic operators. Further, there already
exist proposals to treat restriction predicates involvingset comparison operators [758].
Thus, we prefer not to rewrite the following algebraic expression which corresponds
to the translation of the above query.

q ≡ χx(σxsi⊇ExpItems(χxsi:x.SoldItems(Employee[x])))

ExpItems ≡ χi(σp>20000(χp:i.price(Item[i])))

The setExpItems will be evaluated first, independently of queryq. The result of its
evaluation will be used by the selectionσxsi⊇ExpItems in the outer block. The selection
itself can be evaluated using an algorithm similar to that ofa relational division.

Note that there is no need to consider the negation of set comparisons, since it is
possible to define for each set comparison an equivalent negated counterpart. Consider
for example¬(e1 ⊆ e2) and the set comparison operator6⊆ defined as(e1 6⊆ e2) :=
(e1 \ e2 6= ∅).

13.4 Queries of Type J

For Type J queries, we distinguish the same three cases as forType N queries. Again,
queries within (not in) as the connection predicate are transformed. At the algebraic
level the unnesting reads:

1.

σA1∈χA2
(σp(e2))e1 ≡ e1�<A1=A2∧p e2 (13.3)

if Ai ⊆ A(ei), F(p) ⊆ A(e1 ∪ e2), F(e2) ∩ A(e1) = ∅

This equivalence is similar to the one used for type N queries. It just takes into
account a predicatep relying on bothe1 ande2 (second condition).

2.

σA1 6∈χA2
(σp(e2))e1 ≡ e1 �A1=A2 (e2�<p e1) (13.4)

if Ai ⊆ A(ei), F(p) ⊆ A(e1 ∪ e2), F(e2) ∩ A(e1) = ∅

Type Jnot in queries cannot be translated directly using an anti-join operation:
a semi-join has to be performed first.

For other cases and different unnesting possibilities see [175, 756]. The alternative
unnesting strategies apply outer-joins and unary and binary grouping operations.

Now, let us consider again the case featuring a set comparison. The query below
returns the employees who have sold all the items with a high-tech degree larger than
the sales speciality of the employee.

13.4. QUERIES OF TYPE J 255

selectx
from x in Employee
wherex.SoldItems⊇

selecti
from i in Item
wherei.hTD > x.speciality

selectx
from x in Employee
wherexsi⊇ SpecialItems
definexsi = x.SoldItems

xs = x.speciality
SpecialItems =select i

from i in Item
where ihTD > xs
define ihTD = i.hTD

The algebraic translation of the query is splitted for reasons of clarity:
q ≡ χx(σxsi⊇SpecialItems(q1))

q1 ≡ χSpecialItems:χi(σihTD>xs(q3))(q2)

q2 ≡ χxsi:x.SoldItems,xs:x.speciality(Employee[x])

q3 ≡ χihTD:i.hTD(Item[i])

The problem here is that the nested query is not constant. In order to unnest the query
and avoid several costly scans over the set of items, we have to associate with each
employee its corresponding set of special items. For this, we rely on the following
equivalence:

χg:f(σA1θA2
(e2))(e1) ≡ e1Γg;A1θA2;fe2 (13.5)

if Ai ⊆ A(ei), g 6∈ A1 ∪A2, F(e2) ∩ A(e1) = ∅

Applying this equivalence onq1 results in

q ≡ χx(σxsi⊇SpecialItems(q2ΓSpecialItems;ihTD>xs;χi
q3))

The binary grouping operation can be implemented by adapting standard grouping
algorithms. There is another alternative to this operationthat will be given in the
sequel.

Two remarks. First, note that the selection with set comparator⊇ is now evaluated
between two attributes. As for type N queries, we rely on goodalgorithms for such
selections. Second, note that the application of the equivalence did not depend on the
set comparison of the predicate in the outerwhereblock but on the comparison of the
correlation predicate within the inner block. We will come back to this point, soon.

Eqv. 13.5 is the most general equivalence for the consideredtype of queries. There
exist two other equivalences which deal more efficiently, using simple grouping, with
two special cases. The equivalence

χg:f(σA1=A2
(e2))(e1) ≡ πA2

(e1 1
g=f(∅)
A1=A2

(Γg;A2;f (e2))) (13.6)

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅,
A1 ∩A2 = ∅, g 6∈ A(e1) ∪ A(e2)

relies on the fact that the comparison of the correlation predicate is equality. The super-
scriptg = f(∅) is the default value given when there is no element in the result of the

256 CHAPTER 13. UNNESTING NESTED QUERIES

group operation which satisfiesA1 = A2 for a given element ofe1. The equivalence

χg:f(σA1θA2
(e2))(e1) ≡ πA1:A2(Γg;A2θ;f (e2)) (13.7)

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅,
g 6∈ A(e1) ∪ A(e2),

e1 = πA1:A2(e2) (this implies thatA1 = A(e1))

relies on the fact that there exists a common range over the variables of the correlation
predicate (third condition). We believe that these two cases are more common than the
general case. We will show one application of Eqv. 13.6 in this section. In the next
one, we will give an example using an equivalence derived from Eqv. 13.7.

Eqv. 13.5, 13.6, and 13.7 are not only useful for unnesting type J nested queries
occurring within thewhere clause in a predicate utilizing set comparison. As already
remarked above, applying these equivalence solely dependson the presence of a corre-
lation predicate. Hence, they enable the derivation of alternative unnested expressions
for the in andnot in cases. To see this, considerσA∈e2(e1) ≡ σA∈B(χB:e2(e1)). Fur-
ther, as demonstrated in the next section, they play a major role in unnesting type JA
nested queries. That is why they should be consideredthe coreof unnesting nested
queries in the oo context.

Further, alternative unnested evaluation plans avoiding the binary grouping oper-
ator can also be achieved by applying the following equivalence which produces an
intermediate flat result and then groups it

χg:f(σA′
1

θA′
2
(e2))(e1) ≡ Γg;A1;f◦πA1

◦σA2 6=⊥A2
(e1 1 A′

1θA′
2
e2) (13.8)

if Ai = A(ei), A′
i ⊆ Ai, g 6∈ A1 ∪A2, F(e2) ∩A1 = ∅

where⊥A is a tuple with attributesA and null values only. Which of the Eqns. 13.5–
13.8 to apply is a matter of costs.

Last, there is a variant of Eqn. 13.5 in case no selection is present:

χg:f(e2)(e1) ≡ e1Γg;true;fe2 (13.9)

if g 6∈ A(e1) ∪ A(e2),F(e2) ∩ A(e1) = ∅

13.5 Queries of Type JA

In the relational context, the treatment of type JA queries is radically different from
that of type J, N or A. It requires joins, grouping and sometimes outer-joins [200,
273] (remember, from the previous sections, that type N/J SQL queries required anti-
joins and semi-joins). In the oo context, there is no difference between type J and
type JA queries. The reason is that, in order to deal with set comparison, outer-joins
and grouping operations have already been introduced to treat Type J queries and the
resulting equivalences apply to type J and type JA queries [175, 756]. The grouping
operators have been defined to allow the application of functions to the sets of grouped
elements. This function might as well be an aggregate function. Thus, by applying
Eqv. 13.5–13.8 aggregated type JA queries are treated in exactly the same manner as
type J queries.

13.6. ALTERNATIVE LOCATIONS 257

Note that, if the applied function of the unaryΓ in Equivalence 13.6 is an aggregate
function (as implied by type JA queries), then its right-hand side is equivalent to the
generalized aggregation of [200].

13.6 Alternative locations

Nesting in the from clause Thus far we have only considered unnesting in thewhere
clause. We briefly consider an example for unnesting in thefrom clause in order to
illuminate the problems involved in correct duplicate handling.

Consider the follwing query template:

select R.a, S.b
from R, (select s.b

from S s
where Q) as S(b)

where P

This query can easily be rewritten to

select R.a, S.b
from R, S
where P and Q

No problems occur with duplicates. If both queries specifyselect distinct, there is no
problem either. However, in

select R.a, S.b
from R, (select distincts.b

from S s
where Q) as S(b)

where P

duplicate removal is enforced on the inner query but not on the outer. If we just unnest
is the way we did before, then both possibilities, specifying distinct for the outer
block and not specifying it, possibly results in wrong duplicate treatment. We need
the annotations introduced earlier to avoid such complications. Another alternative is
to add the keys ofR to theselectclause, specifydistinct (i.e. remove duplicates) and
then project onR.aandS.bwithout duplicate removal.

Nesting in the select clause Although nothing forbids it, type A or N nesting rarely
occurs inselectclauses. Indeed, there is not much sense in associating a constant (set
or element) to each element of a set. Should that happen, we rely on the first phase
of the optimization process to factor out the constant block. Thus, it will only be
evaluated once.

For type J/JA queries, nesting in theselectclause is equivalent to nesting in the
where clause. Remember that the application of Eqns. 13.5–13.8 did not depend on

258 CHAPTER 13. UNNESTING NESTED QUERIES

the predicate in the outerwhereblock but on the correlation predicate within the inner
block. The same kind of correlation predicates is used when type J/JA nesting occurs
in theselectclause. We illustrate this with the following type JA query that associates
to each department its number of employees.

selecttuple(
dept: d,
emps:count(selecte

from e in Employee
wheree.dept=d))

from d in Department

select tuple(dept: d, emps: ce)
from d in Department
definece =count(select e

from e in Employee
where ed=d
define ed=e.dept)

Translating this expression into the algebra yields

q ≡ χ[dept:d,emps:ce](χce:q1(Department[d]))

q1 ≡ count(χe(σed=d(χed:e.dept(Employee[e]))))

Eqv. 13.6 can be applied yielding:

q ≡ χ[dept:d,emps:ce](πed(Department[d] 1
ce=0
d=ed(Γce;ed;count◦χe(χed:e.deptEmployee[e]))))

≡ πed(Department[d] 1
ce=0
d=ed(Γce;ed;count◦χe(χed:e.deptEmployee[e])))

The zero value in the superscriptce = 0 corresponds to the result of thecount function
on an empty set. The transformed query can be evaluated efficiently using, for instance,
a sort or an index onEmployee.dept.

There exists one type J case where another more powerful technique can be ap-
plied: aflattenoperation is performed on the outer block, and there is no tuple con-
structor within the outer block’sselectclause. As shown in [174], these queries can be
optimized by pushing theflattenoperation inside until it is applied on stored attributes;
thus eliminating the nesting. For completeness, we repeat the example. The example
query is

flatten(select
select tuple(name:c.name,age:c.age)
from c in e.children
wherec.age< 18)

from e in employee)

flatten(select g
from e in employee
define ec = e.children

g = select tuple(name:n,age:a)
from c in ec
wherea< 18
definen = c.name

a = c.age)

The standard translation gives

q ≡ flatten(χg(χg:e2(χec:e.children(Emp[e]))))

e2 ≡ χ[name:n,age:a](σa<18(χa:c.age,n:c.name(ec[c])))

13.7. DIFFERENT KINDS OF DEPENDENCY 259

In order to push the flatten operation inside, we have to eliminate the redundant tuple
extension for the attributeg:

q ≡ flatten(χe2(χec:e.children(Emp[e]))))

e2 ≡ χ[name:n,age:a](σa<18(χa:c.age,n:c.name(ec[c])))

Now, we know that for linearf : {τ} → {τ ′} that

flatten(χf(e)) = f(flatten(e)) (13.10)

Hence,

q ≡ χ[name:n,age:a](flatten(χe′2
)(χec:e.childrenEmp[e]))

e′2 ≡ σa<18(χa:c.age,n:c.name(ec[c]))

q ≡ χ[name:n,age:a](σa<18(flatten(χe′′2
(χec:e.childrenEmp[e])))))

e′′2 ≡ χage:c.age,n:c.name(ec[c])

q ≡ χ[name:n,age:a](σa<18(χa:c.age,n:c.name(flatten(χec[c](χec:e.childrenEmp[e])))))

≡ χ[name:n,age:a](σa<18(χa:c.age,n:c.name(flatten(χe.children[c](Emp[e])))))

≡ χ[name:n,age:a](σa<18(χa:c.age,n:c.name(flatten(χchildren[c](Emp)))))

≡ σage<18(χ[name:n,age:a](χ[a:age,n:name](flatten(χchildren(Emp)))))

≡ σage<18(χ[name:name,age:age](flatten(χchildren(Emp)))))

where redundant tuple constructions were eliminated in thelast steps. Note that the
flatten operation is now applied on stored data.

13.7 Different Kinds of Dependency

We distinguish three kinds of dependency: projection dependency (a reference to an
outer variables occurs in theselectclause), range dependency (. . . in thefrom clause)
and predicate dependency (. . . in thewhere clause). Above, we studied queries with
predicate dependency. In the sequel, we concentrate on optimization techniques re-
quired for range and projection dependencies.

Range dependency Consider the following query exhibiting a range dependency. It
returns the set of employees having the same name than one of their children.

select x
from x in Employee
where x.namein selectc.name

from c in x.children

select x
from x in Employee
where xn in CN
define xn = x.name

xc = x.children
CN =select cn

from c in xc
define cn = c.name

260 CHAPTER 13. UNNESTING NESTED QUERIES

The algebraic translation is:

q ≡ χx(σxn∈CN (χCN :nq(χxn:x.name,xc:x.children(Employee[x]))))

nq ≡ χc.name(xc[c])

In terms of unnesting, there is nothing one can do. Nevertheless, thewhere clause of
the above query is equivalent to the application of the path expressionx.children.name
which passes through a set. Hence, in this case, already known optimization techniques
for optimizing path expressions can be applied (see also Section 35.1).

However, there exist cases where we are able to advantagely reduce range depen-
dencies to predicate dependencies and, hence, can unnest these queries by the above
introduced techniques. The reduction relies on the existence of type extents and uses
type based rewriting(see Section 35.1). [172, 429, 555, 557, 559]. Since it has al-
ready been described, we merely present its usage as a reduction technique useful for
enabling further unnesting of range dependent subqueries.The example query is
select tuple(e: x.name, c:selects.customer.name

from s in = x.sales
wheres.customer.city

= “Karlsruhe”)
from x in Employee

select tuple(e: xn, c: SCN)
from x in Employee,
define xn = x.name

xs = x.sales
SCN =select scn

from s in xs
where scc = “Karlsruhe”
define sc = s.customer

scn = sc.name
scc = sc.city

Translation to the algebra yields

q ≡ χ[e:xn,c:SCN](χSCN :nq(χxn:x.name,xs:x.sales(Employee[x])))

nq ≡ χscn(σscc=“Karlsruhe′′(χscn:sc.name,scc:sc.city(χsc:s.city(xs[s]))))

Relying on the fact that the elements of the attributesalesof an employee belong to
the extent of the classSale, the inner block of the query can be rewritten as

nq ≡ χsc.name(σscc=“Karlsruhe′′(χsc:s.customer,scc:sc.city(σs∈xs(Sale[s]))))

Type based rewriting can be performed again using the extentof class Customer. This
allows us, for instance, to use indexes onCustomer.cityandSale.customerto evaluate
the query. However, since our goal is unnesting and not general optimization, we do
not detail on this. Concerning unnesting, it is important tonote that the dependency no
longer specifies the range (xs[s]) but now represents a predicate (σs∈xs). Herewith, the
algebraic expression is of the same form as one resulting from a predicate dependency.
Hence, our unnesting techniques apply.

Projection dependency Queries of this kind should be rare. If they occur, they do so
in two different flavors. One nice one and one nasty one. The first occurs if, within the
expression forming theselectclause, an expression occurs whose variables all depend

13.8. UNNESTING IN 261

on the outer block. Then, this expression has to be computed only once for each
variable combination resulting from the evaluation of the outer block. Besides this
expression, the evaluation of the inner block is independent of outer variables. Hence,
it can be factored out resulting in a halfway efficient evaluation plan. The nasty case,
where the expression contains variables from the outer and the inner block, requires in
general the nested loop evaluation or cross product.

Remark Nothing restricts variables of the outer block to occur onlyat one place
within the inner block. If there exist several dependencies, all the corresponding
unnesting techniques can be applied alternatively. Hence,if for example a range and
a predicate dependency occur, the latter should be used for unnesting if the range de-
pendency cannot be resolved by type based rewriting.

13.8 Unnesting IN

requires that the nested query produces no duplicates. thiscan be enforced by intro-
ducing a duplicat elimination operation.

13.9 Further reading

For those who want to read more about unnesting in the relational context we recom-
mend the classical papers [200, 273, 298, 450, 453, 459, 497,572, 573, 663, 716, 717]
as well as the newer ones [376, 717]. For unnesting in object-oriented database sys-
tems we recommend [174, 175, 756].

13.10 History

With his seminal paper Kim opened the area of unnesting nested queries in the rela-
tional context [453]. Very quickly it became clear that enormous performance gains
are possible by avoiding nested-loops evaluation of nestedquery blocks (as proposed
in [36]) by unnesting them. Almost as quickly, the subletiesof unnesting became
apparent. The first bugs in the original approach were detected — among them the
famous count bug [459]. Retrospectively, we can detect the following problem areas:

• Special cases like empty results lead easily to bugs like thecount bug [459].
These have been corrected by taking different approaches [200, 459, 450, 273,
572, 573].

• If the nested query contains a grouping, special rules are needed to pull up group-
ing operators [138].

• Special care has to be taken for a correct duplicate treatment [376, 497, 620,
716, 717].

The main reason for the problems was that SQL lacked expressiveness and unnest-
ing took place at the query language level. The most important construct needed for

262 CHAPTER 13. UNNESTING NESTED QUERIES

correctly unnesting queries are outer-joins [200, 273, 450, 235, 572]. After their intro-
duction into SQL and their usage for unnesting, reordering of outer-joins became an
important topic [76, 200, 267, 572, 663]. Lately, a unifyingframework for different
unnesting strategies was proposed in [573].

With the advent of object-oriented databases and their query languages, unnest-
ing once again drew some attention from the query optimization research community
[174, 175, 757, 758, 756, 759]. Different from the relational unnesting strategies which
mainly performed at the (extended) SQL source level, researchers prefered to use al-
gebras that allowed nesting. For example, a predicate of a selection operator could
again contain algebraic operators. Unnesting than took place at the algebraic level.
The advantage of this approach are (1) it is mainly query language independent and
(2) by using algebraic equivalences, correctness proofs could be delivered.

With the arrival of XQuery [245], the field was reopened by Paparizos et al. [605].
Within their approach, unnesting takes place at the algebraic level. The underlying
algebra’s data model is based on sets of ordered labeled trees [421]. However, instead
of using a simple equivalence, a verbal description of more than one page is used to
describe detection of applicability and the according unnested plan. Since this descrip-
tion is verbal, it is not rigorous and indeed buggy.

13.11 Bibliography

[260] [607] [648] [41] [102]

13.12 ToDo

betrachte unnesting query:

select [a:a,b:b]
from a in A

b in A.b

ExtremumSpecialCasesToDo

Chapter 14

Optimizing Queries with
Materialized Views

14.1 Conjunctive Views

14.2 Views with Grouping and Aggregation

14.3 Views with Disjunction

14.4 Bibliography

materialized view with aggregates: [754],
materialized view with disjunction: [13],
SQL Server: [300]
other: [14, 130, 131, 140, 501, 771, 803, 870] [116, 122, 142,133, 249, 440, 485,

608, 637, 708]
some more including maintenance etc: [12, 16, 47, 82, 130, 138, 187, 347, 366]

[398, 439, 500, 634, 676, 236, 754] [771, 780, 779, 893, 871] [6, 225, 226, 374]
Overview: [358]
performance eval: [80]
Stacked views: [205]

263

264 CHAPTER 14. OPTIMIZING QUERIES WITH MATERIALIZED VIEWS

Chapter 15

Semantic Query Rewrite

15.1 Constraints and their impact on query optimization

Using Constraints: [297, 339]

15.2 Semantic Query Rewrite

Semantic query rewrite exploits knowledge (semantic information) about the content
of the object base. This knowledge is typically specified by the user. We already saw
one example of user-supplied information:inverse relationships. As we already saw,
inverse relationships can be exploited for more efficient query evaluation.

Another important piece of information is knowledge about keys. In conjunction
with type inference, this information can be used during query rewrite to speed up
query execution. A typical example is the following query

select distinct *
from Professor p1, Professor p2
where p1.university.name = p2.university.name

By type inference, we can conclude that the expressionsp1.universityandp2.university
are of type University. If we further knew that the name of universities are unique, that
is the name is a candidate key for universities, then the query could be simplified to

select distinct *
from Professor p1, Professor p2
where p1.university = p2.university

Evaluating this query does no longer necessitate accessingthe universities to retrieve
their name.

Some systems consider even more general knowledge in form ofequivalences
holding over user-defined functions [1, 250]. These equivalences are then used to
rewrite the query. Thereby, alternatives are generated allof which are subsequently
optimized.

Semantic Query Optimization: [116]

265

266 CHAPTER 15. SEMANTIC QUERY REWRITE

15.3 Exploiting Uniqueness in Query Optimization

[612]

15.4 Bibliography

[74] [65] [863] Foreign functions semantic rules rewrite: [133] Conjunctive Queries,
Branch Minimization: [670]

Part IV

Search Space Limits and
Extensions

267

Chapter 16

Current Search Space and Its
Limits

16.1 Plans with Outer Joins, Semijoins and Antijoins

outer join reordering [259, 258, 663, 267], outer join/antijoin plan generation [647],
semijoin reducer [764],

16.2 Expensive Predicates and Functions

16.3 Techniques to Reduce the Search Space

• join single row tables first

• push down SARGable predicates

• For large join queries do not apply transitivity of equalityto derive new predi-
cates and disable cross products and possibly bushy trees.

16.4 Bibliography

269

270 CHAPTER 16. CURRENT SEARCH SPACE AND ITS LIMITS

Chapter 17

Quantifier treatment

17.1 Pseudo-Quantifiers

Again, the clue to rewrite subqueries with aANY or ALL predicate is to apply aggre-
gate functions [273]. A predicate of the form

< ANY (select . . .
from . . .
where . . .)

can be transformed into the equivalent predicate

< (select max(. . .)
from . . .
where . . .)

Analogously, a predicate of the form

< ALL (select . . .
from . . .
where . . .)

can be transformed into the equivalent predicate

< (select min(. . .)
from . . .
where . . .)

In the above rewrite rules, the predicate< can be replaced by=,≤, etc. If the predicate
is > or≥ then the above rules are flipped. For example, a predicate of the form>ANY
becomes>select minand>ALL becomes>select max.

After the rewrites have been applied, the Type A or Type JA unnesting techniques
can be applied, depending on the details of the inner query block.

271

272 CHAPTER 17. QUANTIFIER TREATMENT

17.2 Existential quantifier

Existential quantifiers can be seen as special aggregate functions and query blocks
exhibiting an existential quantifier can be unnested accordingly [200]. For example,
an independent existential subquery can be treated the sameway as a Type A query.
Nested existential quantifiers with a correlation predicate can be unnested using a semi-
join. Other approaches rewrite (existential) quantifiers using the aggregate function
count[273]. Consider the partial query pattern

. . .
where exists(select . . .
from . . .
where . . .)

It is equivalent to

. . .
where 0 > (select count(. . .)
from . . .
where . . .)

A not existslike in

. . .
where not exists(select . . .
from . . .
where . . .)

is equivalent to

. . .
where 0 = (select count(. . .)
from . . .
where . . .)

After these rewrites have been applied, the Type A or Type JA unnesting techniques
can be applied, depending on the details of the inner query block.

17.3 Universal quantifier

Universal quantification is a little more complex. An overview is provided in [169].
Here is the prototypical OQL query pattern upon which our discussion of universal

17.3. UNIVERSAL QUANTIFIER 273

Case-No. 1 2 3 4 5 6 7 8
p() p() p() p() p(e1) p(e1) p(e1) p(e1)
q() q(e1) q(e2) q(e1, e2) q() q(e1) q(e2) q(e1, e2)

Case-No. 9 10 11 12 13 14 15 16
p(e2) p(e2) p(e2) p(e2) p(e1, e2) p(e1, e2) p(e1, e2) p(e1, e2)
q() q(e1) q(e2) q(e1, e2) q() q(e1) q(e2) q(e1, e2)

Table 17.1: Classification Scheme According to the VariableBindings

quantifiers nested within a query block is based:

Q ≡ select e1

from e1 in E1

where for all e2 in select e2

from e2 in E2

wherep:
q

wherep (called therange predicate) andq (called thequantifier predicate) are predi-
cates in a subset of the variables{e1, e2}. This query pattern is denoted byQ.

In order to emphasize the (non-)occurrence of variables in apredicatep, we write
p(e1, . . . , en) if p depends on the variablese1, . . . , en. Using this convention, we can
list all the possible cases of variable occurrence. Since both e1 ande2 may or may not
occur inp or q, we have to consider 16 cases (see Table 17.1). All cases but 12, 15,
and 16 are rather trivial. Class 12 queries can be unnested byreplacing the universal
quantifier by a division, set difference, anti-semijoin, orcounting. Class 15 queries
are treated by set difference, anti-semijoin or grouping with count aggregation. For
Class 16 queries, the alternatives are set difference, anti-semijoin, and grouping with
count aggregation. In all cases, special care has to be takenregarding NULL values.
For details see [169].

Class 12 Let us first consider an example of a Class 12 query.

select al.name
from al in Airline
where for all ap in (select ap

from ap in Airport
where apctry = ’USA’):

ap in al.lounges

DefineU ≡ πap(σapctry=′USA′(Airport[ap, apctry])). Then the three alternative al-
gebraic expressions equivalent to this query are

• plan with division:
if U = ∅
then Airline[name]
elseµap:lounges(Airline[name, lounges]) ÷ U

274 CHAPTER 17. QUANTIFIER TREATMENT

• plan with set difference:

Airline[name] \ (πname(U�<ap 6∈lounges Airline[name, lounges]))

• plan with anti-semijoin:

πname(U�<ap 6∈loungesAirline[name, lounges])

This plan is only valid, if the projected attributes ofAirline form a superkey.

The plan with the anti-semijoin is typically the most efficient.
In general, the plan with division is [576, 319]:

ifσp(e2)(E2[e2])6=∅(((E1[e1] 1q(e1,e2) E2[e2])÷ σp(e2)(E2[e2])), E1[e1])

In case the selectionσp(e2)(E2[e2]) yields at least a one tuple or object, we can apply
the prediatep to the divident, as in

ifσp(e2)(E2[e2])6=∅(((E1[e1] 1q(e1,e2) σp(e2)(E2[e2]))÷ σp(e2)(E2[e2])), E1[e1]).

If the quantifier predicateq(e1, e2) is of the forme2 ∈ e1.SetAttribute, then the join
can be replaced by an unnest operator:

ifσp(e2)(E2[e2])6=∅((µe2:SetAttribute(E1[e1, SetAttribute])÷ σp(e2)(E2[e2])), E1[e1])

Using set difference, the translation is

E1[e1] \ πe1((E1[e1]× σp(e2)(E2[e2])) \ (E1[e1] 1q(e1,e2) σp(e2)(E2[e2])))

which can be optimized to

E1[e1] \ E1[e1] >�¬q(e1,e2)σp(e2)(E2[e2])

This plan is mentioned in [756], however using a regular joininstead of a semi-join.
The anti-semijoin can be employed to eliminate the set difference yielding the

following plan:
E1[e1]>�¬q(e1,e2)σp(e2)(E2[e2])

This plan is in many cases the most efficient plan. However, the correctness of this
plan depends on the uniqueness ofe1, i.e., the attribute(s)e1 must be a (super) key
of E1. This is especially fulfilled in the object-oriented context if e1 consists of or
contains the object identifier.

We do not present the plans based group and count operations (see [169]).

Class 15 Here is an example query of Class 15:

select al.name
from al in Airline
where for all f in (

select f
from f in Flight
whereal = f.carrier):
f.to.apctry != “Libya”

17.4. BIBLIOGRAPHY 275

The quantifier’s range formulatσp(e1,e2)(E2[e2]) is obviously not closed. It con-
tains the free variablee1. According to the reduction algorithm of Codd [182], the
division plan is

(E1[e1] 1¬p(e1,e2)∨q(e2) E2[e2])÷ E2[e2].

The plan with set difference is

E1[e1] \ πe1((E1[e1] 1p(e1,e2) E2[e2]) \ (E1[e1] 1p(e1,e2) σq(e2)(E2[e2])))

and the most efficient plan using the anti-semijoin is

E1[e1]>�p(e1,e2)σ¬q(e2)(E2[e2]).

Class 16 Here is an example Class 16 query:

select al.name
from al in Airline
where for all ap in (

select ap
from ap in Airport
where apctry = alctry):
ap in al.lounges

The range predicate again depends on the outer level variable e1. A valid division
plan looks similar to the one for Class 15. A plan with set difference is

E1[e1] \ πe1((E1[e1] 1p(e1,e2) E2[e2]) \ (E1[e1] 1p(e1,e2)∧q(e1,e2) E2[e2])).

This plan can first be refined by replacing the seet differenceof the two join expression
by a semijoin resultint in

E1[e1] \ (E1[e1] >�p(e1,e2)∧¬q(e1,e2)E2[e2])

Finally, the remaining set difference is transformed into an anti-semijoin which also
covers the semijoin:

E1[e1]>�p(e1,e2)∧¬q(e1,e2)E2[e2].

Again, the uniqueness constraing onE2[e2] is required for this most efficient plan to
be valid.

For all discussed classes, problems with NULL values might occur. In that case,
the plans have to refined [169].

17.4 Bibliography

[427] [200] [169] [646, 638]

276 CHAPTER 17. QUANTIFIER TREATMENT

Chapter 18

Optimizing Queries with
Disjunctions

18.1 Introduction

Simple rewrites as indicated in Section?? for IN and OR predicates that boil down
to comparisons of a column with a set of constants can eliminate disjunction from the
plan or push it into a multirange index access.

Another possibility that can be used for disjunctions on single columns is to use
DISJOINT UNION of plans. This is a special form of UNION whereconditions ensure
that no phantom duplicates are produced. The DISJOINT UNIONoperator merely
concatenates the result tables without any further overhead like duplicate elimination.

For example a predicate of the formx = c 1 or y = c 2 wherex and y are
columns of the same table results in two predicates

1. x = c1

2. x <> c1 AND y = c2

Obviously, no row can satisfy both conditions. Hence, the query select * from
R where x = c 1 or y = c 2 can be safely rewritten to

(select * from R where x = c 1) DISJOINT UNION (select

* from R where x <> c1 AND y = c2

In case there are indexes onx andy efficient plans do exist. If they don’t the tableR
needs to be scanned twice. This problem is avoided by using bypass plans.

DISJOIN UNIONs can also be used for join predicates. Consider the following ex-
ample query: select * from R, S where R.a = S.a OR R.b = S.a
This query can be rewritten to(select * from R, S where R.a = S.a)
DISJOINT UNION (select * from R, S where R.a <> S.a and R.b
= S.b) The general condition here is that all equality predicates have one side iden-
tical. Note that both tables are scanned and joined twice. Bypass plans will eliminate
this problem.

Let us consider a more complex example:select * from R, S where
R.a = S.a AND h.b IN (c1,c2) .

XXX

277

278 CHAPTER 18. OPTIMIZING QUERIES WITH DISJUNCTIONS

18.2 Using Disjunctive or Conjunctive Normal Forms

18.3 Bypass Plans

All the above approaches rely on conjunctive normal forms. However, in the presence
of disjunctions, this does not necessarily yield good plans. Using a disjunctive normal
form does not always solve the problem either and this approach has its own problems
with duplicates. This is why bypass plans where developed [447, 761, 171]. The idea
is to provide selection and join operators with two different output streams: one for
qualifying tuples and one for the not qualifying tuples. We cannot go into the details of
this approach and only illustrate it by means of examples. Let us first consider a query
with no join and a selection predicate of the forma ∧ (b ∨ c). This selection predicate
is already in conjunctive normal form. The disjunctive normal form is(a∧b)∨ (a∧c).
We first consider some DNF-based plans (Fig. 18.1). These plans generate duplicates,
if a tuple qualifies for both paths. Hence, some duplicate elimination procedure is
needed. Note that these duplicates have nothing to do with the duplicates generated by
queries. Even if the query does not specifydistinct, the duplicates generated must be
eliminated. If there are duplicates, which is quite likely,then the conditiona is evaluted
twice for those tuples qualifying for both conjuncts (Plan aand b). Figure 18.2

b

ca

a b

a a

c b c

a

IbIa II

Figure 18.1: DNF plans

presents two CNF plans. CNF plans never produce duplicates.The evaluation of the
boolean factors can stop as soon as some predicate evaluatesto true. Again, some
(expensive) predicates might be evaluted more than once in CNF plans. Figure 18.3
shows some bypass plans. Note the different output streams.It should be obvious, that
a bypass plan can be more efficient than both a CNF or DNF plan. It is possible to
extend the idea of bypass plans to join operators. However, this and the algorithm to
generate bypass plans is beyond the scope of the current paper (see [447, 761, 171]).

18.4. IMPLEMENTATION REMARKS 279

a

b < c a

b < c

I II

Figure 18.2: CNF plans

c

b

a

+-

a

+
b

c a

b
+

c

a

c

b

ac

I II III IV V

a a

b
-- --- -+ +

Figure 18.3: Bypass plans

18.4 Implementation remarks

The internal representation of execution plans during plangeneration typically differs
from that used in Rewrite I. The reason is that many plans haveto be generated and
space efficiency is a major concern. As in the query representation discussed earlier,
the physical algebraic operators can be organized into a hierarchy. Besides their argu-
ments, they possibly contain backpointers to the original query representation (e.g. for
predicates). Sharing is a must for plan generation. Hence, subplans are heavily shared.
The plan nodes are enhanced by so-called property vectors. These contain information
about the plan:

280 CHAPTER 18. OPTIMIZING QUERIES WITH DISJUNCTIONS

• logical information

– the set of relations joined

– the set of predicates applied so far

– the set of IUs computed so far

– order information

• physical information

– costs

– cardinality information

For fast processing, the first three set-valued items in the logical information block are
represented as bit-vectors. However, the problem is that anupper bound on the size of
these bitvectors is not reasonable. Hence, they are of variant size. It is recommendable,
to have a plan node factory that generates plan nodes of different length such that the
bit-vectors are included in the plan node. A special interpreter class then knows the
offsets and lengths of the different bitvectors and supplies the operations needed to deal
with them. This bit-vector interpreter can be attached to the plan generator’s control
block as indicated in Fig. 29.3.

18.5 Other plan generators/query optimizer

There are plenty of other query optimizers described in the literatur. Some of my
personal favorites not mentioned so far are the Blackboard query optimzer [446], the
Epoq optimizer [558, 556], the Genesis optimizer [50, 55], the Gral query optimizer
[59], the Lanzelotte query optimizer [479, 480, 481], the Orion optimizer [45, 46,
452], the Postgres optimizer [430, 368, 366, 367], the Primaoptimizer [372, 370], the
Probe optimizer [203, 202, 588], the Straube optimizer [778, 808, 775, 776, 774, 777].
Highly recommended is a description of the DB2 query optimizer(s) [287].

Also interesting to read is the first proposal for a rule-based query optimizer called
Squirel [751] and other proposals for rule-based query optimizers [255, 703, 444, 443,
530].

18.6 Bibliography

Disjunctive queries: P. Ciaccia and M. Scalas: Optimization Strategy for Relational
Queries. IEEE Transaction on Software Engineering 15 (10),pp 1217-1235, 1989.

Kristofer Vorwerk, G. N. Paulley: On Implicate Discovery and Query Optimiza-
tion. International Database Engineering and Applications Symposium (IDEAS’02)

Jack Minker, Rita G. Minker: Optimization of Boolean Expressions-Historical
Developments. IEEE Annals of the History of Computing 2 (3),pp 227-238, 1980.

Chaudhuri: SIGMOD 03: [127]
Conjunctive Queries, Branch Minimization: [670]
Also Boolean Difference Calculus (?): [752]

Chapter 19

Grouping and Aggregation

19.1 Introduction

In general, join and grouping operations are not reorderable. Consider the following
relationsR andS

R A B
a 5
a 6

S A C
a 7
a 8

Joining these relationsR andS results in

R 1 S A B C
a 5 7
a 5 8
a 6 7
a 6 8

Applying ΓA;count(∗) to R andR 1 S yields

ΓA;count(∗) (R) A count (∗)
a 2

ΓA;count(∗) (R 1 S) A count (∗)
a 4

Compare this to the result ofΓA;count(∗)(R) 1 S:

ΓA;count(∗) (R) 1 S A count (∗) C
a 2 7
a 2 8

HenceΓA;count(∗) (R) 1 S 6= ΓA;count(∗) (R 1 S).
Since grouping and join operations are in general not reorderable, it is important

that a query language determines the order of grouping and join operators properly. In
SQL, the grouping operator is applied after the join operators of a query block.

For example, given the relations schemata

Emp (eid, name, age, salary) and
Sold (sid, eid, date, productid, price)

281

282 CHAPTER 19. GROUPING AND AGGREGATION

and the query

select e.eid,sum (s.price) as amount
from Emp e, Sold s
where e.eid = s.eidand

s.datebetween“2000-01-01”and “2000-12-31”
group by s.eid, s.name

results in the algebraic expression

Πe.eid,amount

(
Γs.eid;amount:sum(s.price) (Emp[e] 1e.eid=s.eid σp (Sold[s]))

)

wherep denotes

s.date ≥ ‘2000 − 01− 01′ ∧ s.date ≤ ‘2000 − 12− 31′

Figure 20.1(a) shows this plan graphically. Note that the grouping operator is
executed last in the plan. This is the standard translation technique applied to SQL.
However, Yan and Larson discovered that under certain circumstances grouping and
join can be reordered [866]. In sequel work, Yan and Larson aswell as Chaudhuri and
Shim extended the possibilities to group before or after a join [134, 866, 867, 868, 869].
These extensions of the search space are the topic of this chapter.

Before we delve into details, let us consider an alternativeplan for the above query.
Here, we push down the grouping operator: The plan then becomes:

Πe.eid,amount

(
Emp[e] 1e.eid=s.eid

(
Γs.eid;amount:sum(s.price) (σp (Sold[s]))

))

This plan (see also Figure 20.1(b)) is equivalent to the former plan. Moreover, if the
grouping operator strongly reduces the cardinality of

σs.date≥...(Sold[s])

because every employee sells many items, then the latter plan might become cheaper
since the join inputs are smaller than in the former plan. This motivates the search for
conditions under which join and grouping operators can be reordered. Several papers
discuss this reorderability and other kinds of search spaceextensions [134, 866, 867,
868, 869]. We will summarize their results in subsequent sections. Before that, we
will take a look at aggregation functions and their properties.

The plan for the rest of the chapter is the following. First, we take a closer look at
aggregate functions and their properties.todo

19.2 Aggregate Functions

SQL and many other query languages support at least five aggregation functions.
These are min, max, count, sum, and avg. In addition, SQL allows to qualify whether
duplicates are removed before computing the aggregate or whether they are also con-
sidered by the aggregation function. For example, we may specify sum(distinct a) or
sum(all a) for some attributea. The termsum(a) is equivalent tosum(all a). From

19.2. AGGREGATE FUNCTIONS 283

Emp[e]

Sold[s]

select[s.date between ...]

join[e.eid=s.eid]

group by[e.eid; amount:sum(price)]

project[e.eid, amount]

(a)

Emp[e]

Sold[s]

select[s.date ...]

group by[e.eid, amount:sum(price)]

join[e.eid = s.eid]

project[e.eid, amount]

(b)

Figure 19.1: Two equivalent plans

this follows that aggregation functions can be applied to sets or bags. Other query
languages (OQL and XQuery) also allow lists as arguments to aggregation functions.
Additionally, OQL allows arrays. Hence, aggregation functions should be defined for
any bulk type.

Most query languages provide a special null value (SQL providesNULL , OQL
UNKNOWN). Typically, aggregation functions can safely ignore nullvalues. The
only exception iscount, all input is counted independent of whether its value is null or
not. If we want to count only non-null values, we could imagine an expression of the
form count(distinct not null a). Unfortunately, this is not valid SQL. However, we
will make use of a variant ofcount, that does not count null values. Let us denote this
function bycountnn.

Let N denote either a numeral data type (e.g.integer or float) or a tuple[a1 :
τ1, . . . , an : τn] where each typeτn is a numeral data type. Further, letN contain a
special valueNULL denoted byNULL.

284 CHAPTER 19. GROUPING AND AGGREGATION

A scalaraggregation function agg is a function with signature

agg: bulk(()τ)→ N

.
A scalar aggregation function agg: bulk(()τ) → N is calleddecomposableif

there exist functions

aggI : bulk(()τ) → N ′

aggO : bulk(()N ′) → N

with
agg(Z) = aggO(bulk(()aggI(X), aggI(Y)))

for all X andY (not empty) withZ = X ∪Bulk Y . This condition assures that agg(Z)
can be computed on arbitrary subsets (-lists, -bags) ofZ independently and the (partial)
results can be joined to yield the correct (total) result. Ifthe condition holds, we say
that aggis decomposablewith inner aggI andouteraggO. Decomposability will also
be applied to vectors of aggregate functions.

A decomposable scalar aggregation function agg: bulk(()τ) → N is calledre-
versibleif for aggO there exists a function(aggO)−1 : N ′,N ′ → N ′ with

agg(X) = γ((aggO)−1(aggI(Z), aggI(Y)))

for all X, Y , andZ with Z = X ∪Bulk Y . This condition assures that we can compute
agg(X) for a subset (-list, -bag)X of Z by “subtracting” its aggregated complement
Y from the “total” aggO(aggI(Z)) by using(aggO)−1.

The fact that scalar aggregation functions can be decomposable and reversible
is the basic observation upon which the efficient evaluationof aggregation functions
builds.

As an example consider the scalar aggregationavg : {{(}}[a : float]) → float
averaging the values of the attributesa of a bag of tuples with a single attributea. It is
reversible with

aggI : {[a : float]} → [sum : float, count : float]

aggO : [sum : float, count : float], [sum : float, count : float] → [sum : float, count : float]

(aggO)−1 : [sum : float, count : float], [sum : float, count : float] → [sum : float, count : float]

γ : [sum : float, count : float] → float

where

aggI(X) = [sum : sum(X.a), count : |X |]
aggO([sum : s1, count : c1], [sum : s2, count : c2]) = [sum : s1 + s2, count : c1 + c2]

(aggO)−1([sum : s1, count : c1], [sum : s2, count : c2]) = [sum : s1 − s2, count : c1 − c2]

γ([sum : s, count : c]) = s/c

sum(X.a) denotes the sum of all values of attributea of the tuples inX, and |X|
denotes the cardinality ofX. Note that aggI(∅) = [sum : 0, count : 0], andγ([sum :
0, count : 0]) is undefined as isavg(∅).

19.3. NORMALIZATION AND TRANSLATION 285

aggregation
function!duplicated

duplicated
aggregation
function

Not all aggregation functions are decomposable and reversible. For instance,min
andmaxare decomposable but not reversible. If an aggregation function is applied to
a bag that has to be converted to a set, then decomposability is jeopardized forsumand
count. That is, in SQLsum(distinct) andcount(distinct) are not decomposable.

Let us look at the decomposition of our five aggregation functions. We can decom-
pose them as follows:

min(X ∪Bulk Y) = min(min(X), min(Y))

max(X ∪Bulk Y) = max(max(X), max(Y))

count(X ∪Bulk Y) = sum(count(X), count(Y))

sum(X ∪Bulk Y) = sum(sum(X), sum(Y))

Treatment of avg is slightly more complicated, as we have already seen above. In the
presence of null values, avg is defined as avg(X) = sum(X)/countNN(X). Hence,
we can decompose it on the basis of

avg(X ∪Bulk Y) = sum(sum(X), sum(Y))/(countNN(X) + countNN(Y))

It is also useful to classify aggregation functions as follows [868]:

• Class C Aggregate Functions: sum, count

• Class D Aggregate Functions: sum(distinct), count(distinct), min, max, avg(distinct)

Class C aggregation functions require a multiplication by the count of the inner query
block. Therefore, we sometimes need to replace the vector ofaggregation functions

F = [a1 : agg1(e1), . . . , an : aggn(en)]

by the vector
F ∗c = [a1 : agg∗c1 (e1), . . . , an : agg∗cn (en)]

agg∗ci (ei) is defined as aggi(ei) if aggi is a class D aggregate function. If aggi is a Class
C aggregate function, we define agg∗c

i (ei) as aggi(ei) ∗ c wherec is a special attribute
that contains the result of some count in a subquery block.F ∗c is calledduplicated
aggregation functionof F .

19.3 Normalization and Translation

19.3.1 Grouping and Aggregation in Different Query Languages

Conversion from bags to sets must be explicitly specified within the query language.
As we have seen, in SQL this is done by specifyingdistinct directly after the parenthe-
sis following the name of the aggregation function. In OQL, the conversion function
distinct is used. For example, the OQL queryavg(distinct(bag(1,1,2,3,3)))return 2.
Similarily for XQuery.

We now come to an essential difference between SQL and OQL/XQuery. SQL
allows expressions of the formsum(a) wherea is a single-valued attribute. Since ag-
gregation functions take bulk types as arguments, this expression may seem to contain

286 CHAPTER 19. GROUPING AND AGGREGATION

a type error. Let us call thisfalse aggregates. There are two cases to consider depend-
ing on whether the block where the aggregation function(s) occur exhibits agroup by
or not. . . .

19.3.2 Extensions to Algebra

19.3.3 Normalization

19.3.4 Translation

19.4 Lazy and eager group by

Lazy group by pulls a group operator up over a join operator [866, 867, 868, 869].
Eager group by does the opposite. This may also be calledPush-Down Groupingand
Pull-Up Grouping.
Consider the query:

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

group by G

with

G = GR ∪GS , GR ⊆ A(R), GS ⊆ A(S),

F(pR) ⊆ A(R),F(pS) ⊆ A(S)

F(pR,S) ⊆ A(R) ∪ A(S)

B ⊆ A(R) A = AR ∪AS , AR ⊆ GR, AS ⊆ GS

aggIR = GR ∪ F(pR,S) \ A(S) κR key ofR

aggIS = GS ∪ F(pR,S) \ A(R) κS key ofS

We are interested in the conditions under which the query canbe rewritten into

19.4. LAZY AND EAGER GROUP BY 287

select[all | distinct] A,FB
from R′, S′

where pR,S

with R′(aggIR, FB) ≡

select all aggIR,
⇀
F (B) asFB

from R
where pR

group by aggIR

and S′(aggIS) ≡

select all aggIR
from S
where pS

The following equivalence expresses this rewrite in algebraic terms.

Π
[d]
A,F

(

Γ
G;F :

⇀
F (B)

(
σpR

(R) 1pR,S
σpS

(S)
)
)

≡

Π
[d]
A,F

(

Γ
aggIR;F :

⇀
F (B)

(σpR
(R)) 1pR,S

σpS
(S)

)

holds iff in σpR∧pS∧pR,S
(R × S) the following functional dependencies hold:

FD1 : G→ aggIR
FD2 : aggIR, GS → κS

Note that sinceGS ⊆ G, this impliesG→ κS .
FD2 implies that for any group there is at most one join partner inS. Hence, each

tuple inΓ
aggIR;F :

⇀
F (B)

(σpR
(R)) contributes at most one row to the overall result.

FD1 ensures that each group of the expression on the left-hand side corresponds
to at most one group of the group expression on the right-handside.

We now consider queries with ahaving clause.
In addition to the assumptions above, we have that the tablesin thefrom clause can

be partitioned intoR andS such thatR contains all aggregated columns of both the
selectand thehaving clause. We further assume that conjunctive terms in thehaving
clause that do not contain aggregation functions have been moved to thewhereclause.

Let the predicate of thehaving clause have the formHR ∧H0 whereHR ⊆ A(R)
andH0 ⊆ R ∪ S whereH0 only contains non-aggregated columns fromS.

We now consider all queries of the form

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

288 CHAPTER 19. GROUPING AND AGGREGATION

group by G

having H0

(
⇀
F0 (B)

)

∧HR

(
⇀
FR (B)

)

where
⇀
F0 and

⇀
FR are vectors of aggregation functions on the aggregated columnsB.

An alternative way to express such a query is

select[all | distinct] G,FB
from R′, S
where cS ∧ cR,S ∧H0(F0B)

where R′ (aggIR, FB,F0B
)
≡

select all aggIR,
⇀
F (B) asFB,

⇀
F0(B) asF0B

from R
where cR

group by aggIR

having HR

(
⇀
FR (B)

)

The according equivalence is [868]:

ΠG,F

(

σHR∧H0

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B),F0:

⇀
F0(B)

(
σpR∧pS∧pR,S

(R× S)
)
))

≡
ΠG,F

(

σpR,S∧pS∧H0(F0)

)(

ΠG,F,F0

(

σHR

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B)F0:

⇀
F0(B)

(R)

))

× S

)

19.5 Coalescing Grouping

In this section we introducecoalescing groupingwhich slightly generalizessimple
coalescing groupingas introduced in [134].

We first illustrate the main idea by means of an example.
Given two relation schemes

Sales (pid, deptid, totalprice)
Department (did, name, region)

the query

select region,sum (total price) as s
from Sales, Department
where did = deptid
group by region

is straightforwardly translated into the following algebraic expression:

Γregion;s:sum(total price)(Sales1deptid=did Department)

19.5. COALESCING GROUPING 289

Note that Equivalence?? cannot be applied here. However, if there are many sales
performed by a department, it might be worth reducing the cardinality of the left join
input by introducing an additional group operator. The result is

Γregion;s=sum(s′)

(
Γdeptid;s′:sum(total price)(Sales) 1deptid=did Department

)

Note that we must keep the outer grouping.
That is, we introduced an additional group operator to reduce the cardinality of

sales. This way, all subsequent joins (only one in this case)become cheaper and the
additional group operator may result in a better plan.

We have the following restrictions for this section:

1. There are no NULL-values allowed for attributes occurring in the query.

2. All queries are of the formselect all.
That isselect distinctis not allowed.

3. All aggregation functions agg must fulfill aggs1 ∪ s2 = agg{agg(s1), agg(s2)}
for bagss1 ands2.
This has two consequences:

• Allowed are only sum, min, max. Not allowed are avg and count.

• For any allowed aggregation function we only allow foragg(all . . .). For-
bidden isagg(distinct . . .).

4. The query is a single-block conjunctive query with nohaving and noorder by
clause.

The above transformation is an application of the followingequivalence, whereR1

andR2 can be arbitrary algebraic expressions:

ΓG;A (R1 1p R2) ≡ ΓG;A2 (ΓG1;A1 (R1) 1p R2) (19.1)

with

A = A1 : agg1 (e1) , . . . , An : aggn (en)

A1 = A1
1 : agg1

1 (e1) , . . . , A1
n : agg1

n (en)

A2 = A1 : agg2
1

(
A1

1

)
, . . . , An : agg2

n

(
A2

n

)

G1 = (F (p) ∪G) ∩ A (R1)

Further, the following condition must hold for alli(1 ≤ i ≤ n):

aggi

(
⋃

k

Sk

)

= agg2
i

(
⋃

k

{agg1
i (Si)}

)

In the above example, we hadagg1 = agg1
1 = agg2

1 = sum.
We now prove the correctness of Equivalence 20.1.

290 CHAPTER 19. GROUPING AND AGGREGATION

Proof:
First, note that

R1 1p R2 =
⋃

t2∈R2

R1 1p {t2} (19.2)

Second, note that for a givent2

ΓG;A (R1[t1]) 1p {t2} = σp(t1◦t2) (ΓG;A (R1 [t1])) (19.3)

= ΓG;A

(
σp(t1◦t2) (R1 [t1])

)

= ΓG;A (R1 [t1] 1p {t2})

holds where we have been a little sloppy witht1. Applying (20.2) and (20.3) to
ΓG1;A1 (R1) 1p R2, the inner part of the right-hand side of the equivalence yields:

ΓG1;A1 (R1) 1p R2 =
⋃

t2∈R2

ΓG1;A1 (R1) 1p {t2} (19.4)

=
⋃

t2∈R2

ΓG1;A1 (R1 1p {t2})

Call the last expression X.

Then the right-hand side of our equivalence becomes

ΓG;A2(X) = {t ◦ a2|t ∈ ΠG(X), a2 =
(
A1 : a2

1, . . . , An : a2
n

)
, (19.5)

a2
i = agg2

i

(
{s.A1

i |s ∈ X,S|G = t}
)
}

Applying (20.2) to the left-hand side of the equivalence yields:

ΓG;A (R1 1p R2) = ΓG;A

⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)}

 (19.6)

Abbreviate
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)} by Y.

Applying the definition ofΓG;A yields:

{t ◦ a | t ∈ ΠG(Y), a = (A1 : e1, . . . , An : en) , (19.7)

ai = aggi ({ei(s)|s ∈ Y, S|G = t})}

Compare (20.5) and (20.7). SinceΠG(X) = ΠG(Y), they can only differ in their
values ofAi.

19.6. MORE POSSIBILITIES 291

Hence, it suffices to prove thata2
i = ai for 1 ≤ i ≤ n for any givent.

a2
i = agg2

i ({s.A1
i |s ∈ X,S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

ΓG1;A1(R1 1p {t2}), S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

{t1 ◦ t2 ◦ a1|t1 ∈ ΠG1(R1), p(t1 ◦ t2),

a1 = (A1
1 : a1

1, . . . , A
1
n : a1

n)

a1
i = agg1

i ({ei(s1 ◦ t2)|s1 ∈ R1, S1|G1=t1 , p(s1, t2)})
S|G = t}})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|t1 ∈ ΠG1(R1), p(t1 ◦ t2), s1 ∈ R1, S1|G1 = t1,

p(s1, t1), t1 ◦ t2|G = t})})
= agg2

i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|s1 ∈ R1, s1 ◦ t2|G = t, p(s1 ◦ t2)})})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(t1 ◦ t2)|t1 ∈ R1, t1 ◦ t2|G = t, p(t1 ◦ t2)})})

= aggi(
⋃

t2∈R2

{ei(t1 ◦ t2)|t1 ∈ R1, p(t1 ◦ t2), t1 ◦ t2|G = t})

= aggi({ei(s)|s ∈
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p(t1 ◦ t2)}, S|G = t})

= ai

Equivalence 20.1 can be used to add an additional coalescinggrouping in front
of any of a sequence of joins. Consider the schematic operator tree in Figure 20.2(a).
It is equivalent to the one in (b), which in turn is equivalentto the one in (c) if the
preconditions of Equivalence 20.1 hold. Performing a similar operation multiple times,
any of the join operations can be made to be preceded by a coalescing grouping.

19.6 More Possibilities

Yan and Larson provide a whole set of possibilities to reorder grouping and join [868].
The query they consider is one of the form

select[all|distinct] P1, P2, ~A1, ~A2

from R1, R2

where p1 and p1,2 and p2

group by G1, G2

The abbreviations used are explained below. Note that the order or grouping of entries
in the different clauses is of no relevance. It was just introduced by us for convenience.
An overview of all the different plans that can be produced from an initial plan is given
in Figure??. Every of the subsequent equivalences has the initial plan as its left-hand
side and one of the other plans as its right-hand side. Beforegiving the equivalences
together with their conditions, we define some notation, some of them already used in
the query above:

292 CHAPTER 19. GROUPING AND AGGREGATION

(a) (b) (c)

e c

1 b

1 a

1

Γ

e

c b

1 a

1

1

Γ

e

Γc

c b

1 a

1

1

Γ

Figure 19.2: Applications of coalescing grouping

R1 is a relation that contains aggregation columns

R2 is a relation that may or may not contain aggregation columns

Pi are the selection columns ofRi. DefineP = P1 ∪ P2.

~A1 is a possibly empty sequence of aggregation function calls on columns ofR1.
More specifically, we assume that~A1 is of the forma1 : agg1(e1), . . . , ak :
aggk(ek) and require thatF(~A1) ⊆ A(R1)

~A2 is a possibly empty sequence of aggregation function calls on columns ofR2.
More specifically, we assume that~A2 is of the formak+1 : agg1(ek+1), . . . , an :
aggk(en) and require thatF(~A2) ⊆ A(R2)

~A is the concatentation of~A1 and ~A2. ~A may be empty.

Fi are the aggregation columns ofR1 and possiblyR2. That is, ~AI = F(~A1) and
~AO = F(~A2). DefineF = ~AI ∪ ~AO. Then, in case ofeager/lazy group-by,
eager/lazy count, anddouble eager/lazy, F ⊆ A(R1).
In case ofeager/lazy group-by-countandeager/lazy split, ~AO may contribute to
F = ~AI ∪ ~AO.

Ai contains the columns defined by~Ai. More precisely,~A1 = a1 : agg1(e1), . . . , ak :
aggk(ek) and ~A2 = a1 : agg1(e1), . . . , ak : aggk(ek). resulting columns of the

19.6. MORE POSSIBILITIES 293

application of F on AA in the first group-by wheneager group-byis performed
on the above query.

pi is a selection predicate on columns ofRi

p1,2 is the join predicate with columns fromR1 andR2.

Gi are the grouping columns ofRi (Gi ⊆ A(Ri)). DefineG = G1 ∪G2.

G+
i are the columns ofRi participating in join and grouping, i.e.G+

i := (Gi ∪
F(p1,2)) ∩ A(Ri)

The query can be translated into the algebra as follows:

Π
(D)
P,A(ΓG; ~A(σp1∧p1,2∧p2(R1 ×R2)))

where the projection is duplicate eliminating if and only ifthe query specifiesselect
distinct. P is allowed to contain more columns than those inG if these are functionally
determined byG.

For the equivalences to follow, we assume that duplicates are preserved. That is,
the algebraic query representation is

ΠP,A(ΓG; ~A(σp1∧p1,2∧p2(R1 ×R2)))

We will skip any leadingΠ from subsequent expressions.

19.6.1 Eager/Lazy Group-By-Count

In the following equivalence:

H1 denotes a set of columns inR1

c is the column produced bycount(*) after groupingσp1(R1) onH1

A1 the rest of the columns produced by~A1 in the first group-by of tableσp1(R1) on
H1

Fua the duplicated aggregation function of Fu

Further:

AA = AAd ∪AAu

AAd = AA ∩ A(R1)

AAu = AA ∩ A(R2)

F = A1 ∪A2

whereA1 applies toAAd andA2 applies toAAu.
The expressionsE1 :=

F [AAd, AAu]ΠA[GAd, GAu, AAd, AAu]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

294 CHAPTER 19. GROUPING AND AGGREGATION

andE2 :=

Πd[GAd, GAu, FAA]

(Fua[AAu, CNT], Fd2[FAAd])ΠA[GAd, GAu, AAu, FAAd, CNT]G[GAd, GAu]

σ[p1,2, p2](E3)

with E3 :=

((Fd1[AAd], COUNT [])ΠA[H1, GA+
d , AAd]G[H1]σ[p1]R1)×R2)

are equivalent if

1. A1 contains only decomposable aggregation functions and can be decomposed
into Fd1 andFd2

2. A2 contains Class C or Class D aggregation functions

3. H1 −−→ G+
1 holds inσ[p1]R1

Note that the equivalence assumes that duplicates are preserved (noΠD (default in
paper isΠA which is not written) at the beginning ofE1).

The main theorem requires that the final selection columns are the same as the
grouping columns, and that the final projection must not remove duplicates. This can
be relaxed. The final selection columns may be a subset of the grouping columns and
the final projection may remove duplicates [865].

Eager/Lazy Group-By We consider the special case whereG1 contains all the
aggregation columns. In the following:

H1 denotes a set of columns inR1

A1 denotes the columns produced by applying F[AA] after grouping tableR1 onH1.

Then, the expressionsE1 :=

F [AA]ΠA[GAd, GAu, AA]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

andE2 :=

~AO[FAAd]ΠA[GAd, GAu, FAAd]G[GAd, GAu]ΠA[GAd, GAu, FAAd]σ[p1,2∧p2](E3)

whereE3 :=

(~AI [AA]ΠA[H1, GA+
d , AA]G[H1]σ[p1]R1)×R2

are equivalent if

1. all aggregation functions in F[AA] are decomposable and can be decomposed
into ~AI and ~AO

2. H1 −−→ G+
1 holds inσ[p1]R1

Proof:

19.6. MORE POSSIBILITIES 295

• SinceAAu is empty,Fua[AAu, CNT] is empty

• Deleting all terms related toAAu in E2 of the main theorem gives theE2 here.

Eager/Lazy Count and Eager/Lazy DistinctWe consider the special case where
G2 contains all the aggregation columns. In the following equivalence:

H1 denotes a set of grouping (!sic!in YaLa95 for the first time) columns inR1

CNT denotes the column produced bycount(*) after groupingσ[p1]R1 onH1

Then, the expressionsE1 :=

F [AA]ΠA[GAd, GAu, AA]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

andE2 :=

Fa[AA,CNT]ΠA[GAd, GAu, AA,CNT]
G[GAd, GAu]ΠA[GAd, GAu, AA,CNT]σ[p1,2 ∧ p2](E3)

whereE3 :=

(COUNT []ΠA[H1, GA+
d]G[H1]σ[p1]R1)×R2

are equivalent if

1. F are Class C or Class D aggregation functions

2. H1 −−→ G+
1 holds inσ[p1]R1

COUNT[] means that we add CNT:COUNT(*) to the select list of the subquery block.
If within the equivalenceF only contains Class D aggregation functions, we can

simply use adistinct in the subquery block. We then call the transformation fromE1

to E2 eager distinctand its reverse applicationlazy distinct. Note that in this caseFa

is the same asF .
Proof:

• SinceAAd is empty, all ofA1, Fd1, andFd2 are empty.

• Removing all terms related toAAd in E2 of the main theorem gives theE2 here.

Double Eager/LazyIn the following equivalence

H2 denotes a set of columns inR2

H1 denotes a set of grouping columns inR1

FFA denotes the columns produced by~AI in the first group-by of tableσ[p1]R1 on
H1

CNT denotes the column produced bycount(*) after groupingσ[p2]R2 onH2

296 CHAPTER 19. GROUPING AND AGGREGATION

Assume that AA belongs toR1. Then, the expressionsE1 :=

F [AA]ΠA[GAd, GAu, AA]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

andE2 :=

Fa[~A
O[FAA], CNT]ΠA[GAd, GAu, FAA,CNT]G[GAd, GAu]σ[p1,2](E3 × E4)

whereE3 :=

(COUNT []ΠA[H2, GA+
u]G[H2]σ[p2]R2)

andE4 :=

(~AI [AA]ΠA[H1, GA+
d , AA]G[H1]σ[p1]R1)

are equivalent if

1. H2 −−→ G+
2 holds inσ[p1]R2

2. H1 −−→ G+
1 holds inσ[p1]R1

3. all aggregation functions in F are decomposable and can bedecomposed into~AI

and ~AO

4. all aggregation functions in F are Class C or Class D and itsduplicated aggrega-
tion function isFa

If F contains only class D aggregation functions, we can usedistinct in the sub-
query block ofR2. In this caseFa is the same asF .

Proof:

• eager/lazy group-by, then eager/lazy count

Double Group-By Push-Down/Pull-Up
The following equivalence shows when a top group-by can be eliminated. The

equivalencesE1 :=

F [AA]ΠA[GAd, GAu, AA]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

andE2 :=

ΠA[GAd, GAu, FAA ∗ CNT]G[GAd, GAu]σ[p1,2](E3 ×E4)

whereE3 :=

(COUNT []ΠA[H2, GA+
u]G[H2]σ[p2]R2)

andE4 :=

(F [AA]ΠA[H1, GA+
d , AA]G[H1]σ[p1]R1)

are equivalent if

1. H2 −−→ G+
2 holds inσp1(R2)

2. H1 −−→ G+
1 holds inσp1(R1)

19.6. MORE POSSIBILITIES 297

3. all aggregation functions in~A are decomposable and can be decomposed into
~AI and ~AO

4. all aggregation functions in F are Class C or Class D and itsduplicated aggrega-
tion function isFa

5. G+
1 −−→H1 holds inσ[p1]R1

6. G+
2 −−→H2 holds inσ[p2]R2

7. (G1, G2) functionally determine the join columns inσ[p1 ∧ p1,2∧ p2](R1×R2)

Proof in [865].
Eager/Lazy Split In the following equivalence

H1 denotes a set of columns inR1

H2 denotes a set of columns inR2

c1 denotes the column produced bycount(*) after groupingσ[p1]R1 onH1

c2 denotes the column produced bycount(*) after groupingσ[p2]R2 onH2

A1 denotes the columns produced byA1 in the first aggregation of tableσ[p1]R1 on
H1

A2 denotes the columns produced byA2 in the first aggregation of tableσ[p2]R2 on
H2

Fda denotes the duplicated aggregation function ofA1

Fua denotes the duplicated aggregation function ofA2

Assume also that

1. AA = AAd ∪AAu whereAAd contains only columns ofR1 andAAu contains
only columns ofR2

2. F = A1 ∪A2 whereA1 applies toAAd andA2 applies toAAu

Then, the expressionsE1 :=

F [AAd, AAu]ΠA[GAd, GAu, AAd, AAu]G[GAd, GAu]σ[p1 ∧ p1,2 ∧ p2](R1 ×R2)

andE2 :=

Πd[GAd, GAu, FAA]
(Fua[Fu2[FAAu], CNT1], Fda[Fd2[FAAd], CNT2])
ΠA[GAd, GAu, FAAu, FAAd, CNT1, CNT2]
G[GAd, GAu]σ[p1,2 ∧ p2](E3 ×E4)

whereE3 :=

(Fd1[AAd], COUNT [])ΠA[H1, GA+
d , AAd]G[H1]σ[p1]R1

andE4 :=

(Fu1[AAu], COUNT [])ΠA[H2, GA+
u , AAu]G[H2]σ[p2]R2

are equivalent, if the following conditions hold:

298 CHAPTER 19. GROUPING AND AGGREGATION

1. A1 contains only decomposable aggregation functions and can be decomposed
into Fd1 andFd2

2. A2 contains only decomposable aggregation functions and can be decomposed
into Fu1 andFu2

3. A2 andA1 contain Class C or Class D aggregation functions

4. H2 −−→ G+
2 holds inσ[p1]R2

5. H1 −−→ G+
1 holds inσ[p1]R1

Proof:

• perform eager/lazy group-by-count onR1 and then eager/lazy group-by-count
onR2

19.7 Translation into Our Notation

We define a special unary grouping operatorΓ that more closely resembles group-
ing/aggregation in relational systems. For that reason assume thatai (1 ≤ i ≤ n)
are attribute names andei are expressions of the form aggi(e

′
i) for some aggregation

functions aggri. Denote by~A the sequencea1 : e1, . . . , an : en. We then define

ΓG; ~A := {g ◦ [a1 : v1, . . . , an : vn]|g ∈ ΠD
G(e), vi = aggri(Gg)}

whereGg := {t|t ∈ e, t.G = g}. Then

ΓG; ~A := ΠD(χ[g1:g1,...,gk:gk,a1:g.a1,...,an:g.an](Γg;=G;[~A](e)))

Translation Table:

Translation Table:

19.8. AGGREGATION OF NON-EQUI-JOIN RESULTS 299

YaLa95 we cmd comment
R rRx used in constructs likeRi

Rd R1 rRa relationR1

Ru R2 rRb relationR2

P aPx used in constructs likePi

SGAd P1 aPa projected columns ofR1

SGAu P2 aPb projected columns ofR2

F ~A fAx defined as~A1 ◦ fA2

Fd
~A1 fAxa vector of aggregate functions applied to attrs ofR1

a1 : agg1(e1), . . . , ak : aggk(ek) fAax form of ”
Fu

~A2 fAb vector of aggregate functions applied to attrs ofR2

ak+1 : agg1(ek+1), . . . , an : aggk(en) fAbx form of ”
AA F aFx defined as~AI ∪ aFx

AAd
~AI aFa ⊆ A(()R1)

AAu
~AO aFb ⊆ A(()R2)

FAA A aAx defined asA1 ∪A2

A1 aAa columns containing aggregation result
< a1, . . . , ak > aAax form of ”
A2 aAb columns containing aggregation result
< ak+1, . . . , an > aAbx form of ”
p pPx used in constructs likepi.

Cd p1 pPa selection predicate on relationR1

Cu p2 pPb selection predicate on relationR1

C0 p1,2 pPj join predicate for relationsR1 andR2

G aGx defined asG1 ∪G2

GAd G1 aGa grouping columns ofR1

GAu G2 aGb grouping columns ofR2

G+ aGpx defined asG+
1 ∪G+

2

GA+
d G+

1 aGpa grouping columns plus join columns ofR1

GA+
u G+

2 aGpb grouping columns plus join columns ofR2

H aNx set of attributes
NGAd H1 aNa
NGAu H2 aNb
CNT c c

19.8 Aggregation of Non-Equi-Join Results

19.9 Bibliography

The main source of information for this section are the papers by Yan and Larson
[866, 867, 868, 869]. These papers cover the material discussed in this section although
in a different notation. An informal description of some of the ideas presented here
can be found in a paper by Chaudhuri and Shim [134].

All of these papers somewhat discuss the the topic of introducing the optimal
placement of Grouping and Aggregation in a plan generator. Chaudhuri and Shim
devoted another paper to this important topic [136]. Duplicate removal is a special
case of grouping with no aggregation taking place. Already very early on, Dayal,
Goodman, and Katz observed that duplicate removal, can be pushed down beneficially
[201]. This finding was confirmed by Pirahesh, Hellerstein, and Hasan [620]. Gupta,
Harinarayan, and Quass [345] discusses to push down duplicate elimination into a plan

300 CHAPTER 19. GROUPING AND AGGREGATION

by counting the number of occurring duplicates. That is, they change the representa-
tion of the bag. After joins are performed, they reverse thisrepresenatation change.

Pre-Aggregation: [389, 484] cardinality estimates for pre-aggregation: [390]
ToDo: [647], [671]
Aggregates: [17, 820, 135, 136, 138, 176, 177, 200] [233, 256, 331, 345, 346, 373,

450, 451] [459, 458, 560, 573, 576, 593, 726, 740, 754] [868, 891, 533]

Chapter 20

Grouping and Aggregation

20.1 Introduction

In general, join and grouping operations are not reorderable. Consider the following
relationsR andS

R A B
a 5
a 6

S A C
a 7
a 8

Joining these relationsR andS results in

R 1 S A B C
a 5 7
a 5 8
a 6 7
a 6 8

Applying ΓA;count(∗) to R andR 1 S yields

ΓA;count(∗) (R) A count (∗)
a 2

ΓA;count(∗) (R 1 S) A count (∗)
a 4

Compare this to the result ofΓA;count(∗)(R) 1 S:

ΓA;count(∗) (R) 1 S A count (∗) C
a 2 7
a 2 8

HenceΓA;count(∗) (R) 1 S 6= ΓA;count(∗) (R 1 S).
Since grouping and join operations are in general not reorderable, it is important

that a query language determines the order of grouping and join operators properly. In
SQL, the grouping operator is applied after the join operators of a query block.

For example, given the relations schemata

Emp (eid, name, age, salary) and
Sold (sid, eid, date, productid, price)

301

302 CHAPTER 20. GROUPING AND AGGREGATION

and the query

select e.eid,sum (s.price) as amount
from Emp e, Sold s
where e.eid = s.eidand

s.datebetween“2000-01-01”and “2000-12-31”
group by s.eid, s.name

results in the algebraic expression

Πe.eid,amount

(
Γs.eid;amount:sum(s.price) (Emp[e] 1e.eid=s.eid σp (Sold[s]))

)

wherep denotes

s.date ≥ ‘2000 − 01− 01′ ∧ s.date ≤ ‘2000 − 12− 31′

Figure 20.1(a) shows this plan graphically. Note that the grouping operator is
executed last in the plan.

Now consider the plan where we push the grouping operator down:

Πe.eid,amount

(
Emp[e] 1e.eid=s.eid

(
Γs.eid;amount:sum(s.price) (σp (Sold[s]))

))

This plan (see also Figure 20.1(b)) is equivalent to the former plan. Moreover, if
the grouping operator strongly reduces the cardinality of

σs.date≥...(Sold[s])

because every employee sells many items, then the latter plan might become cheaper
since the join inputs are smaller than in the former plan. This motivates the search for
conditions under which join and grouping operators can be reordered. Several papers
discuss this reorderability [134, 866, 867, 868, 869]. We will summarize their results
in subsequent sections.

20.2 Lazy and eager group by

Lazy group by pulls a group operator up over a join operator [866, 867, 868, 869].
Eager group by does the opposite. This may also be calledPush-Down Groupingand
Pull-Up Grouping.
Consider the query:

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

group by G

20.2. LAZY AND EAGER GROUP BY 303

Emp[e]

Sold[s]

select[s.date between ...]

join[e.eid=s.eid]

group by[e.eid; amount:sum(price)]

project[e.eid, amount]

(a)

Emp[e]

Sold[s]

select[s.date ...]

group by[e.eid, amount:sum(price)]

join[e.eid = s.eid]

project[e.eid, amount]

(b)

Figure 20.1: Two equivalent plans

with

G = GR ∪GS , GR ⊆ A(R), GS ⊆ A(S),

F(pR) ⊆ A(R),F(pS) ⊆ A(S)

F(pR,S) ⊆ A(R) ∪ A(S)

B ⊆ A(R) A = AR ∪AS , AR ⊆ GR, AS ⊆ GS

αR = GR ∪ F(pR,S) \ A(S) κR key ofR

304 CHAPTER 20. GROUPING AND AGGREGATION

αS = GS ∪ F(pR,S) \ A(R) κS key ofS

We are interested in the conditions under which the query canbe rewritten into

select[all | distinct] A,FB
from R′, S′

where pR,S

with R′(αR, FB) ≡

select all αR,
⇀
F (B) asFB

from R
where pR

group by αR

and S′(αS) ≡

select all αR

from S
where pS

The following equivalence expresses this rewrite in algebraic terms.

Π
[d]
A,F

(

Γ
G;F :

⇀
F (B)

(
σpR

(R) 1pR,S
σpS

(S)
)
)

≡

Π
[d]
A,F

(

Γ
αR;F :

⇀
F (B)

(σpR
(R)) 1pR,S

σpS
(S)

)

holds iff in σpR∧pS∧pR,S
(R × S) the following functional dependencies hold:

FD1 : G→ αR

FD2 : αR, GS → κS

Note that sinceGS ⊆ G, this impliesG→ κS .
FD2 implies that for any group there is at most one join partner inS. Hence, each

tuple inΓ
αR;F :

⇀
F (B)

(σpR
(R)) contributes at most one row to the overall result.

FD1 ensures that each group of the expression on the left-hand side corresponds
to at most one group of the group expression on the right-handside.

We now consider queries with ahaving clause.
In addition to the assumptions above, we have that the tablesin thefrom clause can

be partitioned intoR andS such thatR contains all aggregated columns of both the
selectand thehaving clause. We further assume that conjunctive terms in thehaving
clause that do not contain aggregate functions have been moved to thewhereclause.

20.3. COALESCING GROUPING 305

Let the predicate of thehaving clause have the formHR ∧H0 whereHR ⊆ A(R)
andH0 ⊆ R ∪ S whereH0 only contains non-aggregated columns fromS.

We now consider all queries of the form

select[all | distinct] A,
⇀
F (B)

from R,S
where pR ∧ pS ∧ pR,S

group by G

having H0

(
⇀
F0 (B)

)

∧HR

(
⇀
FR (B)

)

where
⇀
F0 and

⇀
FR are vectors of aggregate functions on the aggregated columns B.

An alternative way to express such a query is

select[all | distinct] G,FB
from R′, S
where cS ∧ cR,S ∧H0(F0B)

where R′ (αR, FB,F0B) ≡

select all αR,
⇀
F (B) asFB,

⇀
F0(B) asF0B

from R
where cR

group by αR

having HR

(
⇀
FR (B)

)

The according equivalence is [868]:

ΠG,F

(

σHR∧H0

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B),F0:

⇀
F0(B)

(
σpR∧pS∧pR,S

(R× S)
)
))

≡
ΠG,F

(

σpR,S∧pS∧H0(F0)

)(

ΠG,F,F0

(

σHR

(

Γ
G;F :

⇀
F (B),FR:

⇀
FR(B)F0:

⇀
F0(B)

(R)

))

× S

)

20.3 Coalescing Grouping

In this section we introducecoalescing groupingwhich slightly generalizessimple
coalescing groupingas introduced in [134].

We first illustrate the main idea by means of an example.
Given two relation schemes

Sales (pid, deptid, totalprice)
Department (did, name, region)

the query

select region,sum (total price) as s
from Sales, Department
where did = deptid
group by region

306 CHAPTER 20. GROUPING AND AGGREGATION

is straightforwardly translated into the following algebraic expression:

Γregion;s:sum(total price)(Sales1deptid=did Department)

Note that Equivalence?? cannot be applied here. However, if there are many sales
performed by a department, it might be worth reducing the cardinality of the left join
input by introducing an additional group operator. The result is

Γregion;s=sum(s′)

(
Γdeptid;s′:sum(total price)(Sales) 1deptid=did Department

)

Note that we must keep the outer grouping.
That is, we introduced an additional group operator to reduce the cardinality of

sales. This way, all subsequent joins (only one in this case)become cheaper and the
additional group operator may result in a better plan.

We have the following restrictions for this section:

1. There are no NULL-values allowed for attributes occurring in the query.

2. All queries are of the formselect all.
That isselect distinctis not allowed.

3. All aggregate functions agg must fulfill aggs1 ∪ s2 = agg{agg(s1), agg(s2)}
for bagss1 ands2.
This has two consequences:

• Allowed are only sum, min, max. Not allowed are avg and count.

• For any allowed aggregate function we only allow foragg(all . . .). Forbid-
den isagg(distinct . . .).

4. The query is a single-block conjunctive query with nohaving and noorder by
clause.

The above transformation is an application of the followingequivalence, whereR1

andR2 can be arbitrary algebraic expressions:

ΓG;A (R1 1p R2) ≡ ΓG;A2 (ΓG1;A1 (R1) 1p R2) (20.1)

with

A = A1 : agg1 (e1) , . . . , An : aggn (en)

A1 = A1
1 : agg1

1 (e1) , . . . , A1
n : agg1

n (en)

A2 = A1 : agg2
1

(
A1

1

)
, . . . , An : agg2

n

(
A2

n

)

G1 = (F (p) ∪G) ∩ A (R1)

Further, the following condition must hold for alli(1 ≤ i ≤ n):

aggi

(
⋃

k

Sk

)

= agg2
i

(
⋃

k

{agg1
i (Si)}

)

20.3. COALESCING GROUPING 307

In the above example, we hadagg1 = agg1
1 = agg2

1 = sum.

We now prove the correctness of Equivalence 20.1.

Proof:
First, note that

R1 1p R2 =
⋃

t2∈R2

R1 1p {t2} (20.2)

Second, note that for a givent2

ΓG;A (R1[t1]) 1p {t2} = σp(t1◦t2) (ΓG;A (R1 [t1])) (20.3)

= ΓG;A

(
σp(t1◦t2) (R1 [t1])

)

= ΓG;A (R1 [t1] 1p {t2})

holds where we have been a little sloppy witht1. Applying (20.2) and (20.3) to
ΓG1;A1 (R1) 1p R2, the inner part of the right-hand side of the equivalence yields:

ΓG1;A1 (R1) 1p R2 =
⋃

t2∈R2

ΓG1;A1 (R1) 1p {t2} (20.4)

=
⋃

t2∈R2

ΓG1;A1 (R1 1p {t2})

Call the last expression X.

Then the right-hand side of our equivalence becomes

ΓG;A2(X) = {t ◦ a2|t ∈ ΠG(X), a2 =
(
A1 : a2

1, . . . , An : a2
n

)
, (20.5)

a2
i = agg2

i

(
{s.A1

i |s ∈ X,S|G = t}
)
}

Applying (20.2) to the left-hand side of the equivalence yields:

ΓG;A (R1 1p R2) = ΓG;A

⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)}

 (20.6)

Abbreviate
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p (t1 ◦ t2)} by Y.

Applying the definition ofΓG;A yields:

{t ◦ a | t ∈ ΠG(Y), a = (A1 : e1, . . . , An : en) , (20.7)

ai = aggi ({ei(s)|s ∈ Y, S|G = t})}

Compare (20.5) and (20.7). SinceΠG(X) = ΠG(Y), they can only differ in their
values ofAi.

308 CHAPTER 20. GROUPING AND AGGREGATION

Hence, it suffices to prove thata2
i = ai for 1 ≤ i ≤ n for any givent.

a2
i = agg2

i ({s.A1
i |s ∈ X,S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

ΓG1;A1(R1 1p {t2}), S|G = t})

= agg2
i ({s.A1

i |s ∈
⋃

t2∈R2

{t1 ◦ t2 ◦ a1|t1 ∈ ΠG1(R1), p(t1 ◦ t2),

a1 = (A1
1 : a1

1, . . . , A
1
n : a1

n)

a1
i = agg1

i ({ei(s1 ◦ t2)|s1 ∈ R1, S1|G1=t1 , p(s1, t2)})
S|G = t}})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|t1 ∈ ΠG1(R1), p(t1 ◦ t2), s1 ∈ R1, S1|G1 = t1,

p(s1, t1), t1 ◦ t2|G = t})})
= agg2

i (
⋃

t2∈R2

{agg1
i ({ei(s1 ◦ t2)|s1 ∈ R1, s1 ◦ t2|G = t, p(s1 ◦ t2)})})

= agg2
i (
⋃

t2∈R2

{agg1
i ({ei(t1 ◦ t2)|t1 ∈ R1, t1 ◦ t2|G = t, p(t1 ◦ t2)})})

= aggi(
⋃

t2∈R2

{ei(t1 ◦ t2)|t1 ∈ R1, p(t1 ◦ t2), t1 ◦ t2|G = t})

= aggi({ei(s)|s ∈
⋃

t2∈R2

{t1 ◦ t2|t1 ∈ R1, p(t1 ◦ t2)}, S|G = t})

= ai

Equivalence 20.1 can be used to add an additional coalescinggrouping in front
of any of a sequence of joins. Consider the schematic operator tree in Figure 20.2(a).
It is equivalent to the one in (b), which in turn is equivalentto the one in (c) if the
preconditions of Equivalence 20.1 hold. Performing a similar operation multiple times,
any of the join operations can be made to be preceded by a coalescing grouping.

20.4 ToDo

[647]

20.4. TODO 309

(a) (b) (c)

e c

1 b

1 a

1

Γ

e

c b

1 a

1

1

Γ

e

Γc

c b

1 a

1

1

Γ

Figure 20.2: Applications of coalescing grouping

310 CHAPTER 20. GROUPING AND AGGREGATION

Part V

Plan Generation

311

Chapter 21

Introduction to Plan Generation

21.1 Search Space Selection

so far: see basics. now: more operators, more possibilitiesbeyond freely reorderabili-
ty. select? customize?

21.2 Complexity Results

All SQL queries can be processed in polynomial time in database size:[121]. a large
subclass can be processed in quasi-linear time:[847]

is the result empty is PSPACE complete:[122]. for conjunctive queries: NP-
complete for Blockwise nested n-ary loop joins [402]. Complexity of transformation-
based join enumeration [615]. See also Chapter 3

21.3 Implementation Approaches and Architectures

21.3.1 Hard-wired Algorithms

21.3.2 Rule Based Approaches

Earliest Approach: [751] rule sets: [659, 151]

313

314 CHAPTER 21. INTRODUCTION TO PLAN GENERATION

R1 R2

R2

R1

R2

R1

1

2

a) b) c)

Figure 21.1: Early grouping

21.3.3 Blackboard Architecture

21.4 Index Selection

21.5 Disjunctive Queries

21.6 Outer Joins

21.7 Plan Improvements, Postprocessing, and Polishing

21.7.1 Pushing group operators

Traditionally, group operators are performed last. Lately, it was pointed out that under
certain conditions, a group operator can be pushed down a query plan resulting in
cheaper plans [134, 135, 866, 867, 869, 868]. The saving is due to the fact that a
grouping reduces cardinality and hence the costs of subsequent joins decreases.

Consider Fig. 21.1. Plan a) is a regular plan where the group operator is the top-
level operator. Under the following conditions plan b) is equivalent to plan a):

• The join is an equi join on the foreign key attributes ofR1 and the key attribute
in R2.

• The aggregate functions only involve attributes ofR1.

• The set of grouping attributes is a subset of the attributes of R1.

• The set of grouping attributes is a not necessarily strict superset of the foreign
key attributes ofR1.

A typical example query fulfilling these conditions is

select d.name, sum(e.salary)
from Employee e, Department d

21.7. PLAN IMPROVEMENTS, POSTPROCESSING, AND POLISHING 315

where e.dno = d.dno
group bye.dno

Two remarks are in order. First, note that in case the grouping is ond.dno, the condi-
tions are violated but nevertheless the grouping can be performed. In order to discover
this, the equivalence relation on attributes (as defined by the transitivity of “=” condi-
tions in thewhere clause) must be used. Second, note that this is not an SQL query
since we project on attributes that are not mentioned in thegroup by clause. How-
ever, the query compiler can easily establish thatd.name is functionally dependend
on d.dno(the primary key ofDepartment) which is in the same equivalence class a
e.dno. The correctly formulated SQL query can also be rewritten bya similar line of
argument. This example illustrates, that rewriting often necessitates a lot of reasoning
to be performed by the query compiler.

The plan c) illustrates the case where the top-level grouping cannot be eliminated,
but still an early grouping can be performed to reduce the size of one of the join part-
ners. For this to be possible, the aggregate functions involved must bedecomposable,
that is the aggregateagg(S1 ∪ S2) must be computable from aggregatesagg’(S1) and
agg’(S2).

Of course, separating join ordering from pushing down grouping operators might
miss the best plan. However, there is no known algorithm for plan generation that
consideres early grouping while constructing plans. The techniques for pushing down
grouping also apply toselect distinctqueries since they are a special case of grouping.

More details can be found in Section 6.2.12.

21.7.2 Predicate pull-up

If the plan generator does not consider selections, that is selections are pushed down,
then there might be a need to pull up expensive predicates at this stage. Expensive
selections and join operations are reordered in search for acheaper plan. Again, con-
sidering expensive predicates as late as in Rewrite II mightloose optimal plans.

21.7.3 Polishing

The task of polishing is to clash sequences of operators together. Equivalences like
σp(σq(e)) = σp∧q(e) are applied in order to reduce the number of algebraic opera-
tors. Further, projections (that do not eliminate duplicates) are pushed down as far as
possible.

21.7.4 Optimizing complex boolean expressions

If there is a selection predicate that is a complex predicateconsisting of disjunctions
and/or conjunctions of base predicates of different costs and selectivities, then there
might be a need to optimize the complex selection predicate.A heuristic for doing so
is presented in [449]. see also Chapter??

316 CHAPTER 21. INTRODUCTION TO PLAN GENERATION

21.8 Bibliography

[651, 652, 662, 665]

Chapter 22

Hard-Wired Algorithms

22.1 Hard-wired Dynamic Programming

22.1.1 Introduction

Plan generation is performed block-wise. The goal is to generate a plan for every
block. Typically, not all possible plans are generated. Forexample, the group operator
(if necessary for the query) is mostly performed last (see also Sec.??). This mainly
leaves ordering joins and selections as the task of plan generation. A plan is an operator
tree whose node consist of physical algebraic operators, e.g. selection, sort-operator,
sort-merge and other joins, relation and index scans. The process of plan generation
has received a lot of attention. Often, the term query optimization is used synonymous
for the plan generation phase.

Figure 22.1 shows a plan for the block

select e.name
from Employee e, Department d
where e.dno = d.dno and d.name = “shoe”

The bottom level contains two table scans that scan the base tablesEmployeeand
Department. Then, a selection operator is applied to restrict the departments to those
named“shoe” . A nested-loop join is used to select those employees that work in the
selected departments. The projection restricts the outputto the name of the employees,
as required by the query block. For such a plan, acost functionis used to estimate its
cost. The goal of plan generation is to generate the cheapestpossible plan. Costing is
briefly sketched in Section??.

The foundation of plan generation are algebraic equivalences. Fore, e1, e2, . . .

317

318 CHAPTER 22. HARD-WIRED ALGORITHMS

Table Scan (Employee[e]) Table Scan (Department[d])

Select (d.name = "shoe")

NL-Join (e.dno = d.dno)

Project (e.name)

Figure 22.1: A sample execution plan

being algebraic expressions andp, q predicates, here are some example equivalences:

σp(σq(e)) ≡ σq(σp(e))

σp(e1 1q e2) ≡ (σp(e1)) 1q e2 if p is applicable toe1

e1 1p e2 ≡ e2 1p e1

(e1 1p e2) 1q e3 ≡ e1 1p (e2 1q e3)

e1 ∪ e2 ≡ e2 ∪ e1

(e1 ∪ e2) ∪ e3 ≡ e1 ∪ (e2 ∪ e3)

e1 ∩ e2 ≡ e2 ∩ e1

(e1 ∩ e2) ∩ e3 ≡ e1 ∩ (e2 ∩ e3)

σp(e1 ∩ e2) ≡ σp(e1) ∩ e2

For more equivalences and conditions that ought to be attached to the equivalences see
the appendix 6.2. Note that commutativity and associativity of the join operator allow
an arbitrary ordering. Since the join operator is the most expensive operation, ordering
joins is the most prominent problem in plan generation.

These equivalences are of course independent of the actual implementation of the
algebraic operators. The total number of plans equivalent to the original query block
is called thepotential search space. However, not always is the total search space
considered. The set of plans equivalent to the original query considered by the plan
generator is theactual search space. Since the System R plan generator [707], certain
restrictions are applied. The most prominent are:

• Generate only plans where selections are pushed down as far as possible.

• Do not consider cross products if not absolutely necessary.

• Generate only left-deep trees.

• If the query block contains a grouping operation, the group operator is performed
last.

22.1. HARD-WIRED DYNAMIC PROGRAMMING 319

R1

R3

R4

R1 R2 R3 R4R2

bushy treeleft-deep tree

Figure 22.2: Different join operator trees

Some comments are in order. Cross products are only necessary, if the query graph is
unconnected where a query graph is defined as follows: the nodes are the relations and
the edges correspond to the predicates (boolean factors1) found in thewhere clause.
More precisely, the query graph is a hypergraph, since a boolean factor may involve
more than two relations. A left-deep tree is an operator treewhere the right argument
of a join operator always is a base relation. A plan with join operators whose both
arguments are derived by other join operators is calledbushy tree. Figure 22.2 gives
an example of a left-deep tree and a bushy tree.

If we take all the above restrictions together, the problem boils down to order-
ing the join operators or relations. This problem has been studied extensively. The
complexity of finding the best (according to some cost function) ordering (operator
tree) was first studied by Ibaraki and Kameda [402]. They proved that the problem
of generating optimal left-deep trees with no cross products is NP-hard for a special
block-wise nested loop join cost function. This cost function applied in the proof is
quite complex. Later is was shown that even if the cost function is very simple, the
problem remains NP-hard [178]. The cost function (Cout) used there just adds up in-
termediate results sizes. This cost function is interesting in that it is the kernel of many
other cost functions and it fulfills the ASI property of whichwe now the following: If
the cost function fulfills theASI propertyand the query graph is acyclic, then the prob-
lem can be solved in polynomial time [402, 471]. Ono and Lohman gave examples
that considering cross products can substantially improveperformance [586]. How-
ever, generating optimal left-deep trees with cross products even forCout makes the
problem NP-hard [178]. Generating optimal bushy trees is even harder. Even if there
is no predicate, that is only cross products have to be used, the problem is NP-hard
[693]. This is surprising since generating left-deep treeswith cross products as the
only operation is very simple: just sort the relations by increasing sizes.

Given the complexity of the problem, there are only two alternatives to generate
plans: either explore the total search space or use heuristics. The former can be quite

1A boolean factoris a disjunction of basic predicates in a conjunctive normalform.

320 CHAPTER 22. HARD-WIRED ALGORITHMS

expensive. This is the reason why the above mentioned restrictions to the search space
have traditionally been applied. The latter approach risksmissing good plans. The
best-known heuristics is to join the relation next, that results in the smallest next inter-
mediate result. Estimating the cardinality of such resultsis discussed in Section??.

Traditionally, selections where pushed as far down as possible. However, for ex-
pensive selection predicates (e.g. user defined predicates, those involving user-defined
functions, predicates with subqueries) this does not suffice. For example, if a computer
vision application has to compute the percentage of snow coverage for a given set of
satellite images, this is not going to be cheap. In fact, it can be more expensive than
a join operation. In these cases, pushing the expensive selection down misses good
plans. That is why lately research started to take expensivepredicates into account.
However, some of the proposed solutions do not guarantee to find the optimal plans.
Some approaches and their bugs are discussed in [137, 380, 378, 692, 694]. Although
we will subsequently give an algorithm that incorporates correct predicate placement,
not all plan generators do so. An alternative approach (though less good) is to pull-up
expensive predicates in the Rewrite-II-phase.

There are several approaches to explore the search space. The original approach is
to use dynamic programming [707]. The dynamic programming algorithm is typically
hard-coded. Figure 22.3 illustrates the principle of bottom-up plan generation as ap-
plied in dynamic programming. The bottom level consists of the original relations to
be joined. The next level consists of all plans that join a subset of cardiniality two of
the original relations. The next level contains all plans for subsets of cardinality three,
and so on. With the advent of new query optimization techniques, new data models,
extensible database systems, researchers where no longer satisfied with the hard-wired
approach. Instead, they aimed for rule-based plan generation. There exist two differ-
ent approaches for rule-based query optimizers. In the firstapproach, the algebraic
equivalences that span the search space are used to transform some initial query plan
derived from the query block into alternatives. As search strategies either exhaustive
search is used or some stochastic approach such as simulatedannealing, iterative im-
provement, genetic algorrithms and the like [66, 406, 410, 411, 760, 786, 785, 788].
This is thetransformation-basedapproach. This approach is quite inefficient. Another
approach is to generate plans by rules in a bottom-up fashion. This is thegeneration-
basedapproach. In this approach, either a dynamic programming algorithm [517] is
used or memoization [324]. It is convenient to classify the rules used into logical and
physical rules. The logical rules directly reflect the algebraic equivalences. The physi-
cal rules or implementation rules transform a logical algebraic operator into a physical
algebraic operator. For example, a join-node becomes a nested-loop join node.

22.1.2 A plan generator for bushy trees

Within the brief discussion in the last subsection, we enumerated plans such that first
all 1-relation plans are generated, then all 2-relation plans and so on. This enumeration
order is not the most efficient one. Let us consider the simpleproblem where we
have to generate exactly one best plan for the subsets of then element set of relations
to be joined. The empty subset is not meaningful, leaving thenumber of subsets to
be investigated at2n − 1. Enumerating these subsets can be done most efficient by
enumerating them incounting order. That is, we initialize an bit counter with 1 and

22.1. HARD-WIRED DYNAMIC PROGRAMMING 321

R1 R2 R3

R12 R23R13

R123R123R123 <== 2 alternatives pruned

<== input relations

<== first set of partial plans generated

Figure 22.3: Bottom up plan generation

count until have reached2n − 1. Then bits represent the subsets. Note that with this
enumeration order, plans are still generated bottom up. Fora given subsetR of the
relations (encoded as the bit patterna), we have to generate a plan from subsets of
this subset (encoded as the bit patterns). For example, if we only want to generate
left-deep trees, then we must consider 1 element subsets andtheir complements. If we
want to generate bushy trees, all subsets must be considered. We can generate these
subsets by a very fast algorithm developed by Vance and Maier[816]:

s = a & -a;
while(s) {

s = a & (s - a);
process(s);

}

The meaning ofprocess(s)depends on the kinds of plans we generate. If we con-
centrate on join ordering neglecting selection operations(i.e. pushing them) This step
essentially looks up the plans fors and its complements and then joins the plans found
there. Lookup is best implemented via an array withs as an index.

22.1.3 A plan generator for bushy trees and expensive selections

Figure 22.4 shows the pseudocode of a dynamic programming algorithm that gener-
ates plans with cross products, selections, and joins. It generates optimal bushy trees.
Efficient implementation technique for the algorithm can befound in [816, 694]. As
input parameters, the algorithm takes a set of relationsR and a set of predicatesP .
The set of relations for which a selection predicate exists is denoted byRS . We iden-
tify relations and predicates that apply to these relations. For all subsetsMk of the
relations and subsetsPl of the predicates, an optimal plan is constructed and entered
into the tableT . The loops range over allMk andPl. Thereby, the setMk is split into
two disjoint subsetsL andL′, and the setPl is split into three parts (line 7). The first
part (V) contains those predicates that apply to relations inL only. The second part
(V ′) contains those predicates that apply to relations inL′ only. The third part (p) is
a conjunction of all the join predicates connecting relations inL andL′ (line 8). Line
9 constructs a plan by joining the two plans found for the pairs [L, V] and[L′, V ′] in

322 CHAPTER 22. HARD-WIRED ALGORITHMS

proc Optimal-Bushy-Tree(R, P)
1 for k = 1 to n do
2 for all k-subsetsMk of R do
3 for l = 0 to min(k, m) do
4 for all l-subsetsPl of Mk ∩RS do
5 bestcost so far =∞;
6 for all subsetsL of Mk with 0 < |L| < k do
7 L′ = Mk \ L, V = Pl ∩ L, V ′ = Pl ∩ L′;
8 p =

∧{pi,j | pi,j ∈ P, Ri ∈ V, Rj ∈ V ′}; // p=true might hold
9 T = (T [L, V] 1p T [L′, V ′]);
10 if Cost(T)< bestcostso far then
11 bestcost so far = Cost(T);
12 T [Mk, Pl] = T ;
13 fi;
14 od;
15 for all R ∈ Pl do
16 T = σR(T [Mk, Pl \ {R}]);
17 if Cost(T)< bestcostso far then
18 bestcost so far = Cost(T);
19 T [Mk, Pl] = T ;
20 fi;
21 od;
22 od;
23 od;
24 od;
25 od;
26 return T [R, S];

Figure 22.4: A Dynamic Programming Optimization Algorithm

the tableT . If this plan has so far the best costs, it is memoized in the table (lines 10-
12). Last, different possibilities of not pushing predicates inPl are investigated (lines
15-19).

Another issue that complicates the application of dynamic programming are cer-
tain properties of plans. The most prominent such properties areinteresting orders
[707, 745, 746]. Take a look at the following query:

select d.no, e.name
from Employee e, Department d
where e.dno = d.dno
order byd.dno

Here, the user requests the result to be order ond.dno. Incidentally, this is also a join
attribute. During bottom up plan generation, we might thinkthat a Grace hash join
is more efficient than a sort-merge join since the cost of sorting the relations is too
high. However, the result has to be sorted anyway so that thissort may pay off. Hence,
we have have to keep both plans. The approach is the following. In the example, an
ordering ond.dnois called an interesting order. In general, any order that ishelpful for

22.2. BIBLIOGRAPHY 323

ordering the output as requested by the user, for a join operator, for a grouping operator,
or for duplicate elimination is called aninteresting order. The dymamic programming
algorithm is then modified such that plans are not pruned, if they produce different
interesting orders.

22.1.4 A plan generator for bushy trees, expensive selections and func-
tions

22.2 Bibliography

324 CHAPTER 22. HARD-WIRED ALGORITHMS

Chapter 23

Rule-Based Algorithms

23.1 Rule-based Dynamic Programming

The section is beyond the scope of the paper and the reader is refered to the starburst
papers, especially [353, 491, 490, 517, 518].

23.2 Rule-based Memoization

This section is beyond the scope of the paper and the reader isrefered to the Volcano
and Cascade papers [310, 315, 320, 323, 324]. Both optimizerframeworks derived
from the earlier Exodus query optimizer generator [308, 321].

23.3 Bibliography

325

326 CHAPTER 23. RULE-BASED ALGORITHMS

Chapter 24

Deriving and Dealing with
Interesting Orderings and
Groupings

[This chapter was written by Thomas Neumann and Guido Moerkotte]

24.1 Introduction

The most expensive operations (e.g. join, grouping, duplicate elimination) during query
evaluation can be performed more efficiently if the input is ordered or grouped in a cer-
tain way. Therefore, it is crucial for query optimization torecognize cases where the
input of an operator satisfies the ordering or grouping requirements needed for a more
efficient evaluation. Since a plan generator typically considers millions of different
plans – and, hence, operators –, this recognition easily becomes a performance bottle-
neck for plan generation, often leading to heuristic solutions.

The importance of exploiting available orderings has already been recognized in
the seminal work of Selinger et al [707]. They presented the concept of interesting
orderings and showed how redundant sort operations could beavoided by reusing
available orderings, rendering sort-based operators likesort-merge join much more
interesting.

Along these lines, it is beneficial to reuse available grouping properties, for exam-
ple for hash-based operators. While heuristic techniques to avoid redundant group-by
operators have been given [134], for a long time groupings have not been treated as
thoroughly as orderings. One reason might be that while orderings and groupings are
related (every ordering is also a grouping), groupings behave somewhat differently.
For example, a tuple stream grouped on the attributes{a, b} need not be grouped on
the attribute{a}. This is different from orderings, where a tuple stream ordered on the
attributes(a, b) is also ordered on the attribute(a). Since no simple prefix (or subset)
test exists for groupings, optimizing groupings even in a heuristic way is much more
difficult than optimizing orderings. Still, it is desirableto combine order optimization
and the optimization of groupings, as the problems are related and treated similar-
ly during plan generation. Recently, some work in this direction has been published

327

328CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

[832]. However, this only covers a special case of grouping.Instead, in this chapter
we follow the approach presented by Neumann and Moerkotte [578, 577]

Other existing frameworks usually consider only order optimization, and experi-
mental results have shown that the costs for order optimization can have a large impact
on the total costs of query optimization [578]. Therefore, some care is needed when
adding groupings to order optimization, as a slowdown of plan generation would be
unacceptable.

In this chapter, we present a framework to efficiently reasonabout orderings and
groupings. It can be used for the plan generator described inChapter??, but is actually
an independent component that could be used in any kind of plan generator. Exper-
imental results show that it efficiently handles orderings and groupings at the same
time, with no additional costs during plan generation and only modest one time costs.
Actually, the operations needed for both ordering and grouping optimization during
plan generation can be performed inO(1), basically allowing to exploit groupings for
free.

24.2 Problem Definition

The order manager component used by the plan generator combines order optimization
and the handling of grouping in one consistent set of algorithms and data structures.
In this section, we give a more formal definition of the problem and the scope of the
framework. First, we define the operations of ordering and grouping (Section 24.2.1
and 24.2.2). Then, we briefly discuss functional dependencies (Section 24.2.3) and
how they interact with algebraic operators (Section 24.2.4). Finally, we explain how
the component is actually used during plan generation (Section 24.2.5).

24.2.1 Ordering

During plan generation, many operators require or produce certain orderings. To avoid
redundant sorting, it is required to keep track of the orderings a certain plan satisfies.
The orderings that are relevant for query optimization are called interesting orders
[707]. The set ofinteresting ordersfor a given query consists of

1. all orderings required by an operator of the physical algebra that may be used in
a query execution plan for the given query, and

2. all orderings produced by an operator of the physical algebra that may be used
in a query execution plan for the given query.

This includes the final ordering requested by the given query, if this is specified.
The interesting orders arelogical orderings. This means that they specify a con-

dition a tuple stream must meet to satisfy the given ordering. In contrast, thephysical
ordering of a tuple stream is the actual succession of tuples in the stream. Note that
while a tuple stream has only one physical ordering, it can satisfy multiple logical or-
derings. For example, the stream of tuples((1, 1), (2, 2)) with schema(a, b) has one
physical ordering (the actual stream), but satisfies the logical orderingsa, b, ab andba.

Some operators, likesort , actually influence the physical ordering of a tuple
stream. Others, likeselect , only influence the logical ordering. For example, a

24.2. PROBLEM DEFINITION 329

sort[a] produces a tuple stream satisfying the ordering(a) by actually changing
the physical order of tuples. After applyingselect[a=b] to this tuple stream, the
result satisfies the logical orderings(a), (b), (a, b), (b, a), although the physical order-
ing did not change. Deduction of logical orderings can be described by using the
well-known notion offunctional dependency(FD) [745]. In general, the influence of
a given algebraic operator on a set of logical orderings can be described by a set of
functional dependencies.

We now formalize the problem. LetR = (t1, . . . , tr) be a stream (ordered se-
quence) of tuples in attributesA1, . . . , An. Then R satisfies the logical ordering
o = (Ao1 , . . . , Aom) (1 ≤ oi ≤ n) if and only if for all 1 ≤ i < j ≤ r the fol-
lowing condition holds:

(ti.Ao1 ≤ tj.Ao1)

∧ ∀1 < k ≤ m (∃1 ≤ l < k(ti.Aol
< tj .Aol

)) ∨
((ti.Aok−1

= tj .Aok−1
) ∧

(ti.Aok
≤ tj.Aok

))

Next, we need to define the inference mechanism. Given a logical orderingo =
(Ao1 , . . . , Aom) of a tuple streamR, thenR obviously satisfies any logical ordering
that is a prefix ofo includingo itself.

Let R be a tuple stream satisfying both the logical orderingo = (A1, . . . , An) and
the functional dependencyf = B1, . . . , Bk → Bk+1

1 with Bi ∈ {A1 . . . An}. Then
R also satisfies any logical ordering derived fromo as follows: addBk+1 to o at any
position such that all ofB1, . . . , Bk occurred before this position ino. For example,
consider a tuple stream satisfying the ordering(a, b); after inducing the functional
dependencya, b → c, the tuple stream also satisfies the ordering(a, b, c), but not the
ordering(a, c, b). Let O′ be the set of all logical orderings that can be constructed this
way fromo andf after prefix closure. Then, we use the following notation:o ⊢f O′.
Let e be the equationAi = Aj . Then,o ⊢e O′, whereO′ is the prefix closure of the
union of the following three sets. The first set isO1 defined aso ⊢Ai→Aj O1, the
second isO2 defined aso ⊢Aj→Ai O2, and the third is the set of logical orderings
derived fromo where a possible occurrence ofAi is replaced byAj or vice versa.
For example, consider a tuple stream satisfying the ordering (a); after inducing the
equationa = b, the tuple stream also satisfies the orderings(a, b), (b) and(b, a). Let e
be an equation of the formA = const. ThenO′ (o ⊢e O′) is derived fromo by inserting
A at any position ino. This is equivalent too ⊢∅→A O′. For example, consider a tuple
stream satisfying the ordering(a, b); after inducing the equationc = const the tuple
stream also satisfies the orderings(c, a, b), (a, c, b) and(a, b, c).

Let O be a set of logical orderings andF a set of functional dependencies (and
possibly equations). We define the sets of inferred logical orderingsΩi(O,F) as fol-

1Any functional dependency which is not in this form can be normalized into a set of FDs of this
form.

330CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

lows:

Ω0(O,F) := O

Ωi(O,F) := Ωi−1(O,F) ∪
⋃

f∈F,o∈Ωi−1(O,F)

O′ with o ⊢f O′

Let Ω(O,F) be the prefix closure of
⋃∞

i=0 Ωi(O,F). We writeo ⊢F o′ if and only if
o′ ∈ Ω(O,F).

24.2.2 Grouping

It was shown in [832] that, similar to order optimization, itis beneficial to keep track
of the groupings satisfied by a certain plan. Traditionally,group-by operators are ei-
ther applied after the rest of the query has been processed orare scheduled using some
heuristics [134]. However, the plan generator could take advantage of grouping prop-
erties produced e.g. by avoiding re-hashing if such information was easily available.

Analogous to order optimization, we call thisgrouping optimizationand define
that the set ofinteresting groupingsfor a given query consists of

1. all groupings required by an operator of the physical algebra that may be used
in a query execution plan for the given query

2. all groupings produced by an operator of the physical algebra that may be used
in a query execution plan for the given query.

This includes the grouping specified by the group-by clause of the query, if any exists.
These groupings are similar to logical orderings, as they specify a condition a tuple

stream must meet to satisfy a given grouping. Likewise, functional dependencies can
be used to infer new groupings.

More formally, a tuple streamR = (t1, . . . , tr) in attributesA1, . . . , An satisfies
the groupingg = {Ag1 . . . , Agm} (1 ≤ gi ≤ n) if and only if for all 1 ≤ i < j < k ≤
r the following condition holds:

∀1 ≤ l ≤ m ti.Agl
= tk.Agl

⇒ ∀1 ≤ l ≤ m ti.Agl
= tj .Agl

Two remarks are in order here. First, note that a grouping is aset of attributes and
not – as orderings – a sequence of attributes. Second, note that given two groupings
g andg′ ⊂ g and a tuple stream R satisfying the groupingg, R need not satisfy the
groupingg′. For example, the tuple stream((1, 2), (2, 3), (1, 4)) with the schema(a, b)
is grouped by{a, b}, but not by{a}. This is different from orderings, where a tuple
stream satisfying an orderingo also satisfies all orderings that are a prefix ofo.

New groupings can be inferred by functional dependencies asfollows: Let R be
a tuple stream satisfying both the groupingg = {A1, . . . , An} and the functional
dependencyf = B1, . . . , Bk → Bk+1 with {B1, . . . , Bk} ⊆ {A1, . . . , An}. Then
R also satisfies the groupingg′ = {A1, . . . , An} ∪ {Bk+1}. Let G′ be the set of all
groupings that can be constructed this way fromg andf . Then we use the following

24.2. PROBLEM DEFINITION 331

notation: g ⊢f G′. For example{a, b} ⊢a,b→c {a, b, c}. Let e be the equationAi

= Aj . Theng ⊢e G′ whereG′ is the union of the following three sets. The first
set isG1 defined asg ⊢Ai→Aj G1, the second isG2 defined asg ⊢Aj→Ai G2, and
the third is the set of groupings derived fromg where a possible occurrence ofAi is
replaced byAj or vice versa. For example,{a, b} ⊢b=c {a, c}. Let e be an equation
of the form A = const. Theng ⊢e G′ is defined asg ⊢∅→A G′. For example,
{a, b} ⊢c=const{a, b, c}.

Let G be a set of groupings and F be a set of functional dependencies (and possibly
equations). We define the set of inferred groupingsΩi(G,F) as follows:

Ω0(G,F) := G

Ωi(G,F) := Ωi−1(G,F) ∪
⋃

f∈F,g∈Ωi−1(G,F)

G′ with g ⊢f G′

Let Ω(G,F) be
⋃∞

i=0 Ωi(G,F). We writeg ⊢F g′ if and only if g′ ∈ Ω(G,F).

24.2.3 Functional Dependencies

The reasoning about orderings and groupings assumes that the set of functional de-
pendencies is known. The process of gathering the relevant functional dependencies is
described in detail in [745, 746]. Predominantly, there arethree sources of functional
dependencies:

1. key constraints

2. join predicates [references constraints]

3. filter predicates

4. simple expressions

However, the algorithm makes no assumption about the functional dependencies. If for
some reason an operator induces another kind of functional dependency (e.g., when
using TID-based optimizations [539]), this can be handled the same way. The only
important fact is that we provide the set of functional dependencies as input to the
algorithm.

24.2.4 Algebraic Operators

To illustrate the propagation of orderings and groupings during query optimization, we
give some rules for concrete (physical) operators in Figure24.1. As a shorthand, we
use the following notation:
O(R) set of logical orderings and groupings satisfied by the physical ordering of

the relationR
O(S) inferred set of logical orderings and groupings satisfied bythe tuple stream

S
x ↓ {y|y ∈ x}

332CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

operator requires produces
scan(R) - O(R)
indexscan(Idx) - O(Idx)
map(S,a = f(b)) - Ω(O(S), b→ a)
select(S,a = b) - Ω(O(S), a = b)
bnl-join(S1,S2) - O(S1)
indexnl-join(S1 ,S2) - O(S1)
djoin(S1,S2) - O(S1)
sort(S,a1, . . . , an) - (a1, . . . , an)
group-by(S,a1 , . . . , an) - {a1, . . . , an}
hash(S,a1, . . . , an) - {a1, . . . , an}
sort-merge(S1 ,S2,~a = ~b) ~a ∈ O(S1) ∧~b ∈ O(S2) Ω(O(S1),~a = ~b)

hash-join(S1 ,S2,~a = ~b) ~a ↓∈ O(S1) ∧~b ↓∈ O(S2) Ω(O(S1),~a = ~b)

Figure 24.1: Propagation of orderings and groupings

Note that these rules somewhat depend on the actual implementation of the opera-
tors, e.g. a blockwise nested loop join might actually destroy the ordering if the blocks
are stored in hash tables. The rules are also simplified: For example, a group-by willEXC
probably compute some aggregate functions, inducing new functional dependencies.
Furthermore, additional information can be derived from schema information: If the
right-hand side of a dependent join (index nested loop joinsare similar) produces at
most one tuple, and the left-hand side is grouped on the free attributes of the right-hand
side (e.g. if they do not contain duplicates) the output is also grouped on the attributes
of the right-hand side. This situation is common, especially for index nested loop joins,
and is detected automatically if the corresponding functional dependencies are consid-
ered. Therefore, it is important that all operators consider all functional dependencies
they induce.

24.2.5 Plan Generation

To exploit available logical orderings and groupings, the plan generator needs access
to the combined order optimization and grouping component,which we describe as an
abstract data type(ADT). An instance of this abstract data typeOrderingGrouping
represents a set of logical orderings and groupings, and wherever necessary, an in-
stance is embedded into a plan note. The main operations the abstract data type
OrderingGrouping must provide are

1. a constructor for a given logical ordering or grouping,

2. a membership test (calledcontainsOrdering(LogicalOrdering))which
tests whether the set contains the logical ordering given asparameter,

3. a membership test (calledcontainsGrouping(Grouping)) which tests
whether the set contains the grouping given as parameter, and

4. an inference operation (calledinfer(set<FD>)). Given a set of function-
al dependencies and equations, it computes a new set of logical orderings and

24.3. OVERVIEW 333

{b→ d} {b→ d}

{b→ d}

ǫ

ǫ
ab

ǫ

ǫ

a

abdabdc

abcd

abc

ǫ

Figure 24.2: Possible FSM for orderings

groupings a tuple stream satisfies.

These operations can be implemented by using the formalism described before:
containsOrdering tests foro ∈ O, containsGrouping tests foro ∈ G and
infer(F) calculatesΩ(O,F) respectivelyΩ(G,F). Note that the intuitive approach
to explicitly maintain the set of all logical orderings and groupings is not useful in
practice. For example, if a sort operator sorts a tuple stream on (a, b), the result is
compatible with logical orderings{(a, b), (a)}. After a selection operator with selec-
tion predicatex = const is applied, the set of logical orderings changes to{(x, a, b),
(a, x, b), (a, b, x), (x, a), (a, x), (x)}. Since the size of the set increases quadratically
with every additional selection predicate of the formv = const, a naive representa-
tion as a set of logical orderings is problematic. This led Simmen et al. to introduce
a more concise representation, which is discussed in the related work section. Note
that Simmen’s technique is not easily applicable to groupings, and no algorithm was
proposed to efficiently maintain the set of available groupings. The order optimization
component described here closes this gap by supporting bothorderings and groupings.
The problem of quadatic growth is avoided by only implicitlyrepresenting the set.

24.3 Overview

As we have seen, explicit maintenance of the set of logical orderings and groupings
can be very expensive. However, the ADTOrderingGrouping required for plan
generation does not need to offer access to this set: It only allows to test if a given in-
teresting order or grouping is in the set and changes the set according to new functional
dependencies. Hence, it isnot required to explicitly represent this set; an implicit rep-
resentation is sufficient as long as the ADT operations can beimplemented atop of
it. In other words, we need not be able to reconstruct the set of logical orderings and
groupings from the state of the ADT. This gives us room for optimizations.

The initial idea (see [578]) was to represent sets of logicalorderings asstatesof a
finite state machine(FSM). Roughly, a state of the FSM represents a current physical
ordering and the set of logical orderings that can be inferred from it given a set of
functional dependencies. The edges (transitions) in the FSM are labeled by sets of
functional dependencies. They lead from one state to another, if the target state of
the edge represents the set of logical orderings that can be derived from the orderings
the edge’s source node represents by applying the set of functional dependencies the
edge is labeled with. We have to use sets of functional dependencies, since a single

334CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

{b→ d}
abcdabc

Figure 24.3: Possible FSM for groupings

algebraic operator may introduce more than one functional dependency.

Let us illustrate the idea by a simple example and then discuss some problems. In
Figure 24.2, an FSM for the interesting order(a, b, c) and its prefixes (remember that
we need prefix closure) and the set of functional dependencies{b→ d} is given. When
a physical ordering satisfies(a, b, c), it also satisfies its prefixes(a, b) and(a). This
is indicated by theǫ transitions. The functional dependencyb → d allows to derive
the logical orderings(a, b, c, d) and(a, b, d, c). This is handled by assuming that the
physicalordering changes to either(a, b, c, d) or (a, b, d, c). Hence, these states have
to be added to the FSM. We further add the transitions inducedby {b→ d}. Note that
the resulting FSM is anon-deterministic finite state machine(NFSM).

Assume we have an NFSM as above. Then (while ignoring groupings) the state of
the ADT is a state of the NFSM and the operations of the ADT can easily be mapped
to the FSM. Testing for a logical ordering can be performed bychecking if the node
with the ordering is reachable from the current state by following ǫ edges. If the set
must be changed because of a functional dependency the stateis changed by following
the edge labeled with the functional dependency. Of course,the non-determinism is in
our way.

While remembering only the active state of the NFSM avoids the problem of main-
taining a set of orderings, the NFSM is not really useful froma practical point of view,
since the transitions are non-deterministic. Nevertheless, the NFSM can be considered
as a specialnon-deterministic finite automaton(NFA), which consumes the functional
dependencies and ”recognizes” the possible physical orderings. Further, an NFA can
be converted into adeterministic finite automaton(DFA), which can be handled effi-
ciently. Remember that the construction is based on the power set of the NFA’s states.
That is, the states of the DFA are sets of states of the NFA [503]. We do not take the
deviation over the finite automaton but instead lift the construction of deterministic
finite automatons from non-deterministic ones to finite state machines. Since this is
not a traditional conversion, we give a proof of this step in Section 24.5.

Yet another problem is that the conversion from an NFSM to adeterministic FSM
(DFSM) can be expensive for large NFSMs. Therefore, reducing the size of the NF-
SM is another problem we look at. We introduce techniques forreducing the set of
functional dependencies that have to be considered and further techniques to prune the
NFSM in Section 24.4.7.

The idea of a combined framework for orderings and groupingswas presented in
[577]. Here, the main point is to construct a similar FSM for groupings and integrate
it into the FSM for orderings, thus handling orderings and groupings at the same time.
An example of this is shown in Figure 24.3. Here, the FSM for the grouping{a, b, c}
and the functional dependencyb → c is shown. We represent states for orderings as
rounded boxes and states for groupings as rectangles. Note that although the FSM for
groupings has a start node similar to the FSM for orderings, it is much smaller. This
is due to the fact that groupings are only compatible with themselves, no nodes for

24.3. OVERVIEW 335

{b→ d} {b→ d}

{b→ d}

ǫ

ǫ
ab

ǫ

ǫ

a

abdabdc

abcd

abc

ǫ

abc abcd

ǫ

ǫ

{b→ d}

Figure 24.4: Combined FSM for orderings and groupings

{b→ d} a,ab,abc
abd,abcd,a,ab,abc,{ab}
abdc,{abd}

Figure 24.5: Possible DFSM for Figure 24.4

prefixes are required. However, the FSM is still non-deterministic: given the functional
dependencyb → c, the grouping{a, b, c, d} is compatible with{a, b, c, d} itself and
with {a, b, c}; therefore, there exists an (implicit) edge from each grouping to itself.

The FSM for groupings is integrated into the FSM for orderings by addingǫ edges
from each ordering to the grouping with the same attributes;this is due to the fact
that every ordering is also a grouping. Note that although the ordering(a, b, c, d) also
implies the grouping{a, b, c}, no edge is required for this, since there exists anǫ edge
to (a, b, c) and from there to{a, b, c}.

After constructing a combined FSM as described above, the full ADT supporting
both orderings and groupings can easily be mapped to the FSM:The state of the ADT
is a state of the FSM and testing for a logical ordering or grouping can be performed
by checking if the node with the ordering or grouping is reachable from the current
state by followingǫ edges (as we will see, this can be precomputed to yield the O(1)
time bound for the ADT operations). If the state of the ADT must be changed because
of functional dependencies, the state in the FSM is changed by following the edge
labeled with the functional dependency.

However, the non-determinism of this transition is a problem. Therefore, for prac-
tical purposes the NFSM must be converted into a DFSM. The resulting DFSM is
shown in Figure 24.5. Note that although in this simple example the DFSM is very
small, the conversion could lead to exponential growth. Therefore, additional pruning
techniques for groupings are presented in Section 24.4.7. However, the inclusion of
groupings is not critical for the conversion, as the grouping part of the NFSM is nearly
independent of the ordering part. In Section 24.6 we look at the size increase due to
groupings. The memory consumption usually increases by a factor of two, which is
the minimum expected increase, since every ordering is a grouping.

Some operators, likesort, change the physical ordering. In the NFSM, this is
handled by changing the state to the node corresponding to the new physical ordering.
Implied by its construction, in the DFSM this new physical ordering typically occurs in
several nodes. For example,(a, b, c) occurs in both nodes of the DFSM in Figure 24.5.
It is, therefore, not obvious which node to choose. We will take care of this problem

336CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

1. Determine the input

(a) Determine interesting orders

(b) Determine interesting groupings

(c) Determine set of functional dependencies

2. Construct the NFSM

(a) Construct states of the NFSM

(b) Filter functional dependencies

(c) Build filters for orderings and groupings

(d) Add edges to the NFSM

(e) Prune the NFSM

(f) Add artificial start state and edges

3. Convert the NFSM into a DFSM

4. Precompute values

(a) Precompute the compatibility matrix

(b) Precompute the transition table

Figure 24.6: Preparation steps of the algorithm

during the construction of the NFSM (see Section 24.4.3).

24.4 Detailed Algorithm

24.4.1 Overview

Our approach consists of two phases. The first phase is the preparation step taking
place before the actual plan generation starts. The output of this phase are the precom-
puted values used to implement the ADT. Then the ADT is used during the second
phase where the actual plan generation takes place. The firstphase is performed ex-
actly once and is quite involved. Most of this section coversthe first phase. Only
Section 24.4.6 deals with the ADT implementation.

Figure 24.6 gives an overview of the preparation phase. It isdivided into four major
steps, which are discussed in the following subsections. Subsection 24.4.2 briefly
reviews how the input to the first phase is determined and, more importantly, what
it looks like. Section 24.4.3 describes in detail the construction of the NFSM from
the input. The conversion from the NFSM to the DFSM is only briefly sketched in
Section 24.4.4, for details see [503]. From the DFSM some values are precomputed
which are then used for the efficient implementation of the ADT. The precomputation
is described in Section 24.4.5, while their utilization andthe ADT implementation
are the topic of Section 24.4.6. Section 24.4.7 contains some important techniques to

24.4. DETAILED ALGORITHM 337

reduce the size of the NFSM. They are applied in Steps 2 (b), 2 (c) and 2 (e). During
the discussion, we illustrate the different steps by a simple running example. More
complex examples can be found in Section 24.6.

24.4.2 Determining the Input

Since the preparation step is performed immediately beforeplan generation, it is as-
sumed that the query optimizer has already determined whichindices are applicable
and which algebraic operators can possibly be used to construct the query execution
plan.

Before constructing the NFSM, the set of interesting orders, the set of interesting
groupings and the sets of functional dependencies for each algebraic operator are de-
termined. We denote the set of sets of functional dependencies byF . It is important
for the correctness of our algorithms that we note which of the interesting orders are
(1) produced by some algebraic operator or (2) only tested for. Note that the interest-
ing orders which satisfy (1) may additionally be tested for as well. We denote those
orderings under (1) byOP , those under (2) byOT . The total set of interesting orders
is defined asOI = OP ∪ OT . The orders produced are treated slightly differently in
the following steps. The groupings are classified similarlyto the orderings: We denote ToDo: details

on determin-
ing interesting
orders?

the grouping produced by some algebraic operator byGP , and those just tested for by
GT . The total set of interesting groupings is defined asGI = GP ∪GT . More infor-
mation on how to extract interesting groupings can be found in [832]. Furthermore,
for a sample query the extraction of both interesting ordersand groupings is illustrated
in Section 24.6.

To illustrate subsequent steps, we assume that the set of sets of functional depen-
dencies

F = {{b→ c}, {b→ d}},
the interesting groupings

GI = {{b}} ∪ {{b, c}}
and the interesting orders

OI = {(b), (a, b)} ∪ {(a, b, c)}

have been extracted from the query. We assume that those inOT = {(a, b, c)} and
GT = {{b, c}} are tested for but not produced by any operator, whereas those in
OP = {(b), (a, b)} andGP = {{b}} may be produced by some algebraic operators.

24.4.3 Constructing the NFSM

An NFSM consists of a tuple(Σ, Q,D, qo), where

• Σ is the input alphabet,

• Q is the set of possible states,

• D ⊆ Q× (Σ ∪ {ǫ}) ×Q is the transition relation, and

• q0 is the initial state.

338CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

b,c

b

a,b,c

a,b

b

Figure 24.7: Initial NFSM for sample query

Coarsely,Σ consists of the functional dependencies,Q of the relevant orderings
and groupings, andD describes how the orderings or groupings change under a given
functional dependency. Some refinements are needed to provide efficient ADT opera-
tions. The details of the construction are described now.

For the order optimization part the states are partitioned in Q = QI ∪QA ∪ {q0},
whereq0 is an artificial state to initialize the ADT,QI is the set of states corresponding
to interesting orderings andQA is a set of artificial states only required for the algo-
rithm itself. QA is described later. Furthermore, the setQI is partitioned inQP

I and
QT

I , representing the orderings inOP andOT , respectively. To support groupings, we
add toQP

I states corresponding to the groupings inGP and toQT
I states corresponding

to the groupings inGT .
The initial NFSM contains the statesQI of interesting groupings and orderings.

For the example, this initial construction not including the start stateqo is shown in
Figure 24.7. The states representing groupings are drawn asrectangles and the states
representing orderings are drawn with rounded corners.

When considering functional dependencies, additional groupings and orderings
can occur. These are not directly relevant for the query, buthave to be represented by
states to handle transitive changes. Since they have no direct connection to the query,
these states are called artificial states. Starting with theinitial statesQI , artificial states
are constructed by considering functional dependencies

QA = (Ω(OI ,F) \OI) ∪ (Ω(GI ,F) \GI).

In our example, this creates the states(b, c) and(a), as(b, c) can be inferred from(b)
when considering{b→ c} and(a) can be inferred from(a, b), since(a) is a prefix of
(a, b). The result is show in Figure 24.8 (ignore the edges).

Sometimes the ADT has to be explicitly initialized with a certain ordering or
grouping (e.g. after asort). To support this, artificial edges are added later on. These
point to the requested ordering or grouping (states inQP

I) and are labeled with the
state that they lead to. Therefore, the input alphabetΣ consists of the sets of functional
dependencies and produced orderings and groupings:

Σ = F ∪QP
I ∪ {ǫ}.

In our example,Σ = {{b→ c}, {b→ d}, (b), (a, b), {b}}.
Accordingly, the domain of the transition relation D is

D ⊆ ((Q \ {q0})× (F ∪ {ǫ})× (Q \ {q0}))
∪ ({qo} ×QP

I ×QP
I).

24.4. DETAILED ALGORITHM 339

b

a,b

a,b,c

b

b,c

b,c

a

{b→ c} ǫ

ǫ

ǫ

{b→ c}

{b→ c}

q0

Figure 24.8: NFSM after addingDFD edges

b

a,b

a,b,c

b

b,ca

{b→ c} ǫ

ǫ

{b→ c}

q0

Figure 24.9: NFSM after pruning artificial states

The edges are formed by the functional dependencies and the artificial edges. Further-
more,ǫ edges exist between orderings and the corresponding groupings, as orderings
are a special case of grouping:

DFD = {(q, f, q′) | q ∈ Q, f ∈ F ∪ {ǫ}, q′ ∈ Q, q ⊢ fq′}
DA = {(q0, q, q) | q ∈ QP

I }
DOG = {(o, ǫ, g) | o ∈ Ω(OI ,F), g ∈ Ω(GI ,F), o ≡ g}

D = DFD ∪DA ∪DOG

First, the edges corresponding to functional dependenciesare added (DFD). In our
example, this results in the NFSM shown in Figure 24.8.

Note that the functional dependencyb→ d has been pruned, sinced does not occur
in any interesting order or grouping. The NFSM can be furthersimplified by pruning
the artificial state(b, c), which cannot lead to a new interesting order. The result is
shown in Figure 24.9. A detailed description of these pruning techniques can be found
in Section 24.4.7.

The artificial start stateq0 has emanating edges incident to all states representing
interesting orders inOP

I and interesting groupings inGP
I (DA). Also, the states rep-

resenting orderings have edges to their corresponding grouping states (DOG), as every
ordering is also a grouping. The final NFSM for the example is shown in Figure 24.10.
Note that the states representing(a, b, c) and{b, c} are not linked by an artificial edge
since it is only tested for, as they are inQT

I .

340CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

qo

{b→ c}
ǫ

ǫ{b→ c}

a b,c

b

a,b,c

a,b

b
ǫ

(a,b)

(b)

{b}

Figure 24.10: Final NFSM

{b→ c}

{b→ c}

{b→ c}
{b}

(b)

(a,b)

6:(a),(a,b),(a,b,c)

5:(b),{b},{b,c}

4:{b},{b,c}

3:(a),(a,b)

2:(b),{b}

1:{b}

qo

Figure 24.11: Resulting DFSM

24.4.4 Constructing the DFSM

The construction of the DFSM from the NFSM follows the standard power set con-
struction that is used to translate an NFA into a DFA [503]. A formal description and
a proof of correctness is given in Section 24.5. It is important to note that this con-
struction preserves the start state and the artificial edges. The resulting DFSM for the
example is shown in Figure 24.11.

24.4.5 Precomputing Values

To allow for an efficient precomputation of values, every occurrence of an interesting
order, interesting grouping or set of functional dependencies is replaced by integers.

state 1: 2: 3: 4: 5: 6:
(a) (a,b) (a,b,c) (b) {b} {b,c}

1 0 0 0 0 1 0
2 0 0 0 1 1 0
3 1 1 0 0 0 0
4 0 0 0 0 1 1
5 0 0 0 1 1 1
6 1 1 1 0 0 0

Figure 24.12:containsMatrix

24.4. DETAILED ALGORITHM 341

state 1: 2: 3: 4:
{b→ c} (a, b) (b) {b}

qo - 3 2 1
1 4 - - -
2 5 - - -
3 6 - - -
4 4 - - -
5 5 - - -
6 6 - - -

Figure 24.13:transitionMatrix

This allows comparisons in constant time (equivalent entries are mapped to same inte-
ger). Further, the DFSM is represented by an adjacency matrix.

The precomputation step itself computes two matrices. The first matrix denotes
whether an NFSM state inQI is active, i.e. an interesting order or an interesting
grouping, is contained in a specific DFSM state. This matrix can be represented as
a compact bit vector, allowing tests in O(1). For our runningexample, it is given (in a
more readable form) in Figure 24.12. The second matrix contains the transition table
for the DFSM relationD. Using it, edges in the DFSM can be followed inO(1). For
the example, the transition matrix is given in Figure 24.13.

24.4.6 During Plan Generation

During plan generation, larger plans are constructed by adding algebraic operators to
existing (sub-)plans. Each subplan contains the availableorderings and groupings in
the form of the corresponding DFSM state. Hence, the state ofthe DFSM, a simple
integer, is the state of our ADTOrderingGrouping .

When applying an operator to subplans, the ordering and grouping requirements
are tested by checking whether the DFSM state of the subplan contains the required
ordering or grouping of the operator. This is done by a simplelookup in thecontains
matrix.

If the operator introduces a new set of functional dependencies, the new state of
the ADT is computed by following the according edge in the DFSM. This is performed
by a quick lookup in thetransitionmatrix.

For “atomic” subplans like table or index scans, the ordering and grouping is deter-
mined explicitly by the operator. The state of the DFSM is determined by a lookup in
the transition matrix with start stateqo and the edge annotated by the produced order-
ing or grouping. For sort and group-by operators the state ofthe DFSM is determined
as before by following the artificial edge for the produced ordering or grouping and
then reapplying the set of functional dependencies that currently hold.

In the example, a sort on(b) results in a subplan with ordering/grouping state 2
(the state 2 is active in the DFSM), which satisfies the ordering (b) and the grouping
{b}. After applying an operator which inducesb → c, the ordering/grouping changes
to state 5 which also satisfies{b, c}.

342CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

24.4.7 Reducing the Size of the NFSM

Reducing the size of the NFSM is important for two reasons: First, it reduces the
amount of work needed during the preparation step, especially the conversion from
NFSM to DFSM. Even more important is that a reduced NFSM results in a smaller
DFSM. This is crucial for plan generation, since it reduces the search space: Plans can
only be compared and pruned if they have comparable orderingand a comparable set
of functional dependencies (see [745, 746] for details). Reducing the size of the DFSM
removes information that is not relevant for plan generation and, therefore, allows a
more aggressive pruning of plans.

At first, the functional dependencies are pruned. Here, functional dependencies
which can never lead to a new interesting order or grouping are removed. For conve-
nience, we extend the definition ofΩ(O,F) and define

Ω(O, ǫ) := Ω(O, ∅).

Then the set of prunable functional dependenciesFP can be described by

ΩN (o, f) := Ω({o}, {f}) \ Ω({o}, ǫ)
FP := {f |f ∈ F ∧ ∀o ∈ OI ∪GI :

(Ω(ΩN (o, f), F) \ Ω({o}, ǫ)) ∩ (OI ∪GI) = ∅}.

Pruning functional dependencies is especially useful, since it also prunes artificial
states that would be created because of the dependencies. Inthe example, this re-
moved the functional dependencyb → d, sinced does not appear in any interesting
order or grouping. This step also removes the artificial states containingd.

The artificial states are required to build the NFSM, but theyare not visible outside
the NFSM. Therefore, they can be pruned and merged without affecting plan genera-
tion. Two heuristics are used to reduce the set of artificial states:

1. All artificial nodes that behave exactly the same (that is,their edges lead to the
same states given the same input) are merged and

2. all edges to artificial states that can reach states inQI only throughǫ edges are
replaced with corresponding edges to the states inQI .

More formally, the following pairs of states can be merged:

{(o1, o2) | o1 ∈ QA, o2 ∈ QA ∧ ∀f ∈ F :

(Ω({o1}, {f}) \ Ω({o1}, ǫ)) =

(Ω({o2}, {f}) \ Ω({o2}, ǫ))}.

The following states can be replaced with the next state reachable by anǫ edge:

{o | o ∈ QA ∧ ∀f ∈ F :

Ω(Ω({o}, ǫ), {f}) \ {o} =

Ω(Ω({o}, ǫ) \ {o}, {f})}.

In the example, this removed the state(b, c), which was artificial and only led to the
state(b).

24.4. DETAILED ALGORITHM 343

These techniques reduce the size of the NFSM, but still most states are artificial
states, i.e. they are only created because they can be reached by considering functional
dependencies when a certain ordering or grouping is available. But many of these
states are not relevant for the actual query processing. Forexample, given a set of
interesting orders which consists only of a single ordering(a) and a set of functional
dependencies which consists only ofa → b, the NFSM will contain (among others)
two states:(a) and(a, b). The state(a, b) is created since it can be reached from(a) by
considering the functional dependency, however, it is irrelevant for the plan generation,
since(a, b) is not an interesting order and is never created nor tested for. Actually, in
the example above, the whole functional dependency would bepruned (sinceb never
occurs in an interesting order), but the problem remains forcombinations of interesting
orders: Given the interesting orders(a), (b) and(c) and the functional dependencies
{a → b, b → a, b → c, c → b}, the NFSM will contain states for all permutations of
a, b andc. But these states are completely useless, since all interesting orders consist
only of a single attribute and, therefore, only the first entry of an ordering is ever tested.

Ideally, the NFSM should only contain states which are relevant for the query;
since this is difficult to ensure, a heuristic can be used which greatly reduces the size of
the NFSM and still guarantees that all relevant states are available: When considering
a functional dependency of the forma→ b and an orderingo1, o2, . . . , on with oi = a
for somei (1 ≤ i ≤ n), theb can be inserted at any positionj with i < j ≤ n + 1
(for the special case of a conditiona = b, i = j is also possible). So, an entry of
an ordering can only affect entries on the right of its own position. This means that
it is unnecessary to consider those parts of an ordering which are behind the length
of the longest interesting order; since that part cannot influence any entries relevant
for plan generation, it can be omitted. Therefore, the orderings created by functional
dependencies can be cut off after the maximum length of interesting orders, which
results in less possible combinations and a smaller NFSM.

The space of possible orderings can be limited further by taking into account the
prefix of the ordering: before inserting an entryb in an orderingo1, o2, . . . , on at the
positioni, check if there is actually an interesting order with the prefix o1, o2, ...oi−1, b
and stop inserting if no interesting order is found. Also limit the new ordering to
the length of the longest matching interesting order; further attributes will never be
used. If functional dependencies of the forma = b occur, they might influence the
prefix of the ordering and the simple test described above is not sufficient. Therefore,
a representative is chosen for each equivalence class created by these dependencies,
and for the prefix test the attributes are replaced with theirrepresentatives. Since the
set of interesting orders with a prefix ofo1, . . . , on is a superset of the set for the prefix
o1, ...on, on+1, this heuristic can be implemented very efficiently by iterating over i
and reducing the set as needed.

Additional techniques can be used to avoid creating superfluous artifical states
for groupings: First, in Step 2.3 (see Figure 24.6) the set ofattributes occurring in
interesting groupings is determined:

AG = {a | ∃g ∈ GI : a ∈ g}

Now, for every attributea occurring on the right-hand side of a functional dependency

344CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

the set of potentially reachable relevant attributes is determined:

r(a, 0) = {a}
r(a, n) = r(a, n− 1) ∪

{a′ | ∃(a1 . . . am → a′) ∈ F :

{a1 . . . am} ∩ r(a, n− 1) 6= ∅}
r(a) = r(a, |F|) ∩AG

This can be used to determine if a functional dependency actually adds useful
attributes. Given a functional dependencya1 . . . an → a and a groupingg with
{a1 . . . an} ⊆ g, a should only be added tog if r(a) 6⊆ g, i.e. the attribute might actu-
ally lead to a new interesting grouping. For example, given the interesting groupings
{a}, {a, b} and the functional dependenciesa → c, a → d, d = b. When considering
the grouping{a}, the functional dependencya → c can be ignored, as it can only
produce the attributec, which does not occur in an interesting grouping. However, the
functional dependencya→ d should be added, since transitively the attributeb can be
produced, which does occur in an interesting grouping.

Since there are noǫ edges between groupings, i.e. groupings are not compatible
with each other, a grouping can only be relevant for the queryif it is a subset of an
interesting ordering (as further attributes could be addedby functional dependencies).
However, a simple subset test is not sufficient, as equationsof the forma = b are
also supported; these can effectively rename attributes, resulting in a slightly more
complicated test:

In Step 2.3 (see Figure 24.6) the equivalence classes induced by the equations in
F are determined and for each class a representative is chosen(a anda1 . . . an are
attributes occuring in theGI):

E(a, 0) = {a}
E(a, n) = E(a, n − 1) ∪

{a′ | ((a = a′) ∈ F) ∨ ((a′ = a) ∈ F)}
E(a) = E(a, |F|)
e(a) = a representative choosen fromE(A)

e({a1 . . . an}) = {e(a1) . . . e(an)}.

Using these equivalence classes, a mapped set of interesting groupings is produced
that will be used to test if a grouping is relevant:

GE
I = {e(g) | g ∈ GI}

Now a groupingg can be pruned if6 ∃g′ ∈ GE
I : e(g) ⊆ g′. For example, given

the interesting grouping{a} and the equationsa = b, b = c, the grouping{d} can
be pruned, as it will never lead to an interesting grouping; however, the groupings{b}
and{c} have to be kept, as they could change to an interesting grouping later on.

Note that although they appear to test similar conditions, the first pruning tech-
nique (usingr(a)) is not dominated by the second one (usinge(a)). Consider e.g. the

24.4. DETAILED ALGORITHM 345

interesting grouping{a}, the equationa = b and the functional dependencya → b.
Using only the second technique, the grouping{a, b} would be created, although it is
not relevant.

24.4.8 Complex Ordering Requirements

Specifying the ordering requirements of an operator can be surprisingly difficult. Con-
sider the following SQL query:

select *
from S s, R r
where r.a=s.a and r.b=s.b and

r.c=s.c and r.d=s.d

When answering this query using a sort-merge join, the operator has to request
a certain odering. But there are many orderings that could beused: The intuitive
ordering would beabcd, but adcb or any other premutation could have been used as
well. This is problematic, as checking for an exponential number of possibilities is not
acceptable in general. Note that this problem is not specificto our approach, the same
is true, e.g., for Simmen’s approach.

The problem can be solved by defining a total ordering betweenthe attributes,
such that a canonical ordering can be constructed. We give some rules how to derive
such an ordering below, but it can happen that such an ordering is unavailable (or
rather the construction rules are ambiguous). Given, for example, two indices, one on
abcd and one onadcb, both orderings would be a reasonable choice. If this happens,
the operators have two choices: Either they accept all reasonable orderings (which
could still be an exponential number, but most likely only a few orderings remaing) or
they limit themselves to one ordering, which could induce unnecessary sort operators.
Probably the second choice is preferable, as the ambiguous case should be rare and
does not justify the complex logic of the first solution.

The attribute ordering can be derived by using the followingheuristical rules:

1. Only attributes that occur in sets without natural ordering (i.e. complex join
predicates or grouping attributes) have to be ordered.

2. Orderings that are given (e.g., indices, user-requestedorderings etc.) order some
attributes.

3. Small orderings should be considered first. If an operatorrequires an order-
ing with the attributesabc, and another operator requires an ordering with the
attributesbc, the attributesb andc should come beforea.

4. The attributes should be ordered according to equivalence classes. Ifa is ordered
beforeb, all orderings inE(a) should be ordered before all orderings inE(b).

5. Attributes should be ordered according to the functionaldependencies, i.e. if
a → b, a should come beforeb. Note thata = b suggests no ordering between
a andb.

6. The remaining unordered attributes can be ordered in an arbitrary way.

346CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

The rules must check if they create contradictions. If this happens. the contra-
dicting ordering must be omitted, resulting in potentiallysuperfluous sort operators.
Note that in some cases these sort operators are simply unavoidable: If for the exam-
ple query one index onR exists with the orderingabcd and one index onS with the
orderingdcba, the heuristical rules detect a contradiction and choose one of the order-
ings. This results in a sort operator before the (sort-merge) join, but this sort could not
have been avoided anyway.

24.5 Converting a NFSM into a DFSM

The algorithm described in this chapter first constructs a non-deterministic FSM and
converts it to a deterministic FSM. For this conversion, theNFSM is treated like an
NFA which is converted to a DFA. It has to be shown that the DFSMresulting from
the conversion is equivalent to the initial NFSM:

24.5.1 Definitions

An NFA [503] consists of a tuple(Σ, Q,D, qo, F), whereΣ is the input alphabet,Q
the set of possible states,D ⊆ Q× (Σ∪ {ǫ})×Q the transition relation,q0 the initial
state andF the set of accepting states. All nodes reachable from a givenset of nodes
Q by following ǫ edges can be described by

E0
D(Q) = Q

E i
D(Q) = {q′|∃q ∈ E i−1

D (Q), (q, ǫ, q′) ∈ D}

ED(Q) =
∞⋃

i=0

E i
D(Q)

Then the NFAacceptsan inputw = w1w2...wn ∈ Σ∗ if Sn ∩ F 6= ∅ where

S0 = ED(qo)

Si = ED({q′|∃q ∈ Si−1 : (q, wi, q
′) ∈ D}).

Similarly, a DFA [503] consists of a tuple(Σ, Q,∆, qo, F) where

∆ ⊆ Q× Σ×Q

∧ ∀a, b, c ∈ Q, d ∈ Σ :

((a, d, b) ∈ ∆ ∧ (a, d, c) ∈ ∆)⇒ b = c.

So a DFA is an NFA which only allows non-ambiguous non-ǫ transitions. The defini-
tion of accepting is analogous to the definition for NFAs.

An NFSM is basically an NFA without accepting states. It consists of a tuple
(Σ, Q,D, qo), whereΣ is the input alphabet,Q the set of possible states,D ⊆ Q ×
(Σ∪ {ǫ})×Q the transition relation andq0 the initial state. While an NFSM does not
have any accepting states it is usually important to know which state is active after a
given input, so in a way each state is accepting.

Likewise, a DFSM basically is a DFA without accepting states. It consists of a
tuple (Σ, Q,∆, qo) whereΣ, Q,∆ and qo are analogous to the DFA. Again, while
there is no set of accepting states, it is important to know which one is active after a
given input.

24.5. CONVERTING A NFSM INTO A DFSM 347

24.5.2 The Transformation Algorithm

The commonly used algorithm to convert an NFA into a DFA (see [503]) can also be
used to convert an NFSM into a DFSM. Since the accepting states are not required
for the algorithm, the NFSM can be regarded as an NFA and converted into a ”DFA”,
which is really a DFSM. The correctness of this transformation is shown in the next
section.

The algorithm converts an NFSM(Σ, Q,D, qo) in a DFSM (Σ, Q′,∆, q′0) with
Q′ ⊆ 2Q. It first constructs a start nodeq′0 = ED({q0}) and then determines for all
DFSM nodesq′ all outgoing edgesδ′ by expanding all edges in the contained NFSM
nodes:

δ(q′) = {(q′, σ, q′2|σ ∈ Σ, q′2 6= ∅,
q′2 = {ED(q2)|(q, σ, q2) ∈ D, q ∈ q′}}.

This results in the DFSM(Σ, Q′,∆, q′o) with

Q′
0 = {q′0}

Q′
i =

⋃

q′∈Q′
i−1
{q′2|∃σ ∈ Σ : (q′, σ, q′2) ∈ δ(q′)}

Q′ =
⋃∞

i=0Q
′
i

∆ =
⋃

q′∈Q′δ(q).

24.5.3 Correctness of the FSM Transformation

Proposition: Given an NFSM(Σ, Q,D, qo), the DFSM(Σ, Q′ ⊆ 2Q,∆, q′0) con-
structed by using the transformation algorithm for NFA to DFA described in [503]
behaves exactly like the NFSM, i.e.

1) ∀w ∈ Σ∗, q ∈ Q, q0
w→ q ∃q′ ∈ Q′ : q′0

w→ q′ ∧ q ∈ q′

2) ∀w ∈ Σ∗, q′a ∈ Q′, q′b ∈ Q′, qa ∈ q′a, qb ∈ q′b :

(qa
w→ qb) iff (q′a

w→ q′b)

Proof: Proposition 1) trivially follows from the definition of the transformation
algorithm, see the definition ofδ′ andQ′ in Section 24.5.2.

The proof for proposition 2) can be derived from the proof in [503], Chapter 2.3:
there, it is shown that for allw ∈ Σ∗, given a nodeq in the NFA and a nodeq′ in the
transformed DFA withq ∈ q′, a nodef ′ in the DFA contains a nodef in the NFA
if and only if q

w→ f andq′
w→ f ′. Since the DFSM is constructed using the same

algorithm, this results in proposition 2).
Therefore, the conversion algorithm used to convert an NFA into a DFA can be

used to convert the NFSM describing the ordering transitions to a DFSM that behaves
the same way as the NFSM.

348CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

n #Edges t (ms) #Plans t/plan t (ms) #Plans t/plan % t % #Plans %. t/plan
5 n-1 2 1541 1.29 1 1274 0.78 2.00 1.21 1.65
6 n-1 9 7692 1.17 2 5994 0.33 4.50 1.28 3.55
7 n-1 45 36195 1.24 12 26980 0.44 3.75 1.34 2.82
8 n-1 289 164192 1.76 74 116562 0.63 3.91 1.41 2.79
9 n-1 1741 734092 2.37 390 493594 0.79 4.46 1.49 3.00
10 n-1 11920 3284381 3.62 1984 2071035 0.95 6.01 1.59 3.81
5 n 4 3060 1.30 1 2051 0.48 4.00 1.49 2.71
6 n 21 14733 1.42 4 9213 0.43 5.25 1.60 3.30
7 n 98 64686 1.51 20 39734 0.50 4.90 1.63 3.02
8 n 583 272101 2.14 95 149451 0.63 6.14 1.82 3.40
9 n 4132 1204958 3.42 504 666087 0.75 8.20 1.81 4.56
10 n 26764 4928984 5.42 2024 2465646 0.82 13.22 2.00 6.61
5 n+1 12 5974 2.00 1 3016 0.33 12.00 1.98 6.06
6 n+1 69 26819 2.57 6 12759 0.47 11.50 2.10 5.47
7 n+1 370 119358 3.09 28 54121 0.51 13.21 2.21 6.06
8 n+1 2613 509895 5.12 145 208351 0.69 18.02 2.45 7.42
9 n+1 27765 2097842 13.23 631 827910 0.76 44.00 2.53 17.41
10 n+1 202832 7779662 26.07 3021 3400945 0.88 67.14 2.29 29.62

Figure 24.14: Plan generation for different join graphs, Simmen’s algorithm (left) vs.
our algorithm (middle)

24.6 Experimental Results

The framework described in this chapter solves two problems: First, it provides an
efficient representenation for reasoning about orderings and second, it allows keep-
ing track of orderings and groupings at the same time. Since these topics are treated
separately in the related work, the experimental results are split in two sections: In
Section 24.7 the framework is compared to another publishedframework while only
considering orderings, and in Section 24.8 the influence of groupings is evaluated.

24.7 Total Impact

We now consider how order processing influences the time needed for plan generation.
Therefore, we implemented both our algorithm and the algorithm proposed by Simmen
et al. [745, 746] and integrated them into a bottom-up plan generator based on [518].

To get a fair comparison, we tuned Simmen’s algorithm as muchas possible. The
most important measure was to cache results in order to eliminate repeated calls to
the very expensivereduceoperation. Second, since Simmen’s algorithm requires dy-
namic memory, we implemented a specially tailored memory management. This alone
gave us a speed up by a factor of three. We further tuned the algorithm by thorough-
ly profiling it until no more improvements were possible. Foreach order optimization
framework the plan generator was recompiled to allow for as many compiler optimiza-
tions as possible. We also carefully observed that in all cases both order optimization
algorithms produced the same optimal plan.

We first measured the plan generation times and memory usage for TPC-R Query
8. A detailed discussion of this query follows in Section 24.8, here we ignored the
grouping properties to compare it with Simmen’s algorithm.The result of this exper-
iment is summarized in the following table. Since order optimization is tightly inte-
grated with plan generation, it is impossible to exactly measure the time spent just for
order optimization during plan generation. Hence, we decided to measure the impact
of order optimization on the total plan generation time. This has the advantage that we
can also (for the first time) measure the impact order optimization has on plan gener-
ation time. This is important since one could argue that we are optimizing a problem

24.7. TOTAL IMPACT 349

with no significant impact on plan generation time, hence solving a non-problem. As
we will see, this is definitely not the case.

In subsequent tables, we denote byt(ms) the total execution time for plan gen-
eration measured in milliseconds, by#Plansthe total number of subplans generated,
by t/plan the average time (in microseconds) needed to introduce one plan operator,
i.e. the time to produce a single subplan, and byMemorythe total memory (in KB)
consumed by the order optimization algorithms.

Simmen Our algorithm
t (ms) 262 52
#Plans 200536 123954
t/plan (µs) 1.31 0.42
Memory (KB) 329 136

From these numbers, it becomes obvious that order optimization has a significant influ-
ence on total plan generation time. It may come as a surprise that fewer plans need to
be generated by our approach. This is due to the fact that the (reduced) FSM only con-
tains the information relevant to the query, resulting in fewer states. With Simmen’s
approach, the plan generator can only discard plans if the ordering is the same and the
set of functional dependencies is equal (respectively a subset). It does not recognize
that the additional information is not relevant for the query.

In order to show the influence of the query on the possible gains of our algorithm,
we generated queries with 5-10 relations and a varying number of join predicates —
that is, edges in the join graph. We always started from a chain query and then ran-
domly added some edges. For small queries we averaged the results of 100 queries
and averaged 10 queries for large queries. The results of theexperiment can be found
in Fig. 24.14. In the second column, we denote the number of edges in terms of the
number of relations (n) given in the first column. The next six columns contain (1) the
total time needed for plan generation (in ms), (2) the numberof (sub-) plans generated,
and (3) the time needed to generate a subplan (inµs), i.e. to add a single plan operator,
for (a) Simmen’s algorithm (columns 3-5) and our algorithm (columns 6-8). The total
plan generation time includes building the DFSM when our algorithm is used. The
last three columns contain the improvement factors for these three measures achieved
by our algorithm. More specifically, column% x contains the result of dividing thex
column of Simmen’s algorithm by the correspondingx column entry of our algorithm.

Note that we are able to keep the plan generation time below one second in most
cases and three seconds in the worst case, whereas when Simmen’s algorithm is ap-
plied, plan generation time can be as high as 200 seconds. This observation leads to
two important conclusions:

1. Order optimization has a significant impact on total plan generation time.

2. By using our algorithm, significant performance gains arepossible.

For completeness, we also give the memory consumption during plan generation
for the two order optimization algorithms (see Fig. 24.15).For our approach, we also
give the sizes of the DFSM which are included in the total memory consumption. All
memory sizes are in KB. As one can see, our approach consumes about half as much
memory as Simmen’s algorithm.

350CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

n #Edges Simmen Our Algorithm DFSM
5 n-1 14 10 2
6 n-1 44 28 2
7 n-1 123 77 2
8 n-1 383 241 3
9 n-1 1092 668 3
10 n-1 3307 1972 4
5 n 27 12 2
6 n 68 36 2
7 n 238 98 3
8 n 688 317 3
9 n 1854 855 4
10 n 5294 2266 4
5 n+1 53 15 2
6 n+1 146 49 3
7 n+1 404 118 3
8 n+1 1247 346 4
9 n+1 2641 1051 4
10 n+1 8736 3003 5

Figure 24.15: Memory consumption in KB for Figure 24.14

24.8 Influence of Groupings

Integrating groupings in the order optimization frameworkallows the plan generator to
easily exploit groupings and, thus, produce better plans. However, order optimization
itself might become prohibitively expensive by considering groupings. Therefore, we
evaluated the costs of including groupings for different queries.

Since adding support for groupings has no effect on the runtime behavior of the
plan generator (all operations are still one table lookup),we measured the runtime and
the memory consumption of the preparation step both with andwithout considering
groupings. When considering groupings, we treated each interesting ordering also
as an interesting grouping, i.e. we assumed that a grouping-based (e.g. hash-based)
operator was always available as an alternative. Since thisis the worst-case scenario, it
should give an upper bound for the additional costs. All experiments were performed
on a 2.4 GHz Pentium IV, using the gcc 3.3.1.

To examine the impact for real queries, we choose a more complex query from the
well-known TPC-R benchmark ([801], Query 8):

select
o year,
sum(case when nation = ’[NATION]’

then volume
else 0

end) / sum(volume) as mktshare
from

(select
extract(year from oorderdate) as oyear,
l extendedprice * (1-ldiscount) as volume,

24.8. INFLUENCE OF GROUPINGS 351

n2.n name as nation
from part,supplier,lineitem,orders,customer,

nation n1,nation n2,region
where

p partkey = lpartkey and
s suppkey = lsuppkey and
l orderkey = oorderkey and
o custkey = ccustkey and
c nationkey = n1.nnationkey and
n1.n regionkey = rregionkey and
r name = ’[REGION]’ and
s nationkey = n2.nnationkey and
o orderdate between date ’1995-01-01’ and

date ’1996-12-31’ and
p type = ’[TYPE]’

) as all nations
group by oyear
order by oyear;

When considering this query, all attributes used in joins, group-by and order-by
clauses are added to the set of interesting orders. Since hash-based solutions are pos-
sible, they are also added to the set of interesting groupings. This results in the sets

OP
I = {(o year), (o partkey), (p partkey),

(l partkey), (l suppkey), (l orderkey),

(o orderkey), (o custkey), (c custkey),

(c nationkey), (n1.n nationkey),

(n2.n nationkey), (n regionkey),

(r regionkey), (s suppkey), (s nationkey)}
OT

I = ∅
GP

I = {{o year}, {o partkey}, {p partkey},
{l partkey}, {l suppkey}, {l orderkey},
{o orderkey}, {o custkey}, {c custkey},
{c nationkey}, {n1.n nationkey},
{n2.n nationkey}, {n regionkey},
{r regionkey}, {s suppkey}, {s nationkey}}

GT
I = ∅

Note that hereOT
I andGT

I are empty, as we assumed that each ordering and group-
ing would be produced if beneficial. For example, we might assume that it makes no
sense to intentionally group byo year: If a tuple stream is already grouped byo year
it makes sense to exploit this, however, instead of just grouping by o year it could
make sense to sort byo year, as this is required anyway (although here it only makes
sense if the sort operator performs early aggregation). In this case,{o year} would
move fromGP

I to GT
I , as it would be only tested for, but not produced.

352CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

The set of functional dependencies (and equations) contains all join conditions and
constant conditions:

F = {{p partkey = l partkey}, {∅ → p type},
{o custkey = c custkey}, {∅ → r name},
{c nationkey = n1.n nationkey},
{s nationkey = n2.n nationkey},
{l orderkey = o orderkey},
{s suppkey = l suppkey},
{n1.n regionkey = r regionkey}}

To measure the influence of groupings, the preparation step was executed twice:
Once with the data as given above and once withGP

I = ∅ (i.e. groupings were ignored).
The space and time requirements are shown below:

With Groups Without Groups
Duration [ms] 0.6ms 0.3ms
DFSM [nodes] 63 32
Memory [KB] 5 2

Here time and space requirements both increase by a factor oftwo. Since all
interesting orderings are also treated as interesting groupings, a factor of about two
was expected.

While Query 8 is one of the more complex TPC-R queries, it is not overly complex
when looking at order optimization. It contains 16 interesting orderings/groupings and
8 functional dependencies, but they cannot be combined in many reasonable ways,
resulting in a comparatively small DFSM. In order to get morecomplex examples,
we produced randomized queries with5 − 10 relations and a varying number of join
predicates. We always started from a chain query and then randomly added additional
edges to the join graph. The results are shown forn− 1, n andn + 1 additional edges.
In the case of 10 relations, this means that the join graph consisted of 18, 19 and 20
edges, respectively.

The time and space requirements for the preparation step areshown in Figure 24.16
and Figure 24.17, respectively. For each number of relations, the requirements for the
combined framework (o+g) and the framework ignoring groupings (o) are shown. The
numbers in parentheses (n− 1, n andn + 1) are the number of additional edges in the
join graph.

As with Query 8, the time and space requirements roughly increase by a factor
of two when adding groupings. This is a very positive result,given that a factor of
two can be estimated as a lower bound (since every interesting ordering is also an
interesting grouping here). Furthermore, the absolute time and space requirements are
very low (a few ms and a few KB), encouraging the inclusion of groupings in the order
optimization framework.

24.9 Annotated Bibliography

Very few papers exist on order optimization. While the problem of optimizing in-
teresting orders was already introduced by Selinger et al. [707], later papers usually

24.9. ANNOTATED BIBLIOGRAPHY 353

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

du
ra

tio
n

(m
s)

no of relations

preparation time

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 24.16: Time requirements for the preparation step

concentrated on exploiting, pushing down or combining orders, not on the abstract
handling of orders during query optimization.

Papers by Simmen, Shekita, and Malkemus [745, 746] introduced a framework
based on functional dependencies for reasoning about orderings. Since this is the only
paper which really concentrates on the abstract handling orders and our approach is
similar in the usage of functional dependencies, we will describe their approach in
some more detail.

For a plan node they keep just a single (physical) ordering. Additionally, they
associate all the applicable functional dependencies witha plan node. Hence, the
lower-bound space requirement for this representation is essentiallyΩ(n), wheren is
the number of functional dependencies derived from the query. Note that the set of
functional dependencies is still (typically) much smallerthan the set of all logical or-
derings. In order to compute the functioncontainsOrdering , Simmen et al. apply
a reduction algorithmon both the ordering associated with a plan node and the order-
ing given as an argument tocontainsOrdering . Their reduction roughly does
the opposite of deducing more orderings using functional dependencies. Let us briefly
illustrate the reduction by an example. Assume the physicalordering a tuple stream
satisfies is(a), and the required ordering is(a, b, c). Further assume that there are two
functional dependencies available:a → b anda, b → c. The reduction algorithm is
performed on both orderings. Since(a) is already minimal, nothing changes. Let us
now reduce(a, b, c). We apply the second functional dependency first. Usinga, b→ c,
the reduction algorithm yields(a, b) becausec appears in(a, b, c) aftera andb. Hence,
c is removed. In general, every occurrence of an attribute on the right-hand side of a
functional dependency is removed if all attributes of the left-hand side of the function-
al dependency precede the occurrence. Reduction of(a, b) by a→ b yields(a). After
both orderings are reduced, the algorithm tests whether thereduced required ordering

354CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

m
em

or
y

(K
B

)

no of relations

memory consumption of precomputed values

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 24.17: Space requirements for the preparation step

is a prefix of the reduced physical ordering. Note that if we applied a → b first, then
(a, b, c) would reduce to(a, c) and no further reduction would be possible. Hence, the
rewrite system induced by their reduction process is not confluent. This problem is
not mentioned by Simmen et al., but can have the effect thatcontainsOrdering
returnsfalsewhereas it should returntrue. The result is that some orderings remain
unexploited; this could be avoided by maintaining a minimalset of functional depen-
dencies, but the computation costs would probably be prohibitive. This problem does
not occur with our approach. On the complexity side, every functional dependency
has to be considered by the reduction algorithm at least once. Hence, the lower time
bound isΩ(n).

In case all functional dependencies are introduced by a single plan node and all of
them have to be inserted into the set of functional dependencies associated with that
plan node, the lower bound forinferNewLogicalOrderings is alsoΩ(n).

Overall, Simmen et al. proposed the important framework fororder optimization
utilizing functional dependencies and nice algorithms to handle orderings during plan
generation, but the space and time requirements are unfortunate since plan generation
might generate millions of subplans. Also note that the reduction algorithm is not
applicable for groupings (which, of course, was never intended by Simmen): Given
the grouping{a, b, c} and the functional dependenciesa→ b andb→ c, the grouping
would be reduced to{a, c} or to {a}, depending on the order in which the reductions
are performed. This problem does not occur with orderings, as the attributes are sorted
and can be reduced back to front.

A recent paper by Wang and Cherniack [832] presented the ideaof combining
order optimization with the optimization of groupings. Based upon Simmen’s frame-
work, they annotated each attribute in an ordering with the information whether it is
actually ordered by or grouped by. For a single attributea, they writeOaO (R) to de-

24.9. ANNOTATED BIBLIOGRAPHY 355

note thatR is ordered bya, OaG(R) to denote thatR is grouped bya andOaO→bG to
denote thatR is first ordered bya and then grouped byb (within blocks of the same
a value). Before checking if a required ordering or grouping is satisfied by a given
plan, they use some inference rules to get all orderings and groupings satisfied by the
plan. Basically, this is Simmen’s reduction algorithm withtwo extra transformations
for groupings. In their paper the check itself is just written as∈, however, at least one
reduction on the required ordering would be needed for this to work (and even that
would not be trivial, as the stated transformations on groupings are ambiguous). The
promised details in the cited technical report are currently not available, as the report
has not appeared yet. Also note that, as explained above, thereduction approach is
fundamentally not suited for groupings. In Wang’s and Cherniack’s paper, this prob-
lem does not occur, as they only look at a very specialized kind of grouping: As stated
in their Axiom 3.6, they assume that a groupingOaG→bG is first grouped bya and then
(within the block of tuples with the samea value) grouped byb. However, this is a
very strong condition that is usually not satisfied by a hash-based grouping operator.
Therefore, their work is not general enough to capture the full functionality offered by
a state-of-the-art query execution engine.

In this chapter, we followed [578, 577].

356CHAPTER 24. DERIVING AND DEALING WITH INTERESTING ORDERINGS AND GROUPINGS

Chapter 25

Other Issues in Plan Generation

25.1 Plan Generation for Compressed Databases

compressed data bases: [143]

25.2 Generating DAGs-Plans

generating DAGs:

@misc{ roy-optimization,
author = "Prasan Roy",
title = "Optimization of DAG-Structured Query Evaluation P lans",
url = "citeseer.nj.nec.com/roy98optimization.html" }

357

358 CHAPTER 25. OTHER ISSUES IN PLAN GENERATION

Part VI

Cardinality and Cost Estimates

359

Chapter 26

Introduction

Every physical algebraic operator has associated costs. Wedistinguish between CPU-
costs, I/O-costs, and (possibly) communication costs. To derive the total cost these
cost factors are summed up, possibly weighted with some factors. These factors are
used to emphasize CPU-costs for CPU bound systems and I/O costs for I/O bound
systems. For example, we can compute the total costs by the formula total cost =
wcpu ∗ CPU-cost+ wI/O ∗ I/O-costwhere thewx are weighting factors. Given the
costs for all operators occurring in a plan, the total cost ofthe plan is just the sum of
the costs of the operators in the plan.

Operator costs depend on the cardinality of its input(s). For example, the cost of
evaluatingσp(e1) can be estimated byncp if n is the cardinality of the intermediate
result of the plane1 andcp is the average cost of evaluating the predicatep on a single
input tuple. This is the CPU cost of the selection operator.

The problem of estimating cardinalities is discussed in Section ??. A prerequisite
for cardinality estimation are database statistics.

Database statistics and their usage to estimate cardinalities and costs often rely on
certain assumptions, that do not necessarily hold in practice. These assumptions are
[162, 534]:

• uniform distribution of attribute values

• indepencence of attribute values

• for a join it is assumed that the projection of the join attributes of the smaller
relation are a subset of the join attributes of the larger relation (assumes inclusion
dependency)

• constant number of tuples per page

• random placement of tuples among pages

These assumption form the starting point for every databasestatistics and estimation
procedure. Implications of these assumptions are discussed in [534]. Elaborations to
account for deviations from these assumptions are still a matter of research.

Database statistics are used to estimate cardinalities, sizes and costs during plan
generation [534]. The core numbers that are kept for every relation/extent are cardi-
nality and size in pages. If slotted pages are used, the number of overflow records is of
interest, too. If possible, the CPU and I/O costs for scanning are sampled.

361

362 CHAPTER 26. INTRODUCTION

Additionally, for every attribute, the number of differentvalues, min/max values
and the average length of the values (in bytes) are collected.1 These are used to es-
timate selectivities (see next chapter) by relying on a uniform distribution of values.
However, this assumption often turns out to be wrong. Hence,other statistics are ad-
ditionally collected. For example, for the 10 most/least frequently occurring values,
their number of occurrences is collected. Another statistics that is often collected are
quantiles. If, for example 10 quantiles are collected, then ten valuesare stored such
that they equal or exceed 10%, 20%,. . . , 100% of the occurringvalues.

A more elaborate technique is to collect histograms [408, 630, 423, 540]. Most
common are equi-width and equi-depth histograms [574]. Foran equi-width his-
togram, the (attribute’s active) domain is partitioned into intervals of equal width. For
every interval, the number of occurring values is memorized. Within every interval,
uniform distribution is assumed. In equi-depth histograms, the domain is partitioned
such that in every partition the same number of values occurs.

Statistics should carry over to intermediate results. As wewill see in the next
section, they can be estimated given an operator (selection, join, etc.) and the statistics
of the input(s). The cardinalities for the intermediate results are hold as cardinality
properties in every plan operator node. The mostly used estimated statistics are:

1. min/max/avg size of a single intermediate result tuple

2. min/max cardinality proven (key, fd’s)

3. min/max cardinality estimated

4. min/max distinct values proven

5. min/max distinct values estimated

For every IU (attribute) of a tuple in an intermediate result, we should be able to
estimate the number of distinct values it is bound to and for collection-valued IUs
we must estimate the sizes of the collections they are bound to.

26.1 Selection

After scanning a relation, we exactly know how many tuples are retrieved (if our statis-
tics is correct). But how many tuples do we have after a selection, a join, a projection
with duplicate elimination, or a grouping?

For selections, the approach can be as simple (and crude) as the following. Denote
by theselectivityf (also calledfilter factor) of a selection operation the fraction of
tuples that qualify, that isf =

σp(|R|)
|R| . Then,f can be estimated for every class of

predicatesp. For example,

f = 1/10 for equality predicates
f = 1/3 for range predicates
f = 1/20 for is-null predicates
f = 1/10 for like predicates

1Since border values are often used to denote exceptional values, the second highest and second lowest
value are used.

26.2. JOIN 363

Obviously, this is very rough. At the other end of the spectrum, we are able to estimate
the number of output tuples very precisely, if we have an equality predicate for a key
attribute and a constant. This will always result in at most asingle tuple. For more
conditions restricting the output to a single tuple and their usefulness see [612, 744].

In general the statistics will be used to estimate the selectivity. For example, for
an equality predicatep of the formA = c, for a constantc and an attributeA, we
estimate the selectivityf = 1/dA if dA is the number of distinct values forA. Hence,
we estimate thatσp(R) returns||R|| ∗ 1/dA tuples if ||R|| is the number of tuples in
R. If we have more than a single selection, we multiply the selectivities. We combine
selectivity factors according the following formulas:

fp∧q = fp ∗ fq

fp∨q = fp + fq − fp ∗ fq

f¬p = 1− fp

Note that this assumes indepencence. Since this is a very dangerous assumption, an-
other approach sometimes found is to take the minimum of all selectivities as the
selectivity of a conjunction of predicates.

26.2 Join

The selectivity of a joinR 1 S is defined asf = ||R1S||
||R||∗||S||. We can precisely determine

the number of output tuples, if the join is an equijoin over foreign key attributes inS
and key attributes inR. Then for every tuple found inS exactly one matching partner
in R is found. Hence,f = 1/||R|| holds. To estimate the selectivity of a general n:m-
join R 1R.A=S.B S under an inclusion dependency, the formulaf = 1/max(dA, dB)
can be used, wheredA anddB are the number of distinct values for attributeA andB,
resp. [806, 707].

The classic [707] contains a table for computing selectivities for different predi-
cates. This table contains the above mentioned estimates plus some more. With an
adopted notation, we present the estimates in Table 26.1.

26.3 Projection, Grouping, and Duplicate Elimination

We come to estimate the size of a projection with duplicate elimination. Before we
present the formula, note that this estimate also serves to estimate the result size of a
grouping operation. There are several papers on estimatingprojection sizes [18, 291,
290, 568]. We now present the formula by Mukkamala and Jajodia [568] for estimating
the result size of a projection. LetR′(A,B) be a relation with attributesA andB with
|dom(A)| = m and |dom(B)| = n. Let p be the number of distinctA values for a
givenB value and letq be the number of distinctB values for a givenA value. Further
let Q be a unary relation ofk distinctA values and letR be the natural join ofQ and
R′. If np = mq then the expected number of tuples in the projection ofR ontoB is

Es(R[B]) = n

(

1−
(m−p

k

)

(
m
k

)

)

364 CHAPTER 26. INTRODUCTION

a = c f = 1/da if da is known
f = 1/10 otherwise

a1 = a2 f = 1/max(da1 , da2) if da1 andda2 are known
f = 1/dai if only dai (i ∈ {1, 2}) is known
f = 1/10 otherwise

a > c f = max(a)−a
max(a)−min(a) if a is of a number type

andmin(a) andmax(a) are known
f = 1/3 otherwise

a betweenc1 andc2 f = c2−c1
max(a)−min(a) if min(a) andmax(a) are known

f = 1/4 otherwise
a in list f = min(1/2, n ∗ f) wheren is the number of values in

the list andf is the selectivity ofa = c
a in subquery f = n/p wheren is the (estimated) result cardinality

of the subquery andp is the product of the cardinalities
of all rthe relations in the subqueriesfrom clause

We used the following notation:

a, a1, a2 attributes
c, c1, c2 constant
da number of distinct values ofa
max(a) maximum value of attributea
min(a) minimum value of attributea

Table 26.1: Selectivity estimates for several predicates [707]

A simpler upper bound can be derived by multiplying the number of distinct values of
the attributes which are projected or which occur in thegroup by clause.

26.4 Feedback from Runtime

[38] [446] [141] [8] [763] [95] [433] [640] [809]

26.5 Bibliography

Database Statistics [234] Overview article of data reduction techniques. [18] [289]
cardinality of join result [661]
[26, 132, 408, 630, 540, 819, 574]
Cost Models
[8, 9] [50, 64, 73, 152, 119] [145] [155, 157, 158, 161, 162] [184] [165, 166, 206,

240, 272, 276, 277, 278, 351] [354, 375, 357, 356, 355] [409, 408] [472, 512, 513,
522, 524] [534, 525, 526, 540, 819, 550, 565, 568] [630, 629, 619, 723] [790] [210]
[26, 423]

selectivity on strings: [422, 419, 472]

26.5. BIBLIOGRAPHY 365

Two Cost Models for Join Algorithms [351]
XML: [7, 144, 254, 510, 626, 627, 624, 861, 862]

366 CHAPTER 26. INTRODUCTION

Chapter 27

Statistics and Cardinality
Estimates

27.1 Uniformity and Independence Assumption

Database statistics are used to estimate cardinalities, sizes and costs during plan gener-
ation [534]. The core numbers that are kept for every relation/extent are cardinality and
size in pages. If slotted pages are used, the number of overflow records is of interest,
too. If possible, the CPU and I/O costs for scanning are sampled.

Additionally, for every attribute, the number of differentvalues, min/max values
and the average length of the values (in bytes) are collected.1 These are used to es-
timate selectivities (see next chapter) by relying on a uniform distribution of values.
However, this assumption often turns out to be wrong. Hence,other statistics are ad-
ditionally collected. For example, for the 10 most/least frequently occurring values,
their number of occurrences is collected. Another statistics that is often collected are
quantiles. If, for example 10 quantiles are collected, then ten valuesare stored such
that they equal or exceed 10%, 20%,. . . , 100% of the occurringvalues.

A more elaborate technique is to collect histograms [408, 630, 423, 540]. Most
common are equi-width and equi-depth histograms [574]. Foran equi-width his-
togram, the (attribute’s active) domain is partitioned into intervals of equal width. For
every interval, the number of occurring values is memorized. Within every interval,
uniform distribution is assumed. In equi-depth histograms, the domain is partitioned
such that in every partition the same number of values occurs.

Statistics should carry over to intermediate results. As wewill see in the next
section, they can be estimated given an operator (selection, join, etc.) and the statistics
of the input(s). The cardinalities for the intermediate results are hold as cardinality
properties in every plan operator node. The mostly used estimated statistics are:

1. min/max/avg size of a single intermediate result tuple

2. min/max cardinality proven (key, fd’s)

3. min/max cardinality estimated

1Since border values are often used to denote exceptional values, the second highest and second lowest
value are used.

367

368 CHAPTER 27. STATISTICS AND CARDINALITY ESTIMATES

4. min/max distinct values proven

5. min/max distinct values estimated

For every IU (attribute) of a tuple in an intermediate result, we should be able to
estimate the number of distinct values it is bound to and for collection-valued IUs
we must estimate the sizes of the collections they are bound to.

27.2 Dropping the Uniformity Assumption

27.2.1 ToDo

• [886, 887]

• sampling: [26]

27.3 Dropping the Independence Assumption

27.4 Bibliography

• String predicates: [128]

Cardinality estimates for

• [18], [293], [282, 281]

• Join [661] [156, 159, 160] [280], [284],[409],[407], [790]

• semijoin: [279]

• Projection: [279], [291], [290], [292],[568]

• Count(e), e arbitrary relational expression, sampling: [396]

• partial preaggregation: [390]

• Wang et al: [830, 829]

Maintenance: [296]
Streams: [341]
Joins: [438]

Chapter 28

Cost functions for selected
algebraic operators

As we have seen, estimating the CPU-costs for selections is very simple. The same is
true for the mapping operator as long as the costs of the subscripts (predicates and/or
function calls) can be estimated. How to do this, especiallyfor user-defined functions
is still a matter of research. The only approach known so far is averaging a sample of
executions.

28.1 Scan Operations

DiskModels

[802]

28.2 I/O costs for index-based access

If we scan a whole relation, estimating the I/O cost is rathertrivial. This becomes dif-
ferent, if we use an index to retrieve RIDs and subsequently access the base relations.
The question is how many page accesses occur. The solution tothe question was given
by Yao [875]. Define

n = number of records of the file

p = number of pages of the file

q = number of (distinct) records selected by the query

Under the assumption that1 < p ≤ n andq ≤ n − n/p, we can estimate the number
of accessed pages by

p ∗
[

1−
q
∏

i=1

n ∗D − i + 1

n− i + 1

]

whereD = 1− 1/p. Yao’s formula is an improvement of Cardena’s formula [104]. A
pretty precise approximation of Yaos’s formula that can be computed much faster can

369

370CHAPTER 28. COST FUNCTIONS FOR SELECTED ALGEBRAIC OPERATORS

Notation Name Value Comment
P page size 8KB

CT total I/O cost
TS avg seek time 8.3ms
TL avg latency time 2.6ms = half disc rotation time
TX page transfer cost 2.6ms derived from transfer rate of device

NS number of seeks
NI/O number of I/Os
NX number of transfers

F universal fudge factor 1.2 for storage overhead

|R| size of relation (pages) |R| ≤ |S|
|S| size of relation (pages) |R| ≤ |S|

M memory size
MR pages used forR
MS pages used forS MS = M −MR

I input buffer size
O output buffer size

Table 28.1: Parameter for cost model [351]

be found in [283]:
p ∗ (1− (1− q

fp
)f)

wheref = n/p is the blocking factor, that is the (avg) number of tuples perpage.
The number computed with the Yao formula does not include thenumber of page

accesses performed by the index. For a B-tree, the number of page accesses is equal
to its height, typically three. For extensible hashing, onepage access suffices.

28.3 I/O costs for join algorithms

Cost models that estimate the number of block accesses for different join algorithms
can be found in [351, 375].

We briefly review the cost model of Hass, Carey, Livny, Shukla[351]. Table 28.1
summarizes the parameters needed for the cost model.

Total I/O Cost

CT = NSTS + NI/OTL + NXTX (28.1)

Comment: Small seeks from one cylinder to the next are ignored, since the transfer
time (216ms) of a whole cylinder is much higher than the smallseek time to jump to
the next cylinder.

28.3. I/O COSTS FOR JOIN ALGORITHMS 371

Blockwise nested loop join

NS = 2NB (28.2)

NI/O = NB ∗ (1 + ⌈ |S|
MS
⌉) (28.3)

NX = |R|+ (NB ∗ |S|) (28.4)

NB = ⌈|R|F
MR
⌉ (28.5)

Sort-Merge Join assumption:M >
√

F |S|.

NS = 4 + ⌈ |R|
MPR

⌉+ ⌈ |S|
MPR

⌉ (28.6)

NI/O = ⌈|R|
I
⌉+ ⌈|R|

O
⌉+ ⌈|S|

I
⌉+ ⌈|S|

O
⌉+ ⌈ |R|

MPR
⌉+ ⌈ |S|

MPR
⌉ (28.7)

NX = 3|R|+ 3|S| (28.8)

RL = ⌈2 ∗WS

F
⌉ (28.9)

MPR =
M

NRR + NRS
(28.10)

NRR = ⌈ |R|
RL
⌉ (28.11)

NRS = ⌈ |S|
RL
⌉ (28.12)

WS = M − I −O (28.13)

whereI input buffer size,O output buffer size,MPR is the merge buffer size. Addi-
tionally, for the sorting some workspaceWS = M−I−O must be allocated for array
or turnament tree or something thelike.RL is the run length.NRR is the number of
runs forR, NRS is the number of runs forS.

Simple Hash Join

NS = 2 ∗NI + 2 ∗ (NI − 1) = 4 ∗NI − 2 (28.14)

NI/O =
1

I
[NI ∗ (|R|+ |S|)− 1

2
NI ∗ (NI − 1) ∗ (KR + KS)]

+
1

O
[(NI − 1) ∗ (|R|+ |S|)− 1

2
NI ∗ (NI − 1) ∗ (KR + KS)](28.15)

NX = (2 ∗NI − 1) ∗ (|R|+ |S|)−NI ∗ (NI − 1) ∗ (KR + KS) (28.16)

KR = ⌈WS

F
⌉ (28.17)

KS = ⌊|S|KR

|R| ⌋ (28.18)

NI = ⌈|R|F
WS

⌉ (28.19)

WS = M − I −O (28.20)

372CHAPTER 28. COST FUNCTIONS FOR SELECTED ALGEBRAIC OPERATORS

NI number of iterations
KR number of pages ofR kept in memory on each iteration
KS number of pages ofS that match the in-memory portion ofR on each iteration

Grace Hash Join AssumeM >
√

F |R|

NS = 2 + ⌈|R|
O
⌉+ ⌈|S|

O
⌉+ 2B (28.21)

NI/O = ⌈|R|
I1
⌉+ ⌈|R|

O
⌉+ ⌈|S|

I1
⌉+ ⌈|S|

O
⌉+ B + ⌈|S|

I2
⌉ (28.22)

NX = 3|R|+ 3|S| (28.23)

O = ⌊M − I1

B
⌋ (28.24)

B = ⌈ |R|F
M − I1

⌉ (28.25)

(28.26)

B is the number of buckets,I1 is the input buffer size for the first phase,I2 is the input
buffer size of the second phase

Hybrid Hash Join AssumeM >
√

F |R|

NS = 2 + ⌈|R
′|

O
⌉+ ⌈|S

′|
O
⌉+ 2K (28.27)

NX = |R|+ |S|+ 2|R′|+ 2|S′| (28.28)

NI/O = ⌈|R|
I1
⌉+ ⌈|R

′|
O
⌉+ ⌈|S|

I1
⌉+ ⌈|S

′|
O
⌉+ K + ⌈|S

′|
I2
⌉ (28.29)

|R0| = ⌊WS

F
⌋ (28.30)

|R′| = |R| − |R0| (28.31)

|S′| = ⌈|S| ∗ (1− |R0|
|R|)⌉ (28.32)

K = ⌈|R|F − (M − I1)

M − I2 −O
⌉ (28.33)

WS = M −K ∗O − I1 (28.34)

(28.35)

whereK is the smallestK for which

K ∗ (M − I2) + WS > |R|F

28.4 Sorting, Grouping, and Duplicate Elimination

28.5 Bibliography

[875] [883]

28.5. BIBLIOGRAPHY 373

[83] [93] [96] [145] [144] [185] [184] [210] [240] [355] [418] [419] [420] [422]
[472] [463] [468] [489] [514] [532] [790] [789] [829] [540] [843] [845] [886] [887]

Hybrid hash join: [609]

374CHAPTER 28. COST FUNCTIONS FOR SELECTED ALGEBRAIC OPERATORS

Part VII

Implementation

375

parsing

nfst

rewrite I

plan generation

rewrite II

code generation

abstract syntax tree

internal representation

internal representation

internal representation

internal representation

execution plan

query

query
optimizer

CTS

Figure 29.1: The compilation process

377

378 CHAPTER 29. ARCHITECTURE OF A QUERY COMPILER

PlanGenerator

run(PlanGenerator_CB*)

Rewrite_I

run(Rewrite_I_CB*)

Rewrite_II

run(Rewrite_II_CB*)

CodeGenerator

run(CodeGenerator_CB*)

NFST

run(NFST_CB*)

QueryCompilerParser

parse(Query_CB*)

11..* 11..*

Scanner

Singleton,
Facade

Figure 29.2: Class Architecture of the Query Compiler

Chapter 29

Architecture of a Query Compiler

29.1 Compilation process

29.2 Architecture

Figure 29.1 a path of a query through the optimizer. For everystep, a single component
is responsible. Providing a facade for the components results in the overall architecture
(Fig. 29.2). Every component is reentrant and stateless. The information necessary for
a component to process a query is passed via references to control blocks. Control
blocks are discussed next, then we discuss memory management. Subsequent sections
describe the components in some detail.

29.3 Control Blocks

It is very convenient to have a hierarchy of control blocks within the optimizer. Fig-
ure 29.3 shows some of the control blocks. For simplification, those blocks concerned
with session handling and transaction handling are omitted. Every routine call with-
in the optimizer has a control block pointer as a parameter. The routines belonging
to a specific phase have a pointer to the phase’ specific control block as a parameter.

29.3. CONTROL BLOCKS 379

SchemaCache

Global_CB Rewrite_I_CB

Rewrite_II_CB

Factorizer

BlockHandler

NFST_CB

MemoryManager

BitMapHandlerPlanGenerator_CBQuery_CB

RegisterManager

CodeGenerator_CB OperatorFactory

OpCodeMapper

Figure 29.3: Control Block Structure

For example, the routines in NFST have aNFSTCBpointer as a parameter. We now
discuss the purpose of the different control blocks.

The global control block governs the behavior of the query compiler. It contains
boolean variables indicating which phases to perform and which phases of the compi-
lation process are to be traced. It also contains indicatorsfor the individual phases. For
example, for the first rewrite phase it contains indicators which rules to apply, which
rules to trace and so on. These control indicators are manipulated by the driver which
also allows to step through the different phases. This is very important for debugging
purposes. Besides this overall control of the query compilers behavior, the global con-
trol block also contains a pointer to the schema cache. The schema cache itself allows
to look up type names, relations, extensions, indexes, and so on.

The query control block contains all the information gathered for the current query
so far. It contains the abstract syntax tree, after its construction, the analyzed and
translated query after NFST has been applied, the rewrittenplan after theRewrite I
phase, and so on. It also contains a link to the memory managerthat manages memory
for this specific query. After the control block for a query iscreated, the memory
manager is initialized. During the destructor call, the memory manager is destroyed
and memory released.

Some components need helpers. These are also associated with the control blocks.
We discuss them together with the components.

380 CHAPTER 29. ARCHITECTURE OF A QUERY COMPILER

29.4 Memory Management

There are three approaches to memory management in query optimizers. The first ap-
proach is to use an automatic garbage collector if the language provides one. This is
not necessarily the most efficient approach but by far the most convenient one. This
approach can be imitated by an implementation based on smartpointers. I would not
recommend doing so since the treatment of cycles can be quitetricky and it is ineffi-
cient. Another approach would be to collect all references to newly created objects and
release these after the query has been processed. This approach is easy to implement,
very convenient (transparent to the implementor), but inefficient. A better approach is
to allocate bigger areas of memory by a memory manager. Factories1 then use these
memory chunks to generate objects as necessary. After the query has been processed,
the chunks are freed.

Here, we consider only memory whose duration lasts for the processing of a single
query. In general, we have more kinds of memory whose validity conforms to sessions
and transactions.

29.5 Tracing and Plan Visualization

29.6 Driver

29.7 Bibliography

1Design pattern.

Chapter 30

Internal Representations

30.1 Requirements

easy access to information
query representation: overall design goal: methods/functions with semantic mean-

ing, not only syntactic meaning.
relationships: consumer/producer (occurrance) precedence order information equiv-

alence of expressions (transitivity of equality) see also expr.h fuer andere funktio-
nen/beziehungen die gebraucht werden

2-ebenen repraesentation. 2. ebene materialisiert einigebeziehungen und funktio-
nen, die haeufig gebraucht werden und kompliziert zu berechnen sind anderer grund
fuer materialisierung: vermeide zuviele geschachtelte forschleifen. bsp: keycheck:
gegeben eine menge von attributen und eine menge von schluesseln, ist die menge ein
schluessel? teste jeden schluessel, kommt jedes element inschluessel in menge von
attributen vor? (schon drei schleifen!!!)

modellierungsdetail: ein grosser struct mit dicken case oder feine klassenhierar-
chie. wann splitten: nur wenn innerhalb des optimierers verschiedene abarbeitung
erfordert.

Representation: info captured: 1) 1st class information (information obvious in
original query+(standard)semantic analysis) 2) 2nd classinformation (derived infor-
mation) 3) historic information (during query optimization itself) - modified (original
expression, modifier) - copied (original expression, copier) 4) information about the
expression itselt: (e.g.: isfunction call, is select) 5) specific representations for spe-
cific purposes (optimization algorithms, code generation,semantic analysis) beziehun-
gen zwischen diesen repraesentationen

info captured for 1) different parts of the optimizer
syntactic/semantic information
garbage collection: 1) manually 2) automatic 3) semi-automatic (collect refer-

ences, free at end of query)

30.2 Algebraic Representations

relational algebra in: [180].

381

382 CHAPTER 30. INTERNAL REPRESENTATIONS

30.2.1 Graph Representations

30.2.2 Query Graph

also calledobject graph: [70, 882]

30.2.3 Operator Graph

used in: [751], [878]
enhanced to represent physical properties: [666]
with outerjoins: [663], [268]
graph representation and equivalence to calculus: [594]

30.3 Query Graph Model (QGM)

30.4 Classification of Predicates

klassifikation von praedikaten

• nach stelligkeit,wertigkeit (selektion, join, nasty)

• nach funktor(=,¡,..., between, oder boolsche funktion)

• nach funktion: fuer keys in index: start/stop/range/exact/enum range(in-predicate)

• nach sel-wert: simple (col = const), komplex (col = expr) cheap/expensive

• nach join wert: fuer hj, smj, hbnlj,...

• korrelationspraedikate

30.5 Treatment of Distinct

30.6 Query Analysis and Materialization of Analysis Results

Questions:

1. was materialisieren wir

2. was packen wir in die 1. repraesentation?

• bsp: properties: zeiger auf property oder besser inline properties

• bsp: unique number: entweder in expr oder getrennter dictionary struktur

query analysis (purpose, determine optimization algorith m)
#input relations, #predicates, #ex-quantifiers, #all-qu antifiers,
#conjunctions, #disjunctions, #joingraphkind(star,cha in,tree,cyclic)
#strongly-connected-components (for crossproduct indic ation)
#false aggregates in projection list clause (implies group ing required)
/ * remark: typical query optimizes should at least have two alg orithms:

30.7. QUERY AND PLAN PROPERTIES 383

- exhaustive (for large queries)
- heuristic (for small queries)

* /

for blocks: indicator whether they should produce a null-tuple, in case they do not
produce any tuple. this is nice for some rewrite rules. otherpossibility: if-statement in
algebra.

30.7 Query and Plan Properties

Logical and Physical Properties of Plans
Ausführungsplänen können eine Reihe von Eigenschaftenzugeordnet werden. Diese

Eigenschaften fallen in drei Klassen

1. logische Eigenschaften, also beispielsweise

(a) beinhaltete Relationen

(b) beinhaltete Attribute

(c) angewendete Prädikate

2. physische Eigenschaften, also beispielsweise

(a) Ordnung der Tupel

(b) Strom oder Materialisierung des Ergebnisses

(c) Materialisierung im Hauptspeicher oder Hintergrundspeicher

(d) Zugriffspfade auf das Ergebnis

(e) Rechnerknoten des Ergebnis (im verteilten Fall)

(f) Kompression

3. quantitative Eigenschaften, also beispielsweise

(a) Anzahl der Elemente im Ergebnis

(b) Größe des Ergebnisses oder eines Ergebniselementes

(c) Auswertungskosten aufgeschlüsselt nach I/O, CPU und Kommunikation-
skosten

kosten: diese sind zu berechnen und dienen als grundlage fuer die planbewertung
ges-kosten /* gesamt kosten (ressourcenverbrauch) */ ges-kosten += cpu-instr / in-
st/sek ges-kosten += seek-kosten * overhead (waiting/cpu)ges-kosten += i/o-kosten
* io-weight cpu-kosten /* reine cpu-kosten */ i/o-kosten /*hintergrundspeicherzu-
griff (warten auf platte + cpu fuer seitenzugriffe) */ com-kosten /* kommunikation
/ com-init / initialisierungskosten fuer kommunikationsvorgang */ com-exit /* ex-
itkosten fuer kommunikationsvorgang */ com-cptu /* kostenfuer jede transfereinheit
(z.b. byte) waehrend eines kommunikationsvorgangs */

kostenstruktur koennte etwas sein, dass ges/cpu/io kostenenthaelt. ausserdem
waeren kosten fuer rescanning interessant, falls dies notwendig ist (pufferprobleme,

384 CHAPTER 30. INTERNAL REPRESENTATIONS

indexscan und dann faellt seite raus) weiteres interessantes kostenmass sind die kosten,
bis das erste tupel berechnet wird.

dies sind die konstanten, die system-abhaengig sind. am besten sind, sie werden
gemessen. Hardware: #cpu-instruktionen pro sekunde #cpu-instruktionen fuer block
zugriff/transfer lesen/schreiben #cpu-instruktionen pro transfer init/send/exit init/receive/exit
ms fuer seek/latency/transfer pro nK block

RTS-kosten #cpu-instruktionen fuer open/next/close fuerscan operatoren unter
verschiedenen voraussetzungen:mit/ohne praedikat, mit/ohne projektion (entsprechend
den avm programmen) #cpu-instruktionen fuer open/next/close fuer jeden alg operator,
#cpu-instruktionen fuer funktionen/operationen/praedikate/avm-befehle

statistics: first/large physical page of a relation number of pages of a relation -¿ to
estimate scan cost measured sequential scan cost (no interference/plenty interference)

–properties:

• menge der quns

• menge der attribute

• menge der praedikate

• ordnung

• boolean properties

• globale menge der gepipelineten quns

• kostenvektor

• cardinalitaeten bewiesen/geschaetzt

• gewuenschter puffer

• schluessel, fds

• #seiten, die durch ein fetch gelesen werden sollen

• menge der objekte, von denen der plan (der ja teilplan sein kann) abhaengt

• eigenschaften fuer parallele plaene

• eigenschaften fuer smp plaene

das folgende ist alles blabla. aber es weisst auf den punkt hi n,
das in dieser beziehung etwas getan werden muss.
--index: determine degree of clustering

- lese_rate = #gelesene_seiten / seiten_fuer_relation
ein praedikate erniedrigt die lesen_rate, ein erneutes les en aufgrund
falls TIDs sortiert werden, muss fetch_ration erneut berec hnet werden

- seiten koennen in gruppen z.b. auf einem zylinder zusammen gefasst werden
und mit einem prefetch befehl geholt werden. anzahl seeks ab schaetzen

- cluster_ration(CR)
CR = P(read(t) ohne page read) = (card - anzahl pagefetch)/ca rd

30.8. CONVERSION TO THE INTERNAL REPRESENTATION 385

= (card - (#pagefetch - #page))/card
das ist besonderer quark

- cluster_factor(CF)
CF = P(avoid unnecessary pagefetch) = (pagefetch/maxpagef etch)

= card -#fetch / card - #pageinrel
das ist besonderer quark

index retrieval on full key => beide faktoren auf 100% setzen , da
innerhalb eines index die TIDs pro key-eintrag sortiert wer den.

Speicherung von Properties unter dynamischem Programmieren und Memoiza-
tion: Kosten und andere Eigenschaften, die nicht vom Plan abhängen, können pro
Planklasse gespeichert werden und brauchen nicht pro Plan gespeichert zu werden.

30.8 Conversion to the Internal Representation

30.8.1 Preprocessing

30.8.2 Translation into the Internal Representation

30.9 Bibliography

386 CHAPTER 30. INTERNAL REPRESENTATIONS

Chapter 31

Details on the Phases of Query
Compilation

31.1 Parsing

Lexical analysis is pretty much the same as for traditional compilers. However, it is
convenient to treat keywords as soft. This allows for example for relation names like
order which is a keyword in SQL. This might be very convenient for users since SQL
has plenty (several hundreds) of keywords. For some keywords likeselectthere is less
danger of it being a relation name. A solution forgroup andorder would be to lex
them as a single token together with the followingby.

Parsing again is very similar to parsing in compiler construction. For both, lexing
and parsing, generators can be used to generate these components. The parser specifi-
cation of SQL is quite lengthy while the one for OQL is pretty compact. In both cases,
a LALR(2) grammar suffices. The outcome of the parser should be an abstract syntax
tree. Again the data structure for abstract syntax trees (ast) as well as operations to
deal with them (allocation, deletion, traversal) can be generated from an according ast
specification.

During parsing already some of the basic rewriting techniques can be applied. For
example,between can be eliminated.

In BD II, there are currently four parsers (for SQL, OQL, NQL (a clean version of
XQuery), XQuery). The driver allows to step through the query compiler and allows
to influence its overall behavior. For example, several trace levels can be switched on
and off while within the driver. Single rewrites can be enabled and disabled. Further,
the driver allows to switch to a different query language. This is quite convenient for
debugging purposes. We used the Cocktail tools to generate the lexer, parser, ast, and
NFST component.

31.2 Semantic Analysis, Normalization, Factorization, Con-
stant Folding, and Translation

The NFST component performs (at least) four different tasks:

1. normalization of expressions,

387

388 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

/

IU:salary IU:budget 100

*

Figure 31.1: Expression

2. factorization of common subexpressions,

3. semantic analysis, and

4. translation into the internal algebra-based query representation.

Although these are different tasks, a single pass over the abstract syntax tree suffices
to perform all these tasks in one step.

Consider the following example query:

select e.name, (d.salary / d.budget) * 100
from Employee e, Department d
where e.salary> 100000and e.dno = d.dno

The internal representation of the expression(d.salary / d.budget) * 100in the query is
shown in Fig. 31.1. It contains two operator nodes for the operations “∗” and “/”. At
the bottom, we find IU nodes. IU stands for Information Unit. Asingle IU corresponds
to a variable that can be bound to a value. Sample IUs are attributes of a relation or,
as we will see, intermediate results. In the query representation, there are three IUs.
The first two IUs are bound to attribute values for the attributessalaryandbudget. The
third IU is bound to the constant 100.

NFST routines can be implemented using a typical compiler generator tool. It is
implemented in a rule-based language. Every rule matches a specific kind of AST
nodes and performs an action. The ast tree is processed in post order.

The hierarchy for organizing different kinds of expressions is shown in Fig 31.2.
Here is a list of useful functions:

• occurrance of expressions in another expression

• for a given expression: compute the set of occurring (consumed, free) IUs

• for a given expression: compute the set of produced IUs

31.3. NORMALIZATION 389

Expression

Constant IU DB I term Function Call Bolean Aggregate

Relation Extent Variable Attribute Access AND OR NOT

Figure 31.2: Expression hierarchy

• for a given IU, retrieve the block producing the IU

• determine whether some block returns a single value only

• computation of the transivitity of predicates, especiallyequality to derive its
equivalence classes.

• determine whether some expression produces a subset of another expression

• constant folding

• merge and/or (from e.g. binary to n-ary) and push not operations

• replace a certain expression by another one

• deep and shallow copy

These functions can be implemented either as member functions of expressions or
according to visitor/collector/mutator patterns. For more complex functions (con-
sumer/producer) we recommend the latter.

Some of these functions will be called quite frequently, e.g. the consumer/producer,
precedence ordering, equivalence (transivitity of equality) functions. So it might be
convenient to compute these relationships only once and then materialize them. Since
some transformation in the rewrite phases are quite complex, a recomputation of these
materialized functions should be possible since their direct maintenance might be too
complex.

31.3 Normalization

Fig. 31.3 shows the result after normalization. The idea of normalization is to in-
troduce intermediate IUs such that all operators take only IUs as arguments. This
representation is quite useful.

31.4 Factorization

Common subexpressions are factorized by replacing them with references to some IU.
For the expressions in TPCD query 1, the result is shown in Fig. 31.4. Factorization
is enabled by a factorization component that takes care of all expressions seen so far

390 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

/

IU:salary IU:budget

IU:- IU:-

100

IU:-

*

Figure 31.3: Expression

and the IUs representing these expressions. Every expression encountered by some
NFST routine is passed to the factorization. The result is a reference to an IU. This IU
can be a new IU in case of a new expression, or an existing IU in case of a common
subexpression. The factorization component is available to the NFST routines via the
NFST control block which is associated with a factorizationcomponent (Fig.29.3).

31.5 Constant Folding

31.6 Semantic analysis

The main purpose of semantic analysis is to attach a type to every expression. For
simple expressions it is very similar to traditional semantic analysis in compiler con-
struction. The only difference occurs for references to schema constructs. The schema
is persistence and references to e.g. relations or named objects have to be looked up
there. For performance reasons it is convenient to have a schema cache in order to
cache frequently used references. Another aspect complicating semantic analysis a
little is that collection types are frequently used in the database context. Their incor-
poration is rather straight forward but the different collection types should be handled
with care.

As programming languages, query languages provide a block structure. Consider
for example the SQL query

. . .
select a, b, c
from A, B
where d > e and f = g

. . .

Consider the semantic analysis ofd. Since SQL providesimplicit name look up, we
have to check (formerly analyzed) relationsA andB whether they provide an attribute
calledd. If none of them provides an attributed, then we must check the next upper

31.6. SEMANTIC ANALYSIS 391

*

IU: �

IU: � IU: �IU: �

IU: �

IU: �

IU:Extended Price IU:Discount IU:Tax

SUM SUMSUM

IU: �

IU: �

*

+-

1

Figure 31.4: Query 1

SFW-block. If at least one of the relationsA or B provides an attributed, we just
check that only one of them provides such an attribute. Otherwise, there would be
an unallowed ambiguity. The blockwise look up is handled by block handler. For
every newly encounterd block (e.g. SFW block), a new block isopened. All identifiers
analyzed within that block are pushed into the list of identifiers for that block. In case
the query language allows for implicit name resolution, it might also be convenient to
push all the attributes of an analyzed relation into the blocks list. The lookup is then
performed blockwise. Within every block, we have to check for ambiguities. If the
lookup fails, we have to proceed looking up the identifier in the schema. The handling
of blocks and lookups is performed by the BlockHandler component attached to the
control block of the NFST component (Fig. 29.3).

Another departure from standard semantic analysis arefalse aggregatesas provid-
ed by SQL.

select avg(age)
from Students

392 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

I call count(age)a false aggregatesince a true aggregate function operators on a collec-
tion of values and returns a single value. Here, the situation is different. The attribute
age is of type integer. Hence, for the average function whith signatureavg : {int}
−−→ int the semantic analysis would detect a typing error. The result is that we have
to treat these false aggregates as special cases. This is (mostly) not necessary for query
languages like OQL.

31.7 Translation

The translation step translates the original AST representation into an internal repre-
sentation. There are as many internal query representations as there are query compil-
er. They all build on calculus expressions, operator graphsbuild over some algebra, or
tableaux representations [805, 806]. A very powerful representation that also captures
the subtleties of duplicate handling is the query graph model (QGM) [620].

The representation we use here is a mixture of a typed algebraand calculus. Al-
gebraic expressions are simple operator trees with algebraic operators like selection,
join, etc. as nodes. These operator trees must be correctly typed. For example, we are
very picky about whether a selection operator returns a set or a bag. The expression
that more resemble a calculus representation than an algebraic expression is theSFWD
block used in the internal representation. We first clarify our notion of block within
the query representation described here and then give an example of an SFWD block.
A block is everything that produces variable bindings. For example a SFWD-block
that pretty directly corresponds to a SFW-block in SQL or OQL. Other examples of
blocks are quantifier expressions and grouping operators. Ablock has the following
ingredients:

• a list of inputs of type collection of tuples1 (labeledfrom)

• a set of expressions whose top is an IU (labeleddefine)

• a selection predicate of type bool (labeledwhere)

For quantifier blocksandgroup blocks, the list of inputs is restricted to length one.
The SFWD-block and the grouping block additionally have a projection list (labeled
select) that indicates which IUs are to be projected (i.e. passed tosubsequent oper-
ators). Blocks are typed (algebraic) expressions and can thus be mixed with other
expressions and algebraic operator trees.

An example of a SFWD-block is shown in Fig. 31.5 where dashed lines indicate
theproduced-byrelationship. The graph corresponds to the internal representation of
our example query. The semantics of a SFWD-block can be described as follows.
First, take the cross product of the collections of tuples found in the list of inputs. (If
this is not possible, due to dependencies, d-joins have to beused.) Then, for every
resulting tuple, compute the bindings for all the IUs mentioned in thedefineclause,
apply the selection predicate and return all the bindings for the IUs mentioned in the
selectclause.

Although the SFWD-block looks neat, it lacks certain information that must be
represented. This information concerns the role of the entries in thefrom clause and

1We use a quite general notion of tuple: a tuple is a set of variable (IU) bindings.

31.7. TRANSLATION 393

IU:e

IU: name IU: salary IU: budget

IU:d

Attr. Acces�
"budget"

Attr. Acces�
"salary"

Attr. Acces�
"name"

scan scan

select

where

define

from

key IUkey IU

Relation/Extent�
"Employee"

Relation/Extent�
"Department"

IU: �IU: � IU: � IU: �

100 100.000/

>

*

Figure 31.5: Internal representation

duplicate elimination. Let us start with the latter. There are three views relevant to
duplicate processing:

1. the user view: did the user specify distinct?

2. the context view: does the occurrence or elimination of duplicates make a dif-
ference for the query result?

3. the processing view: does the block produce duplicates?

All this information is attached to a block. This information can then be summarized
to one of three values representing

• eliminate duplicates

• preserve duplicates

394 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

• don’t care about duplicates
(The optimizer can feel free to do whatever is more efficient.)

This summary is also attached to every block. Let us illustrate this by a simple exam-
ple:

select distinctssno
from Employee
where . . .and

exists(select. . .from . . .where)

For the inner block, the user specifies that duplicates are tobe preserved. However,
duplicates or not does not modify the outcome ofexists. Hence, the contextual infor-
mation indicates that the outcome for the inner block is a don’t care. The processing
view can determine whether the block produces duplicates. If for all the entries in the
from clause, a key is projected in theselectclause, then the query does not produce
duplicates. Hence, no special care has to be taken to remove duplicates produced by
the outer block if we assume thatssnois the key ofEmployee.

No let us consider the annotations for the arguments in thefrom clause. The query

select distincte.name
from Employee e, Department d
wheree.dno = d.dno

retrieves onlyEmployeeattributes. Such a query is most efficiently evaluated by a
semi-join. Hence, we can add a semi-join (SJ) annotation to theDepartment dclause.

For queries without adistinct, the result may be wrong (e.g. in case an employee
works in several departments) since a typical semi-join just checks for existence. A
special semi-join that preserves duplicates should be used. The according annotation
is (SJ,PD). Another annotation occurs whenever an outer-join is used. Outer joins can
(in SQL) be part of thefromclause. Typically they have to be fully parenthesized since
outer joins and regular joins not always commute. But under special circumstances,
they commute and hence a list of entries in thefrom clause suffices [267]. Then, the
entry to be preserved (the outer part) should be annotated by(OJ). We use (AJ) as the
anti-join annotation, and (DJ) for a d-join. To complete annotation, the case of a regu-
lar join can be annotated by (J). If the query language also supports all-quantifications,
that translate to divisions, then the annotation (D) shouldbe supported.

Since the graphical representation of a query is quite complex, we also use text
representations of the result of the NFST phase. Consider the following OQL query:

select distinct s.name, s.age, s.supervisor.name, s.supervisor.age
from s in Student
where s.gpa> 8 and s.supervisor.age< 30

The annotated result (without duplicate annotations) of the normalization and factor-
ization steps is

31.7. TRANSLATION 395

select distinct sn, sa, ssn, ssa
from s in Student (J)
where sg> 8 and ssa< 30
define sn = s.name

sg = s.gpa
sa = s.age
ss = s.supervisor
ssn= ss.name
ssa= ss.age

Semantic analysis just adds type information (which we never show).
In standard relational query processing multiple entries in the from clause are

translated into a cross product. This is not always possiblein object-oriented query
processing. Consider the following query

select distinct s
from s in Student, cin s.courses
where c.name = “Database”

which after normalization yields

select distinct s
from s in Student, cin s.courses
where cn = “Database”
define cn = c.name

The evaluation ofc in s.coursesis dependend ons and cannot be evaluated if nos is
given. Hence, a cross product would not make much sense. To deal with this situation,
the d-join has been introduced [174]. It is a binary operator that evaluates for every
input tuple from its left input its right input and flattens the result. Consider the alge-
braic expression given in Fig. 31.6. For every students from its left input, the d-join
computes the sets.courses. For every coursec in s.coursesan output tuple containing
the original students and a single coursec is produced. If the evaluation of the right
argument of the d-join is not dependend on the left argument,the d-join is equivalent
with a cross product. The first optimization is to replace d-joins by cross products
whenever possible.

Queries with agroup by clause must be translated using theunary groupingoper-
ator GROUP which we denote byΓ. It is defined as

Γg;θA;f(e) = {y.A ◦ [g : G]|y ∈ e,

G = f({x|x ∈ e, x.Aθy.A})}

where the subscripts have the following semantics: (i)g is a new attribute that will hold
the elements of the group (ii)θA is the grouping criterion for a sequence of comparison
operatorsθ and a sequence of attribute namesA, and (iii) the functionf will be applied
to each group after it has been formed. We often use some abbreviations. If the

396 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

D-JOIN [c:s.courses]SCAN [s:student]

EXPAND [cn:c.name]

SELECT [cn=”Database”]

PROJECT [s]

Figure 31.6: An algebraic operator tree with a d-join

Expression

AlgUnary AlgBinary AlgNary AlgScan Group SFWD�
block

Algebraic Operator

Dup�
Elim

SortUnnest SelectChi Projection AlgIf DivisionJoin AlgSetop

Union Intersection Difference

Figure 31.7: Algebra

comparison operatorθ is equal to “=”, we don’t write it. If the functionf is identity,
we omit it. Hence,Γg;A abbreviatesΓg;=A;id.

Let us complete the discussion on internal query representation. We already men-
tioned algebraic operators like selection and join. These are called logical algebraic
operators. There implementations are called physical algebraic operators. Typically,
there exist several possible implementations for a single logical algebraic operator. The
most prominent example being the join operator with implementations like Grace join,
sort-merge join, nested-loop join etc. All the operators can be modelled as objects.
To do so, we extend the expression hierarchy by an algebra hierarchy. Although not
shown in Fig 31.7, the algebra class should be a subclass of the expression class. This
is not necessary for SQL but is a requirement for more orthogonal query languages
like OQL.

31.8. REWRITE I 397

31.8 Rewrite I

31.9 Plan Generation

31.10 Rewrite II

31.11 Code generation

In order to discuss the tasks of code generation, it is necessary to have a little under-
standing of the interface to the runtime system that interpretes the execution plan. I
have chosen AODB as an example runtime system since this is one I know. The inter-
face to AODB is defined by the AODB Virtual Machine (AVM). For simple operations,
like arithmetic operations, comparisons and so on, AVM provides assembler-like op-
erations that are interpreted at runtime. Simple AVM operations work onregisters.
A single register is able to hold the contents of exactly one IU. Additionally, AVM
provides physical algebraic operators. These operators take AVM programs (possibly
with algebraic operators) as arguments. There is one specialty about AVM programs
though. In order to efficiently support factorization of common subexpressions in-
volving arithmetic operations (as needed in aggregations like avg, sum), arithmetic
operators in AVM can have two side effects. They are able to store the result of the
operation into a register and they are able to add the result of the operation to the con-
tents of another register. This is denoted by the result mode. If the result mode is A,
they just add the result to some register, if it is C, they copy(store) the result to some
register, if it is B, they do both. This is explored in the codefor Query 1 of the TPC-D
benchmark (Fig. 1.6).

Code generation has the following tasks. First it must map the physical operators
in a plan to the operators of the AVM code. This mapping is a straight forward 1:1
mapping. Then, the code for the subscripts of the operators has to be generated. Sub-
scripts are for example the predicate expressions for the selection and join operators.
For grouping, several AVM programs have to be generated. First program is theinit
program. It initializes the registers that will hold the results for the aggregate functions.
For example, for an average operation, the register is initalized with 0. Theadvance
program is executed once for every tuple to advance the aggregate computation. For
example, for an average operations, the value of some register of the input tuple is
added to the result register holding the average. Thefinalizeprogram performs post-
processing for aggregate functions. For example for the average, it devides the sum
by the number of tuples. For hash-based grouping, the last two programs (see Fig.1.6)
compute the hash value of the input register set and compare the group-by attributes of
the input registers with those of every group in the hash bucket.

During the code generation for the subscripts factorization of common subexpres-
sion has to take place. Another task is register allocation and deallocation. This task
is performed by the register manager. It uses subroutines todetermine whether some
registers are no longer needed. The register manager must also keep track in which
register some IU is stored (if at all). Another component used during code generation
is a factory that generates new AVM operations. This factoryis associated with a table
driven component that maps the operations used in the internal query representation to

398 CHAPTER 31. DETAILS ON THE PHASES OF QUERY COMPILATION

AVM opcodes.

31.12 Bibliography

Chapter 32

Quality Assurance

32.1 Verification

32.2 Validation

32.3 Debugging

32.4 Test Data Generation

32.5 Benchmarking

Validation/Verification/Testing/Debugging/Benchmarking

• sql generation: [748, 762, 823, 824]

• verification: ftp/cocoplans.pdf

• debugging: ftp/vcoco.pdf

• test data generation:

• benchmarks:

32.6 Bibliography

399

400 CHAPTER 32. QUALITY ASSURANCE

Part VIII

Selected Topics

401

Chapter 33

Generating Plans for
Top-N-Queries?

33.1 Motivation and Introduction

motivation:

• first by user (ordered)

• optimize for n rows (user/cursor)

• exist(subquery) optimize for 1 row

• having count(*)<= n

33.2 Optimizing for the First Tuple

33.3 Optimizing for the First N Tuples

• nl-join instead of sm/hash join

• index access over table scan

• disable prefetching

[106, 107, 108] [129, 221] [238, 239, 397] [504]
[343] (also contains inverted list algorithms under frequent updates)

403

404 CHAPTER 33. GENERATING PLANS FOR TOP-N-QUERIES?

Chapter 34

Recursive Queries

405

406 CHAPTER 34. RECURSIVE QUERIES

Chapter 35

Issues Introduced by OQL

35.1 Type-Based Rewriting and Pointer Chasing Elimina-
tion

The first rewrite technique especially tailored for the object-oriented context istype-
based rewriting. Consider the query

select distinct sn, ssn, ssa
from s in Student

SCAN [s:student]

EXPAND [ssn:ss.name, ssa:ss.age]

EXPAND [sn:s.name, sg:s.gpa, ss:s.supervisor]

SELECT [sg>8 and ssa<30]

PROJECT [sn, sa, ssn, ssa]

Figure 35.1: Algebraic representation of a query

407

408 CHAPTER 35. ISSUES INTRODUCED BY OQL

where sg> 8 and ssa< 30
define sn = s.name

sg = s.gpa
ss = s.supervisor
ssn= ss.name
ssa= ss.age

The algebraic expression in Fig. 35.1 implies a scan of all students and a subsequent
dereferentiation of thesupervisorattribute in order to access the supervisors. If not
all supervisors fit into main memory, this may result in many page accesses. Further,
if there exists an index on the supervisor’sage, and the selection conditionssa< 30
is highly selective, the index should be applied in order to retrieve only those super-
visors required for answering the query. Type-based rewriting enables this kind of
optimization. For any expression of certain type with an associated extent, the extent
is introduced in thefrom clause. For our query this results in

select distinct sn, pn, pa
from s in Student, pin Professor
where sg> 8 and pa< 30and ss = p
define sn = s.name

sg = s.gpa
ss = s.supervisor
pn= ss.name
pa = ss.age

As a side-effect, the attribute traversal from students viasupervisor to professor is re-
placed by a join. Now, join-ordering allows for several new plans that could not be
investigated otherwise. For example, we could exploit the above mentioned index to
retrieve the young professors and join them with the students having agpa greater
than 8. The according plan is given in Fig. 35.2. Turning implicit joins or pointer
chasing into explicit joins which can be freely reordered isan original query optimiza-
tion technique for object-oriented queries. Note that the plan generation component is
still allowed to turn the explicit join into an implicit joinagain.

Consider the query

select distinct p
from p in Professor
where p.room.number = 209

Straight forward evaluation of this query would scan all professors. For every pro-
fessor, theroom relationship would be traversed to find the room where the professor
resides. Last, the room’s number would be retrieved and tested to be 209. Using the
inverse relationship, the query could as well be rewritten to

select distinct r.occupiedBy
from r in Room

35.2. CLASS HIERARCHIES 409

PROJECT [sn, pn, pa]

JOIN [ss=p]

SELECT [sg>8]

EXPAND [pa:p.age, pn:p.name]

Professor [p]Student [s]

SELECT [pa<30]

EXPAND [sg:s.gpa
ss:s.supervisor
sn:s.name]

Figure 35.2: A join replacing pointer chasing

where r.number = 209

The evaluation of this query can be much more efficient, especially if there exists an
index on the room number. Rewriting queries by exploiting inverse relationships is
another rewrite technique to be applied during Rewrite Phase I.

35.2 Class Hierarchies

Another set of equivalences known from the relational context involves the UNION
operator (∪) and plays a vital role in dealing with class/extent hierarchies. Consider
the simple class hierarchy given in Figure 35.3. Obviously,for the user, it must appear
that the extent ofEmployeecontains allManagers. However, the system has different
alternatives to implement extents. Most OBMSs organize an object base into areas or
volumes. Each area or volume is then further organized into several files. A file is a
logical grouping of objects not necessarily consisting of subsequent physical pages on
disk. Files don’t share pages.

The simplest possible implementation to scan all objects belonging to a certain
extent is to perform an area scan and select those objects belonging to the extent in
question. Obviously, this is far to expensive. Therefore, some more sophisticated pos-
sibilities to realize extents and scans over them are needed. The different possible
implementations can be classified along two dimensions. Thefirst dimension distin-
guishes between logical and physical extents, the second distinguishes between strict
and (non-strict) extents.

410 CHAPTER 35. ISSUES INTRODUCED BY OQL

Employee name: string
salary: int
boss: Manager6

Manager
boss: CEO

6

CEO

Figure 35.3: A Sample Class Hierarchy

Logical vs. Physical Extents
An extent can be realized as a collection of object identifiers. A scan over the
extent is then implemented by a scan over all the object identifiers contained in
the collection. Subsequently, the object identifiers are dereferenced to yield the
objects themselves. This approach leads to logical extents. Another possibility is
to implement extent membership by physical containment. The best alternative
is to store all objects of an extent in a file. This results in physical extents. A
scan over a physical extent is then implemented by a file scan.

Extents vs. Strict Extents
A strict extent contains the objects (or their OIDs) of a class excluding those of
its subclasses. A non-strict extent contains the objects ofa class and all objects
of its subclasses.

Given a classC, any strict extent of a subclassC ′ of C is called a subextent of
C.

Obviously, the two classifications are orthogonal. Applying them both results in
the four possibilities presented graphically in Fig. 35.4.[179] strongly argues that
strict extents are the method of choice. The reason is that only this way the query
optimizer might exploit differences for extents. For example, there might be an index
on theageof Managerbut not forEmployee. This difference can only be exploited for
a query including a restriction onage, if we have strict extents.

However, strict extents result in initial query plans including UNION operators.
Consider the query

select e
from e in Employee
where e.salary> 100.000

The initial plan is

σsa>100.000(χsa:x.salary((Employee[x] ∪Manager[x]) ∪ CEO[x]))

35.3. CARDINALITIES AND COST FUNCTIONS 411

ob1C:

ob2C1: ob3C2:

C1: {id2} C1: {id1, id2}C2: {id3} {id1, id3}

excluding

C1: C2:

C:

ob1, ob2

ob1

ob1, ob3

including

physical

C: {id1} C: {id1}
logical

Figure 35.4: Implementation of Extents

Hence, algebraic equivalences are needed to reorder UNION operators with other al-
gebraic operators. The most important equivalences are

e1 ∪ e2 ≡ e2 ∪ e1 (35.1)

e1 ∪ (e2 ∪ e3) ≡ (e1 ∪ e2) ∪ e3 (35.2)

σp(e1 ∪ e2) ≡ σp(e1) ∪ σp(e2) (35.3)

χa:e(e1 ∪ e2) ≡ χa:e(e1) ∪ χa:e(e2) (35.4)

(e1 ∪ e2) 1p e3 ≡ (e1 1p e3) ∪ (e2 1p e3) (35.5)

Equivalences containing the UNION operator sometimes involve tricky typing con-
straints. These go beyond the current chapter and the readeris refered to [559].

35.3 Cardinalities and Cost Functions

412 CHAPTER 35. ISSUES INTRODUCED BY OQL

Chapter 36

Issues Introduced by XPath

36.1 A Naive XPath-Interpreter and its Problems

36.2 Dynamic Programming and Memoization

[303, 305, 304]

36.3 Naive Translation of XPath to Algebra

36.4 Pushing Duplicate Elimination

36.5 Avoiding Duplicate Work

36.6 Avoiding Duplicate Generation

[381]

36.7 Index Usage and Materialized Views

[43]

36.8 Cardinalities and Costs

36.9 Bibliography

413

414 CHAPTER 36. ISSUES INTRODUCED BY XPATH

Chapter 37

Issues Introduced by XQuery

37.1 Reordering in Ordered Context

37.2 Result Construction

[247, 248] [722]

37.3 Unnesting Nested XQueries

Unnesting with error: [605]
[542, 544, 543, 545]

37.4 Cardinalities and Cost Functions

cardinality: [144, 861, 862, 687] [7]
XPathLearner: [510]
Polyzotis et al (XSKETCH): [626, 627, 624], [628]

37.5 Bibliography

[546] [804] [211]
Numbering: [246] Timber [417] TAX Algebra [421], physical algebra of Timber

[606]
Structural Joins [22, 753]
SAL: [62], TAX: [421], XAL: [253]

• XML Statistics for hidden web: [10]

• XPath selectivity for internet scale: [7]

• StatiX: [254]

• IMAX: incremental statistics [642]

• Metrics for XML Document Collections: [456]

415

416 CHAPTER 37. ISSUES INTRODUCED BY XQUERY

• output size containment join: [830]

• Bloom Histogram: [831]

View and XML: [2]
Quilt: [118]
Timber: [417] Monet: [699] Natix: NoK: [889]
Correlated XPath: [890]
Wood: [853, 854, 855]
Path based approach to Storage (XRel): [881]
Grust: [335, 337, 336, 338, 797]
Liefke: Loop fusion etc.: [509]
Benchmarking: XMach-1: [85], MBench: [678] XBench: [599, 873, 874], XMark:

[700] XOO7: [92]
Rewriting: [213, 327, 328]
[212, 392]
Incremental Schema Validation: [88, 604]
Franklin (filtering): [216]

Chapter 38

Outlook

What we did not talk about: multiple query optimization, semantic query optimiza-
tion, special techniques for optimization in OBMSs, multi-media data bases, object-
relational databases, spatial databases, temporal databases, and query optimization for
parallel and distributed database systems.

Multi Query Optimization? [710]

Parametric/Dynamic/Adaptive Query Optimization? [30, 31, 32, 28, 325, 318]
[413, 414, 433, 809]

Parallel Database Systems?

Distributed Database Systems? [466]

Recursive Queries?

Multi Database Systems?

Temporal Database Systems?

Spatial Database Systems?

Translation of Triggers and Updates?

Online Queries (Streams)?

Approximate Answers? [295]

417

418 CHAPTER 38. OUTLOOK

Appendix A

Query Languages?

A.1 Designing a query language

requirements
design principles for object-oriented query languages: [391] [75]

A.2 SQL

A.3 OQL

A.4 XPath

A.5 XQuery

A.6 Datalog

419

420 APPENDIX A. QUERY LANGUAGES?

Appendix B

Query Execution Engine (?)

• Overview Books: [371, 275]

• Overview: Graefe [312, 313]

• Implementation of Division [309, 317, 319]

• Implementation of Division and set-containment joins [638]

• Hash vs. Sort: [314, 322]

• Heap-Filter Merge Join: [311]

• Hash-Teams

421

422 APPENDIX B. QUERY EXECUTION ENGINE (?)

Appendix C

Glossary of Rewrite and
Optimization Techniques

trivopt Triviale Auswertungen bspw. solche für widersprüchliche Prädikate werden
sofort vorgenommen. Dies ist eine Optimierungstechnik, die oft bereits auf der
Quellebene durchgeführt wird.

pareval Falls ein Glied einer Konjunktion zufalse evaluiert, werden die restlichen
Glieder nicht mehr evaluiert. Dies ergibt sich automatischdurch die Verwen-
dung von hintereinanderausgeführten Selektionen.

pushnot Falls ein Prädikat die Form¬(p1 ∧ p2) hat, so istparevalnicht anwendbar.
Daher werden Negationen nach innen gezogen. Auf¬p1 ∨¬p2 ist parevaldann
wieder anwendbar. Das Durchschieben von Negationen ist auch im Kontext von
NULL-Werten unabdingbar für die Korrektheit. Dies ist eine Optimierungstech-
nik, die oft bereits auf der Quellebene durchgeführt wird.

bxp Verallgemeinert man die inparevalundnotpushangesprochene Problematik, so
führt dies auf die Optimierung von allgemeinen booleschenPrädikaten.

trans Durch Ausnutzen der Transitivität von Vergleichsoperationen können neue Se-
lektionsprädikate gewonnen und Konstanten propagiert werden. Diese Opti-
mierungstechnik erweitert den Suchraum und wird ebenfallsauf der Quellebene
durchgeführt. Bei manchen Systemen wir dieser Schritt nicht durchgeführt, falls
sehr viele Relationen zu joinen sind, um den Suchraum nicht noch weiter zu ver-
größern [287, 288].

selpush Selektionen werden so früh wie möglich durchgeführt. Diese Technik führt
nicht immer zu optimalen Auswertungsplänen und stellt somit eine Heuristik
dar. Diese Optimierungstechnik schränkt den Suchraum ein.

projpush Die Technik zur Behandlung von Projektionen ist nicht ganz so einfach wie
die der Selektion. Zu unterscheiden ist hier, ob es sich um eine Projektion mit
Duplikateliminierung handelt oder nicht. Je nach dem ist essinnvoll, die Pro-
jektion zur Wurzel des Operatorgraphen zu verschieben oderzu den Blättern
hin. Die Projektion verringert den Speicherbedarf von Zwischenergebnissen,

423

424APPENDIX C. GLOSSARY OF REWRITE AND OPTIMIZATION TECHNIQUES

da die Tupel weniger Attribute enthalten. Handelt es sich umeine duplikate-
liminierende Projektion, so wird möglicherweise auch dieAnzahl der Tupel
verringert. Duplikatelimination als solche ist aber eine sehr teure Operation.
Diese wird üblicherweise durch Sortieren implementiert.Bei großen Daten-
mengen gibt es allerdings bessere Alternativen. Auch Hash-basierte Verfahren
eignen sich zur Duplikateliminierung. Diese Optimierungstechnik schränkt den
Suchraum ein.

grouppush Pushing a grouping operation past a join can lead to better plans.

crossjoin Ein Kreuzprodukt, das von einer Selektion gefolgt wird, wird wenn immer
möglich in eine Verbundoperation umgewandelt. Diese Optimierungstechnik
schränkt den Suchraum ein, da Pläne mit Kreuzprodukten vermieden werden.

nocross Kreuzprodukte werden wenn immer möglich vermieden oder, wenn dies nicht
möglich ist, erst so spät wie möglich durchgeführt. Diese Technik verringert den
Suchraum, führt aber nicht immer zu optimalen Auswertungsplänen.

semjoin Eine Verbundoperation kann durch eine Semiverbundoperation ersetzt wer-
den, wenn nur die Attribute einer Relation weitere Verwendung finden.

joinor Die Auswertungsreihenfolge von Verbundoperationen ist kritisch. Daher wur-
den eine Reihe von Verfahren entwickelt, die optimale oder quasi-optimale Rei-
henfolge von Verbundoperationen zu bestimmen. Oft wird dabei der Suchraum
auf Listen von Verbundoperationen beschränkt. Die Motivation hierbei ist das
Verkleinern des Suchraums und die Beschränkung auf nur eine zu erzeugenden
Zwischenrelation. Dieses Verfahren garantiert nicht mehrein optimales Ergeb-
nis.

joinpush Tables that are guaranteed to produce a single tuple are always pushed to
be joined first. This reduces the search space. The single tuple condition can
be evaluated by determining whether all key attributes of a relation are fully
qualified. [287, 288].

elimredjoin Eliminate redundant join operations. See Sections. . . XXX

indnest Eine direkte Evaluierung von geschachtelten Anfragen wirddurch geschachtelte
Schleifen vorgenommen. Dabei wird eine Unteranfrage für jede erzielte Bindung
der äußeren Anfrage evaluiert. Dies erfordert quadratischen Aufwand und ist de-
shalb sehr ineffizient. Falls die innere Anfrage unabhängig von der äußeren An-
frage evaluiert werden kann, so wird diese herausgezogen und getrennt evaluiert.
Weitere Optimierungen geschachtelter Anfragen sind möglich.

unnest Entschachtelung von Anfragen [174, 175, 273, 453, 457, 458,620, 756, 758,
759]

compop Oft ist es sinnvoll, mehrere Operationen zu einer komplexeren zusammen-
zufassen. Beispielsweise können zwei hintereinander ausgeführte Selektionen
durch eine Selektion mit einem komplexeren Prädikat ersetzt werden. Eben-
so kann auch das Zusammenfassen von Verbundoperationen, Selektionen und
Projektionen sinnvoll sein.

425

comsubexpr Gemeinsame Teilausdrücke werden nur einfach evaluiert. Hierunter
fallen zum einen Techniken, die das mehrmalige Lesen vom Hintergrundspeich-
er verhindern, und zum anderen Techniken, die Zwischenergebnisse von Teilaus-
drücken materialisieren. Letzteres sollte nur dann angewendet werden, falls die
k-malige Auswertung teurer ist als das einmalige Auswertenund das Erzeugen
des Ergebnisses mit k-maligem Lesen, wobei k die Anzahl der Vorkommen im
Plan ist.

dynminmax Dynamisch gewonnene Minima und Maxima von Attributwerten können
für die Erzeugung von zusätzlichen Restriktionen herangezogen werden. Diese
Technik funktioniert auch sehr gut für unkorrelierte Anfragen. Dabei werden
min- und max-Werte herangezogen um zusätzliche Restriktionen für die An-
frage zu gewinnen. [457, 287, 288]

pma Predicate Move around moves predicates between queries andsubqueries. Most-
ly they are duplicated in order to yield as many restrictionsin a block as possible
[502]. As a special case, predicates will be pushed into viewdefinitions if they
have to be materialized temporarily [287, 288].

exproj For subqueries with exist prune unnecessary entries in theselectclause. The
intention behind is that attributes projected unnecessarily might influence the
optimizer’s decision on the optimal access path [287, 288].

vm View merging expands the view definition within the query such that is can be
optimized together with the query. Thereby, duplicate accesses to the view are
resolved by different copies of the views definition in orderto facilitate unnest-
ing [287, 288, 620].

inConstSet2Or A predicate of the formx ∈ {a1, . . . , an} is transformed into a se-
quence of disjunctionsx = a1 ∨ . . . ∨ x = an if the ai are constants in order to
allow index or-ing (TID list operations or bitvector operations) [287, 288].

like1 If the like predicate does not start with %, then a prefix indexcan be used.

like2 The pattern is analyzed to see whether a range of values can beextracted such
that the pattern does not have to be evaluated on all tuples. The result is either a
pretest or an index access. [287, 288].

like3 Special indexes supporting like predicates are introduced.

sort Vorhandene Sortierungen können für verschiedene Operatoren ausgenutzt wer-
den. Falls keine Sortierung vorhanden ist, kann es sinnvollsein, diese zu erzeu-
gen [745]. Z.B. aufeinanderfolgende joins, joins und gruppierungen. Dabei
kann man die Gruppierungsattribute permutieren, um sie miteiner gegebenen
Sortierreihenfolge in Einklang zu bringen [287, 288].

aps Zugriffspfade werden eingesetzt, wann immer dies gewinnbringend möglich ist.
Beispielsweise kann die Anfrage

selectcount(*) from R;

426APPENDIX C. GLOSSARY OF REWRITE AND OPTIMIZATION TECHNIQUES

durch einen Indexscan effizient ausgewertet werden [148].

tmpidx Manchmal kann es sinnvoll sein, temporäre Zugriffspfade anzulegen.

optimpl Für algebraische Operatoren existieren im allgemeinen mehrere Implemen-
tierungen. Es sollte hier immer die für einen Operator im vorliegenden Fall bil-
ligste Lösung ausgewählt werden. Ebenfalls von Bedeutung ist die Darstellung
des Zwischenergebnisses. Beispielsweise können Relationen explizit oder im-
plizit dargestellt werden, wobei letztere Darstellung nurZeiger auf Tupel oder
Surrogate der Tupel enthält. Weitergedacht führt diese Technik zu den TID-
Listen-basierten Operatoren.

setpipe Die Evaluation eines algebraischen Ausdrucks kann entweder mengenorien-
tiert oder nebenläufig (pipelining) erfolgen. Letzteres erspart das Erzeugen von
großen Zwischenergebnissen.

tmplay Das temporärëAndern eines Layouts eines Objektes kann durchaus sinnvoll
sein, wenn die Kosten, die durch dieseÄnderung entstehen, durch den Gewinn
der mehrmaligen Verwendung dieses Layouts mehr als kompensiert werden. Ein
typisches Beispiel istPointer-swizzling.

matSubQ If a query is not unnested, then for every argument combination passed to
the subquery, the result is materialized in order to avoid duplicate computation
of the same subquery expression for the same argument combination [287, 288].
This technique is favorable for detachment [773, 851, 882]

AggrJoin Joins with non-equi join predicates based on≤ or<, can be processed more
efficiently than by a cross product with a subsequent selection [177].

ClassHier Class hierarchies involve the computation of queries over aunion of ex-
tents (if implemented that way). Pushing algebraic operations past unions allows
often for more efficient plans [179].

AggrIDX Use an index to determine aggregate values like min/max/avg/count.

rid/tidsort When several tuples qualify during an index scan, the resulting TIDs can
be sorted in order to guarantee sequential access to the baserelation.

multIDX Perform operations like union and disjunction on the outcome of an index
scan.

multIDXsplit If two ranges are queried within the same query ([1-10],[20-30]) con-
sider multIDX or use a single scan through the index [1-30] with an additional
qualification predicate.

multIDXor Queries with more conditions on indexed attributes can be evaluated by
more complex combinations of index scans and tid-list/bitvector operations. (A
= 5 and (B = 3 or B = 4)).

scanDirChange During multiple sequential scans of relation (e.g. for a block-wise
nested loop join), the direction of the scan can be changed inorder to reuse as
much of the pages in the buffer as possible.

427

lock The optimizer should chose the correct locks to set on tables. For example, if a
whole table is scanned, a table lock should be set.

expFunMat Expensive functions can be cached during query evaluation in order to
avoid their multiple evaluation for the same arguments [379].

expFunFil Easiser to evaluate predicates that are implied by more expensive predi-
cates can serve as filters in order to avoid the evaluation of the expensive predi-
cate on all tuples.

stop Stop evaluation after the first tuple qualifies. This is good for existential sub-
queries, universal subqueries (disqualify), semi-joins for distinct results and the
like.

expensive projections 1. zum Schluss, da dort am wenigsten verschiedene Werte

2. durchschieben, falls cache fuer Funktionsergebnisse dadurch vermieden
werden kann

OO-Kontext: problematisch: objekte muessen fuer funktionen/methoden als
ganzes vorhanden sein. daher ist eine einfache strategie nicht moeglich.

distinct/sorting select distinct a,b,c
...
order by a,b

kann auch nach a,b,c sortiert werden. stoert gar nicht, vereinfacht aber die dup-
likateliminierung. nur ein sortieren notwendig.

index access • by key

• by key range

• by dashed key range (set of keys/key ranges)

• index anding/oring

alternative operator implementations e.g. join: nlj bnlj hj grace-hash hybrid-hash
smj diag-join star-join

distpd Push-down or Pull-up distinct.

aggregate with distinct select a, agg(distinct b)
...
group by a
===>
sort on a,b
dup elim
group a,sum(b)

alternative: aggr(distinct *) is implemented such that it uses a hashtable to elimi-
nate duplicates this is only good, if the number of groups is smalland the number
of distinct values in each group is small.

428APPENDIX C. GLOSSARY OF REWRITE AND OPTIMIZATION TECHNIQUES

XXX - use keys, inclusion dependencies, fds etc. (all user specified and derived)
(propagate keys over joins as fds), (for a function call: derived IU is func-
tional dependend on arguments of the function call if function is deterministic)
(keys can be represented as sets of IUs or as bitvectors(given numbering of IUs))
(numbering inprecise: bitvectors can be used as filters (like for signatures))

Appendix D

Example Query Compiler

D.1 Research Prototypes

D.1.1 AQUA and COLA

D.1.2 Black Dahlia II

D.1.3 Epoq

Für das objektorientierte DatenmodellEncore[888] wurde die Anfragesprache Equal
[729, 728, 730], eine objektorientierte Algebra, die die Erzeugung von Objekten er-
laubt, entwickelt. Zur Optimierung von Equal-Algebra-Ausdrücken soll der Optimier-
er Epoq dienen. Eine Realisierung von Epoq steht noch aus. Konkretisiert wurden
jedoch bereits der Architekturansatz [558] und die Kontrolle der Alternativenerzeu-
gung [556] innerhalb dieser Architektur. Einen Gesamtüberblick gibt die Dissertation
von Mitchell [555].

Der Architekturvorschlag besteht aus einer generischen Architektur, die an einem
Beispieloptimierer konkretisiert wurde [555, 556]. Die elementaren Bausteine der Ar-
chitektur sind Regionen. Sie bestehen aus einer Kontrollkomponente und wiederum
Regionen beziehungsweise Transformationen. Die einfachste Region ist dabei eine
Transformation/Regel, die einen Algebraausdruck in einenäquivalenten Algebraaus-
druck umformt. Jede Region selbst wird wiederum als eine Transformation aufgefaßt.
Innerhalb der Architektur werden nun diese Regionen in einer Hierarchie oder auch
einem gerichteten azyklischen Graphen, organisiert. Abbildung D.1 zeigt eine solche
Beispielorganisation. Regionen selbst können bis auf dieKontrolle als Module im
Sinne von Sciore und Sieg [703] aufgefaßt werden. Sie weisensehr ähnliche Param-
eter und Schnittstellen auf. Während jedoch bei Sciore undSieg die Kontrollstrategie
eines Moduls aus einer festen Menge von gegebenen Kontrollstrategien ausgewählt
werden muß, kann sie hier freier spezifiziert werden.

Unabhängig davon, ob die Transformationen einer Region wiederum Regionen
sind oder elementare Transformationen, wird ihre Anwendung einheitlich von der
Kontrolle der Region bestimmt. Die Aufgabe dieser Kontrolle besteht darin, eine
Folge von Transformationen zu finden, die die gegebene Anfrage in eine äquivalente
überführen. Sinngebend ist hierbei ein gewisses Ziel, das es zu erreichen gilt. Beispiel-
sweise kann dieses Ziel lauten: Optimiere eine geschachtelte Anfrage. Um dieses

429

430 APPENDIX D. EXAMPLE QUERY COMPILER

Regionen

Globale Kontrolle

? ? ?

Kontrolle Kontrolle Kontrolle

Transformation Transformation Transformation

? ?

Kontrolle Kontrolle

Transformation Transformation

Figure D.1: Beispiel einer Epoq-Architektur

Ziel zu erreichen, sind zwei grobe Schritte notwendig. Zun¨achst muß die Anfrage
entschachtelt werden und als nächstes die entschachtelteAnfrage optimiert werden.
Man sieht sofort, daß die Folge der Transformationen, die die Kontrolle auszuwählen
hat, sowohl von den Eigenschaften der Anfrage selbst wie auch vom zu erfüllenden
Ziel abhängt. Basierend auf dieser Beobachtung wird die Kontrolle nicht als Suchfunk-
tion implementiert, sondern es wird das Planungsparadigmazur Realisierung gewählt.
Die Kontrolle selbst wird mit Hilfe eines Satzes von Regeln spezifiziert, die aus Vorbe-
dingung und Aktion bestehen.

Da es nicht möglich ist, im Vorfeld einen Plan, also eine Sequenz von Transforma-
tionen/Regionen, zu erstellen, der in garantierter Weise das Ziel erreicht, wird erlaubt,
daß die Ausführung einer Transformation/Region fehlschlägt. In diesem Fall kann
dann ein alternativer Plan erzeugt werden, der aber auf dem bisher Erreichten aufsetzt.
Hierzu werden die Regeln, die die Kontrolle spezifizieren inGruppen eingeteilt, wobei
jeder Gruppe eine einheitliche Vorbedingung zugeordnet ist. Zu jeder Gruppe gehört
dann eine Sequenz von Aktionen, die der Reihe nach ausprobiert werden. Schlägt eine
vorangehende Aktion fehl, so wird die nächste in der Reihe der Aktionen angewendet.
Schlagen alle Aktionen fehl, so schlägt auch die Anwendungder Region fehl.

D.1. RESEARCH PROTOTYPES 431

Jede Aktion selbst ist wiederum eine Sequenz von elementaren Aktionen. Jede
dieser elementaren Aktionen ist entweder die Anwendung einer elementaren Transfor-
mation, der Aufruf einer Region oder der rekursive Aufruf des Planers mit einem neu-
formulierten Ziel, dessen Teilplan dann an entsprechenderStelle in die Aktion einge-
baut wird.

Die Erweiterbarkeit dieses Ansatzes um neue Regionen scheint einfach möglich,
da die Schnittstelle der Regionen genormt ist. Probleme könnte es lediglich bei den
Kontrollstrategien geben, da nicht klar ist, ob die benutzte Regelsprache mächtig genug
ist, um alle wünschenswerten Kontrollstrategien zu verwirklichen.

Die Frage, ob die einzelnen Komponenten des Optimierers, also die Regionen,
evaluiert werden können, ist schwierig zu beantworten. Dafür spricht jedoch, daß
jede Region in einem gewissen Kontext aufgerufen wird, alsozur Erreichung eines
bestimmten Zieles bei der Optimierung einer Anfrage mit ebenso bestimmten Eigen-
schaften. Beurteilen kann man daher die Erfolgsquote einerRegion innerhalb ihrer
verschiedenen Anwendungen. Da jede Region lediglich eine Alternative erzeugen
darf, aufgrund deseine Region ist eine Transformation-Paradigmas, ist schwer zu
sagen, in wieweit sich die durch die beschriebene Bewertunggewonnene Information
zur Verbesserung der Regionen oder des Gesamtoptimierers einsetzen läßt.

Da auch hier der transformierende Ansatz zugrunde liegt, treffen die bereits disku-
tierten Probleme auch für den Optimierer für Straube zu.

Einen stetigen Leistungsabfall könnte man durch die Realisierung von alterna-
tiven Regionen erreichen, indem man ein ZielOptimiereSchnelleinführt, das dann
entsprechend weniger sorgfältige, aber schnellere Regionen aufruft. Vorhersagen über
der Güte (bei gegebener Optimierungszeit) scheinen aber schwerlich möglich.

D.1.4 Ereq

A primary goal of the EREQ project is to define a common architecture for the next
generation of database managers. This architecture now includes

* the query language OQL (a la ODMG), * the logical algebra AQUA (a la Brown),
and * the physical algebra OPA (a la OGI/PSU).

It also includes
* software to parse OQL into AQUA (a la Bolo)
and query optimizers:
* OPT++ (Wisconsin), * EPOQ (Brown), * Cascades (PSU/OGI), and * Reflective

Optimizer (OGI).
In order to test this architecture, we hope to conduct a ”bakeoff” in which the four

query optimizers will participate. The primary goal of thisbakeoff is to determine
whether optimizers written in different contexts can accommodate the architecture we
have defined. Secondarily, we hope to collect enough performance statistics to draw
some conclusions about the four optimizers, which have beenwritten using signifi-
cantly different paradigms.

At present, OGI and PSU are testing their optimizers on the bakeoff queries. Here
is the prototype bakeoff optimizer developed at OGI. This set of Web pages is meant
to report on the current progress of their effort, and to define the bakeoff rules. Please
email your suggestions for improvement to Leo Fegaras fegaras@cse.ogi.edu. Leo
will route comments to the appropriate author.

432 APPENDIX D. EXAMPLE QUERY COMPILER

Anfrage - Synt. Analyse -

Anfrage Graph

Optimierer -

Auswertungsplan

Interpreter - Antwort

C-Compiler

?

Optimierergenerator

?

Modellbeschreibung

?

Figure D.2: Exodus Optimierer Generator

http://www.cse.ogi.edu/DISC/projects/ereq/bakeoff/bakeoff.html

D.1.5 Exodus/Volcano/Cascade

Im Rahmen des Exodus-Projektes wurde ein Optimierergenerator entwickelt [321].
EinenÜberblick über den Exodus-Optimierergenerator gibt Abbildung D.2. Ein Mod-
el description file enthält alle Angaben, die für einen Optimierer nötig sind. Da der
Exodus-Optimierergenerator verschiedene Datenmodelle unterstützen soll, enthält dieses
File zunächst einmal die Definition der verfügbarenOperatorenundMethoden. Dabei
werden mitOperatorendie Operatoren der logischen Algebra bezeichnet und mit
Methodendiejenigen der physischen Algebra, also die Implementierungen der Opera-
toren. Das Model description file enthält weiterhin zwei Klassen von Regeln.Trans-
formationenbasieren auf algebraischen Gleichungen und führen einen Operatorbaum
in einen anderen über.Implementierungsregelnwählen für einen gegebenen Opera-
tor eine Methode aus. Beide Klassen von Regeln haben einen linken Teil, der mit
einem Teil des aktuellen Operatorgraphen übereinstimmenmuß, einen rechten Teil,
der den Operatorgraphen nach Anwendung der Regel beschreibt, und eine Bedingung,
die erfüllt sein muß, damit die Regel angewendet werden kann. Während die linke
und rechte Seite der Regel als Muster angegeben werden, wirddie Bedingung durch
C-Code beschrieben. Auch für die Tranformation lassen sich C-Routinen verwen-
den. In einer abschließenden Sektion des Model descriptionfiles finden sich dann die
benötigten C-Routinen.

Aus dem Model description file wird durch den Optimierergenerator ein C-Programm
erzeugt, das anschließend übersetzt und gebunden wird. Das Ergebnis ist dann der An-
frageoptimierer, der in der herkömmlichen Art und Weise verwendet werden kann. Es
wurde ein übersetzender Ansatz für die Regeln gewählt und kein interpretierender, da
in einem von den Autoren vorher durchgeführten Experimentsich die Regelinterpre-
tation als zu langsam erwiesen hat.

D.1. RESEARCH PROTOTYPES 433

Die Regelabarbeitung im generierten Optimierer verwalteteine Liste OPEN, in der
alle anwendbaren Regeln gehalten werden. Ein Auswahlmechanismus bestimmt dann
die nächste anzuwendende Regel und entfernt sie aus OPEN. Nach deren Anwendung
werden die hierdurch ermöglichten Regelanwendungen detektiert und in OPEN ver-
merkt. Zur Implementierung des Auswahlmechanismus werdensowohl die Kosten
eines aktuellen Ausdrucks als auch eine Abschätzung des Potentials einer Regel in
Betracht gezogen. Diese Abschätzung des Potentials berechnet sich aus dem Quotien-
ten der Kosten für einen Operatorbaum vor und nach Regelanwendung für eine Reihe
von vorher durchgeführten Regelanwendungen. Mit Hilfe dieser beiden Angaben, den
Kosten des aktuellen Operatorgraphen, auf den die Regel angewendet werden soll, und
ihres Potentials können dann Abschätzungen über die Kosten des erzeugten Operator-
graphen berechnet werden. Die Suchstrategie ist Hill climbing.

Der von den Autoren vermerkte Hauptnachteil ihres Optimierergenerators, den sie
jedoch für alle transformierenden regelbasierten Optimerer geltend machen, ist die
Unmöglichkeit der Abschätzung der absoluten Güte einesOperatorbaumes und des
Potentials eines Operatorbaumes im Hinblick auf zukünftige Optimierungen. Dadurch
kann niemals abgeschätzt werden, ob der optimale Operatorbaum bereits erreicht wurde.
Erst nach Generierung aller Alternativen ist die Auswahl des optimalen Operator-
baumes möglich. Weiter bedauern es die Autoren, daß es nicht möglich ist, den A∗-
Algorithmus als Suchfunktion zu verwenden, da die Abschätzung des Potentials oder
der Distanz zum optimalen Operatorgraphen nicht möglich ist.

Zumindest kritisch gegenüberstehen sollte man auch der Bewertung einzelner Regeln,
da diese, basierend auf algebraischen Gleichungen, von zu feiner Granularität sind, als
daß eine allgemeine Bewertung möglich wäre. Die erfolgreiche Verwendung des Ver-
tauschens zweier Verbundoperationen in einer Anfrage bedeutet noch lange nicht, daß
diese Vertauschung auch in der nächsten Anfrage die Kostenverringert. Die Hauptur-
sache für die kritische Einstellung gegenüber dieser recht ansprechenden Idee ist, daß
eine Regelanwendung zu wenig Information/Kontext berücksichtigt. Würde dieses
Manko beseitigt, wären Regeln also von entschieden gröberer Granularität, so er-
schiene dieser Ansatz vielversprechend. Ein Beispiel wäre eine Regel, die alle Ver-
bundoperationen gemäß einer gegebenen Heuristik ordnet,also ein komplexer Algo-
rithmus, der mehr Wissen in seine Entscheidungen einbezieht.

Graefe selbst führt einige weitere Nachteile des Exodus-Optimierergenerators an,
die dann zur Entwicklung des Volcano-Optimierergenerators führten [323, 324]. Un-
zureichend unterstützt werden

• nicht-triviale Kostenmodelle,

• Eigenschaften,

• Heuristiken und

• Transformationen von Subskripten von algebraischen Operatoren in algebrais-
che Operatoren.

Der letzte Punkt ist insbesondere im Bereich der Objektbanken wesentlich, um beispiel-
sweise Pfadausdrücke in eine Folge von Verbundoperationen umwandeln zu können.

434 APPENDIX D. EXAMPLE QUERY COMPILER

Im Volcano-Optimierergenerator werden algebraische Ausdrücke wieder in einen
Operatorbaum umgewandelt. Wie im Exodus-Optimierergenerator wird der Optimier-
er wieder mit einer Menge von transformierenden und implementierenden Regeln
beschrieben. Die Nachteile des transformierenden Ansatz werden somit geerbt. Eine
Trennung in zwei Phasen, wie bei vielen Optimierern anzutreffen, ist für den Volcano-
Optimierergenerator nicht notwendig. Der Entwickler des Optimierers hat die Freiheit,
die Phasen selbst festzulegen. Die Probleme, die sonst bei der Kopplung der alge-
braischen mit der nicht-algebraischen Optimierung auftreten, können also vermieden
werden. Die Behandlung der Eigenschaften erfolgt zielorientiert. Die in der Anfrage
geforderten Eigenschaften (bspw. Sortierung), werden derSuchfunktion als Parame-
ter übergeben, damit gezielt Pläne erstellt werden, die diese erfüllen. Wenn ein Op-
erator oder eine Methode eingebaut wird, so wird darauf geachtet, daß diese noch
nicht erfüllten Eigenschaften durch den Operator oder dieMethode erzielt werden.
Die geforderten Eigenschaften dienen wieder als Zielbeschreibung für die nachfolgen-
den Aufrufe der Suchfunktion. Zu diesen Eigenschaften geh¨oren auch Kostengrenzen,
mit denen die Suchfunktion dann einen Branch-and-bound-Algorithmus implemen-
tiert. Bevor ein Plan für einen algebraischen Ausdruck generiert wird, wird in ein-
er Hash-Tabelle nachgeschaut, ob ein entsprechender Ausdruck mit den geforderten
Eigenschaften bereits existiert. Dadurch wird Doppeltarbeit vermieden. Bei beiden
Optimierergeneratoren werden die Forderungen nach stetigem Leistungsabfall, früher
Bewertung von Alternativen und Evaluierbarkeit einzelnerKomponenten nicht erfüllt.

D.1.6 Freytags regelbasierte System R-Emulation

[255] zeigt, wie man mit Hilfe eines regelbasierten Ansatzes den Optimierer von Sys-
tem R [707] emulieren kann. Die Eingabe besteht aus einem Lisp-ähnlichen Ausdruck:

(select<proj-list>
<sel-pred-list>
<join-pred-list>
<table-list>)

Die Projektionsliste besteht aus Attributspezifikationender Form

<rel-name>.<attr-name>

Diese werden auch für die Selektionsprädikate und Joinprädikate verwendet. Die Al-
gebra beinhaltet sowohl Operatoren der logischen als auch der physischen Algebra.
Im einzelnen gibt es Scan-, Sort-, Projektions, Verbundoperatoren in einer logischen
und verschiedenen physischen Ausprägungen. Die Erzeugung der Auswertungspläne
wird in verschiedene Schritte unterteilt, die wiederum in Teilschritte zerlegt sind (siehe
Abb. D.3). Zunächst erfolgt diëUbersetztung in die logische Algebra. Hier wer-
den Scan-Operatoren um die Relationen gebaut und Selektionen, die nur eine Re-
lation betreffen, in die Scan-Opertoren eingebaut. Der zweite Schritt generiert Zu-
griffspläne, indem der Scan-Operator durch einen einfachen File-Scan (FSCAN) er-
setzt wird, oder falls möglich, durch einen Index-Scan (ISCAN). Der dritte Schritt
generiert zunächst verschiedene Verbund-Reihenfolgen und bestimmt anschließend
die Verbund-Methoden. Sie in System R wird zwischen Sort-merge- und Nested-loop-
join unterschieden.

D.1. RESEARCH PROTOTYPES 435

Anfrage

?

Generierung des
allg. Ausdrucks

?

Zugriffsplan-
generierung

?
Join-

Reihenfolge und
-Methoden

?
Auswertungsplan

Figure D.3: Organisation der Optimierung

Es werden keinerlei Aussagen über die Auswahl einer Suchstrategie gemacht. Ziel
ist es vielmehr, durch die Modellierung des System R Optimierers mit Hilfe eines
Regelsystems die prinzipielle Brauchbarkeit des regelbasierten Ansatzes nachzuweisen.

D.1.7 Genesis

Das globale Ziel des Genesisprojektes [52, 53, 54, 57] war es, die gesamte Daten-
banksoftware zu modularisieren und eine erhöhte Wiederverwendbarkeit von Daten-
bankmodulen zu erreichen. Zwei Teilziele wurden hierbei angestrebt:

1. Standardisierung der Schnittstellen und

2. Formulierung der Algorithmen unabhängig von der DBMS-Implementierung.

Wir interessieren uns hier lediglich für die Erreichung der Ziele beim Bau von Opti-
mierern [50, 55].

Die Standardisierung der Schnittstellen wird durch eine Verallgemeinerung von
Anfragegraphen erreicht. Die Algorithmen selbst werden durch Transformationen auf
Anfragegraphen beschrieben. Man beachte, daß dies nicht bedeutet, daß die Algorith-
men auch durch Transformationregeln implementiert werden. Regeln werden lediglich
als Beschreibungsmittel benutzt, um die Natur der Wiederverwendbarkeit von Opti-
mierungsalgorithmen zu verstehen.

Die Optimierung wird in zwei Phasen eingeteilt, die Reduktionsphase und die Ver-
bundphase. Die Reduktionsphase bildet Anfragegraphen, die auf nicht reduzierten

436 APPENDIX D. EXAMPLE QUERY COMPILER

Datenmengen arbeiten, auf solche ab, die auf reduzierten Datenmengen arbeiten. Die
Reduktionsphase orientiert sich also deutlich an den Heuristiken zum Durchschieben
von Selektionen und Projektionen. Die zweite Phase bestimmt Verbundordnungen.
Damit ist die in den Papieren beschriebene Ausprägung des Ansatzes sehr konservativ
in dem Sinne, daß nur klassische Datenmodelle betrachtet werden. Eine Anwendung
der Methodik auf objektorientierte oder deduktive Datenmodelle steht noch aus.

Folglich lassen sich nur die existierenden klassischen Optimierungsansätze mit
diesen Mitteln hinreichend gut beschreiben. Ebenso lassensich die existierenden
klassischen Optimierer mit den vorgestellten Mitteln als Zusammensetzung der eben-
falls im Formalismus erfaßten Algorithmen beschreiben. Die Zusammensetzung selb-
st wird mit algebraischen Termersetzungen beschrieben. Durch neue Komposition-
sregeln lassen sich dann auch neue Optimierer beschreiben,die andere Kombinationen
von Algorithmen verwenden.

Durch die formale, implementierungsunabhängige Beschreibung sowohl der einzel-
nen Optimierungsalgorithmen als auch der Zusammensetzungeines Optimierers wird
die Wiederverwendbarkeit von bestehenden Algorithmen optimal unterstützt. Wichtig
dabei ist auch die Verwendung der standardisierten Anfragegraphen. Dieser Punkt
wird allerdings aufgeweicht, da auch vorgesehen ist, verschiedene Darstellungen von
Anfragegraphen zu verwenden [53]. Hierdurch wird die Wiederverwendung von Im-
plementierungen von Optimierungsalgorithmen natürlichin Frage gestellt, da diese
üblicherweise nur auf einer bestimmten Darstellung der Anfragegraphen arbeiten.

Wenn neue Optimierungsansätze entwickelt werden, so lassen sie sich ebenfalls im
vorgestellten Formalismus beschreiben. Gleiches gilt auch für neue Indexstrukturen,
da auch diese formal beschrieben werden [51, 56]. Nicht abzusehen ist, in wieweit
der standardisierte Anfragegraph Erweiterungen standhält. Dies ist jedoch kein spez-
ifisches Problem des Genesisansatzes, sondern gilt für alle Optimierer. Es ist noch
offen, ob es gelingt, die Optimierungsalgorithmen so zu spezifizieren und zu imple-
mentieren, daß sie unabhängig von der konkreten Darstellung oder Implementierung
der Anfragegraphen arbeiten. Der objektorientierte Ansatz kann hier nützlich sein. Es
erhebt sich jedoch die Frage, ob bei Einführung eines neuenOperators die bestehenden
Algorithmen so implementierbar sind, daß sie diesen ignorieren können und trotzdem
sinnvolle Arbeit leisten.

Die Beschränkung auf zwei Optimierungsphasen, die Reduktions- und die Ver-
bundphase, ist keine Einschränkung, da auch sie mittels Termersetzungsregeln fest-
gelegt wurde, und somit leicht geändert werden kann.

Da die Beschreibungen des Optimierers und der einzelnen Algorithmen unabhängig
von der tatsächlichen Implementierung sind, sind auch dieglobale Kontrolle des Opti-
mierers und die lokalen Kontrollen der einzelnen Algorithmen voneinander losgelöst.
Dieses ist eine wichtige Forderung, um Erweiterbarkeit zu erreichen. Sie wird oft bei
regelbasierten Optimierern verletzt und schränkt somit deren Erweiterbarkeit ein.

Die Evaluierbarkeit, die Vorhersagbarkeit und die frühe Bewertung von Alterna-
tiven sind mit dem vorgestellten Ansatz nicht möglich, da die einzelnen Algorithmen
als Transformationen auf dem Anfragegraphen aufgefaßt werden. Dieser Nachteil gilt
jedoch nicht allein für den hier vorgestellten Genesisansatz, sondern generell für alle
bis auf einen Optimierer. Es ist allerdings nicht absehbar,ob dieser Nachteil aus dem
verwendeten Formalismus resultiert oder lediglich aus deren Konkretisierung bei der
Modellierung bestehender Optimierer. Es ist durchaus möglich, daß der Formalis-

D.1. RESEARCH PROTOTYPES 437

mus mit leichten Erweiterungen auch andere Ansätze, insbesondere den generieren-
den, beschreiben kann.

Insgesamt handelt es sich beim Genesisansatz um einen sehr brauchbaren Ansatz.
Leider hat er, im Gegensatz zur Regelbasierung, nicht genugWiderhall gefunden hat.
Er hat höchst wahrscheinlich mehr Möglichkeiten, die Anforderungen zu erfüllen, als
bisher ausgelotet wurde.

D.1.8 GOMbgo

438 APPENDIX D. EXAMPLE QUERY COMPILER

ASR-Schema

Code Generator

Selektion und Polierung

Regelanwendung

Übersetzung und Vorverarbeitung

GOMql-Anfrage

Kostenmodell

Regelbasis

Heuristik

Auswertungsplan

(QEP)

optimierter Term

Liste der optimierten Terme

Termrepräsentation

-

?

?

?

?

?

�

Y

�

Figure D.4: Ablauf der Optimierung

D.1. RESEARCH PROTOTYPES 439

optimized
query alternatives

box

tool−

pattern

matcher

cond
mgr

rule
application

transf
mgr

environment manager

Schema Manager

 − access support relations
 − types

heuristics transformation rules

query

heuristic

evaluator

Figure D.5: Architektur von GOMrbo

440 APPENDIX D. EXAMPLE QUERY COMPILER

?

Normalisierung

?

Algebraische-
optimierung

?
Konstante u.
gemeinsame
Teilausdrücke

?

Übersetzung in
Ausdrucksalgebra

?

nicht-algebr.
Optimierung

?

X

1

π χ

sort

σ head

REL

Figure D.6: a) Architektur des Gral-Optimierers; b) Operatorhierarchie nach Kosten

D.1.9 Gral

Gral ist ein erweiterbares geometrisches Datenbanksystem. Der für dieses System
entwickelte Optimierer, ein regelbasierter Optimierer inReinkultur, erzeugt aus ein-
er gegebenen Anfrage in fünf Schritten einen Ausführungsplan (s. Abb. D.6 a) [59].
Die Anfragesprache ist gleich der verwendeten deskriptiven Algebra (descriptive al-
gebra). Diese ist eine um geometrische Operatoren erweiterte relationale Algebra.
Als zusätzliche Erweiterung enthält sie die Möglichkeit, Ausdrücke an Variablen zu
binden. Ein Auswertungsplan wird durch einen Ausdruck der Ausführungsalgebra
(executable algebra) dargestellt. Die Ausführungsalgebra beinhaltet im wesentlichen
verschiedene Implementierungen der deskriptiven Algebraund Scan-Operationen. Die
Trennung zwischen deskriptiver Algebra und Ausführungsalgebra ist strikt, das heißt,
es kommen keine gemischten Ausdrücke vor (außer während der expliziten Konvertierung
(Schritt 4)).

Die Schritte 1 und 3 sind durch feste Algorithmen implementiert. Während der

D.1. RESEARCH PROTOTYPES 441

Normalisierung (Schritt 1) werden Variablenvorkommen durch die an sie gebunde-
nen Ausdrücke ersetzt. Dies ist notwendig, um das Optimierungspotential vollständig
erschließen zu können. Schritt 3 führt für konstante Ausdrücke Variablen ein. Die
entspricht der Entschachtelung von Anfragen vom TypN und A (s. Kapitel?? und
[453]). Die Behandlung von gemeinsamen Teilausdrücken ist noch nicht implemen-
tiert, aber für Schritt 3 vorgesehen.

Die Schritte 2, 4 und 5 sind regelbasiert. Zur Formulierung der Regeln wird eine
Regelbeschreibungssprache (rule description language) verwendet. Die Beschreibun-
gen der Regeln werden in einer Datei abgelegt. Innerhalb derDatei werden Regeln
zu Gruppen (sections) zusammengefaßt. Diese Gruppen werden nacheinander ange-
wandt. Daraus ergeben sich auch für einen Schritt mehrere kleinere Schritte. Beispiel-
sweise ist der Schritt 2 im OPTEX-Optimierer für Gral in vier Teilschritte unterteilt:

1. Dekomposition von Selektionen mit komplexen Selektionsprädikaten in eine
Folge von Selektionen mit einfachen Selektionsprädikaten und Zerlegung von
Verbundoperationen in eine Folge von Selektionen und Kreuzprodukten.

2. Eigentlicher IMPROVING Schritt (siehe unten).

3. Teilausdrücke bestehend aus einer Selektion und einem unmittelbar folgenden
Kreuzprodukt werden in Verbundoperationen umgewandelt.

4. Bestimmung einer Ordnung zwischen den Verbundoperationen und Kreuzpro-
dukten. Dabei werden Kreuzprodukte zum Schluß ausgeführtund kleine Rela-
tionen zuerst verbunden.

Jeder Gruppe wird eine von drei in Gral implementierten Suchstrategien zugeordnet.

STANDARD Führt solange alle Regeln einer Gruppe aus, bis keine Regelmehr an-
wendbar ist. Es werden keine Vorkehrungen getroffen, um Endlosschleifen zu
verhindern. Die Regeln müssen also dementsprechend formuliert werden. Diese
Strategie kann für Schritte 2 und 5 verwendet werden.

IMPROVING Diese Strategie unterstützt algebraische Optimierung inder deskrip-
tiven Algebra (Schritt 2). Das Ziel ist hierbei eine gute Ordnung der algebrais-
chen Operatoren zu erlangen. Hierzu wird eine partielle Ordnung der algebrais-
chen Operatoren gemäß ihrer Kosten definiert (s. Abb. D.6 b)für ein Beispiel).
Die IMPROVING-Strategie versucht dann die hierdurch definierte Ordnung in
einem gegebenen Ausdruck zu erreichen. Hierzu wird sie zun¨achst rekursiv auf
alle Teilausdrücke eines Ausdrucks angewendet. Regeln zur Umformung wer-
den dann angewendet, wenn dadurch eine höhere Kohärenz der Operatorfolge
im Ausdruck mit der der Operatorkostenhierarchie erreichtwerden kann. Dies
entspricht einem Bubble-sort auf dem Ausdruck. Ausdrückemit der kleinsten
Anzahl vonruns werden bevorzugt. Dabei ist einrun eine Folge von Opera-
toren innerhalb des zu optimierenden Ausdrucks, dessen Operatoren gemäß der
Operatorkostenhierarchie geordnet sind.

TRANSLATION Regelgruppen mit dieser Strategie werden während derÜbersetzung
von der deskriptiven Algebra in die Ausführungsalgebra angewendet (Schritt

442 APPENDIX D. EXAMPLE QUERY COMPILER

4). Jede Regel beschreibt dabei dieÜbersetzung eines einzelnen deskriptiv-
en Operators in einen Ausdruck der Ausführungsalgebra, also einen, der keine
deskriptiven Operatoren enthalten darf. DieÜbersetzung erfolgt lokal. Für Pa-
rameter, also beispielsweise Selektions- und Verbundprädikate, können Regeln
angegeben werden, die einen Suchraum für die Reorganisation des Parameters
erlauben. Hiermit kann man beispielsweise alle Permutationen einer Konjunk-
tion erzeugen. Die Suchstrategie für die Parameterbestimmung ist erschöpfend
und trägt Vorsorge, daß keine Zyklen auftreten. Eine Auswahl kann mittels des
valuation-Eintrags in den Regeln getroffen werden. Dieser kann beispielsweise
Kosten repräsentieren. Dementsprechend werden dann Regeln mit der klein-
stenvaluationbevorzugt. Jede für einen Parameter generierte Darstellung wird
übersetzt.

Die Syntax für eine Regel ist

specification
definition
RULE

pattern
→ result1 valuation1 if condition1

· · ·
→ resultn valuationn if conditionn

wobei

specification von der Form

SPEC spec1,. . . ,specn

ist. Dabei sind die speci Range-Spezifikationen wie beispielsweiseopi in <
OpSet >.

definition Variablen definiert (bspw. für Attributsequenzen). In Gral existieren ver-
schiedene Sorten von Variablen für Attribute, Operationen, Relationen etc.

pattern ein Muster in Form eines Ausdrucks ist, der Variablen und Konstanten en-
thalten kann. Der Ausdruck kann ein Ausdruck der deskriptiven Algebra oder
der Ausführungsalgebra sein.

conditioni eine Bedingung ist. Diese Bedingung ist ein allgemeiner boolescher Aus-
druck. Spezielle Prädikate wieExistsIndex(existiert ein Index für eine Rela-
tion?) werden von Gral zur Verfügung gestellt.

resulti wiederum ein Ausdruck ist, der das Ergebnis der Regel beschreibt.

valuationi ist ein arithmetischer Ausdruck, der einen numerischen Wert zurückliefert.
Dieser kann in einer (Gral unterstützt mehrere) Auswahlstrategie herangezogen
werden: Es wird die Regel mit der kleinstenvaluationbevorzugt.

Die Auswertung einer Regel erfolgt standardmäßig. SeiE der Ausdruck auf den die
Regel angewendet werden soll.

D.1. RESEARCH PROTOTYPES 443

if ∃ Substitutionσ, UnterausdruckE′ vonE mit E′σ = pattern
and ∀1 ≤ i ≤ j: ¬ conditioni
and conditionj

then ersetzteE′ in E durchresultjσ

Der Gral-Optimierer ist ein reiner regelbasierter Optimierer, der den Transforma-
tionsansatz verfolgt. Dementsprechend treffen alle vorher identifizierten Nachteile
derselben zu.

Zu bemängeln sind im einzelnen folgende Punkte:

• Es erfolgt keine frühzeitige Bewertung der Alternativen.

• Die Suchstrategien sind fest eingebaut und nicht sonderlich ausgefeilt.

• Der Einbau von hochspezialisierten Algorithmen, die besondere Optimierung-
stechniken repräsentieren, ist schwierig, wenn nicht unmöglich.

• Eine Bestimmung der Verbundreihenfolge gemäß eines komplexeren Algorith-
mus ist nicht möglich.

• Da dieÜbersetzung in die Ausführungsalgebra lokal ist und keineAnnotationen
zugelassen sind, können vorhandene Sortierreihenfolgennur schwer ausgenutzt
werden.

Es wird nur eine Alternative der algebraischen Optimierungzur physischen Opti-
mierung übergeben. Das kann zu Fällen führen, in denen der Optimierer niemals das
Optimum finden kann. Wenngleich dies auch im allgemeinen nicht immer möglich ist,
so sollte jedoch diese Eigenschaft nicht inhärent sein.

Positiv zu vermerken ist, daß für IMPROVING und TRANSLATION der Aufwand
für das Pattern-matching vermutlich gering gehalten werden kann.

D.1.10 Lambda-DB

http://lambda.uta.edu/lambda-DB/manual/overview.htm l

D.1.11 Lanzelotte in short

Query Language Der Lanzelotte-Optimierer verwendet keine spezielle Anfragesprache.
Ausgangspunkt der Betrachtungen sind sog. Anfragegraphen(request graphs,
query graphs). Einzelheiten stehen in meiner Ausarbeitung. In einem Papier
([479]) wird gezeigt wie man von einer Regelsprache (RDL) zuAnfragegraphen
kommt.

Internal Representation Die interne Repraesentation einer Anfrage ist der Class Con-
nection Graph. Dort enthalten sind die Datenbankobjekte (Extensionen), die
in der Anfrage referenziert werden aus der Sicht des physikalischen Schemas
und die in der Anfrage bedeutsamen Beziehungen zwischen diesen Extensionen
(Joins, Attributpfade, Selektionen).

Query Execution Plans QEPs werden als (deep) processing trees repraesentiert.

444 APPENDIX D. EXAMPLE QUERY COMPILER

Architecture Der Lanzelotte-Optimierer ist regelbasiert.

Transformation versus generation Lanzelotte bietet Regeln fuer beide Spielarten.
Sie unterscheidet enumerative search (Generierung), randomized search (Trans-
formation) und genetic search (Transformation).

Control/Search-Strategy Lanzelotte versucht von den Einzelheiten der verwendeten
Stategien zu abstrahieren und stellt eine erweiterbare Optimierung vor, die die
Einzelheiten ueberdeckt. Die tatsaechlich zu einem bestimmten Zeitpunkt ver-
wendete Strategie wird durch “assertions” bestimmt. (Dazusteht nicht viel in
den Papieren, vielleicht meint sie auch die Bedingungsteile der Regeln)

Cost Model Ziemlich aehnlich dem, das wir verwenden. Sie benutzt auch solche
Sachen wiecard(C), size(C), ndist(Ai), fan(Ai), share(Ai). Einzelheiten
stehen in meiner Ausarbeitung.

D.1.12 Opt++

wisconsin

D.1.13 Postgres

Postgres ist kein Objektbanksystem sondern fällt in die Klasse der erweiterten rela-
tionalen Systeme [772]. Die wesentlichen Erweiterungen sind

• berechenbare Attribute, die als Quel-Anfragen formuliertwerden [770],

• Operationen [768],

• abstrakte Datentypen [767] und

• Regeln [771].

Diese beiden Punkte sollen uns jedoch an dieser Stelle nichtinteressieren. Die dort
entwickelten Optimierungstechniken, insbesondere die Materialisierung der berechen-
baren Attribute, sind in der Literatur beschrieben [430, 368, 366, 367]. Unser Inter-
esse richtet sich vielmehr auf eine neuere Publikation, in der eine Vorschlag für die
Reihenfolgebestimmung von Selektionen und Verbundoperationen unterbreitet wird
[380]. Diese soll im folgenden kurz vorgestellt werden. Zunächst jedoch einige Vorbe-
merkungen.

Wenn man eine Selektion verzögert, also nach einem Verbundausführt, obwohl
dies nicht notwendig wäre, so kann es passieren, daß das Selektionsprädikat auf mehr
Tupeln ausgewertet werden muß. Es kann jedoch nicht passieren, daß es auf mehr
verschiedenen Werten ausgeführt werden muß. Im Gegenteil, die Anzahl der Ar-
gumentewerte wird durch einen Verbund im allgemeinen verkleinert. Cached man
also die bereits errechneten Werte des Selektionsprädikates, so wird die Anzahl der
Auswertungen des Selektionsprädikates nach einem Verbund zumindest nicht größer.
Die Auswertung wird dann durch ein Nachschlagen ersetzt. Dawir hier nur teure Se-
lektionsprädikate betrachten, ist ein Nachschlagen sehrbillig gegenüber der Auswer-
tung. Die Kosten für das Nachschlagen können sogar vernachläßigt werden. Es bleibt

D.1. RESEARCH PROTOTYPES 445

das Problem der größe des Caches. Liegt Eingabe sortiert nach den Argumenten des
Selektionsprädikates vor, so kann der die größe des Caches unter Umständen auf 1
reduziert werden. Er erübrigt sich ganz, wenn man eine indirekte Repräsentation des
Verbundergebnisses verwendet. Eine mögliche indirekte Repräsentation ist in Abbil-
dung?? dargestellt, wobei die linke der abgebildeten Relationen die Argumente für
das betrachtete Selektionsprädikat enthalte.

Für jedes Selektionsprädikatp(a1, . . . , an) mit Argumentenai bezeichnecp die
Kosten der Auswertung auf einem Tupel. Diese setzen sich ausCPU- und I/O-Kosten
zusammen (s. [380]). EinPlan ist ein Baum, dessen Blätterscan-Knoten enthalten
und dessen innere Knoten mit Selektions- und Verbundprädikaten markiert sind. Ein
Strom in einem Plan ist ein Pfad von einem Blatt zur Wurzel. Die zentrale Ide ist
nun die Selektions- und Verbundprädikate nicht zu unterscheiden, sondern gleich zu
behandeln. Dabei wird angenommen, daß alle diese Prädikate auf dem Kreuzpro-
dukt aller Relationen der betrachteten Anfrage arbeiten. Dies erfordert eine Anpas-
sung der Kosten. Seiena1, . . . , an die Relationen der betrachteten Anfrage undp ein
Prädikat über den Relationena1, . . . , ak. Dann sind dieglobalen Kostenvon p wie
folgt definiert:

C(p) =
cp

Qn
i=k+1 |ai|

Die globalen Kosten berechnen die Kosten der Auswertung desPrädikates über der
gesamten Anfrage. Hierbei müssen natürlich diejenigen Relationen herausgenommen
werden, die das Prädikat nicht beeinflussen. Zur Illustration nehme man an,p sei
ein Selektionsprädikat auf nur einer Relationa1. Wendet manp direkt auf a1 an,
so entstehen die Kostencp ∗ |a1|. Im vereinheitlichten Modell wird angenommen,
daß jedes Prädikat auf dem Kreuzprodukt aller in der Anfrage beteiligten Relationen
ausgewertet wird. Es entstehen also die KostenC(p)∗|a1|∗ |a2|∗ . . .∗|an|. Diese sind
aber gleichcp ∗ |a1|. Dies ist natürlich nur unter der Verwendung eines Caches für die
Werte der Selektionsprädikate korrekt. Man beachte weiter, daß die Selektivitäts(p)
eines Prädikatesp unabhängig von der Lage innerhalb eines Stroms ist.

Derglobale Rangeines Prädikatesp ist definiert als

rank(p) = s(p)
C(p)

Man beachte, daß die Prädikate innerhalb eines Stroms nicht beliebig umord-
bar sind, da wir gewährleisten müssen, daß die von einem Prädikat benutzten Argu-
mente auch vorhanden sein müssen. In [380] wir noch eine weitere Einschränkung
vorgenommen: Die Verbundreihenfolge darf nicht angetastet werden. Es wird also
vorausgesetzt, daß eine optimale Verbundreihenfolge bereits bestimmt wurde und nur
noch die reinen Selektionsprädikate verschoben werden d¨urfen.

Betrachtet man zunächst einmal nur die Umordnung der Prädikate auf einem Strom,
so erhält man bedingt durch die Umordbarkeitseinschränkungen dasSequentialisierungsprob-
lem mit Vorrangbedingungenfür das Algorithmus mit LaufzeitO(nlogn) (n ist die
Stromlänge) eine optimale Lösung bekannt ist [564].

Das in [380] vorgeschlagene Verfahren wendet diesen Algorithmus solange auf
jeden Strom an, bis keine Verbesserung mehr erzielt werden kann. Das Ergebnis ist
ein polynomialer Algorithmus, der die optimale Lösung garantiert. Dies jedoch nur
unter der Einschränkung, daß die Kosten des Joins linear sind.

446 APPENDIX D. EXAMPLE QUERY COMPILER

Damit sind wir bereits bei einem der Nachteile des Verfahrens: Die Kosten der
Verbundoperation nicht mitunter nicht linear sondern sogar quadratisch. Ein weiterer
Nachteil liegt in der Voraussetzung, daß die optimale Verbundreihenfolge schon bes-
timmt wurde, denn diese hängt wesentlich davon ab, an welcher Stelle die Selektionen
eingebaut werden.̈Ublicherweise wird bei der Bestimmung der optimalen Verbundrei-
henfolge vorausgesetzt, daß alle Selektionsprädikate soweit wie möglich nach unten
verschoben werden. Dies ist jedoch jetzt nicht mehr der Fall. Es ist also notwendig
die Selektionsprädikatmigration in die Joinreihenfolgebestimmung zu integrieren. Nur
dann kann man auf gute Ergebnisse hoffen. Die Integration mit einem Ansatz des dy-
namischen Programmierens ist problematisch, da dort Lösungen verworfen werden,
die unter Umständen zur Optimalen Lösung führen, wenn ein Selektionsprädikat nicht
ganz nach unten durchgeschoben wird [380].

Eine Teillösung wird dort auch angedeutet. Ist der Rang eines Selektionsprädikates
größer als jeder Rang jedes Plans einer Menge von Verbunden, so ist das Selektion-
sprädikat in einem optimalen Baum oberhalb all dieser Verbundoperationen plaziert.
Ein entsprechender Algorithmus hat aber, wenn er beispielsweise nur Left-deep-trees
erzeugt, eine Worst-case-Komplexität vonO(n4n!).

D.1.14 Sciore & Sieg

Die Hauptidee von Sciore und Sieg ist es, die Regelmenge in Module zu organisieren
und jedem Modul eine eigene Suchstrategie, Kostenberechnung und Regelmenge zuzuord-
nen. Module können andere Module explizit aufrufen, oder implizit ihre Ausgabe-
menge an das nächste Modul weiterleiten.

D.1.15 Secondo

Gueting

D.1.16 Squiral

Der erste Ansatz eines regelbasierten Optimierers, Squiral, kann auf das Jahr 1975
zurückgeführt werden [751]. Man beachte, daß dieses Papier vier Jahre älter ist als
das vielleicht am häufigsten zitierte Papier über den System R Optimierer [707], der
jedoch nicht regelbasiert, sondern fest verdrahtet ist.

Abbildung D.7 gibt einen̈Uberblick über den Aufbau von Squiral. Nach der syn-
taktischen Analyse liegt ein Operatorgraph vor. Dieser istin Squiral zunächst auf
einen Operatorbaum beschränkt. Zur Behandlung von gemeinsamen Teilausdrücken
wird das Anlegen von temporären Relationen, die den gemeinsamen Teilausdrücken
entsprechen, vorgeschlagen. Diese temporären Relationen ersetzen dann die gemein-
samen Teilausdrücke. Dadurch ist es möglich, sich auf Operatorbäume zu beschränken.

Der Operatorbaum wird dann in einen optimierten Operatorbaum transformiert.
Hierzu werden Regeln, die den algebraischen Gleichungen entsprechen, verwendet.
Die Anwendung dieser Transformationsregeln ist rein heuristisch gesteuert. Die Heuris-
tik selber ist in den Transformationsanwendungsregeln abgelegt. Eine dieser Regeln
sagt beispielsweise, daß Projektionen nur dann nach unten geschoben werden, wenn

D.1. RESEARCH PROTOTYPES 447

graph
transformations

parsing

operator
construction

database
machine

query

result

rules
transformation

cooperative
concurrent
programs

optimized
operator graph

transformations

procedures
base

operator graph

Figure D.7: Die Squiralarchitektur

die Operation, über die die Projektion als nächstes geschoben werden soll, keine Ver-
bundoperation ist. Neben den Standardregeln, die das Vertauschen von relationalen
Operatoren ermöglichen, gibt es Regeln, die es erlauben, relationale Ausdrücke in
komplexe boolesche Ausdrücke, die dann als Selektionspr¨adikate Verwendung finden,
zu überführen. Dies ist der erste Vorschlag, nicht nur primitive Selektionsprädikate in
Form von Literalen, sondern auch komplexere Ausdrücke mitbooleschen Verknüpfungen
zu verwenden. Auf die Optimierung dieser Ausdrücke wird jedoch nicht weiter einge-
gangen.

Die wesentliche Aufgabe der Operatorkonstruktion ist die Auswahl der tatsächlichen
Implementierungen der Operatoren im Operatorgraph unter optimaler Ausnutzung gegeben-
er Sortierreihenfolgen. Auch diese Phase der Optimierung ist in Squiral nicht kosten-
basiert. Sie wird durch zwei Durchläufe durch den Operatorgraphen realisiert. Der
erste Durchlauf berechnet von unten nach oben die möglichen Sortierungen, die ohne
zusätzlichen Aufwand möglich sind, da beispielsweise Relationen schon sortiert sind,
und vorhandene Sortierungen durch Operatoren nicht zerst¨ort werden. Im zweiten
Durchlauf, von oben nach unten, werden Umsortierungen nur dann vorgenommen,
wenn keine der im ersten Durchlauf berechneten Sortierungen eine effiziente Imple-

448 APPENDIX D. EXAMPLE QUERY COMPILER

mentierung des zu konvertierenden Operators erlaubt. Beide Durchläufe sind mit
Regelsätzen spezifiziert. Es ist bemerkenswert, daß die Anzahl der Regeln, 32 für
den Aufwärtspaß und 34 für den Abwärtspaß, die Anzahl derRegeln für die Transfor-
mationsphase (insgesamt 7 Regeln), bei weitem übertrifft. Auch die Komplexität der
Regeln ist erheblich höher.

Beide für uns interessante Phasen, die Operatorgraphtransformation und Opera-
torkonstruktion, sind mit Regeln spezifiziert. Es ist jedoch in beiden Phasen kein
Suchprozeß nötig, da die Regeln alle Fälle sehr gezielt auflisten und somit einen ein-
deutigen Entscheidungsbaum beschreiben. Eine noch minutiösere Unterscheidung für
die Erzeugung von Ausführungsplänen in der Operatorkonstruktionsphase gibt es nur
noch bei Yao [878]. Diese haben auch den Vorteil, durch Kostenrechnungen belegt zu
sein.

Da die Regeln in ihren Prämissen die Heuristik ihrer Anwendung mit kodieren
und keine eigene Suchfunktion zur Anwendung der Regeln existiert, ist die Erweiter-
barkeit sehr schwierig. Das Fehlen jeglicher Kostenbewertung macht eine Evaluation
der Alternativen unmöglich. Daher ist es auch schwer, die einzelnen Komponenten
des Optimierers, nämlich die Regeln, zu bewerten, zumal der transformierende Ansatz
gewählt wurde. Der Forderung nach Vorhersagbarkeit und stetiger Leistungsabfall
wird in diesem Ansatz ebenfalls nicht nachgegangen.

D.1.17 System R and System R∗

D.1.18 Starburst and DB2

Starburst [237, 352] liegt ein erweiterbares relationalesDatenmodell zugrunde. Die
Anfragebearbeitung ist wie in System R und System R* in die zwei Schritte An-
frageübersetzung und -ausführung zergliedert [353]. Wir interessieren uns für den
ersten Schritt, die Anfrageübersetzung. EinenÜberblick gibt Abbildung D.8. Nach
der standardmäßigen Zerteilung liegt die Anfrage in der internen Darstellung QGM
(Query Graph Model) vor. QGM ist an die Anfragesprache Hydrogen (ähnlich SQL)
von Starburst angelehnt. Der wichtigste Grundbaustein vonQGM ist derselect-Operator.
Dieser enthält eine Projektionsliste und das Anfrageprädikat in Graphform. Die Knoten
sind markiert und referenzieren (gespeicherte) Relationen oder weitere QGM-Operatoren.
Die Markierung ist entweder ein Quantor (∀, ∃) oder die Mengenerzeugermarkierung
(F). Knoten, die mitF markiert sind, tragen zur Erzeugung des Ergebnisses eines Op-
erators bei, die Quantorenmarkierungen zu dessen Einschr¨ankung. Die Kanten sind
mit den Prädikaten markiert. Es ergeben sich also Schleifen für nur eine Relation be-
treffende Prädikate. Weitere Operatoren sindinsert, update, intersection, unionund
group-by. Daneben wird die QGM-Repräsentation einer Anfrage mit Schemainforma-
tion und statistischen Daten angereichert. Sie dient also auch als Sammelbecken für
alle die Anfrage betreffende Information.

Die QGM-Repräsentation dient der Anfragetransformation(Abb. D.8) als Aus-
gangspunkt. Die Anfragetransformation generiert zu einerQGM-Repräsentation ver-
schiedene äquivalente QGM-Repräsentationen. Die Anfragetransformation läßt sich,
abgesehen von den Darstellungsunterschieden von QGM und Hydrogen, als eine Vari-
ante der Source-level-Transformationen ansehen. Sie wirdregelbasiert implementiert,
wobei C die Regelsprache ist. Eine Regel besteht aus 2 Teilen, einer Bedingung und

D.1. RESEARCH PROTOTYPES 449

Anfrage

?

Zerteilung

?

Anfrage-
transformation

?

Planoptimierung

?

Planverfeinerung

?
Auswertungsplan

Figure D.8: Starburst Optimierer

einer Aktion. Jeder Teil wird durch eine C-Prozedur beschrieben. Dadurch erübrigt
sich die Implementierung eines allgemeinen Regelinterpreters mit Pattern-matching.
Regeln können in Gruppen zusammengefaßt werden. Der aktuelle Optimierer umfaßt
drei Klassen von Regeln:

1. Migration von Prädikaten

2. Migration von Projektionen

3. Verschmelzung von Operationen

Für die Ausführung der Regeln stehen drei verschiedene Suchstrategien zur Verfügung:

1. sequentiell,

2. prioritätsgesteuert und

3. zufällig, gemäß einer gegebenen Verteilung.

Die Teilgraphen der QGM-Repräsentation, auf die Regeln anwendbar sind, können
entweder durch eine depth-first oder eine breadth-first Suche bestimmt werden. Falls
mehrere alternative QGM-Repräsentationen existieren (was meistens der Fall ist), wird

450 APPENDIX D. EXAMPLE QUERY COMPILER

ein Choose-Operator [325] verwendet, der die verschiedenen QGMs in einen QGM
zusammenbaut. Die nachfolgende Phase wählt dann kostenbasiert einen dieser alter-
nativen QGMs aus. Dies ist nicht zwingend, die Auswahl kann auch erst zur Auswer-
tungszeit stattfinden. Begründet wird dieses Vorgehen damit, daß keine Kosten für
QGMs berechnet werden können, und somit keine Bewertung eines QGMs stattfinden
kann. Wie die Autoren selbst anmerken, ist dieser Umstand sehr mißlich, da keine
Alternativen verworfen werden können. Sie kündigen daher Untersuchungen an, die
Transformation (Schritt 2) mit der Planoptimierung (Schritt 3) zu verschmelzen. Um
eine gewisse Kontrolle über das Verhalten der Transformation zu haben, kann diesem
Schritt ein “budget” mitgegeben werden, nach dessen Ablaufder Schritt beendet wird.
Die genaue Funktionsweise des “budget” ist leider nicht erläutert.

Der Schritt der Planoptimierung (s. Abb. D.8) kann mit der bisherigen Optimierung
verglichen werden. Sie arbeitet regelbasiert, benutzt aber nicht den transformierenden,
sondern den generierenden Ansatz [518]. Aus Basisoperationen – LOLEPOPs (LOw-
LEvel Plan OPerator) genannt – werden mit (grammatischen) Regeln – STARs (strat-
egy alternative rules) genannt – (alternative) Auswertungspläne erzeugt. LOLEPOPs
entstammen der um SCAN, SORT und ähnliche physische Operatoren angereicherten
relationalen Algebra. Ein Auswertungsplan ist dann ein Ausdruck von geschachtelten
Funktionsaufrufen, wobei die Funktionen den LOLEPOPs entsprechen.

Ein STAR definiert ein benanntes parametrisiertes Objekt, das einem Nichtter-
minalsymbol entspricht. Er besteht aus einer Menge von alternativen Definitionen,
die jede aus einer Bedingung für die Anwendbarkeit und der Definition eines Plans
bestehen. Der generierte Plan kann LOLEPOPs (entsprechen Terminalsymbolen) und
STARs referenzieren. Ein rootSTAR entspricht dem Startsymbol der Grammatik.
STARs ähneln den Regeln, die in Genesis nicht nur für den Optimierer, sondern für
das ganze DBMS eingesetzt werden, um alternative Implementierungen zu erhalten
[52, 50, 54, 53, 55]. Um erzeugte Alternativen für einen Plan zusammenzusetzen und
zu verhindern, daß diese Alternativen die Anzahl der Plänein denen diese vorkom-
men, vervielfachen, wird ein Glue-Mechanismus eingesetzt. Dieser hat denChoose-
Operator als Wurzel. Darunter hängen dann Alternativen, die beispielsweise einen
Strom mit gewissen Eigenschaften (Sortierung, Lokation) erzeugen. Von diesen Al-
ternativen werden nur diejenigen betrachten, die die geringsten Kosten bei gleichen
Eigenschaften haben [492]. Die Kosten beziehen sich dabei immer nur auf den bisher
erreichten Teilplan.

Der Aufbau eines Auswertungsplanes erfolgt Bottom-up. DieMenge der anwend-
baren STARs wird in einer ToDo-Liste gehalten. Diese ist eine sortierte Liste. Hiermit
können dann verschiedene Suchstrategien implementiert werden, indem verschiedene
Sortierungen für die ToDo-Liste Verwendung finden [492]. Ein Vorteil des STAR-
Ansatzes ist die Vermeidung von Pattern-matching. Dies erlaubt es, die STARs zu
interpretieren [492].

Die Beurteilung der Erweiterbarkeit ist sehr schwierig. Zum einen handelt es sich
um einen erweiterbaren Optimierer, da sowohl LOLEPOPs als auch STARs hinzugefügt
werden können. Der Glue-Mechanismus kann ebenfalls spezifiziert werden, ohne in
die Implementierung einzugreifen. Das Problem ist lediglich die Komplexität dieser
Änderungen. Man kann diesen Ansatz daher vielleicht als bedingt erweiterbar kennze-
ichnen.

Eine Trennung der Optimierung in verschiedene Phasen wirftdie damit verbunde-

D.1. RESEARCH PROTOTYPES 451

Alternative
Ausf”uhrungs-

pl”ane

optimierter
Algebraausdruck

typkonsistenter
Ausdruck

Objektalgebra-
ausdruck

normalisierter
Kalk”ulausdruck

deklarative
Anfrage

Generierung
Ausf”uhrungs-

plan

Algebra-
optimierung

Typ-
”uberpr”ufung

Übers. von
Kalk”ul in
Algebra

Übers. in
Kalk”ul

??????- - - - - -

Figure D.9: Der Optimierer von Straube

nen Probleme auf. Wie oben bereits angeführt, kündigen die Autoren weitere Unter-
suchungen an, um eine Verschmelzung der Phasen zu ermöglichen. Da keine Alterna-
tiven verworfen werden, ist es potentiell möglich, den optimalen Auswertungsplan zu
errechnen. Schwer zu sehen ist jedoch, wie ein stetiger Leistungsabfall zu realisieren
ist. Gleiches gilt für die Evaluierbarkeit der einzelnen Komponenten (STARs).

More on Starburst can be found in [620, 621].

D.1.19 Der Optimierer von Straube

In seiner Dissertation stellt Straube den von ihm entwickelten Optimierer dar [778].
Die Ergebnisse dieser Arbeit flossen in eine Reihe von Veröffentlichungen ein [808,
775, 776, 774, 777]. Der Aufbau des Optimierers ist in Abbildung D.9 skizziert.
Eine Anfrage wird zunächst in den Objektkalkül übersetzt und von dort in die Ob-
jektalgebra. Hier findet dann zunächst eine Typüberprüfung statt. Danach beginnt
die eigentliche Optimierung. Diese besteht aus zwei Phasen, der algebraischen Opti-
mierung und der Generierung des Ausführungsplans.

Die erste Phase, die algebraische Optimierung, folgt dem Tranformationsparadig-
ma. Die algebraischen Ausdrücke werden mit Hilfe von Regeln in äquivalente alge-
braische Ausdrücke transformiert. Straube beschränkt sich dabei im wesentlichen auf
die Formulierung der Regeln. Für die Abarbeitung der Regeln schlägt er lediglich die
Verwendung des Exodus-Optimierergenerators [321] oder des Anfrageumformers von
Starburst [376] vor.

Die zweite Phase, die Generierung der Ausführungspläne,ist nicht regelbasiert. Ihr
liegt eine sogenannte Ausführungsplanschablone zu Grunde. Sie ist vergleichbar mit
einem Und/Oder-Baum, der alle möglichen Ausführungspl¨ane implizit beinhaltet. Zur
Generierung eines konkreten Ausführungsplans wird der durch die Ausführungsschablone
aufgespannte Suchraum vollständig durchsucht. Der billigste Ausführungsplan kommt
dann zur Abarbeitung.

Da ein regelbasierten Ansatz für die erste Phase gewählt wurde und die Verwen-
dung des Exodus-Optimierergenerators oder des Starburst-Anfrageumformers vorgeschla-
gen wird, verweisen wir für die Bewertung dieser Phase auf die entsprechenden Ab-
schnitte.

Die zweite Phase ist voll auskodiert und damit schlecht erweiterbar. Eine frühe
Bewertung der Alternativen ist nicht ausgeschlossen, wirdaber nicht vorgenommen.
Ein vollständiges Durchsuchen verhindert natürlich auch den stetigen Leistungsabfall
des Optimierers.

452 APPENDIX D. EXAMPLE QUERY COMPILER

Erschwerend für den gewählten Ansatz kommt die Zweiphasigkeit hinzu. Es ist
schwierig zu sehen, wie eine phasenübergreifende Kontrolle auszusehen hat, die zu-
mindest potentiell Optimalität gewährleistet. Die Evaluierbarkeit einzelner Kompo-
nenten des Optimierers ist nicht möglich.

D.1.20 Other Query Optimizer

Neben den in den vorangehenden Abschnitten erwähnten Optimierern gibt es noch
eine ganze Reihe anderer, die aber nicht im einzelnen vorgestellt werden sollen. Erwähnt
werden sollen noch die Systeme Probe [203, 202, 588] und Prima [372, 370]. Der
Schwerpunkt bei der Optimierung liegt im Primasystem auf dem dynamischen Zusam-
menbau von Molekülen. Es wäre zu untersuchen, ob ein Assembly-Operator (s. [441])
hier von Nutzen wäre. Besonders erwähnenswert ist noch eine Arbeit, die Opti-
mierungsmöglichkeiten für die Datenbankprogrammiersprache FAD vorstellt [813].
Diese Arbeit stellt einen ersten Schritt in Richtung eines Optimierers für eine General-
purpose-Programmiersprache dar. Ein wesentlicher Punkt ist dabei, daß auch ändernde
Operationen optimiert werden. Der Optimierer ist in zwei Module (RWR and OPT)
eingeteilt. RWR ist ein Sprachmodul, das dieÜbersetzung von FAD in ein internes
FAD vornimmt. Immer wenn RWR einen Ausdruck erkennt, der in der vom Optimier-
er OPT bearbeitbaren Sprache ausgedrückt werden kann, so wird dieser an den Opti-
mierer weitergegeben und dort optimiert. Es wird Exhaustive search als Suchstrategie
für den Optimierer vorgeschlagen.

Im erweiterten O2-Kontext wurde das Zerteilen von Pfadausdrücken weiter un-
tersucht [172]. Es werden die Vorteile einer typisierten Algebra für diese Zwecke
herausgearbeitet. Eine graphische Notation sorgt für eine anschauliche Darstellung.
Ihr besonderes Augenmerk richten die Autoren auf die Faktorisierung gemeinsamer
Teilausdrücke. Einige der Ersetzungsregeln sind aus [729] und [728] entnommen und
werden gewinnbringend eingesetzt, so beispielsweise die Ersetzung von Selektionen
durch Verbundoperatoren.

Ebenfalls erwähnt wurden bereits die Arbeiten im Orion-Kontext [45, 46, 452],
die sich auf die Behandlung von Pfadausdrücken konzentrieren. Auch hier wurde ein
funktionsfähiger Optimierer entwickelt.

Wie bereits erwähnt, stammt der erste regelbasierte Optimierer von Smith und
Chang [751]. Doch erst die neueren Arbeiten führten zu einer Blüte des regelbasierten
Ansatzes. Hier ist insbesondere die Arbeit von Freytag zu erwähnen, die diese Blüte
mit initiierte [255]. Dort wird gezeigt, wie man mit Hilfe eines regelbasierten Ansatzes
den Optimierer von System R [707] emulieren kann. Die Eingabe besteht aus einem
Lisp-ähnlichen Ausdruck:

(select<proj-list>
<sel-pred-list>
<join-pred-list>
<table-list>)

Die Projektionsliste besteht aus Attributspezifikationender Form

<rel-name>.<attr-name>

D.1. RESEARCH PROTOTYPES 453

Diese werden auch für die Selektionsprädikate und Joinprädikate verwendet. Die Al-
gebra beinhaltet sowohl Operatoren der logischen als auch der physischen Algebra.
Im einzelnen gibt es Scan-, Sort-, Projektions, Verbundoperatoren in einer logischen
und verschiedenen physischen Ausprägungen. Die Erzeugung der Auswertungspläne
wird in verschiedene Schritte unterteilt, die wiederum in Teilschritte zerlegt sind (siehe
Abb. D.3).

Zunächst erfolgt diëUbersetztung in die logische Algebra. Hier werden Scan-
Operatoren um die Relationen gebaut und Selektionen, die nur eine Relation betre-
ffen, in die Scan-Operatoren eingebaut. Der zweite Schrittgeneriert Zugriffspläne,
indem der Scan-Operator durch einen einfachen File-Scan (FSCAN) ersetzt wird oder
falls möglich, durch einen Index-Scan (ISCAN). Der dritteSchritt generiert zunächst
verschiedene Verbundreihenfolgen und bestimmt anschließend die Verbundmethoden.
Wie in System R wird zwischen dem Sortiere-und-Mische-Verbund und dem Verbund
durch geschachtelte Schleifen unterschieden. Es werden keinerlei Aussagen über die
Auswahl einer Suchstrategie gemacht. Ziel ist es vielmehr,durch die Modellierung
des System R Optimierers mit Hilfe eines Regelsystems die prinzipielle Brauchbarkeit
des regelbasierten Ansatzes nachzuweisen.

Man beachte auch die erwähnte Arbeit von Sciore und Sieg zurModularisierung
von regelbasierten Optimierern [703]. Die Hauptidee von Sciore und Sieg ist es, die
Regelmenge in Module zu organisieren und jedem Modul eine eigene Suchstrategie,
Kostenberechnung und Regelmenge zuzuordnen. Module können andere Module ex-
plizit aufrufen oder implizit ihre Ausgabemenge an das nächste Modul weiterleiten.
Der erste Optimierer des GOM-Systems ist ebenfalls regelbasiert [444, 443]. Die
gesamte Regelmenge wurde hier in Teilmengen ähnlich zu denModulen organisiert.
Die Steuerung zwischen den Teilmengen erfolgt durch ein heuristisches Netz, das an-
gibt in welchen Fällen zu welcher weiteren Teilmenge von Regeln zu verzweigen ist.
Die Strukturierung des Optimiererwissens steht auch in [530] im Vordergrund.

In diesem Zusammenhang, der Strukturierung von Optimierern und der Wiederver-
wendbarkeit einzelner Teile, sei noch einmal ausdrücklich auf die Arbeiten von Ba-
tory [53] aus dem Genesiskontext hingewiesen (s. auch Abschnitt D.1.7). Der dort
leider ein wenig zu kurz kommende Aspekt der Wiederverwendbarkeit von Suchfunk-
tionen wird in einer Arbeit von Lanzelotte und Valduriez [480] ausführlicher behan-
delt. Hier wurde eine Typhierarchie existierender Suchfunktionen entworfen und deren
Schnittstellen vereinheitlicht. Die Suchfunktionen selbst wurden modularisiert. Weit-
ere Arbeiten aus derselben Gruppe beschäftigen sich mit der Optimierung von objek-
torientierten Anfragen [479, 483], wobei hier die Behandlung von Pfaden im Vorder-
grund steht. Eine neuere Arbeit beschäftigt sich mit der Optimierung von rekursiven
Anfragen im objektorientierten Kontext [481].

Viele kommerzielle Systeme besitzen eine Anfragesprache und einen Optimierer.
Einer der wenigen Optimierer, die auch in der Literatur beschrieben werden, ist der
von ObjectStore [587]. Durch die einfache Anfragesprache,die nur Teilmengenbes-
timmung erlaubt, und die strikte Verwendung vonC-Semantik für boolesche Aus-
drücke sind die meisten Optimierungsmöglichkeiten jedoch ausgeschlossen, und der
“Optimierer” ist daher sehr einfach.

454 APPENDIX D. EXAMPLE QUERY COMPILER

D.2 Commercial Query Compiler

D.2.1 The DB 2 Query Compiler

D.2.2 The Oracle Query Compiler

Oracle still provides two modes for its optimizer. Dependent on the user specified
optimizer mode, a query is optimized either by the rule-based optimizer (RBO) or
by the cost-based optimizer (CBO). The RBO is a heuristic optimizer that resembles
the simple optimizer of chapter 2. Here we concentrate on themore powerful CBO.
The user can also determine whether the optimizer should optimize for throughput or
response time.

• nested loop join, nested loop outer join, index nested loop joins, sort merge join,
sort merge outer join, hash joins, hash outer join, cartesian join, full outer join,
cluster join, anti-joins, semi-joins, uses bitmap indexesfor star queries

• sort group-by,

• bitmap indexes, bitmap join indexes

• index skip scans

• partitioned tables and indexes

• index-organized tables

• reverse key indexes

• function-based indexes

• SAMPLE clause in SELECT statement

• parallel query and parallel DML

• star transformations and star joins

• query rewrite with materialized views

• cost: considers CPU, I/O, memory

• access path: table scan, fast full index scan, index scan, ROWID scans (access
ROW by ROWID), cluster scans, hash scans. [former two with prefetching]
index scans:

– index unique scan (UNIQUE or PRIMARY KEY constraints)

– index range scan (one or more leading columns or key)

– index range scan descending

– index skip scan (> 1 leading key values not given)

– index full scan, index fast full scan

– index joins (joins indexes with hash join, resembles index anding)

D.2. COMMERCIAL QUERY COMPILER 455

– bitmap joins (index anding/oring)

– cluster scan: for indexed cluster to retrieve rows with the same cluster id

– hash scan: to locate rows in a hash cluster

CBO: parsed quer –¿ [query transformer] –¿ [estimator] –¿ [plan generator] 1-16.
after parser: nested query blocks
simple rewrites:

• eliminate between

• elminate x in (c1 . . . cn) (also uses IN-LIST iterator as outertable constructor in
a d-join or nested-loop join like operation.

query transformer:

• view merging

• predicate pushing

• subquery unnesting

• query rewrite using materialized views (cost based)

remaining subplans for nested query blocks are ordered in anefficient manner
plan generator:

• choose access path, join order (upper limit on number of permutations consid-
ered), join method.

• generate subplan for every block in a bottom-up fashion

• (> 1 for still nested queries and unmerged views)

• stop generating more plans if there already exists a cheap plan

• starting plan: order by their effective cardinality

• considers normally only left-deep (zig-zag) trees.

• single row joins are placed first (based on unique and key constraints.

• join statement with outer join: table with outer join operator must come after the
other table in the condition in the join order. optimizer does not consider join
orders that violate this rule.

• NOT IN (SELECT . . .) becomes a anti-join that is executed as a nested-loop join
by default unless hints are given and various conditions aremet which allow the
transformation of the NOT IN uncorrelated subquery into a sort-merge or hash
anti-join.

• EXISTS (SELECT . . .) becomes a semi-join. execution as indexnested loops,
if there is an index. otherwise a nested-loop join is used by default for EXISTS
and IN subqueries that cannot be merged with the containing query unless a
hint specifies otherwise and conditions are met to allos the transformation of the
subquery into a sort-merge or hash semi-join.

456 APPENDIX D. EXAMPLE QUERY COMPILER

• star query detection

cost:

• takes unique/key constraints into consideration

• low/high values and uniform distribution

• host variables: guess small selectivity value to favor index access

• histograms

• common subexpression optimization

• complex view merging

• push-join predicate

• bitmap access paths for tables with only B-tree indexes

• subquery unnesting

• index joins

rest:

• Oracle allows user hints in SQL statements to influence the Optimizer. for ex-
ample join methods can be given explicitly

parameters:

• HASH AREA SIZE

• SORTAREA SIZE

• DB FILE MULTIBLOCK READ COUNT (number of prefetched pages)

statistics:

• table statistics
number of rows, number of blocks, average row length

• column statistics
number of distinct values, number of nulls, data distribution

• index statistics
number of keys, (from column statistics?) number of leaf blocks, levels, cluster-
ing factor (collocation amount of the index block/data blocks, 3-17)

• system statistics
I/O performance and utilization, cpu performance and utilization

generating statistics:

• estimation based on random data sampling
(row sampling, block sampling)

D.2. COMMERCIAL QUERY COMPILER 457

• exact computation

• user-defined statistics collection methods

histograms:

• height-based histograms (approx. equal number of values per bucket)

• value-based histograms
used for number of distinct values≤ number of buckets

• support of index-only queries

• index-organized tables

• bitmap indexes (auch fuer null-wertex <> const)

• convert b-tree result RID lists to bitmaps for further bitmap anding

• bitmaps and count

• bitmap join index

• cluster tables (cluster rows of different tables on the sameblock)

• hash clusters

• hint: USECONCAT: OR ::= UNION ALL

• hint: STAR TRANSFORMATION: see Oracle9i Database Concepts

• NOT IN ::= anti-join

• EXISTS ::= special join preserving duplicates and adding nophantom duplicates
(semi-join) (5-27)

• continue 5-35

D.2.3 The SQL Server Query Compiler

458 APPENDIX D. EXAMPLE QUERY COMPILER

Appendix E

Some Equalities for Binomial
Coefficients

The following identities can be found in the book by Graham, Knuth, and Patashnik
[326].

We use the following definition of binomial coefficients:

(
n

k

)

=

{
n!

k!(n−k)! if 0 ≤ k ≤ n

0 else
(E.1)

We start with some simple identities.

(
n

k

)

=

(
n

n− k

)

(E.2)
(

n

k

)

=
n

k

(
n− 1

k − 1

)

(E.3)

k

(
n

k

)

= n

(
n− 1

k − 1

)

(E.4)

(n− k)

(
n

k

)

= n

(
n− 1

k

)

(E.5)

(n− k)

(
n

k

)

= n

(
n− 1

n− k − 1

)

(E.6)
(

n

k

)

=

(
n− 1

k

)

+

(
n− 1

k − 1

)

(E.7)
(

r

m

)(
m

k

)

=

(
r

k

)(
r − k

m− k

)

(E.8)

459

460 APPENDIX E. SOME EQUALITIES FOR BINOMIAL COEFFICIENTS

The following identities are good for sums of binomial coefficients.

n∑

k=0

(
n

k

)

= 2n (E.9)

n∑

k=0

(
k

m

)

=

(
n + 1

m + 1

)

(E.10)

n∑

k=0

(
m + k

k

)

=

(
m + n + 1

m + 1

)

=

(
m + n + 1

n

)

(E.11)

n∑

k=0

(
m− n + k

k

)

=

(
m + 1

n

)

(E.12)

From Identities E.2 and E.11 it follows that

m∑

k=0

(
k + r

r

)

=

(
m + r + 1

r + 1

)

(E.13)

For sums of products, we have

n∑

k=0

(
r

m + k

)(
s

n− k

)

=

(
r + s

m + n

)

(E.14)

n∑

k=0

(
l − k

m

)(
q + k

n

)

=

(
l + q + 1

m + n + 1

)

(E.15)

n∑

k=0

(
l

m + k

)(
s

n + k

)

=

(
l + s

l −m + n

)

(E.16)

Bibliography

[1] K. Aberer and G. Fischer. Semantic query optimization for methods in object-
oriented database systems. InProc. IEEE Conference on Data Engineering,
pages 70–79, 1995.

[2] S. Abiteboul. On Views and XML. InProc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 1–9, 1999.

[3] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht. An introduction to
the completeness of languages for complex objects and nested relations. In
S. Abiteboul, P.C. Fischer, and H.-J. Schek, editors,Nested Relations and Com-
plex Objects in Databases, pages 117–138. Lecture PAGESs in Computer Sci-
ence 361, Springer, 1987.

[4] S. Abiteboul and N. Bidoit. Non first normal form relations: An algebra allow-
ing restructuring.Journal of Computer Science and Systems, 33(3):361, 1986.

[5] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Sime-
on. Querying documents in object databases.International Journal on Digital
Libraries, 1(1):5–19, April 1997.

[6] S. Abiteboul and O. Duschka. Complexity of answering queries using material-
ized views. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages 254–263, 1998.

[7] A. Aboulnaga, A. Alameldeen, and J. Naughton. Estimating the selectivity of
XML path expressions for internet scale applications. InProc. Int. Conf. on
Very Large Data Bases (VLDB), pages 591–600, 2001.

[8] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:Building histograms
without looking at data. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 181–192, 1999.

[9] A. Aboulnaga and J. Naughton. Accurate estimation of thecost of spatial selec-
tions. InProc. IEEE Conference on Data Engineering, pages 123–134, 2000.

[10] A. Aboulnaga and J. Naughton. Building XML statistics for the hidden web.
In Int. Conference on Information and Knowledge Management (CIKM), pages
358–365, 2003.

461

462 BIBLIOGRAPHY

[11] W. Abu-Sufah, D. J. Kuch, and D. H. Lawrie. On the performance enhancement
of paging systems through program analysis and transformations. IEEE Trans.
on Computers, C-50(5):341–355, 1981.

[12] B. Adelberg, H. Garcia-Molina, and J. Widom. The STRIP rule system for
efficiently maintaining derived data. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 147–158, 1997.

[13] F. Afrati, M. Gergatsoulis, and T. Kavalieros. Answering queries using materi-
alized views with disjunctions. InProc. Int. Conf. on Database Theory (ICDT),
pages 435–452, 1999.

[14] F. Afrati, C. Li, and J. Ullman. Generating efficient plans for queries using
views. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
319–330, 2001.

[15] F. Afrati and C. Papadimitriou. The parallel complexity of simple chain queries.
In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS),
pages 210–?, 1987.

[16] D. Agrawal, A. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance at
data warehouses. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 417–427, 1997.

[17] S. Agrawal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrish-
nan, and S. Sarawagi. On the computation of multidimensional aggregates. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 506–521, 1996.

[18] R. Ahad, K. Bapa Rao, and D. McLeod. On estimating the cardinality of a
database relation.ACM Trans. on Database Systems, 14(1):28–40, Mar. 1989.

[19] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databas-
es.ACM Trans. on Database Systems, 4(3):297–314, 1979.

[20] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class of
relational expression.ACM Trans. on Database Systems, 4(4):435–454, 1979.

[21] A.V. Aho, Y. Sagiv, and J.D. Ullman. Equivalence among relational expressions.
SIAM Journal on Computing, 8(2):218–246, 1979.

[22] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu. Struc-
tural joins: A primitive for efficient XML query pattern matching. InProc. IEEE
Conference on Data Engineering, pages 141–152, 2002.

[23] J. Albert. Algebraic properties of bag data types. InProc. Int. Conf. on Very
Large Data Bases (VLDB), pages 211–219, 1991.

[24] F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In
R. Rustin, editor,Design and optimization of compilers, pages 1–30. Prentice
Hall, 1971.

BIBLIOGRAPHY 463

[25] J. Alsabbagh and V. Rahavan. Analysis of common subexpression exploita-
tion models in multiple-query processing. InProc. IEEE Conference on Data
Engineering, pages 488–497, 1994.

[26] K. Alsabti, S. Ranka, and V. Singh. A one-pass algorithmfor accurately esti-
mating quantiles for disk-resident data. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 346–355, Athens, Greece, 1997.

[27] P. Alsberg. Space and time savings through large database compression and
dynamic restructuring. InProc IEEE 63,8, Aug. 1975.

[28] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling query plans to
cope with unexpected delay. In4th Int. Conference on Parallel and Distributed
Information Systems (PDIS), Palm Beach, Fl, 1996.

[29] O. Anfindsen. A study of access path selection in DB2. Technical report, Nor-
wegian Telecommunication Administration and University of Oslo, Norway,
Oct. 1989.

[30] G. Antoshenkov. Dynamic query optimization in RDB/VMS. In Proc. IEEE
Conference on Data Engineering, pages 538–547, Vienna, Apr. 1993.

[31] G. Antoshenkov. Query processing in DEC Rdb: Major issues and future chal-
lenges.IEEE Data Engineering Bulletin, 16:42–52, Dec. 1993.

[32] G. Antoshenkov. Dynamic optimization of index scans restricted by booleans.
In Proc. IEEE Conference on Data Engineering, pages 430–440, 1996.

[33] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for dis-
tributed queries.IEEE Trans. on Software Eng., 9(1):57–68, 1983.

[34] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for dis-
tributed queries.IEEE Trans. on Software Eng., 9(1):57–68, 1983.

[35] R. Ashenhurst. Acm forum.Communications of the ACM, 20(8):609–612,
1977.

[36] M. M. Astrahan and D. D. Chamberlin. Implementation of astructured English
query language.Communications of the ACM, 18(10):580–588, 1975.

[37] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N. Gray,
P.P. Griffiths, W.F. King, R.A. Lorie, P.R. Mc Jones, J.W. Mehl, G.R. Put-
zolu, I.L. Traiger, B.W. Wade, and V. Watson. System R: relational approach to
database management.ACM Transactions on Database Systems, 1(2):97–137,
June 1976.

[38] R. Avnur and J. Hellerstein. Eddies: Continiously adaptive query optimization.
In Proc. of the ACM SIGMOD Conf. on Management of Data, 2000.

[39] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: A principled
and practical approach. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 119–130, 2005.

464 BIBLIOGRAPHY

[40] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 107–118, 2005.

[41] L. Baekgaard and L. Mark. Incremental computation of nested relational query
expressions.ACM Trans. on Database Systems, 20(2):111–148, 1995.

[42] T. Baer. Iperfex: A hardware performance monitor for Linux/IA32 systems.
perform internet search for this or similar tools.

[43] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framework for
using materialized XPath views in XML query processing. InProc. Int. Conf.
on Very Large Data Bases (VLDB), pages 60–71, 2004.

[44] F. Bancilhon and K. Koshafian. A calculus for complex objects. InACM Symp.
on Principles of Database Systems, pages 53–59, 1986.

[45] J. Banerjee, W. Kim, and K.-C. Kim. Queries in object-oriented databases.
MCC Technical Report DB-188-87, MCC, Austin, TX 78759, June1987.

[46] J. Banerjee, W. Kim, and K.-C. Kim. Queries in object-oriented databases. In
Proc. IEEE Conference on Data Engineering, pages 31–38, 1988.

[47] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection in
a multidimensional database. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 156–165, 1997.

[48] M. Bassiouni. Data compression in scientific and statistical databases.IEEE
Trans. on Software Eng., 11(10):1047–1058, 1985.

[49] D. Batory. On searching transposed files.ACM Trans. on Database Systems,
4(4):531–544, 1979.

[50] D. Batory. Extensible cost models and query optimization in Genesis.IEEE
Database Engineering, 9(4), Nov 1986.

[51] D. S. Batory. Modeling the storage architecture of commercial database sys-
tems.ACM Trans. on Database Systems, 10(4):463–528, Dec. 1985.

[52] D. S. Batory. A molecular database systems technology.Tech. Report TR-87-
23, University of Austin, 1987.

[53] D. S. Batory. Building blocks of database management systems. Technical
Report TR-87-23, University of Texas, Austin, TX, Feb. 1988.

[54] D. S. Batory. Concepts for a database system compiler. In Proc. of the 17nth
ACM SIGMOD, pages 184–192, 1988.

[55] D. S. Batory. On the reusability of query optimization algorithms. Information
Sciences, 49:177–202, 1989.

[56] D. S. Batory and C. Gotlieb. A unifying model of physicaldatabases.ACM
Trans. on Database Systems, 7(4):509–539, Dec. 1982.

BIBLIOGRAPHY 465

[57] D. S. Batory, T. Y. Leung, and T. E. Wise. Implementationconcepts for an
extensible data model and data language.ACM Trans. on Database Systems,
13(3):231–262, Sep 1988.

[58] L. Becker and R. H. Güting. Rule-based optimization and query processing in
an extensible geometric database system.ACM Trans. on Database Systems (to
appear), 1991.

[59] L. Becker and R. H. Güting. Rule-based optimization and query processing in
an extensible geometric database system.ACM Trans. on Database Systems,
17(2):247–303, June 1992.

[60] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented query
languages. InProc. Int. Conf. on Database Theory (ICDT), pages 72–88, 1990.

[61] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented query
languages.Theoretical Computer Science, 116(1):59–94, 1993.

[62] C. Beeri and Y. Tzaban. SAL: An algebra for semistructured data and XML. In
ACM SIGMOD Workshop on the Web and Databases (WebDB), 1999.

[63] L. A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5(2):78–101, 1966.

[64] D. Bell, D. Ling, and S. McLean. Pragmatic estimation ofjoin sizes and at-
tribute correlations. InProc. IEEE Conference on Data Engineering, pages
76–84, 1989.

[65] D. Beneventano, S. Bergamaschi, and C. Sartori. Description logic for seman-
tic query optimization in object-oriented database systems. ACM Trans. on
Database Systems, 28(1):1–50, 2003.

[66] K. Bennett, M. Ferris, and Y. Ioannidis. A genetic algorithm for database query
optimization. Technical Report Tech. Report 1004, University of Wisconsin,
1990.

[67] K. Bennett, M. Ferris, and Y. Ioannidis. A genetic algorithm for database query
optimization. InProc. 4th Int. Conf. on Genetic Algorithms, pages 400–407,
1991.

[68] A. Bernasconi and B. Codenetti. Measures of boolean function complexity
based on harmonic analysis. In M. Bonuccelli, P. Crescenzi,and R. Petreschi,
editors, Algorithms and Complexity (2nd. Italien Converence), pages 63–72,
Rome, Feb. 1994. Springer (Lecture Notes in Computer Science 778).

[69] P. Bernstein, E. Wong, C. Reeve, and J. Rothnie. Query processing in a system
for distributed databases (sdd-1).ACM Trans. on Database Systems, 6(4):603–
625, 1981.

[70] P. A. Bernstein and D. M. W. Chiu. Using semi-joins to solve relational queries.
Journal of the ACM, 28(1):25–40, 1981.

466 BIBLIOGRAPHY

[71] P. A. Bernstein and N. Goodman. The power of inequality semijoin. Information
Systems, 6(4):255–265, 1981.

[72] P. A. Bernstein and N. Goodman. The power of natural semijoin. SIAM J.
Comp., 10(4):751–771, 1981.

[73] E. Bertino and P. Foscoli. An analytical cost model of object-oriented query
costs. InProc. Persistent Object Systems, pages 151–160, 1992.

[74] E. Bertino and D. Musto. Query optimization by using knowledge about data
semantics.Data & Knowledge Engineering, 9(2):121–155, 1992.

[75] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-oriented query lan-
guages: The notion and the issues.IEEE Trans. on Knowledge and Data Eng.,
4(3):223–237, June 1992.

[76] G. Bhargava, P. Goel, and B. Iyer. Hypergraph based reorderings of outer join
queries with complex predicates. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 304–315, 1995.

[77] G. Bhargava, P. Goel, and B. Iyer. Efficient processing of outer joins and aggre-
gate functions. InProc. IEEE Conference on Data Engineering, pages 441–449,
1996.

[78] A. Biliris. An efficient database storage structure forlarge dynamic objects. In
Proc. IEEE Conference on Data Engineering, pages 301–308, 1992.

[79] D. Bitton and D. DeWitt. Duplicate record elimination in large data files.ACM
Trans. on Database Systems, 8(2):255–265, 1983.

[80] J. Blakeley and N. Martin. Join index, materialized view, and hybrid hash-join:
a performance analysis. InProc. IEEE Conference on Data Engineering, pages
256–236, 1990.

[81] J. Blakeley, W. McKenna, and G. Graefe. Experiences building the Open OODB
query optimizer. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 287–295, 1993.

[82] J. A. Blakeley, P. A. Larson, and F. W. Tompa. Efficientlyupdating materialized
views. InProc. of the ACM SIGMOD Conf. on Management of Data, pages 61–
71, Washington, D.C., 1986.

[83] B. Blohsfeld, D. Korus, and B. Seeger. A comparison of selectivity estimators
for range queries on metric attributes. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 239–250, 1999.

[84] P. Bodorik and J.S. Riordon. Distributed query processing optimization objec-
tives. InProc. IEEE Conference on Data Engineering, pages 320–329, 1988.

[85] T. Böhme and E. Rahm. Xmach-1: A benchmark for XML data management.
In BTW, pages 264–273, 2001.

BIBLIOGRAPHY 467

[86] A. Bolour. Optimal retrieval for small range queries.SIAM J. of Comput.,
10(4):721–741, 1981.

[87] P. Boncz, A. Wilschut, and M. Kersten. Flattening an object algebra to provide
performance. InProc. IEEE Conference on Data Engineering, pages 568–577,
1998.

[88] B. Bouchou, M. Halfeld, and F. Alves. Updates and incremental validation of
xml documents. InInt. Workshop on Database Programming Languages, pages
216–232, 2003.

[89] M. Brantner, S. Helmer, C.-C. Kanne, and G. Moerkotte. Full-fledged algebraic
XPath processing in Natix. InProc. IEEE Conference on Data Engineering,
pages 705–716, 2005.

[90] K. Bratbergsengen and K. Norvag. Improved and optimized partitioning tech-
niques in database query procesing. InAdvances in Databases, 15th British
National Conference on Databases, pages 69–83, 1997.

[91] Y. Breitbart and A. Reiter. Algorithms for fast evaluation of boolean expres-
sions.Acta Informatica, 4:107–116, 1975.

[92] S. Bressan, M. Lee, Y. Li, Z. Lacroix, and U. Nambiar. TheXOO7 XML Man-
agement System Benchmark. Technical Report TR21/00, National University
of Singapore, 2001.

[93] A. Broder, M. Charikar, and A. Frieze. Minwise independent permutations.
In Annual ACM Symposium on Theory of Computing (STOC), pages 327–336,
1998.

[94] K. Brown, M. Carey, and M. Livny. Goal-oriented buffer management revisited.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 353–364,
Montreal, Canada, Jun 1996.

[95] N. Bruno and S. Chaudhuri. Exploiting statistics on intermediate tables for
query optimization. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages ?–?, 2002.

[96] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a multidimensional
workload-aware histogram. InProc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 211–222, 2001.

[97] F. Bry. Logical rewritings for improving the evaluation of quantified queries. In
2nd. Symp. on Mathematical Fundamentals of Database Systems, pages 100–
116, June 1989, Visegrad, Hungary, 1989.

[98] F. Bry. Towards an efficient evaluation of general queries: Quantifiers and dis-
junction processing revisited. InProc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 193–204, 1989.

[99] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
syntax.SIGMOD Record, 23(1):87–96, 1994.

468 BIBLIOGRAPHY

[100] L. Cabibbo and R. Torlone. A framework for the investigation of aggregate
functions in database queries. InProc. Int. Conf. on Database Theory (ICDT),
pages 383–397, 1999.

[101] J.-Y. Cai, V. Chakaravarthy, R. Kaushik, and J. Naughton. On the complexity of
join predicates. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of Database
Syst. (PODS), pages 207–214, 2001.

[102] B. Cao and A. Badia. A nested relational approach to processing sql subqueries.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 191–202,
2005.

[103] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism.JOURNAL of the ACM, Computing Surveys:471–522, 1985.

[104] A. F. Cardenas. Analysis and performance of inverted data base structures.
Communications of the ACM, 18(5):253–263, 1975.

[105] M. Carey, D. DeWitt, J. Richardson, and E. Shikita. Object and file management
in the EXODUS extensible database system. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 91–100, 1986.

[106] M. Carey and D. Kossmann. On saying “enough already!” in SQL. InProc. of
the ACM SIGMOD Conf. on Management of Data, pages 219–230, 1997.

[107] M. Carey and D. Kossmann. Processing top N and bottom N queries. IEEE
Data Engineering Bulletin, 20(3):12–19, 1997.

[108] M. Carey and D. Kossmann. Reducing the braking distance of an SQL query
engine. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 158–169,
1998.

[109] J. Carlis. HAS: A relational algebra operator, or devide is not to conquer. In
Proc. IEEE Conference on Data Engineering, pages 254–261, 1986.

[110] L. Carlitz, D. Roselle, and R. Scoville. Some remarks on ballot-type sequences
of positive integers.Journal of Combinatorial Theory, 11:258–271, 1971.

[111] C. R. Carlson and R. S. Kaplan. A generalized access path model and its appli-
cation to a relational database system. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 143–154, 1976.

[112] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization,
semantics and equivalence of SQL queries.IEEE Trans. on Software Eng.,
11(4):324–345, Apr 1985.

[113] S. Ceri and G. Pelagatti. Correctness of query execution strategies in distributed
databases.ACM Trans. on Database Systems, 8(4):577–607, Dec. 1983.

[114] S. Ceri and G. Pelagatti.Distributed Databases: Principles and Systems.
McGraw-Hill, 1985.

BIBLIOGRAPHY 469

[115] S. Chakravarthy. Devide and conquer: a basis for augmenting a conventional
query optimizer with multiple query processing capabilities. In Proc. IEEE
Conference on Data Engineering, 1991.

[116] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization.ACM Trans. on Database Systems, 15(2):162–207, 1990.

[117] U. S. Chakravarthy and J. Minker. Multiple query processing in deductive
databases using query graphs. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages ?–?, 1986.

[118] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XMLquery language
for heterogeneous data sources. InACM SIGMOD Workshop on the Web and
Databases (WebDB), 2000.

[119] A. Chan and B. Niamir. On estimating cost of accessing records in blocked
database organizations.Comput. J., 25(3):368–374, 1982.

[120] C. Chan and B. Ooi. Efficient scheduling of page accesses in index-based join
processing.IEEE Trans. on Knowledge and Data Eng., 9(6):1005–1011, 1997.

[121] A.K. Chandra and D. Harel. Structure and complexity ofrelational queries.
Journal of Computer and System Sciences, 25:99–128, 1982.

[122] A.K. Chandra and P.M. Merlin. Optimal implementationof conjunctive queries
in relational databases. InProc. 9th Int. Symp. on Theory of Computing, pages
77–90, 1977.

[123] S. Chatterji, S. Evani, S. Ganguly, and M. Yemmanuru. On the complexity of
approximate query optimization. InProc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 282–292, 2002.

[124] D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The MD-Join: An
Operator for Complex OLAP. InProc. IEEE Conference on Data Engineering,
pages 524–533, 2001.

[125] D. Chatziantoniou and K. Ross. Querying multiple features in relational
databases. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 295–
306, 1996.

[126] D. Chatziantoniou and K. Ross. Groupwise processing of relational queries. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 476–485, 1997.

[127] S. Chaudhuri, P. Ganesan, and S. Sarawagi. Factorizing complex predicates in
queries to exploit indexes. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 361–372, 2003.

[128] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estimation for string predi-
cates: Overcoming the underestimation problem. InProc. IEEE Conference on
Data Engineering, pages 227–238, 2004.

470 BIBLIOGRAPHY

[129] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 397–410, 1999.

[130] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K.Shim. Optimizing
queries with materialized views. InProc. IEEE Conference on Data Engineer-
ing, pages 190–200, 1995.

[131] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K.Shim. Optimizing
Queries with Materialized Views, pages 77–92. MIT Press, 1999.

[132] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram
construction: How much is enough? InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 436–447, Seattle, WA, 1998.

[133] S. Chaudhuri and K. Shim. Query optimization in the presence of foreign func-
tions. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 529–542,
1993.

[134] S. Chaudhuri and K. Shim. Including group-by in query optimization. InProc.
Int. Conf. on Very Large Data Bases (VLDB), pages 354–366, 1994.

[135] S. Chaudhuri and K. Shim. The promise of early aggregation. Technical report,
HP Lab, 1994. Never Appeared.

[136] S. Chaudhuri and K. Shim. An overview of cost-based optimization of queries
with aggregates.IEEE Data Engineering Bulletin, 18(3):3–9, Sept 1995.

[137] S. Chaudhuri and K. Shim. Optimization of queries withuser-defined pred-
icates. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 87–98,
1996.

[138] S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. InProc.
of the Int. Conf. on Extending Database Technology (EDBT), pages 167–182,
1996.

[139] P. Cheeseman, B. Kanefsky, and W. Taylor. Where thereally hard problems are.
In Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 331–337, 1991.

[140] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In
Proc. Int. Conf. on Database Theory (ICDT), pages 56–70, 1997.

[141] C. Chen and N. Roussopoulos. Adaptive selectivity estimation using query
feedback. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
161–172, 1994.

[142] C. Chen and N. Roussopoulos. The implementation and performance evaluation
of the ADMS query optimizer: Integrating query result caching and matching.
In Proc. of the Int. Conf. on Extending Database Technology (EDBT), pages
323–336, 1994.

[143] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database
systems. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
271–282, 2001.

BIBLIOGRAPHY 471

[144] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng, and
D. Srivastava. Counting twig matches in a tree. InProc. IEEE Conference on
Data Engineering, pages 595–604, 2001.

[145] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Selectivity estimation for
boolean queries. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of Database
Syst. (PODS), pages 216–225, 2000.

[146] Z. Chen and V. Narasayya. Efficient computation of multiple group by queries.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 263–274,
2005.

[147] J. Cheng, D. Haderle, R. Hedges, B. Iyer, T. Messenger,C. Mohan, and
Y. Wang. An efficient hybrid join algorithm: A DB2 prototype.In Proc. IEEE
Conference on Data Engineering, pages 171–180, 1991.

[148] J. Cheng, C. Loosley, A. Shibamiya, and P. Worthington. IBM DB2 Perfor-
mance: design, implementation, and tuning.IBM Sys. J., 23(2):189–210, 1984.

[149] Q. Cheng, J. Gryz, F. Koo, T. Y. Cliff Leung, L. Liu, X. Quian, and B. Schiefer.
Implementation of two semantic query optimization techniques in DB2 uni-
versal database. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
687–698, 1999.

[150] M. Cherniack and S. Zdonik. Rule languages and internal algebras for rule-
based optimizers. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 401–412, 1996.

[151] M. Cherniack and S. Zdonik. Changing the rules: Transformations for rule-
based optimizers. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 61–72, Seattle, WA, 1998.

[152] T.-Y. Cheung. Estimating block accesses and number ofrecords in file manage-
ment.Communications of the ACM, 25(7):484–487, 1982.

[153] D. M. Chiu and Y. C. Ho. A methodology for interpreting tree queries into opti-
mal semi-join expressions. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 169–178, 1980.

[154] H.-T. Chou and D. DeWitt. An evaluation of buffer management strategies
for relational database systems. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 127–141, 1985.

[155] S. Christodoulakis. Estimating selectivities in databases. Tech. Report CSRG-
136, University of Toronto, 1981.

[156] S. Christodoulakis. Estimating block transfers and join sizes. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 40–54, 1983.

[157] S. Christodoulakis. Estimating block transfers and join sizes. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 40–54, 1983.

472 BIBLIOGRAPHY

[158] S. Christodoulakis. Estimating record selectivities. Information Systems,
8(2):105–115, 1983.

[159] S. Christodoulakis. Estimating record selectivities. Information Systems,
8(2):105–115, 1983.

[160] S. Christodoulakis. Estimating block selectivities. Information Systems,
9(1):69–79, 1984.

[161] S. Christodoulakis. Estimating record selectivities. Information Systems,
9(1):69–69, 1984.

[162] S. Christodoulakis. Implications of certain assumptions in database perfor-
mance evaluation.ACM Trans. on Database Systems, 9(2):163–186, June 1984.

[163] S. Christodoulakis. Analysis of retrieval performance for records and objects
using optical disk technology.ACM Trans. on Database Systems, 12(2):137–
169, 1987.

[164] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with general-
ized path expressions. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 413–422, 1996.

[165] P.-C. Chu. A contingency approach to estimating record selectivities. IEEE
Trans. on Software Eng., 17(6):544–552, 1991.

[166] P.-C. Chu. Estimating block selectivities for physical database design.IEEE
Trans. on Knowledge and Data Eng., 4(1):89–98, 1992.

[167] C. Clarke, G. Cormack, and F. Burkowski. An algebra forstructured text search
and a framework for its implementation.The Computer Journal, 38(1):43–56,
1995.

[168] J. Claussen, A. Kemper, and D. Kossmann. Order-preserving hash joins: Sorting
(almost) for free. Technical Report MIP-9810, University of Passau, 1998.

[169] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner.Optimizing queries
with universal quantification in object-oriented and object-relational databases.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 286–295, 1997.

[170] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner.Optimizing queries
with universal quantification in object-oriented and object-relational databas-
es. Technical Report MIP–9706, University of Passau, Fak. f. Mathematik u.
Informatik, Mar 1997.

[171] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, andM. Steinbrunn. Opti-
mization and evaluation of disjunctive queries.IEEE Trans. on Knowledge and
Data Eng., 12(2):238–260, 2000.

[172] S. Cluet and C. Delobel. A general framework for the optimization of object-
oriented queries. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 383–392, 1992.

BIBLIOGRAPHY 473

[173] S. Cluet, C. Delobel, C. Lecluse, and P. Richard. Reloop, an algebra based
query language for an object-oriented database system. InProc. Int. Conf. on
Deductive and Object-Oriented Databases (DOOD), 1989.

[174] S. Cluet and G. Moerkotte. Nested queries in object bases. InProc. Int. Work-
shop on Database Programming Languages, pages 226–242, 1993.

[175] S. Cluet and G. Moerkotte. Classification and optimization of nested queries in
object bases. Technical Report 95-6, RWTH Aachen, 1995.

[176] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk types.
Technical Report 95-5, RWTH-Aachen, 1995.

[177] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk types. In
Proc. Int. Workshop on Database Programming Languages, 1995.

[178] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-deep
processing trees with cross products. InProc. Int. Conf. on Database Theory
(ICDT), pages 54–67, 1995.

[179] S. Cluet and G. Moerkotte. Query optimization techniques exploiting class
hierarchies. Technical Report 95-7, RWTH-Aachen, 1995.

[180] E. Codd.Database Systems - Courant Computer Science Symposium. Prentice
Hall, 1972.

[181] E. F. Codd. A database sublanguage founded on the relational calculus. In
Proc. ACM-SIGFIDET Workshop, Datadescription, Access, and Control, pages
35–68, San Diego, Calif., 1971. ACM.

[182] E. F. Codd. Relational completeness of data base sublanguages. InCourant
Computer Science Symposia No. 6: Data Base Systems, pages 67–101, New
York, 1972. Prentice Hall.

[183] E. F. Codd. Extending the relational database model tocapture more meaning.
ACM Trans. on Database Systems, 4(4):397–434, Dec. 1979.

[184] E. Cohen. Size-estimation framework with applications to transitive closure.
Journal of Comput. Syst. Sciences, 55:441–453, 1997.

[185] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R.Motwani, J. Ullman,
and C. Yang. Finding interesting associations without support pruning. InProc.
IEEE Conference on Data Engineering, pages 489–499, 2000.

[186] L. Colby. A recursive algebra and query optimization for nested relational al-
gebra. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
273–283, 1989.

[187] L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting
multiple view maintenance policies. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 405–416, 1997.

474 BIBLIOGRAPHY

[188] G. Copeland and S. Khoshafian. A decomposition storagemodel. InProc. of
the ACM SIGMOD Conf. on Management of Data, pages 268–279, Austin, TX,
1985.

[189] G. Cormack. Data compression on a database system.Communications of the
ACM, 28(12):1336–1342, 1985.

[190] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. MIT Press,
1990.

[191] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms.
MIT Press, 2001. 2nd Edition.

[192] D. Cornell and P. Yu. Integration of buffer managementand query optimization
in relational database environments. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 247–255, 1989.

[193] J. Crawford and L. Auton. Experimental results on the crossover point in satisfi-
ability problems. InProc. National Conference on Artificial Intelligence, pages
21–27, 1993.

[194] K. Culik, T. Ottmann, and D. Wood. Dense multiway trees. ACM Trans. on
Database Systems, 6(3):486–512, 1981.

[195] M. Dadashzadeh. An improved division operator for relational algebra.Infor-
mation Systems, 14(5):431–437, 1989.

[196] D. Daniels. Query compilation in a distributed database system. Technical
Report RJ 3432, IBM Research Laboratory, San Jose, CA, 1982.

[197] D. Das and D. Batory. Praire: A rule specification framework for query opti-
mizers. InProc. IEEE Conference on Data Engineering, pages 201–210, 1995.

[198] C. J. Date. The outer join. InProc. of the Int. Conf. on Databases, Cambridge,
England, 1983.

[199] U. Dayal. Processing queries with quantifiers: A horticultural approach. In
ACM Symp. on Principles of Database Systems, pages 125–136, 1983.

[200] U. Dayal. Of nests and trees: A unified approach to processing queries that
contain nested subqueries, aggregates, and quantifiers. InVLDB, pages 197–
208, 1987.

[201] U. Dayal, N. Goodman, and R.H. Katz. An extended relational algebra with
control over duplicate elimination. InProc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 117–123, 1982.

[202] U. Dayal, F. Manola, A. Buchman, U. Chakravarthy, D. Goldhirsch, S. Heiler,
J. Orenstein, and A. Rosenthal. Simplifying complex object: The PROBE ap-
proach to modelling and querying them. InH.J. Schek and G. Schlageter (eds.)
Proc. BTW, pages 17–37, 1987.

BIBLIOGRAPHY 475

[203] U. Dayal and J. Smith. PROBE: A knowledge-oriented database management
system. InProc. Islamorada Workshop on Large Scale Knowledge Base and
Reasoning Systems, 1985.

[204] G. de Balbine. Note on random permutations.Mathematics of Computation,
21:710–712, 1967.

[205] D. DeHaan, P.-A. Larson, and J. Zhou. Stacked index views in microsoft sql
server. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
179–190, 2005.

[206] R. Demolombe. Estimation of the number of tuples satisfying a query expressed
in predicate calculus language. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 55–63, 1980.

[207] P. Denning. Effects of scheduling on file memory operations. InProc. AFIPS,
pages 9–21, 1967.

[208] N. Derrett and M.-C. Shan. Rule-based query optimization in IRIS. Tech-
nical report, Hewlard-Packard Laboratories, 1501 Page Mill Road, Palo Alto,
CA94303, 1990.

[209] B. Desai. Performance of a composite attribute and join index. IEEE Trans. on
Software Eng., 15(2):142–152, Feb. 1989.

[210] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is good:
Dependency-based histogram synopses for high-dimensional data. InProc. of
the ACM SIGMOD Conf. on Management of Data, pages 199–210, 2001.

[211] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu.
Querying XML data.IEEE Data Engineering Bulletin, 22(3):10–18, 1999.

[212] A. Deutsch and V. Tannen. Optimization properties forclasses of conjunctive
regular path queries. InInt. Workshop on Database Programming Languages,
pages 21–39, 2001.

[213] A. Deutsch and V. Tannen. Reformulation of xml queriesand constraints. In
Proc. Int. Conf. on Database Theory (ICDT), pages 225–241, 2003.

[214] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Im-
plementation techniques for main memory database systems.In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 151–1??, 1984.

[215] D. DeWitt, J. Naughton, and D. Schneider. An evaluation of non-equijoin algo-
rithms. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 443–452,
1991.

[216] Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer. Path sharing
and predicate evaluation for high-performance xml filtering. ACM Trans. on
Database Systems, 28(4):367–516, 2003.

476 BIBLIOGRAPHY

[217] G. Diehr and A. Saharia. Estimating block accesses in database organizations.
IEEE Trans. on Knowledge and Data Engineering, 6(3):497–499, 1994.

[218] P. Dietz. Optimal algorithms for list indexing and subset ranking. InWorkshop
on Algorithms and Data Structures (LNCS 382), pages 39–46, 1989.

[219] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson, and A. Acharya.
Diskbench: User-level disk feature extraction tool. Technical report, Univer-
sity of California, Santa Barbara, 2004.

[220] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using PAPI for
hardware performance monitoring on Linux systems. performinternet search
for this or similar tools.

[221] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of Top n
queries. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 411–422,
1999.

[222] J. Donovan. Database system approach to management ofdecision support.
ACM Trans. on Database Systems, 1(4):344–368, 1976.

[223] M. Drmota, D. Gardy, and B. Gittenberger. A unified presentation of some urn
models.Algorithmica, 29:120–147, 2001.

[224] R. Durstenfeld. Algorithm 235: Random permutation.Communications of the
ACM, 7(7):420, 1964.

[225] O. Duschka.Query Planning and Optimization in Information Integration. PhD
thesis, Stanford University, 1997.

[226] O. Duschka and M. Genesereth. Answering recursive queries using views. In
Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages
109–116, 1997.

[227] W. Effelsberg and T. Härder. Principles of database buffer management.ACM
Trans. on Database Systems, 9(4):560–595, 1984.

[228] S. Eggers, F. Olken, and A. Shoshani. A compression technique for large sta-
tistical data bases. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
424–434, 1981.

[229] S. Eggers and A. Shoshani. Efficient access of compressed data. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 205–211, 1980.

[230] J. F. Egler. A procedure for converting logic table conditions into an efficient
sequence of test instructions.Communications of the ACM, 6(9):510–514, 1963.

[231] M. Eisner and D. Severance. Mathematical techniques for efficient record seg-
mentation in large shared databases.Journal of the ACM, 23(4):619–635, 1976.

[232] R. Elmasri and S. Navathe.Fundamentals of Database Systems. Addison-
Wesley, 2000. 3rd Edition.

BIBLIOGRAPHY 477

[233] R. Epstein. Techniques for processing of aggregates in relational database sys-
tems. ERL/UCB Memo M79/8, University of California, Berkeley, 1979.

[234] D. Barbara et al. The new jersey data reduction report.IEEE Data Engineering
Bulletin, 20(4):3–45, Dec. 1997.

[235] G. Lohman et al. Optimization of nested queries in a distributed relational
database. InProc. Int. Conf. on Very Large Data Bases (VLDB), 1984.

[236] N. Roussopoulos et al. The maryland ADMS project: Views R Us.IEEE Data
Engineering Bulletin, 18(2), 1995.

[237] P. Schwarz et al. Extensibility in the starburst database system. InProc. Int.
Workshop on Object-Oriented Database Systems, 1986.

[238] R. Fagin. Combining fuzzy information from multiple systems. InProc. ACM
SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages 216–226,
1996.

[239] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-
dleware. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages ?–?, 2001.

[240] C. Faloutsos and I. Kamel. Relaxing the uniformity andindepencence assump-
tions using the concept of fractal dimensions.Journal of Computer and Systems
Sciences, 55(2):229–240, 1997.

[241] L. Fegaras. Optimizing large OODB queries. InProc. Int. Conf. on Deductive
and Object-Oriented Databases (DOOD), pages 421–422, 1997.

[242] L. Fegaras. A new heuristic for optimizing large queries. InDEXA, pages 726–
735, 1998.

[243] L. Fegaras and D. Maier. Towards an effective calculusfor object query lan-
guages. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
47–58, 1995.

[244] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus.
ACM Trans. on Database Systems, 25(4):457–516, 2000.

[245] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. Xquery 1.0: An
xml query language. Technical report, W3C, 2003. W3C Working Draft.

[246] T. Fiebig and G. Moerkotte. Evaluating Queries on Structure with eXtended
Access Support Relations. InWebDB 2000, 2000.

[247] T. Fiebig and G. Moerkotte. Algebraic XML construction in Natix. InProc. Int.
Conf. on Web Information Systems Engineering (WISE), pages 212–221, 2001.

[248] T. Fiebig and G. Moerkotte. Algebraic XML construction and its optimization
in Natix. World Wide Web Journal, 4(3):167–187, 2002.

478 BIBLIOGRAPHY

[249] S. Finkelstein. Common expression analysis in database applications. InProc.
of the ACM SIGMOD Conf. on Management of Data, pages 235–245, 1982.

[250] D. Florescu. Espaces de Recherche pour l’Optimisation de Requêtes Objet
(Search Spaces for Query Optimization). PhD thesis, Université de Paris VI,
1996. in French.

[251] P. Fortier.SQL-3, Implementing the SQL Foundation Standard. McGraw Hill,
1999.

[252] F. Fotouhi and S. Pramanik. Optimal secondary storageaccess sequence for per-
forming relational join. IEEE Trans. on Knowledge and Data Eng., 1(3):318–
328, 1989.

[253] F. Frasincar, G.-J. Houben, and C. Pau. XAL: An algebrafor XML query opti-
mization. InAustralasian Database Conference (ADC), 2002.

[254] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon. StatiX: making XML
count. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
181–191, 2002.

[255] J. C. Freytag. A rule-based view of query optimization. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 173–180, 1987.

[256] J. C. Freytag and N. Goodman. Translating aggregate queries into iterative
programs. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages ?–?,
1986.

[257] J. C. Freytag and N. Goodman. On the translation of relational queries into
iterative programs.ACM Trans. on Database Systems, 14(1):1–27, 1989.

[258] C. Galindo-Legaria. Outerjoins as disjunctions. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 348–358, 1994.

[259] C. Galindo-Legaria. Outerjoins as disjunctions. Technical Report CS-R9404,
CWI, Amsterdam, NL, 1994.

[260] C. Galindo-Legaria and M. Joshi. Orthogonal optimization of subqueries and
aggregation. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 571–581, 2001.

[261] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Cost distribution of search
spaces in query optimization. Technical Report CS-R9432, CWI, Amsterdam,
NL, 1994.

[262] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fact, randomized join-order
selection — why use transformations? InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 85–95, 1994.

[263] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, randomized join-order
selection — why use transformations? Technical Report CS-R–9416, CWI,
Amsterdam, NL, 1994.

BIBLIOGRAPHY 479

[264] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. The impact of catalogs
and join algorithms on probabilistic query optimization. Technical Report CS-
R9459, CWI, Amsterdam, NL, 1994.

[265] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Uniformly-distributed ran-
dom generation of join orders. Technical Report CS-R9431, CWI, Amsterdam,
NL, 1994.

[266] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Cost distribution of search
spaces in query optimization. InProc. Int. Conf. on Database Theory (ICDT),
pages 280–293, 1995.

[267] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplification and reordering
for query optimization.ACM Trans. on Database Systems, 22(1):43–73, Marc
1997.

[268] C. Galindo-Legaria, A. Rosenthal, and E. Kortright. Expressions, graphs, and
algebraic identities for joins, 1991. working paper.

[269] S. Ganapathy and V. Rajaraman. Information theory applied to the conversion
of decision tables to computer programs.Communications of the ACM, 16:532–
539, 1973.

[270] S. Gandeharizadeh, J. Stone, and R. Zimmermann. Techniques to quantify
SCSI-2 disk subsystem specifications for multimedia. Technical Report 95-610,
University of Southern California, 1995.

[271] S. Ganguly. On the complexity of finding optimal join order sequence for star
queries without cross products. personal correspondance,2000.

[272] S. Ganguly, P. Gibbons, Y. Matias, and A. Silberschatz. Bifocal sampling for
skew-resistant join size estimation. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 271–281, 1996.

[273] R. Ganski and H. Wong. Optimization of nested SQL queries revisited. InProc.
of the ACM SIGMOD Conf. on Management of Data, pages 23–33, 1987.

[274] G. Garani and R. Johnson. Joining nested relations andsubrelations.Informa-
tion Systems, 25(4):287–307, 2000.

[275] H. Garcia-Molina, J. Ullman, and J. Widom.Database System Implementation.
Prentice Hall, 2000.

[276] G. Gardarin, J.-R. Gruser, and Z.-H. Tang. A cost modelfor clustered object-
oriented databases. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
323–334, 1995.

[277] G. Gardarin, J.-R. Gruser, and Z.-H. Tang. Cost-basedselection of path expres-
sion processing algorithms in object-oriented databases.In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 390–401, 1996.

480 BIBLIOGRAPHY

[278] G. Gardarin, F. Sha, and Z.-H. Tang. Calibrating the query optimizer cost model
of IRO-DB, an object-oriented federated database system. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 378–389, 1996.

[279] D. Gardy. Normal limiting distributions for projection and semi-join sizes.
SIAM J. Discrete Mathematics, 5(2):219–248, 1992.

[280] D. Gardy. Join sizes, urn models and normal limiting distributions. Theoret.
Comp. Sci., pages 375–414, 1994.

[281] D. Gardy and G. Louchard. Dynamic analysis of some relational databases
parameters.Theor. Comp. Sci, 144(1/2):125–159, 1995.

[282] D. Gardy and G. Louchard. Dynamic analysis of the sizesof relations. In
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
433–444, 1995.

[283] D. Gardy and L. Nemirovski. Urn models and yao’s formula. InProc. Int. Conf.
on Database Theory (ICDT), pages 100–112, 1999.

[284] D. Gardy and C. Puech. On the effect of join operations on relation sizes.ACM
Trans. on Database Systems, 14(4):574–603, 1989.

[285] M. R. Garey and D. S. Johnson.Computers and Intractability: a Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[286] M. Garofalakis and P. Gibbons. Wavelet synopses with error guarantees. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 476–487,
2002.

[287] P. Gassner, G. Lohman, and K. Schiefer. Query optimization in the IBM DB2
family. IEEE Data Engineering Bulletin, 16:4–18, Dec. 1993.

[288] P. Gassner, G. Lohman, K. Schiefer, and Y. Wang. Query optimization in the
IBM DB2 family. Technical report rj 9734, IBM, 1994.

[289] A. Van Gelder. Multiple join size estimation by virtual domains. InProc. ACM
SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), 1993.

[290] E. Gelenbe and D. Gardy. On the size of projections: I.Information Processing
Letters, 14:1, 1982.

[291] E. Gelenbe and D. Gardy. The size of projections of relations satisfying a func-
tional dependency. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
325–333, 1982.

[292] E. Gelenbe and D. Gardy. On the sizes of projections: a generating function
approach.Information Systems, 9(3/4):231–235, 1984.

[293] E. Gelenbe and D. Gardy. Relational algebra operations and sizes of relations.
In Int. Col. Automata, Languages and Programming (ICALP), pages 174–186,
1984.

BIBLIOGRAPHY 481

[294] I. Gent and T. Walsh. Towards an understanding of hill-climbing procedures
for SAT. In Proc. National Conference on Artificial Intelligence, pages 28–33,
1993.

[295] P. Gibbons and Y. Matias. New sampling-based summary statistics for improv-
ing approximate query answers. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 331–342, 1998.

[296] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approx-
imate histograms. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
466–475, 1997.

[297] P. Godfrey, J. Gryz, and C. Zuzarte. Exploiting constraint-like data characteri-
zations in query optimization. InProc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 582–592, 2001.

[298] P. Goel and B. Iyer. SLQ query optimization: reordering for a general class of
queries. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
47–56, 1996.

[299] D. Goldberg.Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

[300] J. Goldstein and P.-A. Larson. Optimizing queries using materialized views: A
practical, scalable solution. InProc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 331–342, 2001.

[301] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and index-
es. InProc. IEEE Conference on Data Engineering, 1998. to appear.

[302] G. Gorry and S. Morton. A framework for management information systems.
Sloan Management Review, 13(1):55–70, 1971.

[303] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 95–106,
2002.

[304] G. Gottlob, C. Koch, and R. Pichler. XPath processing in a nutshell.SIGMOD
Record, 2003.

[305] G. Gottlob, C. Koch, and R. Pichler. Xpath query evaluation: Improving time
and space efficiency. InProc. IEEE Conference on Data Engineering, page to
appear, 2003.

[306] M. Gouda and U. Dayal. Optimal semijoin schedules for query processing in
local distributed database systems. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 164–175, 1981.

[307] P. Goyal. Coding methods for text string search on compressed databases.In-
formation Systems, 8(3):231–233, 1983.

482 BIBLIOGRAPHY

[308] G. Graefe. Software modularization with the exodus optimizer generator.IEEE
Database Engineering, 9(4):37–45, 1986.

[309] G. Graefe. Relational division: Four algorithms and their performance. InProc.
IEEE Conference on Data Engineering, pages 94–101, 1989.

[310] G. Graefe. Encapsulation of parallelism in the Volcano query processing sys-
tem. InProc. of the ACM SIGMOD Conf. on Management of Data, pages ?–?,
1990.

[311] G. Graefe. Heap-filter merge join: A new algorithm for joining medium-size
inputs. IEEE Trans. on Software Eng., 17(9):979–982, 1991.

[312] G. Graefe. Query evaluation techniques for large databases.ACM Computing
Surveys, 25(2), June 1993.

[313] G. Graefe. Query evaluation techniques for large databases. Shortened version:
[312], July 1993.

[314] G. Graefe. Sort-merge-join: An idea whose time has(h)passed? InProc. IEEE
Conference on Data Engineering, pages 406–417, 1994.

[315] G. Graefe. The cascades framework for query optimization. IEEE Data Engi-
neering Bulletin, 18(3):19–29, Sept 1995.

[316] G. Graefe. Executing nested queries. InBTW, pages 58–77, 2003.

[317] G. Graefe and R. Cole. Fast algorithms for universal quantification in large
databases. Internal report, Portland State University andUniversity of Colorado
at Boulder, 19??

[318] G. Graefe and R. Cole. Dynamic query evaluation plans.In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages ?–?, 1994.

[319] G. Graefe and R. Cole. Fast algorithms for universal quantification in large
databases.ACM Trans. on Database Systems, ?(?):?–?, ? 1995?

[320] G. Graefe, R. Cole, D. Davison, W. McKenna, and R. Wolniewicz. Extensi-
ble query optimization and parallel execution in Volcano. In Dagstuhl Query
Processing Workshop, pages 337–380, 1991.

[321] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 160–172, 1987.

[322] G. Graefe, A. Linville, and L. Shapiro. Sort versus hash revisited.IEEE Trans.
on Knowledge and Data Eng., 6(6):934–944, Dec. 1994.

[323] G. Graefe and W. McKenna. The Volcano optimizer generator. Tech. Report
563, University of Colorado, Boulder, 1991.

[324] G. Graefe and W. McKenna. Extensibility and search efficiency in the volcano
optimizer generator. InProc. IEEE Conference on Data Engineering, pages
209–218, 1993.

BIBLIOGRAPHY 483

[325] G. Graefe and K. Ward. Dynamic query evaluation plans.In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 358–366, 1989.

[326] R. Graham, D. Knuth, and O. Patashnik.Concrete Mathematics. Addison-
Wesley, 2002.

[327] G. Grahne and A. Thomo. Algebraic rewritings for optimizing regular path
queries. InProc. Int. Conf. on Database Theory (ICDT), pages 301–315, 2001.

[328] G. Grahne and A. Thomo. New rewritings and optimizations for regular path
queries. InProc. Int. Conf. on Database Theory (ICDT), pages 242–258, 2003.

[329] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query optimization for
object databases. InProc. IEEE Conference on Data Engineering, pages 444–
453, 1997.

[330] J. Gray, editor.The Benchmark Handbook. Morgan Kaufmann Publishers, San
Mateo, CA, 1991.

[331] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A relational
aggregation operator generlizing group-by, cross-tab, and sub-totals. InProc.
IEEE Conference on Data Engineering, pages 152–169, 1996.

[332] J. Gray and G. Graefe. The five-minute rule ten years later, and other computer
storage rules of thumb.ACM SIGMOD Record, 26(4):63–68, 1997.

[333] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disk accesses
and the 10 byte rule for trading memory for CPU time. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 395–398, 1987.

[334] P. Grefen and R. de By. A multi-set extended relationalalgebra – a formal
approach to a practical issue. InProc. IEEE Conference on Data Engineering,
pages 80–88, 1994.

[335] T. Grust. Accelerating XPath location steps. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 109–120, 2002.

[336] T. Grust and M. Van Keulen. Tree awareness for relational database kernels:
Staircase join. InIntelligent Search on XML Data, pages 231–245, 2003.

[337] T. Grust, M. Van Keulen, and J. Teubner. Staircase join: Teach a relational dbms
to watch its (axis) steps. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 524–525, 2003.

[338] T. Grust, M. Van Keulen, and J. Teubner. Accelerating XPath evaluation in any
RDBMS. ACM Trans. on Database Systems, 29(1):91–131, 2004.

[339] J. Gryz, B. Schiefer, J. Zheng, and C. Zuzarte. Discovery and application of
check constraints in DB2. InProc. IEEE Conference on Data Engineering,
pages 551–556, 2001.

[340] E. Gudes and A. Reiter. On evaluating boolean expression. Software Practice
and Experience, 3:345–350, 1973.

484 BIBLIOGRAPHY

[341] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. InAnnual
ACM Symposium on Theory of Computing (STOC), pages 471–475, 2001.

[342] H. Gunadhi and A. Segev. Query processing algorithms for temporal intersec-
tion joins. In Proc. IEEE Conference on Data Engineering, pages 336–344,
1991.

[343] L. Guo, K. Beyer, J. Shanmugasundaram, and E. Shekita.Efficient inverted lists
and query algorithms for structured value ranking in update-intense relational
databases. InProc. IEEE Conference on Data Engineering, pages 298–309,
2005.

[344] M. Guo, S. Y. W. Su, and H. Lam. An association algebra for processing object-
oriented databases. InProc. IEEE Conference on Data Engineering, pages ?–?,
1991.

[345] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in da-
ta warehousing environments. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 358–369, 1995.

[346] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A powerful
approach to aggregation. Technical Report, 1995.

[347] A. Gupta and I. Mumick. Maintenance of materialized views: problems, tech-
niques and applications.IEEE Data Engineering Bulletin, 18(2):3–19, 1995.

[348] R. Güting, R. Zicari, and D. Choy. An algebra for structured office documents.
ACM Trans. on Information Systems, 7(4):123–157, 1989.

[349] R. H. Güting. Geo-relational algebra: A model and query language for geomet-
ric database systems. In J. W. Schmidt, S. Ceri, and M. Missikoff, editors,Proc.
of the Intl. Conf. on Extending Database Technology, pages 506–527, Venice,
Italy, Mar 1988. Springer-Verlag, Lecture Notes in Computer Science No. 303.

[350] R. H. Güting. Second-order signature: A tool for specifying data models, query
processing, and optimization. Informatik-Bericht 12/1992, ETH Zürich, 1992.

[351] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking the truth about ad hoc
join costs.The VLDB Journal, 6(3):241–256, 1997.

[352] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G.Lapis, B. Lindsay,
H. Pirahesh, M. Carey, and E. Shekita. Starbust mid-flight: As the dust clears.
IEEE Trans. on Knowledge and Data Eng., 2(1):143–160, 1990.

[353] L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible query processing
in starburst. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 377–388, 1989.

[354] P. Haas, J. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of
the number of distinct values of an attribute. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 311–322, 1995.

BIBLIOGRAPHY 485

[355] P. Haas, J. Naughton, S. Seshadri, and A. Swami. Fixed-precision estimation of
join selectivity. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 190–?, 1993.

[356] P. Haas and A. Swami. Sampling-based selectivity estimation for joins using
augmented frequent value statistics. InProc. IEEE Conference on Data Engi-
neering, pages 522–531, 1995.

[357] P. Haas and A. N. Swami. Sequential sampling procedures for query size esti-
mation. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
341–350, 1992.

[358] A. Halevy. Answering queries using views: A survey.The VLDB Journal,
10(4):270–294, Dec. 2001.

[359] P. A. V. Hall. Common subexpression identification in general algebraic sys-
tems. Tech. rep. uksc 0060, IBM UK Scientific Center, Peterlee, England, 1974.

[360] P. A. V. Hall. Optimization of single expressions in a relational database system.
IBM J. Res. Devel., 20(3):244–257, 1976.

[361] P. A. V. Hall and S. Todd. Factorization of algebraic expressions. Tech. Report
UKSC 0055, IBM UK Scientific Center, Peterlee, England, 1974.

[362] C. Hamalainen. Complexity of query optimisation and evaluation. Master’s
thesis, Griffith University, Queensland, Australia, 2002.

[363] M. Hammer and B. Niamir. A heuristic approach to attribute partitioning. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 93–101, 1979.

[364] J. Han. Smallest-first query evaluation for database systems. InAustralian
Database Conference, pages ?–?, Christchurch, New Zealand, Jan. 1994.

[365] M. Z. Hanani. An optimal evaluation of boolean expressions in an online query
system.Communications of the ACM, 20(5):344–347, 1977.

[366] E. Hanson. A performance analysis of view materialization strategies. InProc.
of the ACM SIGMOD Conf. on Management of Data, pages 440–453, 1987.

[367] E. Hanson. Processing queries against database procedures. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages ?–?, 1988.

[368] E.N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. Apredicate match-
ing algorithm for database rule systems. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 271–?, 1990.

[369] T. Härder. Implementing a generalized access path structure for a relational
database system.ACM Trans. on Database Systems, 3(3):285–298, 1978.

[370] T. Härder, B. Mitschang, and H. Schöning. Query processing for complex ob-
jects.Data and Knowledge Engineering, 7(3):181–200, 1992.

486 BIBLIOGRAPHY

[371] T. Härder and E. Rahm.Datenbanksysteme. Springer, 1999.

[372] T. Härder, H. Schöning, and A. Sikeler. Parallelismin processing queries on
complex objects. InInternational Symposium on Databases in Parallel and
Distributed Systems, Ausgin, TX, August 1988.

[373] V. Harinarayan. Issues in interactive aggregation.IEEE Data Engineering Bul-
letin, 20(1):12–18, 1997.

[374] V. Harinarayan and A. Gupta. Generalized projections: a powerful query opti-
mization technique. Technical Report STAN-CS-TN-94-14, Stanford Universi-
ty, 1994.

[375] E. Harris and K. Ramamohanarao. Join algorithm costs revisited. The VLDB
Journal, 5(1):?–?, Jan 1996.

[376] W. Hasan and H. Pirahesh. Query rewrite optimization in starburst. Research
Report RJ6367, IBM, 1988.

[377] Heller. Rabbit: A performance counter library for Intel/AMD processors and
Linux. perform internet search for this or similar tools.

[378] J. Hellerstein. Practical predicate placement. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 325–335, 1994.

[379] J. Hellerstein and J. Naughton. Query execution techniques for caching expen-
sive methods. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 423–434, 1996.

[380] J. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with
expensive predicates. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 267–277, 1993.

[381] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized translation of xpath
expressions into algebraic expressions parameterized by programs containing
navigational primitives. InProc. Int. Conf. on Web Information Systems Engi-
neering (WISE), 2002. 215-224.

[382] S. Helmer, B. König-Ries, and G. Moerkotte. The relational difference calculus
and applications. Technical report, Universität Karlsruhe, 1993. (unpublished
manuscript).

[383] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for
joins with set comparison join predicates. Technical Report 13/96, University
of Mannheim, Mannheim, Germany, 1996.

[384] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for
joins with set comparison join predicates. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 386–395, 1997.

[385] S. Helmer and G. Moerkotte. Index structures for databases containing da-
ta items with set-valued attributes. Technical Report 2/97, University of
Mannheim, 1997.

BIBLIOGRAPHY 487

[386] S. Helmer and G. Moerkotte. A study of four index structures for set-valued
attributes of low cardinality. Technical Report 02/99, University of Mannheim,
1999.

[387] S. Helmer and G. Moerkotte. Compiling away set containment and intersection
joins. Technical Report 4, University of Mannheim, 2002.

[388] S. Helmer and G. Moerkotte. A performance study of fourindex structures for
set-valued attributes of low cardinality.VLDB Journal, 12(3):244–261, 2003.

[389] S. Helmer, T. Neumann, and G. Moerkotte. Early grouping gets the skew. Tech-
nical Report 9, University of Mannheim, 2002.

[390] S. Helmer, T. Neumann, and G. Moerkotte. Estimating the output cardinality of
partial preaggregation with a measure of clusteredness. InProc. Int. Conf. on
Very Large Data Bases (VLDB), pages 656–667, 2003.

[391] A. Heuer and M. H. Scholl. Principles of object-oriented query languages.
In Proc. der GI-Fachtagung Datenbanksysteme für Büro, Technik und Wis-
senschaft (BTW). Springer, 1991.

[392] J. Hidders and P. Michiels. Avoiding unnecessary ordering operations in xpath.
In Int. Workshop on Database Programming Languages, pages 54–70, 2003.

[393] D. Hirschberg. On the complexity of searching a set of vectors.SIAM J. Com-
puting, 9(1):126–129, 1980.

[394] T. Hogg and C. Williams. Solving the really hard problems with cooperative
search. InProc. National Conference on Artificial Intelligence, pages 231–236,
1993.

[395] L. Hong-Cheu and K. Ramamohanarao. Algebraic equivalences among nested
relational expressions. InCIKM, pages 234–243, 1994.

[396] W.-C. Hou and G. Ozsoyoglu. Statistical estimators for aggregate relational
queries.ACM Trans. on Database Systems, 16(4):600–654, 1991.

[397] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the
efficient execution of multi-parametric ranked queries. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages ?–?, 2001.

[398] N. Huyn. Multiple-view self-maintenance in data warehousing environments.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 26–35, 1997.

[399] F. Hwang and G. Chang. Enumerating consecutive and nested partitions for
graphs. Technical Report DIMACS Technical Report 93-15, Rutgers University,
1993.

[400] H.-Y. Hwang and Y.-T. Yu. An analytical method for estimating and interpreting
query time. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 347–
358, 1987.

488 BIBLIOGRAPHY

[401] L. Hyafil and R. Rivest. Constructing optimal binary decision trees is NP-
complete.Information Processing Letters, 5(1):15–17, 1976.

[402] T. Ibaraki and T. Kameda. Optimal nesting for computing n-relational joins.
ACM Trans. on Database Systems, 9(3):482–502, 1984.

[403] A. IJbema and H. Blanken. Estimating bucket accesses:A practical approach.
In Proc. IEEE Conference on Data Engineering, pages 30–37, 1986.

[404] I. Ilyas, J. Rao, G. Lohman, D. Gao, and E. Lin. Estimating compilation time
of a query optimizer. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 373–384, 2003.

[405] Y. Ioannidis. Query optimization.ACM Computing Surveys, 28(1):121–123,
1996.

[406] Y. Ioannidis. A. Tucker (ed.): The Computer Science and Engineering Hand-
book, chapter Query Optimization, pages 1038–1057. CRC Press, 1997.

[407] Y. Ioannidis and S. Christodoulakis. Optimal histograms for limiting worst-case
error propagation in the size of join results.ACM Trans. on Database Systems,
18(4):709–748, 1993.

[408] Y. Ioannidis and V. Poosola. Histogram-based solutions to diverse database
estimation problems.IEEE Data Engineering Bulletin, 18(3):10–18, Sept 1995.

[409] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size
of join results. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 268–277, 1991.

[410] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing large
join queries. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 312–321, 1990.

[411] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis of
strategy spaces and its implications for query optimization. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 168–177, 1991.

[412] Y. E. Ioannidis, Y. C. Kang, and T. Zhang. Cost wells in random graphs. per-
sonal communication, Dec. 1996.

[413] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query optimiza-
tion. Tech. report, University of Wisconsin, Madison, 1992.

[414] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query optimiza-
tion. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 103–114,
1992.

[415] Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 9–22, 1987.

[416] D. Jacobsen and J. Wilkes. Disk scheduling algorithmsbased on rotational po-
sition. Technical Report HPL-CSP-91-7, Hewlett-Packard Laboratories, 1991.

BIBLIOGRAPHY 489

[417] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIM-
BER: A Native XML Database.VLDB Journal, 2003. to appear.

[418] H. V. Jagadish, H. Jin, B. C. Ooi, and K.-L. Tan. Global optimization of his-
tograms. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
223–234, 2001.

[419] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. Multidimensional
substring selectivity estimation. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 387–398, 1999.

[420] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and
T. Suel. Optimal histograms with quality guarantees. InProc. Int. Conf. on Very
Large Data Bases (VLDB), pages 275–286, 1998.

[421] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, andK. Thompson. TAX:
A tree algebra for XML. InProc. Int. Workshop on Database Programming
Languages, pages 149–164, 2001.

[422] H. V. Jagadish, T. R. Ng, and D. Srivastava. Substring selectivity estimation. In
Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages
249–260, 1999.

[423] R. Jain and I. Chlamtac. The p2 algorithm for dynamic calculation for quantiles
and histograms without storing observations.Communications of the ACM,
26(10):1076–1085, 1985.

[424] C. Janssen. The visual profiler. perform internet search for this or similar tools.

[425] M. Jarke. Common subexpression isolation in multiplequery optimization. In
W. Kim, D. Reiner, and D. Batory, editors,Topics in Information Systems. Query
Processing in Database Systems, pages 191–205, 1985.

[426] M. Jarke. Common subexpression isolation in multiplequery optimization. In
Query Processing in Database Systems, W. Kim, D. Reiner, D. Batory (Eds.),
pages 191–205, 1985.

[427] M. Jarke and J.Koch. Range nesting: A fast method to evaluate quantified
queries. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
196–206, 1983.

[428] M. Jarke and J. Koch. Query optimization in database systems.ACM Computing
Surveys, pages 111–152, Jun 1984.

[429] P. Jenq, D. Woelk, W. Kim, and W. Lee. Query processing in distributed ORI-
ON. In Proc. of the Int. Conf. on Extending Database Technology (EDBT),
pages 169–187, 1990.

[430] A. Jhingran. A performance study of query optimization algorithms on a
database system supporting procedures. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 88–99, 1988.

490 BIBLIOGRAPHY

[431] D. S. Johnson and A. Klug. Optimizing conjunctive queries that contain untyped
variables.SIAM J. Comput., 12(4):616–640, 1983.

[432] B. Jonsson, M. Franklin, and D. Srivastava. Interaction of query evaluation and
buffer management for information retrieval. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 118–129, 1998.

[433] N. Kabra and D. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 106–117, 1998.

[434] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean func-
tions. InIEEE ???, pages 68–80, 1988.

[435] M. Kamath and K. Ramamritham. Bucket skip merge join: Ascalable algorithm
for join processing in very large databases using indexes. Technical Report 20,
University of Massachusetts at Amherst, Amherst, MA, 1996.

[436] Y. Kambayashi. Processing cyclic queries. In W. Kim, D. Reiner, and D. Batory,
editors,Query Processing in Database Systems, pages 62–78, 1985.

[437] Y. Kambayashi and M. Yoshikawa. Query processing utilizing dependencies
and horizontal decomposition. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 55–68, 1983.

[438] R. Kaushik, R. Ramakrishnan, and V. Chakaravarthy. Synopses for query op-
timization: A space-complete perspective. InProc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 201–209, 2004.

[439] A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Implementing incremental
view maintenance in nested data models. InProc. Int. Workshop on Database
Programming Languages, 1997.

[440] A. Keller and J. Basu. A predicate-based caching scheme for client-server
database architectures. InPDIS, pages 229–238, 1994.

[441] T. Keller, G. Graefe, and D. Maier. Efficient assembly of complex objects. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 148–157,
1991.

[442] A. Kemper and A. Eickler.Datenbanksysteme. Oldenbourg, 2001. 4th Edition.

[443] A. Kemper and G. Moerkotte. Advanced query processingin object bases: A
comprehensive approach to access support, query transformation and evalua-
tion. Technical Report 27/90, University of Karlsruhe, 1990.

[444] A. Kemper and G. Moerkotte. Advanced query processingin object bases using
access support relations. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 294–305, 1990.

[445] A. Kemper and G. Moerkotte. Query optimization in object bases: Exploiting
relational techniques. InProc. Dagstuhl Workshop on Query Optimization (J.-
C. Freytag, D. Maier und G. Vossen (eds.)). Morgan-Kaufman, 1993.

BIBLIOGRAPHY 491

[446] A. Kemper, G. Moerkotte, and K. Peithner. A blackboardarchitecture for query
optimization in object bases. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 543–554, 1993.

[447] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimizing disjunc-
tive queries with expensive predicates. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 336–347, 1994.

[448] A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimierung Boolescher Aus-
drücke in Objektbanken. InGrundlagen von Datenbanken (Eds. U. Lipeck, R.
Manthey), pages 91–95, 1992.

[449] A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimization of boolean expres-
sions in object bases. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 79–90, 1992.

[450] W. Kiessling. SQL-like and Quel-like correlation queries with aggregates revis-
ited. ERL/UCB Memo 84/75, University of Berkeley, 1984.

[451] W. Kiessling. On semantic reefs and efficient processing of correlation queries
with aggregates. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
241–250, 1985.

[452] K. C. Kim, W. Kim, D. Woelk, and A. Dale. Acyclic query processing in object-
oriented databases. InProc. of the Entity Relationship Conf., 1988.

[453] W. Kim. On optimizing an SQL-like nested query.ACM Trans. on Database
Systems, 7(3):443–469, Sep 82.

[454] J. J. King. Exploring the use of domain knowledge for query processing ef-
ficiency. Technical Report STAN-CS-79-781, Computer Science Department,
Stanford University, 1979.

[455] J. J. King. Quist: A system for semantik query optimization in relational
databases. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 510–
517, 1981.

[456] M. Klettke, L. Schneider, and A. Heuer. Metrics for XMLDocument Collec-
tions. In EDBT Workshop XML-Based Data Management (XMLDM), pages
15–28, 2002.

[457] A. Klug. Calculating constraints on relational expressions. ACM Trans. on
Database Systems, 5(3):260–290, 1980.

[458] A. Klug. Access paths in the “ABE” statistical query facility. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 161–173, 1982.

[459] A. Klug. Equivalence of relational algebra and relational calculus query lan-
guages having aggregate functions.Journal of the ACM, 29(3):699–717, 1982.

[460] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms. Addison-Wesley, 1997.

492 BIBLIOGRAPHY

[461] J. Koch. Relationale Anfragen: Zerlegung und Optimierung. Informatik-
Fachberichte 101. Springer-Verlag, 1985.

[462] J. Kollias. An estimate for seek time for batched searching of random or index
sequential structured files.The Computer Journal, 21(2):132–133, 1978.

[463] A. König and G. Weikum. Combining histograms and parametric curve fitting
for feedback-driven query result-size estimation. InProc. Int. Conf. on Very
Large Data Bases (VLDB), pages 423–434, 1999.

[464] B. König-Ries, S. Helmer, and G. Moerkotte. An experimental study on the
complexity of left-deep join ordering problems for cyclic queries. Working
Draft, 1994.

[465] B. König-Ries, S. Helmer, and G. Moerkotte. An experimental study on the
complexity of left-deep join ordering problems for cyclic queries. Technical
Report 95-4, RWTH-Aachen, 1995.

[466] D. Kossmann. The state of the art in distributed query processing.ACM Com-
puting Surveys, 32(4):422–469, 2000.

[467] D. Kossmann and K. Stocker. Iterative dynamic programming: a new class of
query optimization algorithms.ACM Trans. on Database Systems, 25(1):43–82,
2000.

[468] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal histograms for hi-
erarchical range queries. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 196–204, 2000.

[469] W. Kowarschick. Semantic optimization: What are disjunctive residues useful
for? SIGMOD Record, 21(3):26–32, September 1992.

[470] D. Kreher and D. Stinson.Combinatorial Algorithms: Generation, Enumera-
tion, and Search. CRC Press, 1999.

[471] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive
queries. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 128–137,
1986.

[472] P. Krishnan, J. Vitter, and B. Iyer. Estimating alphanumeric selectivity in the
presence of wildcards. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 282–293, 1996.

[473] A. Kumar and M. Stonebraker. The effect of join selectivities on optimal nesting
order.SIGMOD Record, 16(1):28–41, 1987.

[474] S. Kwan and H. Strong. Index path length evaluation forthe research storage
system of system r. Technical Report RJ2736, IBM Research Laboratory, San
Jose, 1980.

[475] L. Lakshman and R. Missaoui. Pushing semantics insiderecursion: A gener-
al framework for semantic optimization of recursive queries. In Proc. IEEE
Conference on Data Engineering, pages 211–220, 1995.

BIBLIOGRAPHY 493

[476] S. Lang and Y. Manolopoulos. Efficient expressions forcompletely and partly
unsuccessful batched search of tree-structured files.IEEE Trans. on Software
Eng., 16(12):1433–1435, 1990.

[477] S.-D. Lang, J. Driscoll, and J. Jou. A unified analysis of batched searching of se-
quential and tree-structured files.ACM Trans. on Database Systems, 14(4):604–
618, 1989.

[478] T. Lang, C. Wood, and I. Fernandez. Database buffer paging in virtual storage
systems.ACM Trans. on Database Systems, 2(4):339–351, 1977.

[479] R. Lanzelotte and J.-P. Cheiney. Adapting relationaloptimisation technology
for deductive and object-oriented declarative database languages. InProc. Int.
Workshop on Database Programming Languages, pages 322–336, 1991.

[480] R. Lanzelotte and P. Valduriez. Extending the search strategy in a query opti-
mizer. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 363–373,
1991.

[481] R. Lanzelotte, P. Valduriez, and M. Zait. Optimization of object-oriented re-
cursive queries using cost-controlled stragegies. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 256–265, 1992.

[482] R. Lanzelotte, P. Valduriez, and M. Zäit. On the effectiveness of optimization
search strategies for parallel execution. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 493–504, 1993.

[483] R. Lanzelotte, P. Valduriez, M. Ziane, and J.-P. Cheiney. Optimization of non-
recursive queries in OODBMs. InProc. Int. Conf. on Deductive and Object-
Oriented Databases (DOOD), pages 1–21, 1991.

[484] P.-A. Larson. Data reduction by partial preaggregation. InProc. IEEE Confer-
ence on Data Engineering, pages 706–715, 2002.

[485] P.-Å. Larson and H. Yang. Computing queries from derived relations. InProc.
Int. Conf. on Very Large Data Bases (VLDB), pages 259–269, 1985.

[486] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages anddata models for
database sequences and data streams. InVLDB, pages 492–503, 2004.

[487] E. Lawler. Sequencing jobs to minimize total weightedcompletion time subject
to precedence constraints.Ann. Discrete Math., 2:75–90, 1978.

[488] C. Lee, C.-S. Shih, and Y.-H. Chen. Optimizing large join queries using a graph-
based approach.IEEE Trans. on Knowledge and Data Eng., 13(2):298–315,
2001.

[489] J.-H. Lee, D.-H. Kim, and C.-W Chung. Multi-dimensional selectivity estima-
tion using compressed histogram information. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 205–214, 1999.

494 BIBLIOGRAPHY

[490] M. K. Lee, J. C. Freytag, and G. M. Lohman. Implementingan interpreter for
functional rules in a query optimizer. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 218–239, 1988.

[491] M. K. Lee, J. C. Freytag, and G. M. Lohman. Implementingan optimizer for
functional rules in a query optimizer. Technical Report RJ 6125, IBM Almaden
Research Center, San Jose, CA, 1988.

[492] M.K. Lee, J.C, Freytag, and G.M. Lohman. Implementingan interpreter for
functional rules in a query optimizer. Research report RJ 6125, IBM, 1988.

[493] T. Lehman and B. Lindsay. The Starburst long field manager. InProc. Int. Conf.
on Very Large Data Bases (VLDB), pages 375–383, 1989.

[494] K. Lehnert. Regelbasierte Beschreibung von Optimierungsverfahren für re-
lationale Datenbankanfragesprachen. PhD thesis, Technische Universität
München, 8000 München, West Germany, Dec 1988.

[495] A. Lerner and D. Shasha. AQuery: query language for ordered data, optimiza-
tion techniques, and experiments. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 345–356, 2003.

[496] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai. Efficient search of multi-
dimensional B-trees. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 710–719, 1995.

[497] C. Leung, H. Pirahesh, and P. Seshadri. Query rewrite optimization rules in IBM
DB2 universal database. Research Report RJ 10103 (91919), IBM Almaden
Research Division, January 1998.

[498] M. Levene and G. Loizou. Correction to null values in nested relational databas-
es by m. roth and h. korth and a. silberschatz.Acta Informatica, 28(6):603–605,
1991.

[499] M. Levene and G. Loizou. A fully precise null extended nested relational alge-
bra. Fundamenta Informaticae, 19(3/4):303–342, 1993.

[500] A. Levy, A. Mendelzon, and Y. Sagiv. Answering queriesusing views. InProc.
ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages ?–?,
1995.

[501] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.Answering Queries Using
Views, pages 93–106. MIT Press, 1999.

[502] A. Levy, I. Mumick, and Y. Sagiv. Query optimization bypredicate move-
around. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 96–107,
1994.

[503] H. Lewis and C. Papadimitriou.Elements of the Theory of Computation. Pren-
tice Hall, 1981.

BIBLIOGRAPHY 495

[504] C. Li, K. Chang, I. Ilyas, and S. Song. RankSQL: Query algebra and opti-
mization for relational top-k queries. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 131–142, 2005.

[505] D. Lichtenstein. Planar formulae and their uses.SIAM J. Comp., 11(2):329–343,
1982.

[506] J. Liebehenschel. Ranking and unranking of lexicographically ordered words:
An average-case analysis.J. of Automata, Languages, and Combinatorics,
2:227–268, 1997.

[507] J. Liebehenschel. Lexicographical generation of a generalized dyck language.
Technical Report 5/98, University of Frankfurt, 1998.

[508] J. Liebehenschel.Lexikographische Generierung, Ranking und Unranking kom-
binatorisher Objekt: Eine Average-Case Analyse. PhD thesis, University of
Frankfurt, 2000.

[509] H. Liefke. Horizontal query optimization on ordered semistructured data. In
ACM SIGMOD Workshop on the Web and Databases (WebDB), 1999.

[510] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr.XPathLearner: An
on-line self-tuning Markov histogram for XML path selectivity estimation. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 442–453, 2002.

[511] J. Lin and M. Ozsoyoglu. Processing OODB queries by O-algebra. InInt.
Conference on Information and Knowledge Management (CIKM), pages 134–
142, 1996.

[512] Y. Ling and W. Sun. An evaluation of sampling-based size estimation methods
for selections in database systems. InProc. IEEE Conference on Data Engi-
neering, pages 532–539, 1995.

[513] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity esti-
mation through adaptive sampling. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 1–11, 1990.

[514] S. Listgarten and M.-A. Neimat. Modelling costs for a MM-DBMS. In Proc.
Int. Workshop on Real-Time Databases, Issues and Applications, pages 72–78,
1996.

[515] J. W. S. Liu. Algorithms for parsing search queries in systems with inverted file
organization.ACM Trans. on Database Systems, 1(4):299–316, 1976.

[516] M.-L. Lo and C. Ravishankar. Towards eliminating random I/O in hash joins.
In Proc. IEEE Conference on Data Engineering, pages 422–429, 1996.

[517] G. Lohman. Grammar-like functional rules for representing query optimization
alternatives. Research report rj 5992, IBM, 1987.

[518] G. M. Lohman. Grammar-like functional rules for representing query optimiza-
tion alternatives. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 18–27, 1988.

496 BIBLIOGRAPHY

[519] D. Lomet. B-tree page size when caching is considered.ACM SIGMOD Record,
27(3):28–32, 1998.

[520] R. Lorie. XRM - an extended (N-ary) relational model. Technical Report 320-
2096, IBM Cambridge Scientific Center, 1974.

[521] H. Lu and K.-L. Tan. On sort-merge algorithms for band joins. IEEE Trans. on
Knowledge and Data Eng., 7(3):508–510, Jun 1995.

[522] W. S. Luk. On estimating block accesses in database organizations.Communi-
cations of the ACM, 26(11):945–947, 1983.

[523] G. Luo, J. Naughton, C. Ellmann, and M. Watzke. Increasing the accuracy
and coverage of SQL progress indicators. InProc. IEEE Conference on Data
Engineering, pages 853–864, 2005.

[524] C. Lynch. Selectivity estimation and query optimization in large databases with
highly skewed distribution of column values. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 240–251, 1988.

[525] L. F. Mackert and G. M. Lohman. R∗ optimizer validation and performance
evaluation for distributed queries. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 149–159, 1986.

[526] L. F. Mackert and G. M. Lohman. Index scans using a finiteLRU buffer: A
validated i/o model.ACM Trans. on Database Systems, 14(3):401–425, 1989.

[527] D. Maier and D. S. Warren. Incorporating computed relations in relational
databases. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
176–187, 1981.

[528] A. Makinouchi, M. Tezuka, H. Kitakami, and S. Adachi. The optimization
strategy for query evaluation in RDB/V1. InProc. IEEE Conference on Data
Engineering, pages 518–529, 1981.

[529] T. Malkemus, S. Padmanabhan, and B. Bhattacharjee. Predicate derivation and
monotonicity detection in DB2 UDB. InProc. IEEE Conference on Data Engi-
neering, pages ?–?, 2005.

[530] C. V. Malley and S. B. Zdonik. A knowledge-based approach to query optimiza-
tion. In Proc. Int. Conf. on Expert Database Systems, pages 329–344, 1987.

[531] N. Mamoulis. Efficient processing of joins on set-valued attributes. InProc. of
the ACM SIGMOD Conf. on Management of Data, pages 157–168, 2003.

[532] S. Manegold, P. Boncz, and M. Kersten. Generic database cost models for
hierarchical memory systems. Technical report, CWI Amsterdam, 2002.

[533] G. Manku, S. Rajagopalan, and B. Lindsay. Approximatemedians and other
quantiles in one pass and with limited memory. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 426–435, Seattle, WA, 1998.

BIBLIOGRAPHY 497

[534] M. V. Mannino, P. Chu, and T. Sager. Statistical profileestimation in database
systems.ACM Computing Surveys, 20(3):191–221, 1988.

[535] Y. Manolopoulos and J. Kollias. Estimating disk head movement in batched
searching.BIT, 28:27–36, 1988.

[536] Y. Manolopoulos, J. Kollias, and M. Hatzopoulos. Sequential vs. binary batched
search.The Computer Journal, 29(4):368–372, 1986.

[537] Y. Manopoulos and J. Kollias. Performance of a two-headed disk system when
serving database queries under the scan policy.ACM Trans. on Database Sys-
tems, 14(3):425–442, 1989.

[538] S. March and D. Severence. The determination of efficient record segmentation
and blocking factors for shared data files.ACM Trans. on Database Systems,
2(3):279–296, 1977.

[539] R. Marek and E. Rahm. TID hash joins. InInt. Conference on Information and
Knowledge Management (CIKM), pages 42–49, 1994.

[540] Y. Matias, J. Vitter, and M. Wang. Wavelet-based histograms for selectivity
estimation. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
37–48, 1998.

[541] N. May, S. Helmer, C.-C. Kanne, and G. Moerkotte. Xquery processing in natix
with an emphasis on join ordering. InInt. Workshop on XQuery Implementation,
Experience and Perspectives (XIME-P), pages 49–54, 2004.

[542] N. May, S. Helmer, and G. Moerkotte. Nested queries andquantifiers in an
ordered context. Technical report, University of Mannheim, 2003.

[543] N. May, S. Helmer, and G. Moerkotte. Quantifiers in XQuery. In Proc. Int.
Conf. on Web Information Systems Engineering (WISE), pages 313–316, 2003.

[544] N. May, S. Helmer, and G. Moerkotte. Three Cases for Query Decorrelation in
XQuery. InInt. XML Database Symp. (XSym), pages 70–84, 2003.

[545] N. May, S. Helmer, and G. Moerkotte. Nested queries andquantifiers in an
ordered context. InProc. IEEE Conference on Data Engineering, pages 239–
250, 2004.

[546] J. McHugh and J. Widom. Query optimization for XML. InProc. Int. Conf. on
Very Large Data Bases (VLDB), pages 315–326, 1999.

[547] N. Megiddo and D. Modha. Outperforming LRU with an adpative replacement
cache algorithm.IEEE Computer, 37(4):58–65, 2004.

[548] S. Melnik and H. Garcia-Molina. Divide-and-conquer algorithm for comput-
ing set containment joins. InProc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 427–444, 2002.

[549] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment joins.
ACM Trans. on Database Systems, 28(1):56–99, 2003.

498 BIBLIOGRAPHY

[550] T. H. Merrett. Database cost analysis: a top down approach. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 135–143, 1977.

[551] T. H. Merrett, Y. Kambayashi, and H. Yasuura. Scheduling of page-fetches in
join operations. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
488–498, 1981.

[552] R. Van Meter. Observing the effects of multi-zone disks. In USENIX Annual
Technical Conference, 1997.

[553] M. Minoux. Mathematical Programming. Theory and Algorithms. Wiley, 1986.

[554] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
problems. InProc. National Conference on Artificial Intelligence, pages 459–
465, 1992.

[555] G. Mitchell. Extensible Query Processing in an Object-Oriented Database.
PhD thesis, Brown University, Providence, RI 02912, 1993.

[556] G. Mitchell, U. Dayal, and S. Zdonik. Control of an extensible query optimiz-
er: A planning-based approach. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages ?–?, 1993.

[557] G. Mitchell, S. Zdonik, and U. Dayal. Object-orientedquery optimization:
What’s the problem? Technical Report CS-91-41, Brown University, 1991.

[558] G. Mitchell, S. Zdonik, and U. Dayal. An architecture for query processing
in persistent object stores. InProc. of the Hawaiian Conf. on Computer and
System Sciences, pages 787–798, 1992.

[559] G. Mitchell, S. Zdonik, and U. Dayal.A. Dogac and M. T.Özsu and A.
Biliris, and T. Sellis: Object-Oriented Database Systems, chapter Optimization
of Object-Oriented Queries: Problems and Applications, pages 119–146. NATO
ASI Series F: Computer and Systems Sciences, Vol. 130. Springer, 1994.

[560] G. Moerkotte. Small materialized aggregates: A lightweight index structure for
data warehousing. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
476–487, 1998.

[561] G. Moerkotte. Constructing Optimal Bushy Trees Possibly Containing Cross
Products for Order Preserving Joins is in P. Technical Report 12, University of
Mannheim, 2003.

[562] C. Mohan. Interactions between query optimization and concurrency control.
In Int. Workshop on RIDE, 1992.

[563] C. Mohan, D. Haderle, Y. Wang, and J. Cheng. Single table access using mul-
tiple indexes: Optimization, execution, and concurrency control techniques. In
Int. Conf. on Extended Database Technology (EDBT), pages 29–43, 1990.

[564] C. Monma and J. Sidney. Sequencing with series-parallel precedence con-
straints.Math. Oper. Res., 4:215–224, 1979.

BIBLIOGRAPHY 499

[565] A. I. Montgomery, D. J. D’Souza, and S. B. Lee. The cost of relational al-
gebraic operations in skewed data: estimates and experiments. In Information
Processing, pages 235–241, New York, 1983. Elsevier North-Holland.

[566] T. Morzy, M. Matyasiak, and S. Salza. Tabu search optimization of large join
queries. InProc. of the Int. Conf. on Extending Database Technology (EDBT),
pages 309–322, 1994.

[567] L. Moses and R. Oakland.Tables of Random Permutations. Stanford University
Press, 1963.

[568] R. Mukkamala and S. Jajodia. A note on estimating the cardinality of the projec-
tion of a database relation.ACM Trans. on Database Systems, 16(3):564–566,
Sept. 1991.

[569] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is relevant.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 247–258,
1990.

[570] I. Mumick and H. Pirahesh. Implementation of magic sets in a relational
database system. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 103–114, 1994.

[571] I. Mumick, H. Pirahesh, and R. Ramakrishnan. The magicof duplicates and
aggregates. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 264–
277, 1990.

[572] M. Muralikrishna. Optimization and dataflow algorithms for nested tree queries.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), 1989.

[573] M. Muralikrishna. Improved unnesting algorithms forjoin aggregate SQL
queries. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 91–102,
1992.

[574] M. Muralikrishna and D.J. DeWitt. Equi-depth histograms for estimating se-
lectivity factors for multi-dimensional queries. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 28–36, 1988.

[575] W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear time.
Information Processing Letters, 79(6):281–284, 2001.

[576] R. Nakano. Translation with optimization from relational calculus to rela-
tional algebra having aggregate funktions.ACM Trans. on Database Systems,
15(4):518–557, 1990.

[577] T. Neumann and G. Moerkotte. A combined framework for grouping and order
optimization. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
960–971, 2004.

[578] T. Neumann and G. Moerkotte. An efficient framework fororder optimization.
In Proc. IEEE Conference on Data Engineering, pages 461–472, 2004.

500 BIBLIOGRAPHY

[579] S. Ng. Advances in disk technology: Performance issues. IEEE Computer,
31(5):75–81, 1998.

[580] W. Ng and C. Ravishankar. Relational database compression using augmented
vector quantization. InProc. IEEE Conference on Data Engineering, pages
540–549, 1995.

[581] S. Nigam and K. Davis. A semantic query optimization algorithm for object-
oriented databases. InSecond International Workshop on Constraint Database
Systems, pages 329–344, 1997.

[582] E. Omicienski. Heuristics for join processing using nonclustered indexes.IEEE
Trans. on Software Eng., 15(1):18–25, Feb. 1989.

[583] P. O’Neil. Database Principles, Programming, Performance. Morgan Kauf-
mann, 1994.

[584] P. O’Neil and D. Quass. Improved query performance with variant indexes. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 38–49, 1997.

[585] K. Ono and G. Lohman. Extensible enumeration of feasible joins for relational
query optimization. Technical Report RJ 6625, IBM Almaden Research Center,
1988.

[586] K. Ono and G. Lohman. Measuring the complexity of join enumeration in query
optimization. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 314–
325, 1990.

[587] J. A. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query process-
ing in the ObjectStore database system. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 403–412, 1992.

[588] J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and query
processing in an image database application.IEEE Trans. on Software Eng.,
14(5):611–629, 1988.

[589] M. Ortega-Binderberger, K. Chakrabarti, and S. Mehrotra. An approach to inte-
grating query refinement in sql. InProc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 15–33, 2002.

[590] S. Osborn. Identity, equality and query optimization. In Proc. OODB, 1989.

[591] N. Ott and K. Horlaender. Removing redundant joins in queries involving views.
Technical Report TR-82.03.003, IBM Heidelberg Scientific Center, Heidelberg,
1982.

[592] G. Ozsoyoglu, V. Matos, and Z. M. Ozsoyoglu. Query processing techniques
in the Summary-Table-by-Example database query language.ACM Trans. on
Database Systems, 14(4):526–573, 1989.

[593] G. Özsoyoglu, Z. M.Özsoyoglu, and V. Matos. Extending relational algebra
and relational calculus with set-valued attributes and aggregate functions.ACM
Trans. on Database Systems, 12(4):566–592, Dec 1987.

BIBLIOGRAPHY 501

[594] G. Ozsoyoglu and H. Wang. A relational calculus with set operators, its safe-
ty and equivalent graphical languages.IEEE Trans. on Software Eng., SE-
15(9):1038–1052, 1989.

[595] T. Özsu and J. Blakeley.W. Kim (ed.): Modern Database Systems, chapter
Query Processing in Object-Oriented Database Systems, pages 146–174. Addi-
son Wesley, 1995.

[596] T. Özsu and D. Meechan. Finding heuristics for processing selection queries in
relational database systems.Information Systems, 15(3):359–373, 1990.

[597] T. Özsu and D. Meechan. Join processing heuristics in relational database sys-
tems.Information Systems, 15(4):429–444, 1990.

[598] T. Özsu and P. Valduriez.Principles of Distributed Database Systems. Prentice-
Hall, 1999.

[599] T.Özsu and B. Yao. Evaluation of DBMSs using XBench benchmark.Technical
Report CS-2003-24, University of Waterloo, 2003.

[600] P. Palvia. Expressions for batched searching of sequential and hierarchical files.
ACM Trans. on Database Systems, 10(1):97–106, 1985.

[601] P. Palvia and S. March. Approximating block accesses in database organiza-
tions. Information Processing Letters, 19:75–79, 1984.

[602] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos. LOCI: Fast outlier
detection using local correlation integral. InICDE, pages 315–, 2003.

[603] V. Papadimos and D. Maier. Mutant query plans.Information & Software
Technology, 44(4):197–206, 2002.

[604] Y. Papakonstantinou and V. Vianu. Incremental validation of xml documents.
In Proc. Int. Conf. on Database Theory (ICDT), pages 47–63, 2003.

[605] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S. Lakshmanan, A. Nierman,
D. Srivastava, and Y. Wu. Grouping in XML. InEDBT Workshops, pages
128–147, 2002.

[606] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, A. Niermann, and Y. Wu. A physical
algebra for XML. Technical report, University of Michigan,2002.

[607] J. Paredaens and D. Van Gucht. Converting nested algebra expressions into
flat algebra expressions.ACM Trans. on Database Systems, 17(1):65–93, Mar
1992.

[608] C.-S. Park, M. Kim, and Y.-J. Lee. Rewriting OLAP queries using materialized
views and dimension hierarchies in data. InProc. IEEE Conference on Data
Engineering, pages 515–523, 2001.

[609] J. Patel, M. Carey, and M. Vernon. Accurate modeling ofthe hybrid hash join
algorithm. InProc. ACM SIGMETRICS Conf. on Measurement and Modeling
of Computer Systems, pages 56–66, 1994.

502 BIBLIOGRAPHY

[610] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, andJ. Zelenka. Informed
prefetching and caching. Technical Report CMU-CS-95-134,Carnegie Mellon
University, 1995.

[611] R. Patterson, G. Gibson, and M. Sayanarayanan. A status report on research in
transparent informed prefetching. Technical Report CMU-CS-93-113, Carnegie
Mellon University, 1993.

[612] G. Paulley and P.-A. Larson. Exploiting uniqueness inquery optimization. In
Proc. IEEE Conference on Data Engineering, pages 68–79, 1994.

[613] J. Pearl.Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Addison Wesley, 1984.

[614] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. Complexity of
transformation-based optimizers and duplicate-free generation of alternatives.
Technical Report CS-R9639, CWI, 1996.

[615] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. The complexity of
transformation-based join enumeration. InProc. Int. Conf. on Very Large Data
Bases (VLDB), pages 306–315, 1997.

[616] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. Duplicate-free generation of
alternatives in transformation-based optimizers. InProceedings of the Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA),
pages 117–124, 1997.

[617] M. Pettersson. Linux x86 performance monitoring counters driver. perform
internet search for this or similar tools.

[618] M. Pezarro. A note on estimating hit ratios for direct-access storage devices.
The Computer Journal, 19(3):271–272, 1976.

[619] B. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tu-
ples satisfying a condition. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 256–276, 1984.

[620] H. Pirahesh, J. Hellerstein, and W. Hasan. Extensible/rule-based query rewrite
optimization in Starburst. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 39–48, 1992.

[621] H. Pirahesh, T. Leung, and W. Hassan. A rule engine for query transformation
in Starburst and IBM DB2 C/S DBMS. InProc. IEEE Conference on Data
Engineering, pages 391–400, 1997.

[622] A. Pirotte. Fundamental and secondary issues in the design of non-procedural
relational languages. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 239–250, 1979.

[623] M. Piwowarski. Comments on batched searching of sequential and tree-
structured files.ACM Trans. on Database Systems, 10(2):285–287, 1985.

BIBLIOGRAPHY 503

[624] N. Plyzotis and M. Garofalakis. XSKETCH synopsis for XML. In Hellenic
Data Management Symposium 02, 2002.

[625] S. L. Pollack. Conversion of limited entry decision tables to computer programs.
Communications of the ACM, 8(11):677–682, 1965.

[626] N. Polyzotis and M. Garofalakis. Statistical synopses for graph-structured XML
databases. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
358–369, 2002.

[627] N. Polyzotis and M. Garofalakis. Structure and value synopsis for XML data
graphs. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 466–477,
2002.

[628] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity estimation for XML
twigs. InProc. IEEE Conference on Data Engineering, pages 264–275, 2002.

[629] V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute val-
ue indepencence assumption. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 486–495, 1997.

[630] V. Poosola, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for
selectivity estimates of range predicates. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 294–305, 1996.

[631] S. Pramanik and D. Ittner. Use of graph-theoretic models for optimal rela-
tional database accesses to perform joins.ACM Trans. on Database Systems,
10(1):57–74, 1985.

[632] W. Press, S. Teukolsky, and W. Vetterling.Numerical Recipes in C. Cambridge
University Press, 1993.

[633] X. Qian. Query folding. InProc. IEEE Conference on Data Engineering, pages
48–55, 1996.

[634] D. Quass and J. Widom. On-line warehouse view maintenance. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 393–404, 1997.

[635] Y.-J. Qyang. A tight upper bound for the lumped disk seek time for the SCAN
disk scheduling policy.Information Processing Letters, 54:355–358, 1995.

[636] E. Rahm.Mehrrechner-Datenbanksysteme: Grundlagen der verteilten und par-
allelen Datenbankverwaltung. Addison-Wesley, 1994.

[637] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using templates
with binding patterns. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), PODS, 1995.

[638] Bernhard Mitschang Ralf Rantzau, Leonard D. Shapiro and Quan Wang. Al-
gorithms and applications for universal quantification in relational databases.
Information Systems, 28(1-2):3–32, 2003.

504 BIBLIOGRAPHY

[639] R. Ramakrishnan and J. Gehrke.Database Management Systems. McGraw
Hill, 2000. 2nd Edition.

[640] V. Ramam, A. Deshpande, and J. Hellerstein. Using state modules for adaptive
query optimization. InProc. IEEE Conference on Data Engineering, 2003.

[641] K. Ramamohanarao, J. Lloyd, and J. Thom. Partial-match retrieval using hash-
ing descriptors.ACM Trans. on Database Systems, 8(4):552–576, 1983.

[642] M. Ramanath, L. Zhang, J. Freire, and J. Haritsa. IMAX:Incremental main-
tenance of schema-based xXML statistics. InProc. IEEE Conference on Data
Engineering, pages 273–284, 2005.

[643] K. Ramasamy, J. Naughton, and D. Maier. High performance implementation
techniques for set-valued attributes. Technical report, University of Wisconsin,
Wisconsin, 2000.

[644] K. Ramasamy, J. Patel, J. Naughton, and R. Kaushik. Setcontainment joins:
The good, the bad, and the ugly. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 351–362, 2000.

[645] S. Ramaswamy and P. Kanellakis. OODB indexing by classdivision. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 139–150, 1995.

[646] R. Rantzau, L. Shapiro, B. Mitschang, and Q. Wang. Universal quantification
in relational databases: A classification of data and algorithms. InProc. of the
Int. Conf. on Extending Database Technology (EDBT), pages 445–463, 2002.

[647] J. Rao, B. Lindsay, G. Lohman, H. Pirahesh, and D. Simmen. Using EELs: A
practical approach to outerjoin and antijoin reordering. In Proc. IEEE Confer-
ence on Data Engineering, pages 595–606, 2001.

[648] J. Rao and K. Ross. Reusing invariants: A new strategy for correlated queries.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 37–48,
Seattle, WA, 1998.

[649] S. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of
decision support queries. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 217–227, 1996.

[650] G. Ray, J. Haritsa, and S. Seshadri. Database compression: A performance
enhancement tool. InCOMAD, 1995.

[651] D. Reiner and A. Rosenthal. Strategy spaces and abstract target machines for
query optimization.Database Engineering, 5(3):56–60, Sept. 1982.

[652] D. Reiner and A. Rosenthal. Querying relational viewsof networks. In W. Kim,
D. Reiner, and D. Batory, editors,Query Processing in Database Systems, pages
109–124, 1985.

[653] E. Reingold, J. Nievergelt, and N. Deo.Combinatorial Algorithms: Theory and
Practice. Prentice Hall, 1977.

BIBLIOGRAPHY 505

[654] L. T. Reinwald and R. M. Soland. Conversion of limited entry decision tables
to optimal computer programs I: minimum average processingtime. Journal of
the ACM, 13(3):339–358, 1966.

[655] F. Reiss and T. Kanungo. A characterization of the sensitivity of query optimiza-
tion to storage access cost parameters. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 385–396, 2003.

[656] A. Reiter, A. Clute, and J. Tenenbaum. Representationand execution of search-
es over large tree-structured data bases. InProc. IFIP Congress, Booklet TA-3,
pages 134–144, 1971.

[657] P. Richard. Evaluation of the size of a query expressedin relational algebra.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 155–163,
1981.

[658] R. Van De Riet, A. Wassermann, M. Kersten, and W. De Jonge. High-level pro-
gramming features for improving the efficiency of a relational database system.
ACM Trans. on Database Systems, 6(3):464–485, 1981.

[659] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems.Journal
of the ACM, 20(1):160–187, 1973.

[660] D.J. Rosenkrantz and M.B. Hunt. Processing conjunctive predicates and
queries. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 64–74,
1980.

[661] A. Rosenthal. Note on the expected size of a join.SIGMOD Record, 11(4):19–
25, 1981.

[662] A. Rosenthal and U. S. Chakravarthy. Anatomy of a modular multiple query
optimizer. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 230–
239, 1988.

[663] A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees, and
freely-reorderable outerjoins. InProc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 291–299, 1990.

[664] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal recursion: a practi-
cal approach to supporting recursive applications. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 166–167, 1986.

[665] A. Rosenthal and P. Helman. Understanding and extending transformation-
based optimizers.IEEE Data Engineering, 9(4):44–51, 1986.

[666] A. Rosenthal and D. Reiner. An architecture for query optimization. InProc. of
the ACM SIGMOD Conf. on Management of Data, pages 246–255, 1982.

[667] A. Rosenthal and D. Reiner. Extending the algebraic framework of query pro-
cessing to handle outerjoins. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 334–343, 1984.

506 BIBLIOGRAPHY

[668] A. Rosenthal and D. Reiner. Querying relational viewsof networks. In W. Kim,
D. Reiner, and D. Batory, editors,Query Processing in Database Systems, New
York, 1984. Springer.

[669] A. Rosenthal, C. Rich, and M. Scholl. Reducing duplicate work in relation-
al join(s): a modular approach using nested relations. Technical report, ETH
Zürich, 1991.

[670] K. Ross. Conjunctive selection conditions in main memory. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 108–120, 2002.

[671] K. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple
granularities. InProc. of the Int. Conf. on Extending Database Technology
(EDBT), pages 263–278, 1998.

[672] M. Roth and S. Horn. Database compression.SIGMOD Record, 22(3):31–39,
1993.

[673] M. Roth, H. Korth, and A. Silberschatz. Extended algebra and calculus for
nested relational databases.ACM Trans. on Database Systems, 13(4):389–417,
1988. see also [793].

[674] M. Roth, H. Korth, and A. Silberschatz. Null values in nested relational databas-
es.Acta Informatica, 26(7):615–642, 1989.

[675] M. Roth, H. Korth, and A. Silberschatz. Addendum to null values in nested
relational databases.Acta Informatica, 28(6):607–610, 1991.

[676] N. Roussopoulos. View indexing in relational databases. ACM Trans. on
Database Systems, 7(2):258–290, 1982.

[677] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17–29, 1994.

[678] K. Runapongsa, J. Patel, H. Jagadish, and S. AlKhalifa. The michigan bench-
mark. Technical report, University of Michigan, 2002.

[679] G. Sacco. Index access with a finite buffer. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 301–309, 1887.

[680] G. Sacco and M. Schkolnick. A technique for managing the buffer pool in a
relational system using the hot set model. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 257–262, 1982.

[681] G. Sacco and M. Schkolnick. Buffer management in relational database sys-
tems.ACM Trans. on Database Systems, 11(4):473–498, 1986.

[682] G. M. Sacco. Fragmentation: A technique for efficient query processing.ACM
Trans. on Database Systems, 11(2):?–?, June 1986.

[683] Y. Sagiv. Optimization of Queries in Relational Databases. UMI Research
Press, Ann Arbor, Michigan, 1981.

BIBLIOGRAPHY 507

[684] Y. Sagiv. Quadratic algorithms for minimizing joins in restricted relational ex-
pressions.SIAM J. Comput., 12(2):321–346, 1983.

[685] Y. Sagiv and M. Yannakakis. Equivalences among expressions with the union
and difference operators.Journal of the ACM, 27(4):633–655, 1980.

[686] V. Sarathy, L. Saxton, and D. Van Gucht. Algebraic foundation and optimization
for object based query languages. InProc. IEEE Conference on Data Engineer-
ing, pages 113–133, 1993.

[687] C. Sartiani. A general framework for estimating xml query cardinality. InInt.
Workshop on Database Programming Languages, pages 257–277, 2003.

[688] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decomposition and
optimal query plans. InProc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 210–221, 2004.

[689] J. Scheible. A survey of storage options.IEEE Computer, 35(12):42–46, 2002.

[690] H.-J. Schek and M. Scholl. The relational model with relation-valued attributes.
Information Systems, 11(2):137–147, 1986.

[691] W. Scheufele.Algebraic Query Optimization in Database Systems. PhD thesis,
Universität Mannheim, 1999.

[692] W. Scheufele and G. Moerkotte. Optimal ordering of selections and joins in
acyclic queries with expensive predicates. Technical Report 96-3, RWTH-
Aachen, 1996.

[693] W. Scheufele and G. Moerkotte. On the complexity of generating optimal
plans with cross products. InProc. ACM SIGMOD/SIGACT Conf. on Princ.
of Database Syst. (PODS), pages 238–248, 1997.

[694] W. Scheufele and G. Moerkotte. Efficient dynamic programming algorithms for
ordering expensive joins and selections. InProc. of the Int. Conf. on Extending
Database Technology (EDBT), pages 201–215, 1998.

[695] J. Schindler, A. Ailamaki, and G. Ganger. Lachesis: Robust database storage
management based on device-specific performance characteristics. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 706–717, 2003.

[696] J. Schindler and G. Ganger. Automated disk drive characterization. Technical
Report CMU-CS-99-176, Carnegie Mellon University, 1999.

[697] J. Schindler, J. Griffin, C. Lumb, and G. Ganger. Track-aligned extents: Match-
ing access patterns to disk drive characteristics. Technical Report CMU-CS-01-
119, Carnegie Mellon University, 2001.

[698] J. Schindler, J. Griffin, C. Lumb, and G. Ganger. Track-aligned extents: Match-
ing access patterns to disk drive characteristics. InConf. on File and Storage
Technology (FAST), pages 259–274, 2002.

508 BIBLIOGRAPHY

[699] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational
storage and retrieval of XML documents. InACM SIGMOD Workshop on the
Web and Databases (WebDB), 2000.

[700] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and
R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI,
Amsterdam, 2001.

[701] J. W. Schmidt. Some high level language constructs fordata of type relation.
ACM Trans. on Database Systems, 2(3):247–261, 1977.

[702] M. Scholl. Theoretical foundation of algebraic optimization utilizing unnor-
malized relations. InProc. Int. Conf. on Database Theory (ICDT), pages ?–?,
1986.

[703] E. Sciore and J. Sieg. A modular query optimizer generator. In Proc. IEEE
Conference on Data Engineering, pages 146–153, 1990.

[704] B. Seeger. An analysis of schedules for performing multi-page requests.Infor-
mation Systems, 21(4):387–407, 1996.

[705] B. Seeger, P.-A. Larson, and R. McFadyen. Reading a setof disk pages. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 592–603, 1993.

[706] A. Segev. Optimization of join operations in horizontally partitioned database
systems.ACM Trans. on Database Systems, 11(1):48–80, 1986.

[707] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, andT. Price. Access path
selection in a relational database management system. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 23–34, 1979.

[708] T. Sellis. Intelligent caching and indexing techniques for relational database
systems.Information Systems, 13(2):175–185, 1988.

[709] T. Sellis. Intelligent caching and indexing techniques for relational database
systems.Information Systems, 13(2):175–186, 1988.

[710] T. Sellis. Multiple-query optimization.ACM Trans. on Database Systems,
13(1):23–52, 1988.

[711] T. K. Sellis. Global query optimization. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 191–205, 1986.

[712] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. InUSENIX,
pages 313–323, 1990.

[713] V. Sengar and J. Haritsa. PLASTIC: Reducing query optimization overheads
through plan recycling. InProc. of the ACM SIGMOD Conf. on Management of
Data, page 676, 2003.

[714] K. Seppi, J. Barnes, and C. Morris. A bayesian approachto database query
optimization.ORSA Journal of Computing, 5(4):410–418, 1993.

BIBLIOGRAPHY 509

[715] P. Seshadri, J. Hellerstein, H. Pirahesh, T. Leung, R.Ramakrishnan, D. Srivas-
tava, P. Stuckey, and S. Sudarshan. Cost-based optimization for magic: Algebra
and implementation. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 435–446, 1996.

[716] P. Seshadri, H. Pirahesh, and C. Leung. Decorrelationof complex queries. Re-
search Report RJ 9846 (86093), IBM Almaden Research Division, June 1994.

[717] P. Seshadri, H. Pirahesh, and T. Leung. Complex query decorrelation. InProc.
IEEE Conference on Data Engineering, pages 450–458, 1996.

[718] K. Sevcik. Data base system performance prediction using an analytical model.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 182–198, 1981.

[719] D. Severance. A practitioner’s guide to data base compression. Information
Systems, 8(1):51=62, 1983.

[720] D. Severance and G. Lohman. Differential files: their application to the mainte-
nance of large databases.ACM Trans. on Database Systems, 1(3):256–267, Sep
1976.

[721] M. C. Shan. Optimal plan search in a rule-based query optimizer. In J. W.
Schmidt, S. Ceri, and M. Missikoff, editors,Proc. of the Intl. Conf. on Extending
Database Technology, pages 92–112, Venice, Italy, Mar 1988. Springer-Verlag,
Lecture Notes in Computer Science No. 303.

[722] J. Shanmugasundaram, R. Barr E. J. Shekita, M. J. Carey, B. G. Lindsay, H. Pi-
rahesh, and B. Reinwald. Efficiently Publishing RelationalData as XML Doc-
uments. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 65–76,
2000.

[723] G. Shapiro and C. Connell. Accurate estimation of the number of tuples satisfy-
ing a condition. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 256–276, 1984.

[724] L. Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan, K. Hatwal, Q. Wang,
Y. Zhang, H.-M. Wu, and B. Vance. Exploiting upper and lower bounds in
top-down query optimization. InIDEAS, pages 20–33, 2001.

[725] L. Shapiro and A. Stephens. Bootstrap percolation, the schröder numbers and
then-kings problem.SIAM J. Discr. Math., 4(2):275–280, 1991.

[726] A. Shatdal and J. Naughton. Processing aggregates in parallel database systems.
Technical Report TR 1233, University of Wisconsin, 1994.

[727] G. M. Shaw and S.B. Zdonik. Object-oriented queries: Equivalence and opti-
mization. In1st Int. Conf. on Deductive and Object-Oriented Databases, pages
264–278, 1989.

[728] G. M. Shaw and S.B. Zdonik. A query algebra for object-oriented databases.
Tech. report no. cs-89-19, Department of Computer Science,Brown University,
1989.

510 BIBLIOGRAPHY

[729] G.M. Shaw and S.B. Zdonik. An object-oriented query algebra. In2nd Int.
Workshop on Database Programming Languages, pages 111–119, 1989.

[730] G.M. Shaw and S.B. Zdonik. A query algebra for object-oriented databases. In
Proc. IEEE Conference on Data Engineering, pages 154–162, 1990.

[731] E. Shekita and M. Carey. A performance evaluation of pointer-based joins. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 300–311,
1990.

[732] E. Shekita, H. Young, and K.-L. Tan. Multi-join optimization for symmetric
multiprocessors. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
479–492, 1993.

[733] P. Shenoy and H. Cello. A disk scheduling framework fornext generation op-
erating systems. InProc. ACM SIGMETRICS Conf. on Measurement and Mod-
eling of Computer Systems, pages 44–55, 1998.

[734] S. T. Shenoy and Z. M. Ozsoyoglu. A system for semantic query optimization.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 181–195,
1987.

[735] S. Sherman and R. Brice. Performance of a database manager in a virtual mem-
ory system.ACM Trans. on Database Systems, 1(4):317–343, 1976.

[736] B. Shneiderman and V. Goodman. Batched searching of sequential and tree
structured files.ACM Trans. on Database Systems, 1(3):208–222, 1976.

[737] E. Shriver. Performance Modeling for Realistic Storage Devices. PhD thesis,
University of New York, 1997.

[738] E. Shriver, A. Merchant, and J. Wilkes. An analytical behavior model for disk
drives with readahead caches and request reordering. InProc. ACM SIGMET-
RICS Conf. on Measurement and Modeling of Computer Systems, pages 182–
191, 1998.

[739] A. Shrufi and T. Topaloglou. Query processing for knowledge bases using
join indices. InInt. Conference on Information and Knowledge Management
(CIKM), 1995.

[740] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy.Storage estimation
for multidimensional aggregates in the presence of hierarchies. InProc. Int.
Conf. on Very Large Data Bases (VLDB), 1996.

[741] K. Shwayder. Conversion of limited entry decision tables to computer pro-
grams — a proposed modification to Pollack’s algorithm.Communications of
the ACM, 14(2):69–73, 1971.

[742] M. Siegel, E. Sciore, and S. Salveter. A method for automatic rule derivation
to support semantic query optimization.ACM Trans. on Database Systems,
17(4):53–600, 1992.

BIBLIOGRAPHY 511

[743] A. Silberschatz, H. Korth, and S. Sudarshan.Database System Concepts. Mc-
Graw Hill, 1997. 3rd Edition.

[744] D. Simmen, C. Leung, and H. Pirahesh. Exploitation of uniqueness properties
for the optimization of SQL queries using a 1-tuple condition. Research Report
RJ 10008 (89098), IBM Almaden Research Division, Feb. 1996.

[745] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for order
optimization. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 57–67, 1996.

[746] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for order
optimization. InProc. of the Int. Conf. on Extending Database Technology
(EDBT), pages 625–62, 1996.

[747] G. Slivinskas, C. Jensen, and R. Snodgrass. Bringing order to query optimiza-
tion. SIGMOD Record, 13(2):5–14, 2002.

[748] D. Slutz. Massive stochastic testing of sql. InProc. Int. Conf. on Very Large
Data Bases (VLDB), pages 618–622, 1998.

[749] D. Smith and M. Genesereth. Ordering conjunctive queries. Artificial Intelli-
gence, 26:171–215, 1985.

[750] J. A. Smith. Sequentiality and prefetching in database systems.ACM Trans. on
Database Systems, 3(3):223–247, 1978.

[751] J. M. Smith and P. Y.-T. Chang. Optimizing the performance of a relational al-
gebra database interface.Communications of the ACM, 18(10):568–579, 1975.

[752] R. Sosic, J. Gu, and R. Johnson. The Unison algorithm: Fast evaluation of
boolean expressions.ACM Transactions on Design Automation of Electronic
Systems (TODAES), 1:456 – 477, 1996.

[753] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. Patel, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. InProc.
IEEE Conference on Data Engineering, 2002.

[754] D. Srivastava, S. Dar, J. Jagadish, and A. Levy. Answering queries with ag-
gregation using views. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 318–329, 1996.

[755] R. Stanley. Enumerative Combinatorics, Volume I, volume 49 ofCambridge
Studies in Advanced Mathematics. Cambridge University Press, 1997.

[756] H. Steenhagen.Optimization of Object Query Languages. PhD thesis, Univer-
sity of Twente, 1995.

[757] H. Steenhagen, P. Apers, and H. Blanken. Optimizationof nested queries in
a complex object model. InProc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 337–350, 1994.

512 BIBLIOGRAPHY

[758] H. Steenhagen, P. Apers, H. Blanken, and R. de By. From nested-loop to join
queries in oodb. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
618–629, 1994.

[759] H. Steenhagen, R. de By, and H. Blanken. Translating OSQL queries into effi-
cient set expressions. InProc. of the Int. Conf. on Extending Database Technol-
ogy (EDBT), pages 183–197, 1996.

[760] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristicand randomized opti-
mization for the join ordering problem.The VLDB Journal, 6(3):191–208, Aug.
1997.

[761] M. Steinbrunn, K. Peithner, G. Moerkotte, and A. Kemper. Bypassing joins
in disjunctive queries. InProc. Int. Conf. on Very Large Data Bases (VLDB),
pages 228–238, 1995.

[762] M. Stillger and J.-C. Freytag. Testing the quality of aquery optimizer. IEEE
Data Engineering Bulletin, 18(3):41–48, Sept 1995.

[763] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO – DB2’s learning op-
timizer. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 19–28,
2001.

[764] K. Stocker, D. Kossmann, R. Braumandl, and A. Kemper. Integrating semi-join
reducers into state-of-the-art query processors. InProc. IEEE Conference on
Data Engineering, pages 575–584, 2001.

[765] L. Stockmeyer and C. Wong. On the number of comparisonsto find the inter-
section of two relations. Technical report, IBM Watson Research Center, 1978.

[766] H. Stone and H. Fuller. On the near-optimality of the shortest-latency-time-
first drum scheduling discipline.Communications of the ACM, 16(6):352–353,
1973.

[767] M. Stonebraker. Inclusion of new types in relational database systems. InProc.
IEEE Conference on Data Engineering, pages ?–?, 1986.

[768] M. Stonebraker, J. Anton, and E. Hanson. Extending a database system with
procedures.ACM Trans. on Database Systems, 12(3):350–376, Sep 1987.

[769] M. Stonebraker and P. Brown.Object-Relational DBMSs, Tracking the Next
Great Wave. Morgan Kaufman, 1999.

[770] M. Stonebraker et al. QUEL as a data type. InProc. of the ACM SIGMOD Conf.
on Management of Data, Boston, MA, June 1984.

[771] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamios. On rules, procedures,
caching and views in data base systems. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 281–290, 1990.

[772] M. Stonebraker and L. A. Rowe. The design of postgres. In Proc. of the 15nth
ACM SIGMOD, pages 340–355, 1986.

BIBLIOGRAPHY 513

[773] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementa-
tion of INGRES.ACM Trans. on Database Systems, 1(3):189–222, 1976.

[774] D. Straube and T.̈Ozsu. Access plan generation for an object algebra. Technical
Report TR 90-20, Department of Computing Science, University of Alberta,
June 1990.

[775] D. Straube and T.̈Ozsu. Queries and query processing in object-oriented
database systems. Technical report, Department of Computing Science, Uni-
versity of Alberta, Edmonton, Alberta, Canada, 1990.

[776] D. Straube and T.̈Ozsu. Queries and query processing in object-oriented
database systems.ACM Trans. on Information Systems, 8(4):387–430, 1990.

[777] D. Straube and T.̈Ozsu. Execution plan generation for an object-oriented da-
ta model. InProc. Int. Conf. on Deductive and Object-Oriented Databases
(DOOD), pages 43–67, 1991.

[778] D. D. Straube. Queries and Query Processing in Object-Oriented Database
Systems. PhD thesis, The University of Alberta, Edmonton, Alberta,Canada,
Dec 1990.

[779] S. Subramanian and S. Venkataraman. Cost-based optimization of decision sup-
port queries using transient views. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 319–330, Seattle, WA, 1998.

[780] D. Suciu. Query decomposition and view maintenance for query languages for
unconstrained data. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
227–238, 1996.

[781] N. Südkamp and V. Linnemann. Elimination of views andredundant variables
in an SQL-like database language for extended NF2 structures. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 302–313, 1990.

[782] K. Sutner, A. Satyanarayana, and C. Suffel. The complexity of the residual node
connectedness reliability problem.SIAM J. Comp., 20(1):149–155, 1991.

[783] P. Svensson. On search performance for conjunctive queries in compressed,
fully transposed ordered files. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 155–163, 1979.

[784] A. Swami.Optimization of Large Join Queries. PhD thesis, Stanford University,
1989. Technical Report STAN-CS-89-1262.

[785] A. Swami. Optimization of large join queries: Combining heuristics and com-
binatorial techniques. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 367–376, 1989.

[786] A. Swami and A. Gupta. Optimization of large join queries. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 8–17, 1988.

514 BIBLIOGRAPHY

[787] A. Swami and B. Iyer. A polynomial time algorithm for optimizing join queries.
Technical Report RJ 8812, IBM Almaden Research Center, 1992.

[788] A. Swami and B. Iyer. A polynomial time algorithm for optimizing join queries.
In Proc. IEEE Conference on Data Engineering, pages 345–354, 1993.

[789] A. Swami and B. Schiefer. Estimating page fetches for index scans with finite
LRU buffers. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 173–184, 1994.

[790] A. Swami and B. Schiefer. On the estimation of join result sizes. InProc. of the
Int. Conf. on Extending Database Technology (EDBT), pages 287–300, 1994.

[791] N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based ex-
traction of local and global disk characteristics. Technical Report UCB-CSD-
99-1063, University of Berkeley, 2000.

[792] K.-L. Tan and H. Lu. A note on the strategy space of multiway join query
optimization problem in parallel systems.SIGMOD Record, 20(4):81–82, 1991.

[793] A. Tansel and L. Garnett. On roth, korth, and silberschatz’s extended algebra
and calculus for nested relational databases.ACM Trans. on Database Systems,
17(2):374–383, 1992.

[794] Y. C. Tay. On the optimality of strategies for multiplejoins. Journal of the
ACM, 40(5):1067–1086, 1993.

[795] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling policies.
In Proc. of the AFIPS Fall Joint Computer Conference, pages 1–11, 1972.

[796] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling policies.
Communications of the ACM, 15(3):177–184, 1972.

[797] J. Teubner, T. Grust, and M. Van Keulen. Bridging the gap between relational
and native xml storage with staircase join.Grundlagen von Datenbanken, pages
85–89, 2003.

[798] C. Tompkins. Machine attacks o problems whose variables are permutations.
Numerical Analysis (Proc. of Symposia in Applied Mathematics), 6, 1956.

[799] R. Topor. Join-ordering is NP-complete. Draft, personal communication, 1998.

[800] Transaction Processing Council (TPC). TPC BenchmarkD. http://www.tpc.org,
1995.

[801] Transaction Processing Performance Council, 777 N. First Street, Suite
600, San Jose, CA, USA. TPC Benchmark R, 1999. Revision 1.2.0.
http://www.tpc.org.

[802] P. Triantafillou, S. Christodoulakis, and C. Georgiadis. A comprehensive an-
alytical performance model for disk devices under random workloads. IEEE
Trans. on Knowledge and Data Eng., 14(1):140–155, 2002.

BIBLIOGRAPHY 515

[803] O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP: A versatile tool for
physical data independence. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 367–378, 1994.

[804] K. Tufte and D. Maier. Aggregation and accumulation ofXML data. IEEE Data
Engineering Bulletin, 24(2):34–39, 2001.

[805] J.D. Ullman.Database and Knowledge Base Systems, volume Volume 1. Com-
puter Science Press, 1989.

[806] J.D. Ullman.Database and Knowledge Base Systems, volume Volume 2. Com-
puter Science Press, 1989.

[807] J.D. Ullman.Database and Knowledge Base Systems. Computer Science Press,
1989.

[808] D. Straube und T.̈Ozsu. Query transformation rules for an object algebra. Tech-
nical Report TR 89-23, Department of Computing Science, University of Alber-
ta, Sept. 1989.

[809] T. Urhan, M. Franklin, and L. Amsaleg. Cost based queryscrambling for initial
delays. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
130–141, 1998.

[810] M. Uysal, G. Alvarez, and A. Merchant. A modular analytical throughput model
for modern disk arrays. InMASCOTS, pages 183–192, 2001.

[811] P. Valduriez. Join indices.ACM Trans. on Database Systems, 12(2):218–246,
1987.

[812] P. Valduriez and H. Boral. Evaluation of recursive queries using join indices. In
Proc. Int. Conf. on Expert Database Systems (EDS), pages 197–208, 1986.

[813] P. Valduriez and S. Danforth. Query optimization in database programming
languages. InProc. Int. Conf. on Deductive and Object-Oriented Databases
(DOOD), pages 516–534, 1989.

[814] L. Valiant. The complexity of computing the permanent. Theoretical Comp.
Science, 8:189–201, 1979.

[815] L. Valiant. The complexity of enumeration and reliability problems. SIAM J.
Comp., 8(3):410–421, 1979.

[816] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian
products. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
35–46, 1996.

[817] S. L. Vandenberg and D. DeWitt. An algebra for complex objects with ar-
rays and identity. Internal report, Computer Sciences Department, University of
Wisconsin, Madison, WI 53706, USA, 1990.

516 BIBLIOGRAPHY

[818] S. L. Vandenberg and D. DeWitt. Algebraic support for complex objects with
arrays, identity, and inheritance. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 158–167, 1991.

[819] J. Vitter and M. Wang. Approximate computation of multidimensional aggre-
gates of sparse data using wavelets. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 193–204, 1999.

[820] G. von Bültzingsloewen. Translating and optimizingsql queries having aggre-
gates. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 235–243,
1987.

[821] G. von Bültzingsloewen.Optimierung von SQL-Anfragen für parallele Bear-
beitung (Optimization of SQL-queries for parallel processing). PhD thesis,
University of Karlsruhe, 1990. in German.

[822] G. von Bültzingsloewen. SQL-Anfragen: Optimierung für parallele Bear-
beitung. FZI-Berichte Informatik. Springer, 1991.

[823] F. Waas and C. Galindo-Legaria. Counting, enumerating, and sampling of ex-
ecution plans in a cost-based query optimizer. Technical Report INS-R-9913,
CWI, Amsterdam, 1999.

[824] F. Waas and C. Galindo-Legaria. Counting, enumerating, and sampling of ex-
ecution plans in a cost-based query optimizer. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 499–509, 2000.

[825] F. Waas and A. Pellenkoft. Probabilistic bottom-up join order selection – break-
ing the curse of NP-completeness. Technical Report INS-R9906, CWI, 1999.

[826] F. Waas and A. Pellenkoft. Join order selection - good enough is easy. In
BNCOD, pages 51–67, 2000.

[827] J. Wang, J. Li, and G. Butler. Implementing the PostgreSQL query optimzier
within the OPT++ framework. InAsia-Pacific Software Engineering Conference
(APSEC), pages 262–272, 2003.

[828] J. Wang, M. Maher, and R. Topor. Rewriting unions of general conjunctive
queries using views. InProc. of the Int. Conf. on Extending Database Technol-
ogy (EDBT), pages 52–69, 2002.

[829] M. Wang, J. Vitter, and B. Iyer. Selectivity estimation in the presence of al-
phanumeric correlations. InProc. IEEE Conference on Data Engineering, pages
169–180, 1997.

[830] W. Wang, H. Jiang, H. Lu, and J. Yu. Containment join size estimation: Models
and methods. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 145–156, 2003.

[831] W. Wang, H. Jiang, H. Lu, and J. Yu. Bloom histogram: Path selectivity esti-
mation for xml data with updates. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 240–251, 2004.

BIBLIOGRAPHY 517

[832] X. Wang and M. Cherniack. Avoiding ordering and grouping in query process-
ing. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 826–837,
2003.

[833] S. Waters. File design fallacies.The Computer Journal, 15(1):1–4, 1972.

[834] S. Waters. Hit ratio.Computer Journal, 19(1):21–24, 1976.

[835] H. Wedekind and G. Zörntlein. Prefetching in realtime database applications.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 215–226,
1986.

[836] M. Wedekind. On the selection of access paths in a database system. In J. Klim-
bie and K. Koffeman, editors,IFIP Working Conference Data Base Manage-
ment, pages 385–397, Amsterdam, 1974. North-Holland.

[837] G. Weikum. Set-oriented disk access to large complex objects. InProc. IEEE
Conference on Data Engineering, pages 426–433, 1989.

[838] G. Weikum, B. Neumann, and H.-B. Paul. Konzeption und Realisierung ein-
er mengenorientierten Seitenschnittstelle zum effizienten Zugriff auf komplexe
Objekte. InProc. der GI-Fachtagung Datenbanksysteme für Büro, Technik und
Wissenschaft (BTW), pages 212–230, 1987.

[839] T. Westmann.Effiziente Laufzeitsysteme für Datenlager. PhD thesis, University
of Mannheim, 2000.

[840] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte.The implementation
and performance of compressed databases. Technical Report03/98, University
of Mannheim, 1998.

[841] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte.The implementa-
tion and performance of compressed databases.SIGMOD Record, 29(3):55–67,
2000.

[842] T. Westmann and G. Moerkotte. Variations on grouping and aggregations. Tech-
nical Report 11/99, University of Mannheim, 1999.

[843] K.-Y. Whang and R. Krishnamurthy. Query optimizationin a memory-resident
domain relational calculus database system.ACM Trans. on Database Systems,
15(1):67–95, Mar 1990.

[844] K.-Y. Whang, A. Malhotra, G. Sockut, and L. Burns. Supporting universal
quantification in a two-dimensional database query language. In Proc. IEEE
Conference on Data Engineering, pages 68–75, 1990.

[845] K.-Y. Whang, G. Wiederhold, and D. Sagalowicz. Estimating block accesses in
database organizations: A closed noniterative formula.Communications of the
ACM, 26(11):940–944, 1983.

[846] N. Wilhelm. A general model for the performance of disksystems.Journal of
the ACM, 24(1):14–31, 1977.

518 BIBLIOGRAPHY

[847] D. E. Willard. Efficient processing of relational calculus queries using range
query theory. InProc. of the ACM SIGMOD Conf. on Management of Data,
pages 164–175, 1984.

[848] C. Williams and T. Hogg. Using deep structure to locatehard problems. In
Proc. National Conference on Artificial Intelligence, pages 472–477, 1992.

[849] J. Wolf, R. Iyer, K. Pattipati, and J. Turek. Optimal buffer partitioning for the
nested block join algorithm. InProc. IEEE Conference on Data Engineering,
pages 510–519, 1991.

[850] C. Wong. Minimizing expected head movement in one-dimensional and two-
dimensional mass storage systems.ACM Computing Surveys, 12(2):167–177,
1980.

[851] F. Wong and K. Youssefi. Decomposition – a strategy for query processing.
ACM Trans. on Database Systems, 1(3):223–241, 1976.

[852] H. Wong and J. Li. Transposition algorithms on very large compressed databas-
es. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 304–311, 1986.

[853] P. Wood. On the equivalence of XML patterns. InCL 2000, 2000.

[854] P. Wood. Minimizing simple XPath expressions. InInt. Workshop on Database
Programming Languages, pages 13–18, 2001.

[855] P. Wood. Containment for xpath fragments under dtd constraints. InProc. Int.
Conf. on Database Theory (ICDT), pages 300–314, 2003.

[856] W. A. Woods. Procedural semantics for question-answering systems. InFJCC
(AFIPS Vol. 33 Part I), pages 457–471, 1968.

[857] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. Scheduling algorithms for
modern disk drives. InProc. ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 241–251, 1994.

[858] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line extraction of SCSI
disk drive parameters. InProc. ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 146–156, 1995.

[859] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line extraction of SCSI
disk drive parameters. Technical Report CSE-TR-323-96, University of Michi-
gan, 1996.

[860] M.-C. Wu. Query optimization for selections using bitmaps. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 227–238, 1999.

[861] Y. Wu, J. Patel, and H.V. Jagadish. Estimating answer sizes for XML queries.
In Proc. of the Int. Conf. on Extending Database Technology (EDBT), pages
590–608, 2002.

[862] Y. Wu, J. Patel, and H.V. Jagadish. Estimating answer sizes for XML queries.
Information Systems, 28(1-2):33–59, 2003.

BIBLIOGRAPHY 519

[863] Z. Xie. Optimization of object queries containing encapsulated methods. In
Proc. 2nd. Int. Conf. on Information and Knowledge Management, pages 451–
460, 1993.

[864] G. D. Xu. Search control in semantic query optimization. Technical Report
83-09, COINS, University of Massachusetts, Amherst, MA, 1983.

[865] W. Yan. Rewriting Optimization of SQL Queries Containing GROUP-BY. PhD
thesis, University of Waterloo, 1995.

[866] W. Yan and P.-A. Larson. Performing group-by before join. Technical Report
CS 93-46, Dept. of Computer Science, University of Waterloo, Canada, 1993.

[867] W. Yan and P.-A. Larson. Performing group-by before join. In Proc. IEEE
Conference on Data Engineering, pages 89–100, 1994.

[868] W. Yan and P.-A. Larson. Eager aggregation and lazy aggregation. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 345–357, 1995.

[869] W. Yan and P.-A. Larson. Interchanging the order of grouping and join. Tech-
nical Report CS 95-09, Dept. of Computer Science, University of Waterloo,
Canada, 1995.

[870] H. Yang and P.-A. Larson. Query transformation for PSJ-queries. InProc. Int.
Conf. on Very Large Data Bases (VLDB), pages 245–254, 1987.

[871] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in
data warehousing environment. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 136–145, 1997.

[872] Qi Yang. Computation of chain queries in distributed database systems. InProc.
of the ACM SIGMOD Conf. on Management of Data, pages 348–355, 1994.

[873] B. Yao and T.Özsu. XBench – A Family of Benchmarks for XML DBMSs.
Technical Report CS-2002-39, University of Waterloo, 2002.

[874] B. Yao, T. Özsu, and N. Khandelwal. Xbench benchmark and performance
testing of XML DBMSs. InProc. IEEE Conference on Data Engineering, pages
621–632, 2004.

[875] S. B. Yao. Approximating block accesses in database organizations.Communi-
cations of the ACM, 20(4):260–261, 1977.

[876] S. B. Yao. An attribute based model for database accesscost analysis.ACM
Trans. on Database Systems, 2(1):45–67, 1977.

[877] S. B. Yao and D. DeJong. Evaluation of database access paths. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 66–77, 1978.

[878] S.B. Yao. Optimization of query evaluation algorithms. ACM Trans. on
Database Systems, 4(2):133–155, 1979.

520 BIBLIOGRAPHY

[879] S.B. Yao, A.R. Hevner, and H. Young-Myers. Analysis ofdatabase system
architectures using benchmarks.IEEE Trans. on Software Eng., SE-13(6):709–
725, 1987.

[880] Y. Yoo and S. Lafortune. An intelligent search method for query optimization
by semijoins. IEEE Trans. on Knowledge and Data Eng., 1(2):226–237, June
1989.

[881] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. Xrel: A path-based
approach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology, 1(1):110–141, June 2001.

[882] K. Youssefi and E. Wong. Query processing in a relational database manage-
ment system. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages
409–417, 1979.

[883] C. T. Yu, W. S. Luk, and M. K. Siu. On the estimation of thenumber of de-
sired records with respect to a given query.ACM Trans. on Database Systems,
3(1):41–56, 1978.

[884] L. Yu and S. L. Osborn. An evaluation framework for algebraic object-oriented
query models. InProc. IEEE Conference on Data Engineering, 1991.

[885] J. Zahorjan, B. Bell, and K. Sevcik. Estimating block transfers when record ac-
cess probabilities are non-uniform.Information Processing Letters, 16(5):249–
252, 1983.

[886] B. T. Vander Zander, H. M. Taylor, and D. Bitton. Estimating block accesses
when attributes are correlated. InProc. Int. Conf. on Very Large Data Bases
(VLDB), pages 119–127, 1986.

[887] B. T. Vander Zander, H. M. Taylor, and D. Bitton. A general framework for
computing block accesses.Information Systems, 12(2):177–?, 1987.

[888] S. Zdonik and G. Mitchell. ENCORE: An object-orientedapproach to database
modelling and querying.IEEE Data Engineering Bulletin, 14(2):53–57, June
1991.

[889] N. Zhang, V. Kacholia, and T.̈Ozsu. A succinct physical storage scheme for
efficient evaluation of path queries in XML. InProc. IEEE Conference on Data
Engineering, pages 54–65, 2004.

[890] N. Zhang and T.̈Ozsu. Optimizing correlated path expressions in XML lan-
guages. Technical Report CS-2002-36, University of Waterloo, 2002.

[891] Y. Zhao, P. Deshpande, and J. Naughton. An array-basedalgorithm for simul-
taneous multidimensional aggregates. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 159–170, 1997.

[892] Y. Zhao, P. Deshpande, J. Naughton, and A. Shukla. Simultaneous optimization
and evaluation of multiple dimensional queries. InProc. of the ACM SIGMOD
Conf. on Management of Data, pages 271–282, 1998.

BIBLIOGRAPHY 521

[893] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehouse environment. InProc. of the ACM SIGMOD Conf. on Management
of Data, 1995.

522 BIBLIOGRAPHY

Appendix F

ToDo

• size of a query in rel alg: [657]

• [828]

• Integrating Buffer Issues into Query Optimization: [192, 432]

• Integrating concurrency control issues into query optimization: [562, 563]

• [87]

• where do we put ”counting page accesses”?

• control,A∗, ballooning: [556, 555]

• Bypass Plans

• Properties (rather complete list, partial ordering, plan independent properties:
store them somewhere else (dpstructure or memostructure))

• describe prep-phase of plan generator

• reuse plans: [713]

• estimating query compilation time: [404]

• cost model [718]

• sensivitity of QO to storage access cost parameters [655] (and join selectivities
on join order: [473] [papier ist nicht ernst zu nehmen])

• magic set and semi join reducers [70, 72, 71, 153, 306, 571, 569, 571, 570, 715,
764, 880]

• join indexes and clustering tuples of different relations with 1:n relationship
[209, 369, 811, 812, 739]

• B-Trees with space filling curves (Bayer)

• Prefetching [835]

523

524 APPENDIX F. TODO

• feedback to optimizer [463]

• compression [27, 48, 143, 189, 229, 228, 301, 307] [580, 650,672, 719, 720,
783, 840, 852]

• semantic QO SQO: [1, 74, 149, 297, 329, 454, 455, 469, 475] [581, 589, 590,
612, 734, 742, 744, 864]

• join processing with nonclustered indexes: [582]

• join+buffer: [849]

• removal/elimination of redundant joins [591, 781]

• benchmark(ing): Gray Book: [330]; papers: [85, 92, 599, 678, 700, 879, 873,
874]

• dynamic qo: [603] [28, 809] [38] [433]

• unnesting: [607, 648]

• prefetching: [611, 610, 750, 835]

• Starburst: [620, 621]

• BXP: [91, 230, 269, 340, 365, 401, 449, 625, 654, 741, 749, 752, 448]
BXP complexity: [68] BXP var infl: [434]

• joins: [631]

• query folding: [633]

• quantification: [98, 97, 170, 171, 646, 638, 844] [427]

• outerjoins: [76, 77, 198, 267, 259, 258, 647, 663]

• partial match + hashing: [641]

• OODB indexing by class division: [177, 645]

• decision support [649]

• tree structured databases: [656]

• Rosenthal: [666, 651, 667, 668, 652, 662, 665, 664]

• conj. queries [660]

• aggregation/(generalized proj): [100, 177, 260, 671] [345, 346, 374]

• do unnest to optimize duplicate work: [669]

• join size: [661]

• fragmentation: [682]

525

• eqv: [21, 20]

• alg eqvs union/difference: [685] [828]

• other sagiv: [683, 684]

• bayesian approach to QO: [714]

• cache query plans: [713]

• joins for horizontally fragmentation: [706]

• partitioning: [49, 90, 363, 437, 584]

• MQO: [25, 117, 115, 711, 710, 892]

• indexing+caching: [709]

• rule-based QO: [721, 58, 59, 255]

• rule-based IRIS: [208]

• cost: [765] [810]

• search space: [792], join ordering: [794]

• access path: [111, 836, 877, 86]

• eff aggr: [257] [842]

• misc: [847] [11] [15]

• access paths: bitmaps [860]

• dist db: [33, 34, 84, 196, 872] Donald’s state of the art: [466]

• [125, 126]

• eqv: bags [23, 201]

• eqvs old: [24]

• DB2: norwegian analysis: [29]

• nested: [41]

• Genesis/Praire/Batory: [50, 54, 53, 55, 197]

• eqvs OO: [60, 61]

• dupelim: [79]

• (generalized) division: [109, 195, 319, 309]

• early aggregation

• chunks-wise processing [210, 316]

526 APPENDIX F. TODO

• temporal intersection join: [342]

• 2nd ord sig: Güting: [350]

• classics: [360]

• smallest first: [364]

• Hwang/Yu: [400]

• Kambayashi: [436]

• Koch [461], Lehnert [494]

• I/O cost reduction for (hash) joins: [516, 551]

• dist nest: [235]

• band join: [521]

• Donovan (TODS 76,1,4) Decision Support: [222]

• whenever materialize something (sort, hash join, etc) compute min/max of some
attributes and use these as additional selection predicates

• determine optimal page access sequence and buffer size to access pairs (x,y) of
pages where join partners of one relation lie on x and of the other on y (Fo-
touhi, Pramanik [252], Merret, Kambayashi, Yasuura [551],Omiecinski [582],
Pramanik, Ittner [631], Chan, Ooi [120])

• Scarcello, Greco, Leone: [688]

• Sigmod05:

– proactive reoptimization [40]

– robust query optimizer [39]

– stacked indexed views [205]

– NF2-approach to processing nested sql queries [102]

– efficient computatio of multiple groupby queries [146]

• LOCI: [602]

• Wavelet synopses: [286]

• Progress Indicators: [?, ?, 523]

• PostgresExperience: [827]

