Dreiwertige Logik I

Definition des Ausdrucks der dreiwertigen Logik wie bei Aussagenlogik

Belegung: $\alpha \rightarrow \{0, 1, \times\}$

Wertberechnung:

 $-w_{\alpha}^{d}(p)=\alpha(p)$ für jede Variable p

– $w^d_\alpha(\neg A)$, $w^d_\alpha((A \land B))$, $w^d_\alpha((A \lor B))$ und $w^d_\alpha((A \lor B))$ entsprechend folgender Tabellen

A	$\neg A$	\wedge	0	×	1	\vee	0	×	1		\longrightarrow	0	×	1
0	1	0	0	0	0	0	0	X	1	•	0	1	1	1
×	×	×	0	×	×	×	×	X	1		×	×	1	1
1	0	1	0	×	1	1	1	1	1		1	0	×	1

$$-w_{\alpha}^{d}((A \leftrightarrow B)) = w_{\alpha}^{d}(((A \to B) \land (B \to A))).$$

Dreiwertige Logik II

$$\begin{aligned}
&\times = \frac{1}{2} \\
& w_{\alpha}^{d}(\neg A) = 1 - w_{\alpha}^{d}(A) \\
& w_{\alpha}^{d}((A \land B)) = \min\{w_{\alpha}^{d}(A), w_{\alpha}^{d}(B)\} \\
& w_{\alpha}^{d}((A \lor B)) = \max\{w_{\alpha}^{d}(A), w_{\alpha}^{d}(B)\}
\end{aligned}$$

Satz:

Für einen aussagenlogischen Ausdruck A der dreiwertigen Logik ist es entscheidbar, ob A eine Tautologie oder erfüllbar oder eine Kontradiktion ist.

Fuzzy-Logik

Zugehörigkeitsfunktion: $\mu_M: G \rightarrow [0,1]$

Definition des Ausdrucks der Fuzzy-Logik wie bei Aussagenlogik

Belegung: α ist Zugehörigkeitsfunktion

Wertberechnung:

 $-w_{\alpha}^{f}(p)=\alpha(p)$ für eine Variable p,

$$-w_{\alpha}^{f}(\neg A) = 1 - w_{\alpha}^{f}(A),$$

$$-w_{\alpha}^f((A\wedge B))=\min\{w_{\alpha}^f(A),w_{\alpha}^f(B)\},$$

$$-w_{\alpha}^f((A\vee B)) = \max\{w_{\alpha}^f(A), w_{\alpha}^f(B)\},$$

$$-w_{\alpha}^{f}((A \to B)) = \min\{1, 1 + w_{\alpha}^{f}(B) - w_{\alpha}^{f}(A)\},$$

$$-w_{\alpha}^{f}((A \leftrightarrow B)) = 1 - |w_{\alpha}^{f}(A) - w_{\alpha}^{f}(B)|.$$

Ausdrücke der dynamischen Logik

Definition:

Die Menge dausd der Ausdrücke dynamischen Aussagenlogik und die Menge P der Programme der dynamischen Aussagenlogik über der Menge var von Variablen, der Menge anw von Grundanweisungen und den Synbolen $(,),<,>,\neg,\wedge,\vee,\rightarrow,\leftrightarrow,\cup,;,^*,?$ sind induktiv wie folgt definiert.

- 1. Jede Variable aus var ist ein Element von dausd. Jede Anweisung aus anw ist ein Programm aus P.
- 2. Für $A \in dausd$, $B \in dausd$, $p \in P$ und $q \in P$ sind auch $\{p;q\}$, $(p \cup q)$, p^* und A? Programme in P und $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ und $(A \lor B)$ und $(A \lor B)$.
- 3. Ein Wort gehört nur dann zu dausd oder P, wenn dies aufgrund der Bedingungen 1 und 2 der Fall ist.

Kripke-Modell

Definition:

Ein Kripke-Modell der dynamischen Logik ist ein Tripel M=(S,K,R), wobei

- S eine beliebige Menge (von Zuständen) ist,
- ullet $K: var
 ightarrow 2^S$ ist eine Funktion, die jeder Variablen eine Menge von Zuständen zuordnet,
- $R:anw \to 2^{S \times S}$ ist eine Funktion, die jeder Anweisung eine binäre Relation über S zuordnet.

Semantik in der dynamischen Logik I

Definition:

Seien die Funktion K für $A \in dausd$ und $B \in dausd$ und die Funktion R für $p \in P$ und $q \in P$ definiert. Dann setzen wir

$$K(\neg A) = S \setminus K(A),$$
 $K((A \lor B)) = K(A) \cup K(B),$
 $K((A \land B)) = K(A) \cap K(B),$
 $K((A \to B)) = (S \setminus K(A)) \cup K(B),$
 $K((A \leftrightarrow B)) = ((S \setminus K(A)) \cup K(B)) \cap ((S \setminus K(B)) \cup K(A)),$
 $K(\langle p > A) = \{s \mid (s, s') \in R(p), s' \in K(A)\},$

Semantik in der dynamischen Logik II

$$\begin{array}{lcl} R(\{p;q\}) & = & R(p) \circ R(q) = \{(s,s') \mid (s,s'') \in R(p), (s'',s') \in R(q)\}\,, \\ R((p \cup q)) & = & R(p) \cup R(q), \\ R(p^*) & = & \{(s,s) \mid s \in S\} \cup R(p) \cup (R(p) \circ R(p)) \cup \dots \\ & = & \bigcup_{i \geq 0} R(p)^i \text{ (transitiver und reflexiver Abschluss von } R(p)\text{)}, \\ R(A?) & = & \{(s,s) \mid s \in K(A)\}. \end{array}$$

Semantische Äquivalenz in der dynamischen Logik

Definition:

Zwei Ausdrücke A und B aus dausd heißen semantisch äquivalent in der dynamischen Aussagenlogik, wenn K(A)=K(B) für alle Kripke-Modelle (S,K,R) gilt.

Bezeichnung: $A \equiv_d B$

Satz:

Für beliebige Ausdrücke A und B aus dausd und beliebige Programme p und q gelten die folgenden Äquivalenzen:

- i) $(A \lor B) \equiv_d (A \lor B),$
- ii) $<(p \cup q) > A \equiv_d (A \lor < q > A),$
- iii) $\langle \{p;q\} \rangle A \equiv_d \langle p \rangle \langle q \rangle A$,
- iv) $\langle A? \rangle B \equiv_d (A \wedge B)$.

Entscheidbarkeit in der dynamischen Logik

Satz:

Das Erfüllbarkeitsproblem der dynamischen Aussagenlogik

Gegeben: Ausdruck $A \in dausd$ der dynamischen Aussagenlogik

Frage: Ist u erfüllbar?

ist entscheidbar.