Übungsblatt 3 (für die 44. Kalenderwoche)

zur Vorlesung von Prof. Dr. J. Dassow im Wintersemester 2007/2008

Magdeburg, 24. Oktober 2007

- 1. Zeigen Sie: Eine totale Funktion von \mathbb{N} in \mathbb{N} , die nur an endlich vielen Stellen einen von 0 verschiedenen Wert annimmt, ist **LOOP**-berechenbar.
- 2. Bestimmen Sie für die Turing-Maschine $M=(\{z_0,z_1,z_2,z_3,q\},\{a,b\},\{a,b,*\},\delta,z_0,*,\{q\})$ mit δ gegeben durch

δ	z_0	z_1	z_2	z_3
*	(q, *, N)	(q, *, N)	$(z_2, *, N)$	$(z_0, *, R)$
a	(z_0, a, R)	(z_2,b,L)	(z_2, a, N)	(z_3, a, L)
b	(z_1, b, R)	(z_1, b, R)	(z_3, a, L)	(z_3, b, L)

- a) $f_M(abba)$, $f_M(bbaa)$ und $f_M(aabb)$,
- b) die von M induzierte Funktion f_M .
- 3. Man bestimme eine Turing-Maschine M, deren induzierte Funktion f_M durch $f_M(\lambda) = \lambda$ und für $w = x_1 x_2 \dots x_n, x_i \in \{a, b\}$ für $1 \le i \le n$ durch

$$f_M(x_1x_2...x_n) = x_1x_1x_2x_2...x_nx_n = x_1^2x_2^2...x_n^2$$

gegeben ist.

- 4. Man bestimme eine Turing-Maschine M, deren induzierte Funktion f_M durch $f_M(w) = w * w$ gegeben ist.
- 5. Man bestimme eine Turing-Maschine M, deren induzierte Funktion f_M die Funktion $P: \mathbb{N} \to \mathbb{N}$, definiert durch

$$P(x) = \begin{cases} 0 & \text{für } x = 0, \\ x - 1 & \text{für } x \ge 1, \end{cases}$$

ist. Dabei sei die verwendete Zahlendarstellung

- a) die unäre Zahlendarstellung ("Strichkode", Eingabealphabet $X = \{|\}$) und
- b) die binäre Zahlendarstellung (Eingabealphabet $X = \{0, 1\}$).
- 6. Man bestimme eine Turingmaschine, die die Funktion $f: \mathbb{N}^2 \to \mathbb{N}$ mit

$$f(m,n) = m+n$$

induziert. Dabei sind die Zahlen m,n auf dem Eingabeband durch ein * getrennt gegeben, einmal in

- a) unärer Darstellung ("Strichkode", Eingabealphabet $X = \{\}$) und in
- b) binärer Darstellung (Eingabealphabet $X = \{0, 1\}$).