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 Optimization Rules for the End User Programming 

Language OttoVonG 

 

1 Introduction 
 

At first, we have a look at a table, on which the failing of certain well-known commuting 

rules for selection can be demonstrated.  

<< M( A,   L( B, C)):: 

 1 2 3 

4 5 >> 

              (tabment T0) 

 

In the following  is the selection operation.  

Counter-examples for commuting rules of selection:   

(a) B=4(B::C=3(T0) )     B::C=3(B=4(T0)) 

The left hand side is an empty tabment, contrary to the right hand side. The reason is that the 

condition  B::C=3  selects elements of the fix level of (A::)B=4  (B::C=3  refers to a fix level 

(B,C) of the quantified condition B=4.). In section 4 we shall see that we can commute both 

above conditions in another sense. B=4 can absorb B::C=3. 

 

(b) B::pos(B)=1 (B::B=4(T0))  B::B=4(B::pos(B)=1(T0)) 

The left hand side contains the subtuple  (<<B:: 4>>,<<C:: 5>>),  

whereas the L(B,C)-collection of the right- hand-side is empty. The reason is again that the 

condition B::B=4  selects in the fix level of the position selecting condition  B::pos(B)=1.    

 

(c) B::C=3(L(C)[-1]=5(T0))  L(C)[-1]=5(B::C=3(T0)) 

Here, we have again a position selecting and a content selecting condition. L(C)[-1] desciribes 

the last C-element of the list L(B,C). The result of the left hand side contains an inner 

singleton and the result of the right hand side is empty. Here, L(C)[-1]=5  refers to  

(A,L(B,C))  and has the fix level  (B,C).  

 

(d) B=2(T0)  T0 except (ne(B=2)(T0)) 

Here, ne (slavic) is the negation and except the set difference.The left hand side is T0 and the 

right hand side the empty set of type M(A,L(B,C))  

 

In section 2 some basic definitions like superordination of attributes or hierarchical paths are 

introduced. Although we have presented the failing of simple commuting rules in the 

introduction, there are enough cases, which are presented in section 3, where conditions can 

be commuted. Also in the case, where 2 conditions do not commute, there may be potential 

for optimization. If a condition selects in the fix level of the following condition, then the 

following condition can absorb the preceeding one.  In sections 5 and 6 we consider the 

optimization potential of a gib-part (stroke-operation). Stroke may be accompanied by loss of 

information. This loss of information can explicitely expressed in preceeding conditions or in 

a preceeding forget operation. Rules with extension operation and some cases, where they fail 

are considered in section 7.  

 

2 Some Basic Definitions 
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A name is a string, which is used for tags (column names). A slashed name is recursively 

defined. Each name is a slashed name. If sn is a slashed name and n a name, then sn/n and 

sn//n are slashed names. TABMENT is a special name for a whole tabment, which is allowed 

only as a first name in a slashed name.  

An attribute is defined recursively again. Each slashed name is an attribute. If sn is a slashed 

name, then pos(sn) is an attribute. If sn is a slashed name, then each of the following terms 

L(sn), B(sn), M(sn ), A(sn) is an attribute. If att is an attribute, then also att[i] is an attribute, 

where i is an integer.  

That means for example:  Reasonable attributes of a tabment of type M(A,B,M(C,D,L(E,F)))  

are A; B; ... M(A); M(B); ...; M(F); B(F); L(F); C[1] (first component of C, if C is a tuple and 

first element of C, if C is a collection); L(C)[-1] (last element of L(C)). 

A collection attribute is an attribute of type C(sn), where C { M, B, L, A} or of type sn, if sn 

is a slashed name for a collection type or of type att[i], if i-th component respectively element 

represents a collection. 

Positional attributes are of type pos(sn), where sn is a slashed name or att[i], if att is a 

collection attribute.   

A name A is superordinated to a name B in a scheme s, if an occurrence of A is in the tree 

representation of  s  higher than an occurrence of  B or in the same level as B.  

The tree representation of  

 

M(A, D?, M(C, B), M(E1?, E2, B(F)) is for example: 

 

M 

 

(A, D?, M,          M) 

   

                    (C, B)   (E1?, E2, B) 

  

                                                  F        

     (tree1) 

 

In this scheme A is superordinated to each other name, C is only superordinated to B,  E1 is 

superordinated to E2 and F and E2 to E1 and F. The notion of superordination can easily be 

extended to attributes, which contain only simple slashed names. Namely, if we define that 

M(A)  is always one level higher than A and A[i] and is at the same level as A. In the same 

way pos(A) is at the same level as A. Therefore F is not superordinated to E2, but M(F) is 

superordinated to E2 (at the same level). L(F) is superordinated to F.  

  

Two attributes A and B are on a hierarchical path in a scheme s, if there exist occurrences of 

A and B in s such that the occurrence of A is superordinated to the occurrence B or an 

occurrence of B is superordinated to an occurrence of A. 

 

Examples: 

A and B are on a hierarchical path in M(A, B, C); M(A?, M(B)); M(C,M(B1,B,L(A1,A))); 

M(A,M(B),M(B)), but not in M(C, M(B), M(A)), and not in M(C, M(D, M(A)), M(B))). 

M(A) and  A are on a hierarchical path in  M(A, B).   

 

In the following we want to define the notion of a hierarchical path with respect to a given 

DTD (document type definition).  
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Example: 

NAME  TYPE 

TABMENT L(A?, B, M(C, D)) 

A  TEXT 

B  TEXT 

C  E, F 

D  M(H) 

E  TEXT 

F  M(G) 

G          ZAHL 

H  TEXT 

J           TEXT 

  (dtd1) 

 

But at first the following  

Definition 

A complete slashed name sn with respect to a DTD is a slashed name 

sn=n1/n2/n3.../ni, where n2names(type(n1)), n3names(type(n2)) ,..., 

ninames(type(ni-1)). 

Examples: 

 TABMENT/C, TABMENT/C/E/TEXT and TABMENT/D/H are complete slashed 

 names with respect to dtd1, but not TABMENT/E and C/TEXT 

 

The definition of a hierarchial path requires the definition of set of schemes of a column name 

(attribute) n.  

 H1(n,dtd) = {type(n)} 

 Hi+1(n,dtd) = Hi(n,dtd)  { s: s”Hi(n,dtd) & (n’,s’)dtd & s=replace(s”, n’, s') } 

  

 replace(s”, n’, s) results from scheme  s”  by replacing an occurrence of name  n’  of  

s” by scheme s 

 H(n,dtd) = 


i=1 Hi(n,dtd) 

  

Example:  

H(C,dtd1) = {(E,F); (TEXT,F); (E,M(G)); (E,M(ZAHL));(TEXT,M(G));(TEXT,M(ZAHL))} 

 

Definition: 

H(dtd) = H(“TABMENT”, dtd) (hull of schemes of a DTD) 

left(dtd) = {n: (n, s)  dtd} 

right(n, dtd)={n: n  names(H(n, dtd))} 

Definition: 

A name n is recursive with respect to a DTD dtd, if  n right(n, dtd). A DTD dtd is 

recursive, if it contains a recursive name n, which is contained in 

right(“TABMENT”,dtd). 

Lemma: 

a) If H(dtd) is infinite, then the DTD dtd is recursive. 

b) If a DTD dtd is recursive and monotone (each right side s of (n,s) contains more 

than one name, then H(dtd) is infinite. 

Definition: 

Two attributes A and B without slash and doubleslash are on a hierarchical path with 

respect to the DTD dtd, if there exists a scheme sH(dtd), such that A and B are on a 

hierarchical path on  s.  
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Definition: 

Two slashed names A=A1/A2 and B, not containing doubleslash ("//"), with simple 

name A1,  are on a hierarchical path with respect to the DTD dtd, if  A' and B' are on 

a hierarchical path with respect to dtd', where A' and B' result from A and B bei 

ommiting all strings "A1/" and dtd' results from dtd by omitting (A1,type(A1)) from 

dtd and replacing each A1 of a right hand side of dtd by type(A1).  

Two slashed names A and B are on a hierarchical path, if each occurence of a double 

slash X//Y in A or B can be replaced by a sequence X/X1/X2/.../Xi/Y and the resulting 

slashed names A', B' are on a hierarchical path. 

 

Definition 

The final scheme  s  of an unrecursive DTD dtd is a scheme  sH(dtd), which results 

from type(TABMENT) by all possible replacements except replacements of names n 

with type(n){TEXT, ZAHL, PZAHL, BOOL, BAR}.  

Example: 

final-scheme(dtd1)=L(A?,B,M(E,M(G),M(H))) 

The final scheme is used in the tab-representation of unrecursive XML-documents. 

If the final scheme contains no elementary tags (TEXT,...) and no name occurs twice, then the 

final scheme describes a non-first-normal-form relation. (A final scheme can contain 

elementary types (ZAHL,ZAHL,ZAHL) if RGB is for example of this type.)   

A slashed name sname can be extended to a complete slashed name sname'=n1/n2/.../ni 

(containing no doubleslash) such that n1 is the first and ni is the last name of sname and each 

name of sname occurs in sname’ in the same order and sk (k=1..i-1) from (nk,sk)  dtd 

contains nk+1. It is possible that a slashed name can be extended to several complete slashed 

names; if the DTD dtd is recursive, then infinite many complete slashed names can exist.  

Each condition sname1::cond1 contains a level determiner sname1. By this condition 

elements of type level(sname1) are selected.  

A level level(sname, dtd) of a slashed name sname with respect to a DTD dtd is each scheme  

lev, which can be determined in the following way: 

1. Extend the slashed name TABMENT//sname to a complete slashed name 

sname'=n1/n2/.../ni 

2. Beginning with k=i test whether nk  is in a proper collection  c(s) (c{ M, B, L, A}) of 

type(nk-1). If this is the case, then take the most inner collection c(lev), containing nk. 

lev is a desired level. If this condition fails (nk is not in a collection of type(nk-1), then 

replace k by k-1 and repeat the procedure.  

Examples: 

level(H, dtd1) = H (sname’=TABMENT/D/H) 

level(A, dtd1) = A?, B, M(C, D) (sname’=TABMENT/A) 

level(C, dtd1) = level(F, dtd1) = (C, D) (sname’= TABMENT/C/F) 

level(C/F, dtd1) = (C, D) (sname’= TABMENT/C/F) 

level(C//G, dtd1) = G (sname’= TABMENT/C/F/G) 

level(TEXT,dtd1) =  a) A?,B,M(C,D)  b) C,D  c) H 

 

An expression can be defined recursively again: 

1. Each attribute is an expression; each tabment is an expression 

2. If A and B are attributes, then A+B; A - B; …; (A, B); A=B; A<B; A in B; A in2 B;… 

are expressions. (the last four are Boolean valued) 

3. If A is an expression, then sin(A); cos(A); … are expressions 

4. If A, B, C are expressions, then A subtext (B,C); … is an expression. 

A condition sname1::cond1 is called simple, if cond1 is a well defined Boolean valued 

expression and if it contains no positional attribute and each slashed name is of elementary 
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type (TEXT, …) and the deepest name from cond1 is at the same level as sname1. In this case 

the condition “contains” no (implicit) existential quantifier.  

A condition is called relational, if it is of type sname1:::cond1 and sname1::cond1 is simple. 

A condition  sname:::cond is an abbreviation of the sequence of conditions: 

 sname1:: cond 

 sname2:: cond 

 sname3:: cond 

 … 

 snamek:: cond, 

where the sequence contains excactly one row for each proper collection, which contains 

sname1 = sname. 

In the above given tabment T0 B:::C=3 and A:::A=1 are relational conditions, contrary to 

A:::B=4. In this case B:::C=3 is an abbreviation of B::C=3 followed by A::C=3 or vice 

versa. 

A condition can have zero, one, or several fix levels. The simple condition   B::C=3  

(consider tabment T0) refers to level(B) (=level(C)) = (B,C) has  no fix level. Generally, 

simple conditions have no fix levels. The (quantified) condition B=4 (abbreviates A::B=4)  

refers to  (A,L(B,C)) that means it selects  (A,L(B,C))-elements and has the fix level  (B,C).  

That means the truth value of the condition depends on the L(B,C)-collection. If (B, C)-

elements are eliminated by another condition, then the truth value for evaluating a level(A)-

element may change.  

A scheme lev is a fix level of a condition sname1::cond1, if one of the following cases is 

satisfied: 

(1)  cond1 contains an attribute C(sname), or pos(sname) with lev=level(sname), or att[i] and 

att is of collection type and lev=level(att). (The level of att[i] is the same as the level of att.) 

(2) cond1 contains an attribute att, where a slashed name sname2 exists such that 

lev=level(sname2), where sname2 is superordinated to att and  sname1 is superordinated to 

sname2 and sname1 and sname2 are not from one level. 

(3) cond1 contains an attribute att and in att is contained an inner collection C(lev). 

Examples with respect to dtd1: 

(1) 

C:: M(G)=M(1 2) 

has fix level (G), but not (C,D) 

C:: pos(G) <40 

has fix level (G), but not (C,D) 

C:: M(G)[3]=2 

has fix level (G), but not (C,D) 

(2) 

A:: G=1 

has fix the levels: (G); and (C,D); but not (A?,B,M(C,D)) 

A:: 1 in M(G) 

has fix level (C,D) (sname2=C), but not (A?,B,M(C,D)) (and (G) because of (1)) 

(3) 

D=M(1 2) 

has fix level H. 

 

3 Commuting Operations 

 
To prove commuting rules for condtions we have to have at first a closer look to commuting 

rules for extensions. 
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ext-ext 

assi1(assi2(tab)) = assi2(assi1(tab)), 

this rule holds, for assignments: 

 assi1: name_tup1 := expr_tup1 at sname1 

 assi2: name_tup2 := expr_tup2 at sname2 

if the following three conditions hold: 

 (1) sname1  sname2 

 (2) if sname1 is not contained in sname2 or in a name of expr_tup2 

      and sname2 is not contained in  sname1 or in a name of expr_tup1  

 (3) name1_tup and name2_tup introduce only new names (not contained in the given 

       tabment and not contained in the right sides of assi1 and assi2 

 

Counter examples for ext-ext: 

counter example1: (sname1=sname2, this example is of formal importance only) 

 A:=1 

ext C:=3 at A 

ext B:=2 at A 

results in  

    << A,  B,  C:: 

   1   2   3>> 

 

A:=1 

ext B:=2 at A 

ext C:=3 at A 

results in the same tabment, but with switched column names: 

    << A,  C,  B:: 

   1   3   2>> 

This switching could be made undone by a following gib-part.   

 

counter example2: (sname1 = sname2 and name_tup2 contains a name from given tabment) 

A:=1 

ext B:=2 at A 

ext A:=3 at A 

results in  

     << A,  A,  B:: 

   1   3   2>>, 

but  

A := 1 

ext A:=3 at A 

ext B:=2 at A 

results in a tabment with 4 columns 

    << A,  B,  A,  B:: 

   1   2   3   2>>. 

counter example3: (sname1 is contained in  sname2) 

 B := 1 

 tag0 A 

 ext  C:=B+1 at B 

 ext D:=sum(A) at A 

 

The absence of certain commuting rules for the selection, which we observed in the 

introduction, is not only a disadvantage. It is on the other hand a reason for the expressive 
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power of our data model. For further considerations we will use the following example 

tabments. 

 

UNIVERSITY: 

FACULTIES: M(FACULTY, DEAN, FACBUDGET) 

INSTITUTES:  M(INSTITUTE, MANAGER, BUDGET, FACULTY) 

EMPS: M(ENO, NAME, FIRSTNAME, LOCATION, SALARY, SEX, PATENTCNT,  

   INSTITUTE, M(HOBBY),  M(PROJECT, TIME)) 

 

Query 1a: Find from all employees from Magdeburg the 50 best earning. 

 aus EMPS 

gib B-(SALARY, NAME, LOCATION, SEX)  # sort by SALARY descending 

 mit LOCATION=”Magdeburg”             # simple condition 

mit pos(SALARY) < 50              # position selecting condition 

 

aus: from; gib: select; mit: where; B abbreviates bag;  

1b: Give from the 50 best earning employees the employees from Magdeburg. 

 aus EMPS 

gib B-(SALARY, NAME, LOCATION, SEX)  

 mit pos(SALARY) < 50 

 mit LOCATION=”Magdeburg” 

 

It is evident, that the first condition of query 1a can also be realized before sorting. 

 

Query 2: Give for each employee from Magdeburg all “important” projects. 

 aus EMPS 

 mit PROJECT:: TIME>10 

 mit LOCATION = ”Magdeburg” 

 

By query 2 on the source table the condition PROJECT::TIME>10 is applied to all 

M(PROJECT,TIME)-collections and on the result the condition  LOCATION=”Magdeburg”  

is applied. If EMPS is an XML-document, then the exchange of both conditions would 

probably improve efficiency. If EMPS is a file with a LOCATION-index, then the condition 

LOCATION=”Magdeburg”, should be applied at first, too. An eventually existing index for 

the column TIME is relatively useless, because no employee is eliminated by 

PROJECT::TIME>10.  

 

sel-sel1 

sn2::c2(sn1::c1(tab)) = sn1::c1(sn2::c2(tab)) 

If  sn1::c1 does not select in a fix level of  sn2::c2  and sn::c2  does not select in a fix level  

of sn1::c1. 

 

Remark1: If  sn1::c1 and  sn2::c2 are simple, then holds: 

sn2::c2(sn1::c1(tab)) = sn1::c1(sn2::c2(tab)) 

 

This follows immedeately from sel-sel1, because simple conditions have no fix levels. 

 

sel-sel2  

sn2:::c2(sn1:::c1(tab)) = sn1:::c1(sn2:::c2(tab))  

If  sn1:::c1 and sn2:::c2 are relational. This rule is surprising, because both conditions are 

allowed to select in fix collection of the other condition. 
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From Relational Algebra is known that the selection of a conjunction of two conditions is 

equivalent to the successive application of the two conditions. It is clear that this rule cannot 

be applied, if both conditions refer to different levels. Query 1 teaches us that this rule fails 

also, if both conditions refer to the same level and one of the conditions is position selecting: 

pos(SALARY)<50 i LOCATION=”Magdeburg”(EMPS)=LOCATION=”Magdeburg”(pos(SALARY) < 50(EMPS)) 

                                                 ≠pos(SALARY)<50(LOCATION=”Magdeburg”(EMPS)) 

Here i (Russian) is the conjunction. By the following example is demonstrated that also in the 

case that both conditions refer to the same collection scheme and both are not position 

selecting the above rule may fail. 

If T1 is of type M(A,M(B),M(C)) and we consider the two conditions B=2 and C=3 

 

<<  M( A,   M( B), M(C)):: 

           1        2         3>> 

(tabment T1) 

 

It holds B=2 i C=3(T1) = <<M(A,M(B),M(C))::>> ≠ 

                                    ≠B=2(C=3(T1)) = C=3(B=2(T1)) = T1 

The reason is that  T1 does not contain subtuples with a corresponding (B,C)-value. By the following 

example we demonstrate that also in the case that B and C are on a hierarchical path, the rule may fail: 

<<  M( A,   M( B,   M( C))):: 

          1        2        3 

                   4             >> 

            (tabment T2) 

 

B=4 i C=3(T2) = <<M(A,M(B,M(C)))::>> ≠                           

                      ≠ B=4(C=3(T2)) = C=3(B=4(T2)) = T2 

 

 

Nevertheless we can formulate our rule: 

 

sel-conj1 

sn::c1(sn::c2(tab))  = sn::c1 i c2(tab)  

This rule holds, if neither c1 nor c2 contains positional attributes and all attributes from c1 

and c2 are on one hierarchical path.. 

 

sel-conj2 

sn:::c1(sn:::c2(tab)) = sn:::c1 i c2(tab)           

This second rule holds, if both conditions are relational and all attributes from c1  and c2 are 

on a hierarchical path.  

 

sel-conj3  

sn::c1 i c2(tab) = sn::c1 i c2(sn::c2(sn::c1(tab))), 

if c2 is not position selecting.   

 

sel-intersect  

c1 (c2(tab))  = c1(tab)  intersect c2(tab)  

Here is assumed that tab is a set or bag and c1 and c2 are not position selecting, which select 

in the topmost collection (given set or bag). 
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4 Absorption of a Condition 

 
The following query is easy to write in OttoVonG, but more complicated to write in German 

or English. 

Query 3: Select all employees, which work on at least one of a list of four special projects, 

with a time contingent greater than 10. From the set of projects for each such employee only 

projects from the four-element list are desired.  

aus EMPS     

mit PROJECT:: PROJECT in L(“otto”  ”SQL” ”XQuery” ”XML”)#simple condition 

mit TIME > 10               # existential condition 

        

Because the quantified condition TIME>10 selects EMPS-records, it should be earlier applied 

than the conditions PROJECT:: PROJECT in L(“otto” ”SQL” ”XQuery” ”XML”),  which selects 

projects. We have seen in the introduction that we cannot commute in general the two 

conditions. But, if the condition, which selects in the fix collection of the second condition is 

absorbed by the second, we can commute these both conditions. Then the following mit-parts 

results: 

mit TIME>10 i PROJECT in L(“otto”  ”SQL”  ”XQuery”  ”XML”)   

 mit PROJECT:: PROJECT in L(“otto” ”SQL” ”XQuery” ”XML”) 

 

absorb-sel 

sn2::c2(sn1::c1(tab)) = sn1::c1(sn1::c1 i c2(tab)) 

Here holds: sn1::c1 is a simple condition and sn1::cond1 refers to a fix level of sn2::c2.  

 

 

5 Smuggling a Condition 
 

Query 4: Find all projects, on which an employee from Magdeburg works with a time 

contingent greater than 10, and collect for each such project all these employees with 

corresponding time. The output data have to be sorted by PROJECT and the inner collections 

by NAME. 

 aus EMPS 

 mit LOCATION=”Magdeburg” 

    mit PROJECT:: TIME>10 

 gib M(PROJECT, M(NAME, ENO, TIME)) 
  

This restructuring is accompanied by loss of information. This loss can be expressed  

by a condition in the following way: 

aus EMPS 

 mit LOCATION=”Magdeburg” 

  mit PROJECT:: TIME>10 

            mit PROJECT = PROJECT 

 gib M(PROJECT, M(NAME, ENO, TIME)) 

The last condition can absorb the last but one, and then both conditions can be 

summarized to a ":::"-condition.  

 aus EMPS 

 mit LOCATION=”Magdeburg” 

  mit PROJECT::: TIME>10 
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 gib M(PROJECT, M(NAME, ENO, TIME)) 

 

 

sel-before-stroke 

strokedtd(st) = strokedtd(att1::att2=att2(st))  

We can put att1::att2=att2 ahead to the restructuring operation stroke, if att1 is in st  higher 

than att2 and the following condition holds: 

att1-segments cannot be inserted into target structure, but segments, which are deeper (or 

same level) than att2. The rule is also applicable, if the latter segments are needed only for 

aggregations.  

 

Further examples: 

st: M(A, M(B, M(C)))  M(C, M(A)) 

A- and B-segments will not be inserted by stroke, but C-values with superordinated A- and B-

segments. Therefore the conditions A::B=B,  and B::C=C can be smuggled. The condition 

A::C=C  is then satisfied automatically, such that there is no need to introduce this condition. 

The selective power of both conditions is stronger, if we apply at first B::C=C,  and then  

A::B=B.  

st: M(A, M(B, M(C)))  M(B, M(C))   the condition  A::B=B can be smuggled, because A-

segments cannot be inserted. But, if we have a target scheme M(A, C), M(A, M(C)), then also  

A-segments without corresponding C-values appear in the target structure. Therefore A::B=B 

cannot be smuggled.  

We remark that the sel-before-stroke-rule can be applied to optional values (?-collections) of a 

scheme in the same way as a proper collection like a set: 

st: M(A, M(B))  M(A, B?) 

A::B=B cannot be smuggled. 

st: M(A, B, C?, D?, M(E))  M(B, C, D, E) 

Here, A::C=C i D=D i E=E   can be smuggled in.  

If B is an optional value or B is a level deeper than  A, then a condition A::B=B can also be 

replaced by A::B?!=empty or by A::M(B)!=empty. 

 

The next rule is simple: 

::-condition-to :::-condition 

n2:::cond2(n1::cond1(tab)) = n2:::cond2(n1:::cond1(tab)) 

Here we have to presuppose only that n2 is deeper than n. If we omit at the end all empty 

collections, then we can omit corresponding empty collections also in a former step.  

 

Example: 

ext INSTIS:=INSTITUTES  #ext:extension of a tabment (by a new (complex) column) 

ext E:=EMPS at FACULTY 

mit ENO:: LOCATION=”Hadmersleben” i INSTIS/INSTITUTE=E/INSTITUTE 

mit HOBBY::: HOBBY=”chess” 

 

can be transformed to: 

ext INSTIS:=INSTITUTES 

ext E:=EMPS at FACULTY 

mit ENO::: LOCATION=”Hadmersleben” i INSTIS/INSTITUTE=E/INSTITUTE 

mit HOBBY::: HOBBY=”chess” 
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6 Smuggling a Forget-Operation  
 

The forget-operation   is a simple operation, which is similar to the relational projection, but 

which differs from projection in 3 points. 

1. The (indexed) argument of forget is not a list of attributes, which are intended to 

remain in the resulting structure, but the list of attributes, which are to omit.  

2. forget does not omit duplicates in sets.  

3. forget can be used also in recursive structures 

Because of point 1 and 3 forget is in some situations more expressive than a projection and 

also than stroke. Assume we have a recursive document BOOK.xml of type L(SECTION), 

where the type of SECTION is (TITLE, CONTENT, L(SECTION)), then  

CONTENT(BOOK) is neither equal to “TITLE(BOOK)” nor to “SECTION,TITLE(BOOK)” and not 

to  

gib L(SECTION) &&                          

         SECTION=(TITLE, L(SECTION)). 

In the latter case a stackoverflow results. Therefore, forget is in some situations more 

expressive than  and also stroke.  

Formally we will handle the second point (not eliminating duplicates) by replacing each 

corresponding set symbol M by a bag symbol B.   

 

Query 5: Group the employees from Magdeburg by institute and sort by institute and name. 

 aus EMPS 

 mit LOCATION=”Magdeburg” 

 gib M(INSTITUTE, B(NAME, SALARY)) 

 

Here, columns like HOBBY, FIRSTNAME, ... can be omitted before the restructuring is 

realized. This “projection” can be realized also before selection, although it is not clear in any 

case whether this is worth to do. 

 aus EMPS 

 mit LOCATION=”Magdeburg” 

 forget HOBBY, FIRSTNAME, PROJECT, TIME 

 gib M(INSTITUTE, B(NAME, SALARY)) 
 

forget-before-stroke 

strokedtd(st) = strokedtd(attlist(st)) 

All elementary names from st (names of type TEXT, BOOL, …), which do not occur in a right 

side of dtd can be taken to attlist. Further, if a segment x of the source with all its 

subordinated levels cannot be inserted into target structure, then all attributes from x and all 

subordinated attributes can be added to attlist. 

Examples:  

st: M(A, M(B, M(C)))  M(A, B)   

attlist = C (M(C)) 

st: M(A, M(B), M(C1, C2))  M(B, M(C1)) 

attlist = C1, C2, A 

st: M(A1, A2, M(B), M(C, M(D)))  M(A2, M(B, A1, M(D))) 

attlist=(C, D) (M(C, M(D)))  

st: M(A1, A2, M(B), M(C))  M(A1, B, C) 

attlist = (A1, A2, B, C) (M(A1, A2, M(B), M(C))), (Because no level can be inserted into the 

target structure. The resulting table is in any case empty.) 
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Further we can commute forget with selection: 

forget-sel: 

attlist(cond(tab))=cond(attlist(tab)) 

Here, it is presupposed that the condition cond contains no name of attlist. 

 

 

7 Further Rules with the Extension Operation  ext () 

 
Motivating example: 

Query 6: Give all budgets and the totals and subtotals for all “great” faculties and institutes. 

 ext FAC:=FACULTIES 

ext  INSTI := INSTITUTES at FACBUDGET 

 mit INSTITUTE:: FAC/FACULTY = INSTI/FACULTY 

 mit FACBUDGET > 100000 

 mit INSTITUTE:: BUDGET > 10000 

 gib FACBUD, INSTIBUD, M(FACULTY, FACBUDGET, INSTIBUD, && 

M(INSTITUTE, BUDGET)) && 

FACBUD := sum(FACBUDGET) && 

  INSTIBUD := sum(BUDGET) 

 

By the above extension of the flat table FACULTIES by the flat table INSTITUTE, a 

structured tabment of the following type results: 

type of TABMENT = FAC 

type of FAC            = M(FACULTY, DEAN, FACBUDGET, INSTI) 

type of INSTI          = M(INSTITUTE, MANAGER, BUDGET, FACULTY) 

In the query the condition FACBUDGET>100000 can be realized before extension and the 

remaining condition INSTITUTE::BUDGET>10000 be realized before the “join”-condition. 
aus  INSTITUTES   
mit   BUDGET > 10000 
=:$temp 
ext FAC:=FACULTIES 

 mit FACBUDGET > 100000 
  ext INSTI := $temp at FACBUDGET 
 mit INSTITUTE:: FAC/FACULTY = INSTI/FACULTY 

 ... 

sel-ext1 

cond(assi(tab)) = assi (cond (tab)), 

this rule holds, if all operations are applicable, and the extension does not introduce a name, 

which is used in the condition. 

 

sel-ext2 

cond(X:=tab2 at Y(tab1)) = X:= ( cond (tab2)) at Y(tab1), 

here is presupposed that all operations are applicable, that cond is a ::-condition and does not 

contain a name from tab1.  

 

Counter example for sel-ext1: 

<<  L( A, B):: 

      1  2>> 

ext B:=3 at B 

mit B=3 

results in 
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<<  L( A,  B,  B):: 

      1   2   3>>, 

but  

   << L( A, B):: 

      1  2>> 

mit B=3 

ext B:=3 at B 

results in 

    <<L(A, B, B):: 

     >>. 

 

 

8 Related Work 
 

We think our approach is unique in the following points: 

 The select operation does not change the type of the given document; therefore we can 

change the order of two conditions also if they refer to different levels. If  

../A[cond1]/B[cond2] is a reasonable XPath- expression, then ../B[cond2]/A[cond1] is 

in general meaningless. In the same way nowhere is considered to commute a 

condition from an inner FLWOR-construct with a condition of the outer one, because 

this is nonsens, too. 

 Because of the compactness of our restructurring operation stroke we can generate 

selections or forget operations, which can fasten the query implementation.  

 Nowhere, we found a rule like absorb-sel. 

 The data model is powerful enough to express queries on relational data, XML, and to 

define (hierarchical) views. 

 

 

 

 


