
1. Boolean Retrieval

Definition:
Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from within large collection
(usually on computer server or on the internet.

DB-retrieval: “I’m sorry, I can only look up your order, if you give me your OrderId”.

DB: strongly structured

Reality: almost no data is truly „unstructured“

Given: Sheakespeare’s Collected Works

Query: Brutus AND Caesar AND NOT Calpurinia

Find the answer by grepping (UNIX –command all rows with a property) all the works of
Shakespeare

 Anthony
and

Cleopatra

Julius
Caesar

The
Tempest
(Sturm)

Hamlet Othello Macbeth ...

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser

(Schlechtere)
1 0 1 1 1 0

(i,j)=1, if the play in column j contains the word of row i, 0 otherwise

Answer of the Query:
110100 AND 110111 AND 101111 = 100100
„Anthony and Cleopatra“ and „Hamlet“

general example:

• 1 million documents
• each document 1000 words (3 book pages)
• 6 bytes per word

document collection=6 Gbyte

typically: 500 000 distinct terms (words)

 500 000 * 1 million = 0.5 Terabits(60 Gbyte)
A system cannot handle this amount of data;
Critical observation: the matrix is extremly sparse: 99.8% of cells are 0

 1

Solution: Inverted file (also inverted index)

Brutus 1 2 4 11 31 45 173 174
Caesar 1 2 4 5 6 16 57 …
Calpurnia 2 31 54 101
.
.
.
Dictionary Postings

Figure 1.3 The 2 parts of an inverted index. The dictionary is usually kept in memory,
with pointers to each posting list, which is stored on disc

Type: M(TERM, M(DOC_ID)): both collections are sorted

Doc1: Doc2
I did enact Julius Caesar: I was killed i’ the
Capitol; Brutus killed me.

So let it be with Caesar. The noble Brutus
hath told you Caesar was ambitious.

term doc.freq. Posting lists
ambitious 1 2
be 1 2
brutus 2 1 2
capitol 1 1
caesar 2 1 2
did 1 1
enact 1 1
hath 1 2
I 1 1
i’ 1 1
it 1 2
julius 1 1
killed 2 1
let 1 1
me 1 2
noble 1 1
so 1 2
the 2 1 2
told 1 2
you 1 2
was 2 1 2
with 1 2

◮ Figure 1.4 Building an index by sorting and grouping.

 2

INTERSECT(p1, p2)
1 answer ← []
2 while p1 != NIL and p2 != NIL

3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)

6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)

9 else p2 ← next(p2)
10 return answer

◮ Figure 1.6 Algorithm for the intersection of two postings lists p1 and p2.

Time: O(x+y);

x: number of entries of the first posting list
y: number of entries of the second posting list

 O(number_of_documents):

A more general query needs query optimization
(1.3) Brutus AND Caesar AND Calpurnia

Brutus 1 2 4 11 31 45 173 174
Caesar 1 2 4 5 6 16 57 …
Calpurnia 2 31 54 101

(Calpurnia AND Brutus) AND Caesar

This is a first justification for keeping the frequency of terms in the dictionary.

(1.5) (madding OR crowd) AND (ignoble OR strife) AND (killed OR slain)
 mad: irr; ignoble: gemein; strife: Kampf; slain: getötet

As before, we will get the frequencies for all terms, and we can then (conservatively)
estimate the size of each OR by the sum of the frequencies of its
disjuncts. We can then process the query in increasing order of the size of
each disjunctive term.

For arbitrary Boolean queries, we have to evaluate and temporarily store the answers for intermediate
expressions in a complex expression. However, in many circumstances, either because of the nature
of the query language, or just because this is the most common type of query that users submit, a
query is purely conjunctive.

tokenization:
Input: Friends, Romans, Countrymen, lend me your ears;
Output: Friends Romans Countrymen lend me your ears

These tokens are often loosely referred to as terms or words.

 3

2.3 Faster postings list intersection via skip pointers

If the list lengths are m and n, the intersection takes O(m + n) operations. Can we do better than this?
That is, empirically, can we usually process postings list intersection in sublinear time? We
can, if the index isn’t changing too fast.

Figure 2.9 Postings lists with skip pointers. The postings intersection can use a
skip pointer when the end point is still less than the item on the other list.

One way to do this is to use a skip list by augmenting postings lists with
skip pointers (at indexing time), as shown in Figure 2.9. Skip pointers are
effectively shortcuts that allow us to avoid processing parts of the postings
list that will not figure in the search results. The two questions are then where
to place skip pointers and how to do efficient merging using skip pointers.
Consider first efficient merging, with Figure 2.9 as an example. Suppose
we’ve stepped through the lists in the figure until we have matched 8 on
each list and moved it to the results list. We advance both pointers, giving us
16 on the upper list and 41 on the lower list. The smallest item is then the
element 16 on the top list. Rather than simply advancing the upper pointer,
we first check the skip list pointer and note that 28 is also less than 41. Hence
we can follow the skip list pointer, and then we advance the upper pointer
to 28 . We thus avoid stepping to 19 and 23 on the upper list.

 4

INTERSECTWITHSKIPS(p1, p2)
1 answer ← []
2 while p1 != NIL and p2 != NIL

3 do if docID(p1) = docID(p2)
4 then ADD(answer, docID(p1))
5 p1 ← next(p1)

6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)

11 else p1 ← next(p1)

12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))

13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))

14 do p2 ← skip(p2)

15 else p2 ← next(p2)
16 return answer
◮ Figure 2.10 Postings lists intersection with skip pointers.

2.4 Positional postings and phrase queries

Phrase: ”Stanford University“ is not intended to match the following sentence:

The inventor Stanford Ovshinsky never went to university.

10% of web queries are phrase queries, and many more are implicit phrase queries (such
as person names), entered without use of double quotes.

A search engine should not only support phrase queries, but implement them efficiently.

2.4.1 Biword indexes

The query

stanford university palo alto

can be broken into the Boolean query on biwords:

“stanford university” AND “university palo” AND “palo alto”

Without examining the documents, we cannot verify that the documents matching the above Boolean
query do actually contain the original 4 word phrase (false drop).

BIWORD_INDEX_TYPE: M(TERM1, TERM2, M(DOC_ID))

An exhaustive biword dictionary greatly expands the size of the vocabulary.
Single word queries like Stanford are hard to realize. A single word index is additionally needed.

The concept of a biword index can be extended to longer sequences of words, and if the index
includes variable length word sequences, it is generally referred to as a phrase index.

 5

2.4.2 Positional indexes

For the reasons given, a biword index is not the standard solution. Rather, a positional index is most
commonly employed. Here, for each term in the vocabulary, we store postings of the form docID:
[position1, position2, . . .],
as shown in Figure 2.11, where each position is a token index in the document. Each posting will also
usually record the term frequency.

to, 993427:
 [1, 6: [7, 18, 33, 72, 86, 231];

2, 5: [1, 17, 74, 222, 55];
4, 5: [8, 16, 190, 429, 433];
5, 2: [363, 367];
7, 3: [13, 23, 191]; . . .]

be, 178239:
 [1, 2: [17, 25];

4, 5: [17, 191, 291, 430, 434];
5, 3: [14, 19, 101]; . . .]

◮ Figure 2.11 Positional index example. The word to has a document frequency
993,477, and occurs 6 times in document 1 at positions 7, 18, 33, and so on.

POSITIONAL_INDEX_TYPE: M(TERM, TOTAL_FREQ, M(DOC_ID, DOC_FREQ, L(POS)))

Example 2.1: Satisfying phrase queries. Suppose the postings lists for to and
be are as in Figure 2.11, and the query is “to be or not to be”. The postings lists to access
are: to, be, or, not. We will examine intersecting the postings lists for to and be. We
first look for documents that contain both terms. Then, we look for places in the lists
where there is an occurrence of be with a token index one higher than a position of to,
and then we look for another occurrence of each word with token index 4 higher than
the first occurrence. In the above lists, the pattern of occurrences that is a possible
match is:
to: [. . . ; 4:[429,433]; . . .] be: [. . . ; 4:[,430,434]; . . .]
The same general method is applied for within k word proximity searches,
of the sort we saw in Example 1.1:
employment /3 place
Here, /k means “within k words of (on either side)”. Clearly, positional indexes
can be used for such queries; biword indexes cannot.

 6

POSITIONALINTERSECT(p1, p2, k)
1 answer ← []
2 while p1 != NIL and p2 != NIL
3 do if docID(p1) = docID(p2)
4 then l ← []
5 pp1 ← positions(p1)

6 pp2 ← positions(p2)

7 while pp1 != NIL

8 do while pp2 != NIL

9 do if |pos(pp1) − pos(pp2)| > k
10 then break
11 else ADD(l, pos(pp2))
12 pp2 ← next(pp2)

13 while l != [] and |l[0] − pos(pp1)| > k
14 do DELETE(l[0])
15 for each ps in l
16 do ADD(answer, [docID(p1), pos(pp1), ps])
17 pp1 ← next(pp1)

18 p1 ← next(p1)

19 p2 ← next(p2)
20 else if docID(p1) < docID(p2)
21 then p1 ← next(p1)

22 else p2← next(p2)

23 return answer

◮ Figure 2.12 An algorithm for proximity intersection of postings lists p1 and p2. The algorithm finds places where
the two terms appear within k words of each other and returns a list of triples giving docID and the term position in
p1 and p2.

Adding Britney Spears as a phrase index entry may only give a speedup factor to that query of about
3, since most documents that mention either word are valid results, whereas adding The Who as a
phrase index entry may speed up that query by a factor of 1000.

 7

3 Dictionaries and tolerant retrieval

3.1 Search structures for dictionaries

In the literature of data structures, the entries in the vocabulary (in our case, terms) are often referred
to as keys.

2 Possibilities: hashing or search trees

The decisition depends on the following questions:
(1) How many keys are we likely to have?
(2) Is the number likely to remain static, or change a lot – and in the case of changes, are we likely to
only have new keys inserted, or to also have some keys in the dictionary be del ted? e
(3) What are the relative frequencies with which various keys will be accessed?

Hashing has been used for dictionary lookup in some search engines. Each vocabulary term (key) is
hashed into an integer over a large enough space that hash collisions are unlikely; collisions if any are
resolved by auxiliary structures that can demand care to maintain. At query time, we hash each
query term separately and following a pointer to the corresponding postings, taking into account any
logic for resolving hash collisions. There is no easy way to find minor variants of a query term (such as
the accented and non-accented versions of a word like resume), since these could be hashed to very
different integers. In particular, we cannot seek (for instance) all terms beginning with the prefix
automat, an operation that we will require below in Section 3.2. Finally, in a setting (such as the Web)
where the size of the vocabulary keeps growing, a hash function designed for current needs may
not suffice in a few years’ time.
Search trees overcome many of these issues – for instance, they permit us to enumerate all
vocabulary terms beginning with automat. The best-known search tree is the binary tree, in which
each internal node has two children. The search for a term begins at the root of the tree. Each internal
node (including the root) represents a binary test, based on whose outcome the search proceeds to
one of the two sub-trees below that node. Figure 3.1 gives an example of a binary search tree used for
a dictionary. Efficient search (with a number of comparisons that is O(logM)) hinges on (abhängig von)
the tree being balanced: the numbers of terms under the two sub-trees of any node are either equal or
differ by one. The principal issue here is that of rebalancing: as terms are inserted into or deleted from
the binary search tree, it needs to be rebalanced so that the balance property is maintained.

 8

◮ Figure 3.1 A binary search tree. In this example the branch at the root partitions vocabulary terms into two
subtrees, those whose first letter is between a and m, and the rest.

To mitigate (abschwächen) rebalancing, one approach is to allow the number of sub-trees under an
internal node to vary in a fixed interval. A search tree commonly used for a dictionary is the B-tree – a
search tree in which every internal node has a number of children in the interval [a, b], where a and b
are appropriate positive integers; Figure 3.2 shows an example with a = 2 and b = 4. Each
branch under an internal node again represents a test for a range of character sequences, as in the
binary tree example of Figure 3.1. A B-tree may be viewed as “collapsing” multiple levels of the binary
tree into one; this is especially advantageous when some of the dictionary is disk-resident, in
which case this collapsing serves the function of pre-fetching imminent binary tests. In such cases, the
integers a and b are determined by the sizes of disk blocks. Section 3.5 contains pointers to further
background on search trees and B-trees.
It should be noted that unlike hashing, search trees demand that the characters used in the document
collection have a prescribed ordering; for instance, the 26 letters of the English alphabet are always
listed in the specific order A through Z. Some Asian languages such as Chinese do not always have a
unique ordering, although by now all languages (including Chinese and Japanese) have adopted a
standard ordering system for their character sets.

 9

◮ Figure 3.2 A B-tree. In this example every internal node has between 2 and 4 children.

3.2 Wildcard queries

Wildcard queries are used in any of the following situations:
(1) the user is uncertain of the spelling of a query term (e.g., Sydney vs. Sidney, which leads to the
wildcard query S*dney);
(2) the user is aware of multiple variants of spelling a term and (consciously) seeks documents
containing any of the variants (e.g., color vs. colour);
(3) the user seeks documents containing variants of a term that would be caught by stemming, but is
unsure whether the search engine performs stemming (e.g., judicial vs. judiciary, leading to the wildcard
query judicia*);
(4) the user is uncertain of the correct rendition (Darstellung) of a foreign word or phrase (e.g., the
query Universit* Stuttgart).
A query such as mon* is known as a trailing wildcard query, because the * symbol occurs only once,
at the end of the search string. A search tree on the dictionary is a convenient way of handling trailing
wildcard queries: we walk down the tree following the symbols m, o and n in turn, at which point we can
enumerate the set W of terms in the dictionary with the prefix mon.
Finally, we use |W| lookups on the standard inverted index to retrieve all documents containing any
term in W.
But what about wildcard queries in which the * symbol is not constrained to be at the end of the search
string? Before handling this general case, we mention a slight generalization of trailing wildcard
queries. First, consider leading wildcard queries, or queries of the form *mon. Consider a reverse B-
tree on the dictionary – one in which each root-to-leaf path of the B-tree corresponds to a term in the
dictionary written backwards: thus, the term lemon would, in the B-tree, be represented by the path
root-n-o-m-e-l. A walk down the reverse B-tree then enumerates all terms R in the vocabulary with a
given prefix.
In fact, using a regular B-tree together with a reverse B-tree,we can handle an even more general
case: wildcard queries in which there is a single * symbol, such as se*mon. To do this, we use the
regular B-tree to enumerate the set W of dictionary terms beginning with the prefix se, then the reverse
B-tree to enumerate the set R of terms ending with the suffix mon. Next, we take the intersection W ∩
R of these two sets, to arrive at the set of terms that begin with the prefix se and end with the suffix
mon. Finally, we use the standard inverted index to retrieve all documents containing any terms in this
intersection. We can thus handle wildcard queries that contain a single * symbol
using two B-trees, the normal B-tree and a reverse B-tree.

 10

3.2.2 k-gram indexes for wildcard queries

A k-gram is a sequence of k characters. Thus cas, ast and stl are all 3-grams occurring in the term
castle. We use a special character $ to denote the beginning or end of a term, so the full set of 3-grams
generated for castle is: $ca, cas, ast, stl, tle, le$.
In a k-gram index, the dictionary contains all k-grams that occur in any term in the vocabulary. Each
postings list points from a k-gram to all vocabulary terms containing that k-gram. For instance, the 3-
gram etr would point to vocabulary terms such as metric and retrieval. An example is given in Figure
3.4.

etr beetroot metric petrify retrieval

◮ Figure 3.4 Example of a postings list in a 3-gram index. Here the 3-gram etr is illustrated. Matching vocabulary
terms are lexicographically ordered in the postings.

How does such an index help us with wildcard queries? Consider the wildcard query re*ve. We are
seeking documents containing any term that begins with re and ends with ve. Accordingly, we run the
Boolean query $re AND ve$. This is looked up in the 3-gram index and yields a list of matching terms
such as relive, remove and retrieve. Each of these matching terms is then looked up in the standard
inverted index to yield documents matching the query.

There is however a difficulty with the use of k-gram indexes, that demands one further step of
processing. Consider using the 3-gram index described above for the query red*. Following the
process described above, we first issue the Boolean query $re AND red to the 3-gram index. This leads
to a match on terms such as retired, which contain the conjunction of the two 3-grams $re and red, yet
do not match the original wildcard query red*.
To cope with this, we introduce a post-filtering step, in which the terms enumerated by the Boolean
query on the 3-gram index are checked individually against the original query red*. This is a simple
string-matching operation and weeds out (aussondern) terms such as retired that do not match the
original query.
Terms that survive are then searched in the standard inverted index as usual.

4 Index construction

4.1 Hardware basics

symbol statistic value
s average seek time 5 ms = 5× 10−3 s

b transfer time per byte 0.02 μs = 2× 10−8 s
processor’s clock rate 109 s−1

p lowlevel operation (e.g., compare & swap a word) 0.01 μs = 10−8 s
size of main memory several GB
size of disk space 1 TB or more

◮ Table 4.1 Typical system parameters in 2007. The seek time is the time needed to position the disk head in a
new position. The transfer time per byte is the rate of transfer from disk to memory when the head is in the right
position.

Access to data in memory is much faster than access to data on disk. It takes a few clock cycles
(perhaps 5 × 10−9 seconds) to access a byte in memory, but much longer to transfer it from disk (about

2 × 10−8 seconds). Consequently, we want to keep as much data as possible in memory,

 11

especially those data that we need to access frequently. We call the technique of keeping frequently
used disk data in main memory caching.

When doing a disk read or write, it takes a while for the disk head to move to the part of the disk where
the data is located. This time is called the seek time and it is about 5ms on average for typical disks.
No data is being transferred during the seek. In order to maximize data transfer rates, chunks of data
that will be read together should therefore be stored contiguously on disk. For example, using the
numbers in Table 4.1 it may take as little as 0.2 seconds to transfer 10 MB from disk to memory if it is
stored as one chunk, but up to 0.2 + 100 × (5 × 10−3) = 0.7 seconds if it is stored in 100 non-
contiguous chunks because we need to move the disk head up to 100 times.

Operating systems generally read and write entire blocks. Thus, reading a single byte from disk can
take as much time as reading the entire block. Block sizes of 8 KB, 16 KB, 32 KB and 64 KB are
common. We call the part of main memory where a block being read or written is stored a buffer.

4.2 Blocked sort-based indexing

Basic steps in constructing a non-positional index: We first make a pass through the collection
assembling all term-docID pairs. We then sort the pairs with the term as the dominant key and docID
as the secondary key. Finally, we organize the docIDs for each term into a postings list and compute
statistics like term and document frequency. For small collections, all this can be done in memory. In
this chapter, we describe methods for large collections that require the use of secondary storage.

To make index construction more efficient, we represent terms as termIDs (instead of strings as we
did in Figure 1.4), where each termID is a unique serial number. We can build the mapping from terms
to termIDs on the fly while we are processing the collection; or, in a two-pass approach, we compile
the vocabulary in the first pass and construct the inverted index in the second pass. The index
construction algorithms described in this chapter all do a single pass through the data.
We will work with the Reuters-RCV1 collection as our model collection in this chapter:

◮ Figure 4.1 Document from the Reuters newswire.

symbol statistic value
N documents 800,000
Lave avg. # tokens per document 200

 12

M terms 400,000
avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term 7.5
tokens 100,000,000

◮ Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for the computations
in this book.

With main memory insufficient, we need to use an external sorting algorithm,
i.e., one that uses disk. For acceptable speed, the central requirement
of such an algorithm is that it minimize the number of random disk seeks
during sorting – sequential disk reads are far faster than seeks as we explained in Section 4.1. One
solution is the blocked sort-based indexing algorithm
 or BSBI in Figure 4.2. BSBI

(i) segments the collection into parts of equal size,
(ii) sorts the termID-docID pairs of each part in memory,
(iii) stores intermediate sorted results on disk and
(iv) merges all intermediate results into the final index.

The algorithm parses documents into termID-docID pairs and accumulates
the pairs in memory until a block of a fixed size is full (PARSENEXTBLOCK
in Figure 4.2). We choose the block size to fit comfortably into memory to
permit a fast in-memory sort. The block is then inverted and written to disk.
Inversion involves two steps.
First we sort the termID-docID pairs.
Next we collect all termID-docID pairs with the same termID into a postings list,
 where a posting is simply a docID.
The result, an inverted index for the block
we have just read, is then written to disk. Applying this to Reuters-RCV1 and
assuming we can fit 10 million termID-docID pairs into memory, we end up
with 10 blocks, each an inverted index of one part of the collection.
In the final step, the algorithm simultaneously merges the 10 blocks into
one large merged index. An example with two blocks is shown in Figure 4.3
where we use di to denote the ith document of the collection. To do the merging,
we open all block files simultaneously, and maintain small read buffers
for the 10 blocks we are reading and a write buffer for the final merged index
we are writing. In each iteration, we select the lowest termID that has
not been processed yet using a priority queue or a similar data structure. All
postings lists for this termID are read, merged and the merged list written
back to disk. Each read buffer is refilled from its file when necessary.

BSBINDEXCONSTRUCTION()
1 n ← 0
2 while (all documents have not been processed)
3 do n ← n +1

4 block ← PARSENEXTBLOCK()
5 BSBI-INVERT(block)
6 WRITEBLOCKTODISK(block, fn)
7 MERGEBLOCKS(f1, . . . , fn; fmerged)

◮ Figure 4.2 Blocked sort-based indexing. The algorithm stores inverted blocks in
files f1, . . . , fn and the merged index in fmerged.

 13

postings lists merged
to be merged posting lists

brutus d1,d3 brutus d6,d7 brutus d1,d3,d6,d7
caesar d1,d2,d4 caesar d8,d9 caesar d1,d2,d4,d8,d9
noble d5 julius d10 julius d10
with d1,d2,d3,d5 killed d8 killed d8
 noble d5
 with d1,d2,d3,d5

 DISK

◮Figure 4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to
be merged”) are loaded from disk into memory, merged in memory (“merged postings
lists”) and written back to disk. We show terms instead of termIDs for better readability.

5 Index compression

Chapter 1 introduced the dictionary and the inverted index as the central
data structures in information retrieval. In this chapter, we employ a number
of compression techniques for dictionary and inverted index that are essential
for efficient IR systems.
One benefit of compression is immediately clear. We will need less disk space. As we will see,
compression ratios of 1:4 are easy to achieve, potentially
cutting the cost of storing the index by 75%.
There are two more subtle benefits of compression. The first is increased
use of caching. Search systems use some parts of the dictionary and the index
much more than others. For example, if we cache the postings list of a frequently
used query term t, then the computations necessary for responding
to the one-term query t can be entirely done in memory. With compression,
we can fit a lot more information into main memory. Instead of having to
expend a disk seek when processing a query with t, we instead access its
postings list in memory and decompress it. As we will see below, there are
simple and efficient decompression methods, so that the penalty (Nachteil) of having
to decompress the postings list is small. As a result, we are able to decrease
the response time of the IR system substantially. Since memory is a more
expensive resource than disk space, increased speed due to caching – rather
than decreased space requirements – is often the prime motivator for compression.
The second more subtle advantage of compression is faster transfer of data
from disk to memory. Efficient decompression algorithms run so fast on
modern hardware that the total time of transferring a compressed chunk of
data from disk and then decompressing it is usually less than transferring
the same chunk of data in uncompressed form. For instance, we can reduce
I/O time by loading a much smaller compressed postings list, even when
you add on the cost of decompression. So in most cases, the retrieval system
will run faster on compressed postings lists than on uncompressed postings lists.
The compression algorithms we discuss in this chapter are highly efficient
and can therefore serve all three purposes of index compression.
In this chapter, we define a posting as a docID in a postings list. For example,
the postings list (6; 20, 45, 100), where 6 is the termID of the list’s term,
contains 3 postings. As discussed in Section 2.4.2 (page 41), postings in most
search systems also contain frequency and position information; but we will
only consider simple docID postings here.

 14

5.1 Statistical properties of terms in information retrieval

(distinct) terms non-positional tokens (= number of position
Postings entries in postings)

number D% T% number D% T% number D% T%
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9

case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9

30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38

150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52

stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52
◮ Table 5.1 The effect of preprocessing on the number of terms, non-positional
postings, and tokens for RCV1. “D%” indicates the reduction in size from the previous
line, except that “30 stop words” and “150 stop words” both use “case folding”
as their reference line. “T%” is the cumulative (“total”) reduction from unfiltered. We
performed stemming with the Porter stemmer.

The compression techniques we describe in the remainder of this chapter
are lossless, that is, all information is preserved.

5.2 Dictionary compression

The main goal of compressing the dictionary is to fit it in main memory, or at least a large portion of it,
in order to support high query throughput (less disk accesses).

term document pointer to
frequency postings list

a 656,265 →
aachen 65 →
zulu 221 →

space needed: 20 bytes 4 bytes 4 bytes
◮ Figure 5.3 Storing the dictionary as an array of fixed-width entries.

For Reuters-RCV1, we need M× (20+ 4 + 4) = 400,000× 28 = 11.2MB for storing the dictionary in this
scheme.
Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about 8 characters , so on average
we are wasting 12 characters in the fixed-width scheme. Also, we have no
way of storing terms with more than 20 characters like hydrochlorofluorocarbons
and supercalifragilisticexpialidocious. We can overcome these shortcomings
by storing the dictionary terms as one long string of characters, as shown in
Figure 5.4.

 15

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o . . .

freq. postings ptr. term ptr.

9
92
5
71
12
. . . … …
4 bytes 4 bytes 3 bytes

◮ Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile (frequency 9), syzygetic (frequency 92) and syzygial (frequency 5).

In this new scheme, we need 400,000 × (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2MB to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (see Figure 5.5). We store the length of the term in the string as an
additional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k − 1) × 3 = 9 bytes for term pointers, but need an
additional k = 4 bytes for term lengths. So the total space requirements for
the dictionary of Reuters-RCV1 are reduced by 5 bytes per 4-term block, or a
total of 400,000× 1/4× 5 = 0.5MB bringing us down to 7.1MB.
By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as cornered
lines and steps in list search as simple lines. We search for terms in the
uncompressed dictionary by binary search (a). In the compressed dictionary,
we first locate the term’s block by binary search and then its position within
the list by linear search through the block (b). Searching the uncompressed
dictionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6
steps, assuming each term is equally likely to come up in a query. For example,
finding the first two terms, aid and box, takes three and two steps,
respectively. With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 +
1 + 2 + 3)/8 = 2 steps on average, ≈ 25% more.

 16

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq. posting ptr. term ptr.
9
92
5
71
12
.
◮ Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths 7, 9, 8 and 6 characters, respectively.
Each term is preceded by a byte encoding its length that indicates how many bytes to
skip to reach subsequent terms.

(a) aid

box
den

ex
job

ox
pit

win

(b) aid box den ex

job
ox pit win

◮ Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary compressed
by blocking with k = 4 (b).

One block in blocked compression (k = 4) . . .
8 a u t o m a t a 8 a u t o m a t e 9 a u t o m a t i c 10 a u t o m a t i o n
⇓
. . . further compressed with front coding.
8 a u t o m a t ∗ a 1 ⋄ e 2 ⋄ i c 3 ⋄ i o n

◮ Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is
encoded by marking the end of the prefix with ∗ and replacing it with ⋄ in subsequent
terms. As before, the first byte of each entry encodes the number of characters.

representation size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1

∼, with blocking & front coding 5.9
◮ Table 5.2 Dictionary compression for Reuters-RCV1.
One

 17

5.3 Postings file compression

5.3.1 Variable byte codes

VBENCODENUMBER(n)
1 bytes ← []
2 while true
3 do PREPEND(bytes, n mod 128)
4 if n < 128
5 then BREAK

6 n ← n div 128
7 bytes[LENGTH(bytes)] += 128
8 return bytes

VBENCODE(numbers)
1 bytestream ← []
2 for each n ∈ numbers

3 do bytes ← VBENCODENUMBER(n)

4 bytestream ← EXTEND(bytestream, bytes)
5 return bytestream

VBDECODE(bytestream)
1 numbers ← []
2 n ← 0

3 for i ← 1 to LENGTH(bytestream)
4 do if bytestream[i] < 128
5 then n ← 128× n + bytestream[i]

6 else n ← 128× n + (bytestream[i] − 128)
7 APPEND(numbers, n)
8 n ← 0
9 return numbers

◮ Figure 5.8 Variable byte encoding and decoding. The functions div and mod
compute integer division and remainder after integer division, respectively. Prepend
adds an element to the beginning of a list, e.g., PREPREND(h1,2i, 3) = h3, 1, 2i. Extend

extends a list, e.g., EXTEND(<1,2>, <3, 4>) = <1, 2, 3, 4>.

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

◮ Table 5.4 Variable byte (VB) encoding. Gaps are encoded using an integral
number of bytes. The first bit, the continuation bit, of each byte indicates whether the
code ends with this byte (1) or not (0).

5.3.2 ɣ codes

Variable byte codes use an adaptive number of bytes depending on the size of
the gap. Bit-level codes adapt the length of the code on the finer grained bit
level. The simplest bit-level code is unary code. The unary code of n is a string

 18

of n 1’s followed by a 0 (see the first two columns of Table 5.5). Obviously,
this is not a very efficient code, but it will come in handy in a moment.
How efficient can a code be in principle? Assuming the 2n gaps G with
1 ≤ G ≤ 2n are all equally likely, the optimal encoding uses n bits for each
G. So some gaps (G = 2n in this case) cannot be encoded with fewer than
log2 G bits. Our goal is to get as close to this lower bound as possible.
A method that is within a factor of optimal is γ encoding. γ codes implement
variable length encoding by splitting the representation of a gap G into
a pair of length and offset. Offset is G in binary, but with the leading 1 removed.
2 For example, for 13 (binary 1101) offset is 101. Length encodes the
length of offset in unary code. For 13, the length of offset is 3 bits, which is 1110
in unary. The γ code of 13 is therefore 1110101, the concatenation of length
1110 and offset 101. The right hand column of Table 5.5 gives additional
examples of γ codes.

number unary code length offset γ code
0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

◮ Table 5.5 Some examples of unary and γ codes. Unary codes are only shown for the smaller numbers.
Commas in γ codes are for readability only and are not part of the actual codes.

 19

6 Scoring, term weighting and the vector space model

So far we have dealt with indexes that support Boolean queries: a document
either matches or does not match a query. In the case of large document
collections, the resulting number of matching documents can far exceed the
number a human user could possibly sift through. Accordingly, it is essential
for a search engine to rank-order the documents matching a query. To do
this, the search engine computes, for each matching document, a score with
respect to the query at hand. In this chapter we initiate the study of assigning
a score to a (query, document) pair.

6.1 Parametric and zone indexes

So far we viewed a document as a sequence of terms. Most documents have additional structure.
Digital documents generally encode, in machine-recognizable form, certain metadata associated with
each document.
By metadata, we mean specific forms of data about a document, such as its author(s), title and date
of publication. This metadata would generally include fields such as the date of creation and the
format of the document, as well the author and possibly the title of the document.
Consider queries of the form
“find documents authored by William Shakespeare in 1601, containing the phrase alas poor Yorick”.
Query processing then consists as usual of postings intersections, except that we may merge postings
from standard inverted as well as parametric indexes (e.g. B-trees).
Zones are similar to fields, except the contents of a zone can be arbitrary free text. Whereas a field
may take on a relatively small set of values, a zone can be thought of as an arbitrary, unbounded
amount of text.
Examples:document titles and abstracts

Figure 6.1 Parametric search. In this example we have a collection with fields allowing
us to select publications by zones such as Author and fields such as Language.

 20

william.abstract 11 121 1441 1729
william.title 2 4 8 16
william.author 2 3 5 8

◮ Figure 6.2 Basic zone index ; zones are encoded as extensions of dictionary entries.

All three indexes are of type: M(term, M(DOCID))

william 2.author,2.title 3.author 4.title 5.author

◮ Figure 6.3 Zone index in which the zone is encoded in the postings rather than
the dictionary

Indextype: M(term, M(DOCID, L(FIELD))) or
M(TERM,M(DOCID,ABSTRACT,TITLE,AUTHOR)), where the last three are of type Bool

6.1.1 Weighted zone scoring

Thus far in Section 6.1 we have focused on retrieving documents based on
Boolean queries on fields and zones. We now turn to a second application of
zones and fields.
Given a Boolean query q and a document d, weighted zone scoring assigns
to the pair (q, d) a score in the interval [0, 1], by computing a linear combination
of zone scores, where each zone of the document contributes a Boolean
value. More specifically, consider a set of documents each of which has ℓ
zones. Let g1, . . . , gℓ ∈ [0, 1] such that
ℓ
∑ g =1. i
i=1
For 1 ≤ i ≤ ℓ, let si be the
Boolean score denoting a match (or absence thereof) between q and the ith
zone. For instance, the Boolean score from a zone could be 1 if all the query
term(s) occur in that zone, and zero otherwise; indeed, it could be any Boolean
function that maps the presence of query terms in a zone to 0, 1. Then,
the weighted zone score is defined to be

ℓ

(6.1) ∑ gisi.
i=1

Weighted zone scoring is sometimes referred to also as ranked Boolean retrieval.

Example 6.1: Consider the query shakespeare in a collection in which each document has three
zones: author, title and body. The Boolean score function for a zone takes on the value 1 if the query
term shakespeare is present in the zone, and zero otherwise. Weighted zone scoring in such a
collection would require three weights g1, g2 and g3, respectively corresponding to the author, title
and body zones. Suppose we set g1 = 0.2, g2 = 0.3 and g3 = 0.5 (so that the three weights add up to
1); this corresponds to an application in which a match in the author zone is least important to the
overall score, the title zone somewhat more, and the body contributes even more.
Thus if the term shakespeare were to appear in the title and body zones but not the author zone of a
document, the score of this document would be 0.8.
How do we implement the computation of weighted zone scores?
A simple approach would be to compute the score for each document in turn, adding in all the
contributions from the various zones. However, we now show how we may compute weighted zone

 21

scores directly from inverted indexes. The algorithm of Figure 6.4 treats the case when the query q is
a two term query consisting of query terms q1 and q2, and the Boolean function is AND: 1 if both query
terms are present in a zone and 0 otherwise.

ZONESCORE(q1, q2)
1 float scores[N] = [0]
2 constant g[ℓ]
3 p1 ← postings(q1)

4 p2 ← postings(q2)
5 // scores[] is an array with a score entry for each document, initialized to zero.
6 // p1 and p2 are initialized to point to the beginning of their respective postings.
7 // Assume g[] is initialized to the respective zone weights.
8 while p1 != NIL and p2 != NIL

9 do if docID(p1) = docID(p2)
10 then scores[docID(p1)] ← WEIGHTEDZONE(p1, p2, g)

11 p1 ← next(p1)

12 p2 ← next(p2)
13 else if docID(p1) < docID(p2)
14 then p1 ← next(p1)

15 else p2 ← next(p2)
16 return scores

◮ Figure 6.4 Algorithm for computing the weighted zone score from two postings lists. Function WEIGHTEDZONE
(not shown here) is assumed to compute the inner loop of Equation 6.1.

6.2 Term frequency and weighting

We assign to each term in a document a weight for that term that depends on the number of
occurrences of the term in the document. We would like to compute a score between a query term t
and a document d, based on the weight of t in d. The simplest approach is to assign the weight to be
equal to the number of occurrences of term t in document d. This weighting scheme is referred to as
term frequency and is denoted tft,d with the subscripts denoting the term and the document in order.
For a document d, the set of weights determined by the tf weights above
(or indeed any weighting function that maps the number of occurrences of t
in d to a positive real value) may be viewed as a quantitative digest (Kurzfassung) of that
BAG OF WORDS document. In this view of a document, known in the literature as the bag
of words model, the exact ordering of the terms in a document is ignored but
the number of occurrences of each term is material (in contrast to Boolean
retrieval). We only retain (aufbewahren) information on the number of occurrences of each
term. Thus, the document “Mary is quicker than John” is, in this view, identical to the document “John
is quicker than Mary”. Nevertheless, it seems intuitive that two documents with similar bag of words
representations are similar in content.

6.2.1 Inverse document frequency

Raw term frequency as above suffers from a critical problem: all terms are considered equally
important when it comes to assessing relevancy on a query. In fact certain terms have little or no
discriminating power in determining relevance. For instance, a collection of documents on the auto
industry is likely to have the term auto in almost every document. To this end, we introduce a
mechanism for attenuating (abmildern) the effect of terms that occur too often in the collection to be
meaningful for relevance determination. An immediate idea is to scale down the term weights of terms
with high collection frequency, defined to be the total number of occurrences of a term in the
collection. The idea would be to reduce the tf weight of a term by a factor that grows with its collection
frequency.

 22

Instead, it is more commonplace to use for this purpose the document frequency dft, defined to be
the number of documents in the collection that contain a term t. This is because in trying to
discriminate between documents for the purpose of scoring it is better to use a document-level statistic
(such as the number of documents containing a term) than to use a collection-wide statistic for the
term. The reason to prefer df to cf is illustrated in Figure 6.7,

Word cf df
try 10422 8760
insurance 10440 3997

◮ Figure 6.7 Collection frequency (cf) and document frequency (df) behave differently,
as in this example from the Reuters collection.

where a simple example shows that collection frequency (cf) and document frequency (df) can behave
rather differently. In particular, the cf values for both try and insurance are roughly equal, but their df
values differ significantly.
Intuitively, we want the few documents that contain insurance to get
a higher boost for a query on insurance than the many documents containing try get from a query on try.
How is the document frequency df of a term used to scale its weight? Denoting
as usual the total number of documents in a collection by N,we define
the inverse document frequency (idf) of a term t as follows:
(6.7) idft = log N

 dft
Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be low. Figure 6.8
gives an example of idf’s in the Reuters collection of 806,791 documents; in this example logarithms
are to the base 10. In fact, as we will see in Exercise 6.12, the precise base of the logarithm is not
material to ranking. We will give on page 227 a justification of the particular form in
Equation (6.7).

term dft Idft
car 18,165 1.65
auto 6723 2.08
insurance 19,241 1.62
best 25,235 1.5

◮ Figure 6.8 Example of idf values. Here we give the idf’s of terms with various frequencies in the Reuters
collection of 806,791 documents.

6.3 The vector space model for scoring

We denote by ~V (d) the vector derived from document d, with one component in the vector for each
dictionary term. Unless otherwise specified, the reader may assume that the components are
computed using the tf-idf weighting scheme, although the particular weighting scheme is immaterial to
the discussion that follows. The set of documents in a collection then may be viewed as a set of
vectors in a vector space, in which there is one axis for each term. This representation loses the
relative ordering of the terms in each document; recall our example from Section 6.2 (page 117),
where we pointed out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation. How do we quantify the similarity between two
documents in this vector space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two documents with very
similar content can have a significant vector difference simply because one is much longer than the
other. Thus the relative distributions of terms may be identical in the two documents, but the absolute
term frequencies of one may be far larger.
To compensate for the effect of document length, the standard way of quantifying the similarity
between two documents d1 and d2 is to compute the cosine similarity of their vector representations
~V (d1) and ~V (d2)

 23

 24

(6.10) sim(d1, d2) = ~V(d1) · ~V (d2)

|~V (d1)||~V (d2)|

where the numerator represents the dot product (also known as the inner product) of the vectors
~V(d1) and ~V (d2), while the denominator is the product of their Euclidean lengths. The dot product
~x · ~y of two vectors is defined as

M
 ∑ xi y i

i=1

The effect of the denominator of Equation (6.10) is thus to length-normalize the vectors ~V(d1) and
~V(d2) to unit vectors ~v(d1) = ~V (d1)/|~V(d1)| and

Doc1 Doc2 Doc3
car 0.88 0.09 0.58
auto 0.10 0.71 0
insurance 0 0.71 0.70
best 0.46 0 0.41

◮ Figure 6.11 Euclidean normalized tf values for documents in Figure 6.9.

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

◮ Figure 6.12 Term frequencies in three novels. The novels are Austen’s Sense and Sensibility, Pride and
Prejudice and Bronte’sWuthering Heights.

~v(d2) = ~V (d2)/|~V (d2)|. We can then rewrite (6.10) as

sim(d1, (6.11) d2) = ~v(d1) ·~v(d2).

To summarize, by viewing a query as a “bag of words”, we are able to treat it as a very short
document. As a consequence, we can use the cosine similarity between the query vector and a
document vector as a measure of the score of the document for that query. The resulting scores can
then be used to select the top-scoring documents for a query. Thus we have

 ~V(q) · ~V (d)

 (6.12) score(q, d) = |~V (q)||~V(d)|

