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Introduction

In the end of the fifties as N. Chomsky has introduced the well-known classes of reg-
ular, context-free and context-sensitive languages the aim was to model the syntax of
natural languages. Based on the Backus-Naur form for the description of the syntax
of programming languages, in the beginning of the sixties S. Ginsburg and H.G. Rice
noticed that the grammars introduced by Chomsky can be used for programming lan-
guages, too. Since that time until at least the middle of the seventies most investigations
to formal languages followed this approach. The central feature of such grammars is a
sequential process of rewriting of subwords.

On the other hand one has to mention that already since the fifties there exist some
devices nearly related to formal languages which were motivated and/or applied to biolog-
ical phenomena. The well-known Kleene Theorem on the description of regular languages
by means of algebraic operations was discovered by S.C. Kleene as he represented the
events in nerve nets. Furthermore, it was known that cellular automata are able to a
self-replicating behaviour known from biological organisms or colonies of organisms. But
in both cases, in order to model the biological processes finite automata or collections of
finite automata have been used.

Since the seventies the situation changed completely. Motivated by biological processes
new types of grammars have been introduced and their investigation dominated in a
certain sense the development of the theory of formal languages.

In 1968 the first approach was initiated by A. Lindenmayer (see [16]. Cell divisions,
changes of states of the cells, death of cells etc. were modelled by production as one uses
in Chomsky grammars. However, the rewriting process by application of rules is a parallel
one because cell divisions, changes of cell states etc. proceed in parallel. The large interest
in these Lindenmayer systems originated from the biological motivation as well as by the
interest in a comparison between sequential and parallel processes in computer science.
The monograph [13] presents a summary of the state of the theory of developmental sys-
tems and languages in 1975 and considers intensively motivation from and application to
bilogy, whereas the monograph [27] emphasizes the mathematical theory of such systems.
Further summaries and material can be found in [26], [17], [28], [29], [15]. In [25] the
authors use Lindenmayer systems to generate graphical representations of plants.

Although DNA sequences are twisted strands (in a 3-dimensional space) it is very nat-
ural to model them by (linear) strings/words. Mutations of DNA sequences, genes, chro-
mosomes etc. caused by deletions, insertions, splicings, inversions etc. can be described
by operations on words. Iterated applications of these operations model the evolution
of molecules. Thus we have sequential process, again, however, the basic step is not a
rewriting. After the first investigations in this direction by T. Head (see [11]) in the last
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decade a lot of papers appeared studying the behaviour of formal languages under these
operations. Moreover, one has to mention that these considerations are nearly related to
some aspects of molecular computing (see [1], [18]). The book [23] is the first monograph
on this topic, summaries are contained in [2], [12], [24], [7].

An approach – called membrane systems – to describe the behaviour of a single cell was
startet by Gh. Păun in the paper [21]. A cell is considered as an object with membranes
which define substructures of the cell, e.g. the kernel of the cell. Changes of the objects
in the different regions of the cell are described by rules associated with the regions.
However, the rules are not applied to words as in the two types of grammars mentioned
above, the rules are applied to multisets since the objects in a region form a multiset.
The books [22] and [2] summarize parts of the theory developed for these grammatical
systems.

We mention that these three new types of grammars/languages are natural by their
motivation from biology as well as by the fact that they allow nice characterizations of
well-known classes of formal languages.

In this lecture we shall emphasize Lindenmayer systems, languages and systems using
operations as splicing and membrane systems. We shall omit grammars with valuations
(see [5]), eco-grammar systems (see [4]) and other language generating devices modelling
aspects of biology.

Throughout this lecture we assume that the students/reader is familiar with the ba-
sic concepts of the theory of formal languages as usually presented in basic courses on
Theoretical Computer Science and with some facts of mathematics (especially linear al-
gebra, theory of difference equations, combinatorial formulae, etc). The notation, some
definitions and results are summarized in the first chapter.

Jürgen Dassow April - July 2008
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Chapter 1

Basics of Mathematics and Formal
Languages

In this chapter we recall some basic knowledge of mathematics and the theory of formal
languages which will be used in the following chapters. We emphasize those concepts
and facts which we refer to, however, we add some definitions etc. which are useful to
understand the following chapters.

1.1 Sets, Words, Multisets

If a set A is contained in a set B, then we write A ⊆ B. If the inclusion is proper, we
write A ⊂ B.

By N we denote the set of all positive integers, i.e., N = {1, 2, . . .}. N0 denotes the
set of all non-negative integers, i.e., N0 = N ∪ {0} = {0, 1, 2, . . .}.

A permutation p of the set M = {1, 2, . . . n} is a one-to-one mapping of M onto itself.
Obviously, p can be given as (p(1), p(2), . . . , p(n)). Two elements p(i) and p(j) of p form
an inversion if p(i) > p(j) and i < j. By I(p) we denote the number of inversions of p.

An alphabet is a non-empty finite set. Its elements are called letters. A word (over
an alphabet V ) is a sequence of letters (of V ). By λ we denote the empty word which
contains no letter. By V ∗ (and V +, respectively) we designate the set of all (non-empty)
words over V . The product (concatenation) of words is defined as the juxtaposition of the
words. We say that v is a subword of w iff w = x1vx2 for some x1, x2 ∈ V ∗. The word v
is called a prefix of w iff w = vx for some x ∈ V ∗, and v is called a suffix of w iff w = xv
for some x ∈ V ∗.

By #a(w) we denote the number of occurrences of a letter a in a word w. The length
|w| of a word w over V is defined as |w| = ∑

a∈V #a(w).
Let V = {a1, a2, . . . , an} where a1, a2, . . . an is a fixed order of the elements of V . Then

ΨV (w) = (#a1(w), #a2(w), . . . , #an(w))

is the Parikh vector of the word w ∈ V ∗.
A language over V is a subset of V ∗.
Convention: Two languages L1 and L2 are called equal (written as L1 = L2) if and

only if L1 and L2 differ at most in the empty word, i.e., L1 \ {λ} = L2 \ {λ}.
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For two languages L and K we define their concatenation as

L ·K = {wv | w ∈ L, v ∈ K} .

and the Kleene closure L∗ (of L) by

L0 = {λ} ,

Li+1 = Li · L for i ≥ 0 ,

L∗ =
⋃

i≥0

Li .

A homomorphism h : X∗ → Y ∗ is a mapping where

h(wv) = h(w)h(v) for any two words w, v ∈ X∗ . (1.1)

Obviously, a homomorphism can be given by the images h(a) of the letters a ∈ X;
an extension to words follow from the homomorphism property (1.1). We extend the
homomorphism to languages by

h(L) = {h(w) | w ∈ L} .

If h is a homomorphism, then the inverse homomorphism h−1 applied to a language
K ⊆ Y ∗ is defined by

h−1(K) = {w | w ∈ X∗, h(w) ∈ K} .

For a word w = a1a2 . . . an with n ≥ 0 and ai ∈ V for 1 ≤ i ≤ n, we set wR =
anan−1 . . . a1. It is obvious that λR = λ and (w1w2)

R = wR
2 wR

1 for any two words w1

and w2. For a language L, we set LR = {wR | w ∈ L}.
A multiset M over V is a mapping of V ∗ into the set N of non-negative integers. M(x)

is called the multiplicity of x. The cardinality and the length of a multiset M are defined
as

#(M) =
∑

x∈V ∗
M(x) and l(M) =

∑

x∈V ∗
M(x)|x| .

A multiset M is called finite iff there is a finite subset U of V ∗ such that M(x) = 0 for
x /∈ U . Then its cardinality is the sum of the multiplicities of the elements of U . A finite
multiset M can be represented as a “set” where M contains M(x) occurrences of x. Thus
a finite multiset M in this representation consists of #(M) elements. For example, the
multiset M over V = {a, b} with M(a) = M(b) = M(aba) = 1, M(ab) = M(ba) = 2
and M(x) = 0 in all other cases can be represented as M = [a, b, ab, ab, ba, ba, aba]1.
Obviously, as for sets, the order of the elements in the multiset M is not fixed and can
be changed without changing the multiset. For a multiset M = [w1, w2, . . . , wn] (in such
a representation) we have l(M) = |w1w2 . . . wn|. Moreover, for a multiset M over V and
a ∈ V , we set #a(M) = #a(w1w2 . . . wn).

1We use the brackets [ and ] instead of { and } in order to distinguish multisets from sets.
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1.2 Linear Algebra

A (m,n)-matrix is a scheme of m · n (real) numbers ai,j, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The
scheme consists of m rows where the i-th row consists of the elements ai,1, ai,2, . . . , ai,n,
1 ≤ i ≤ m. Equivalently, it is given by n columns where the j-th column is built by the
numbers a1,j, a2,j, . . . , am,j, 1 ≤ j ≤ n. Thus we get

M =




a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

. . . . . . .
am,1 am,2 am,3 . . . am,n




We write M = (ai,j)m,n and omit the index m, n if the size of the matrix is known from
the context.

Obviously, row vectors are (1, n)-matrices and column vectors are (m, 1)-matrices. A
matrix is called a square matrix, if it is an (n, n)-matrix for some n. Let En,n be the
square (n, n)-matrix with ai,i = 1 for 1 ≤ i ≤ n and aj,k = 0 for j 6= k (again, we omit
the index if the size is understood by the context); En,n is called the unity matrix. By O
we denote the zero matrix where all entries are the real number 0.

Let M1 = (ai,j)m,n and M2 = (bk,l)r,s be two matrices, and let d be a (real) number.
Then the product d ·M1 is defined by

d ·M1 = (d · ai,j)m,n .

The sum M1 + M2 is defined iff m = r and n = s by setting

M1 + M2 = (ai,j + bi,j)m,n .

The product M1 ·M2 is defined iff n = r by setting

M1 ·M2 = (
n∑

j=1

ai,jbj,l)m,s .

The transposed matrix (M1)
T is formed by interchanging the rows and columns, i.e.,

(M1)
T = (aj,i)n,m .

The determinant of an (n, n)-matrix M is defined by

det(M) =
∑

p=(i1,i2,...,in)

(−1)I(p)a1,i1a2,i2 . . . an,in

where the sum is taken over all permutations of 1, 2, . . . , n. By definition, det maps
matrices to reals.

The characteristic polynomial χA(x) of a (square) (n, n)-matrix A is defined as

χA(x) = det(A− xE) = anxn + an−1x
n−1 + an−2x

n−2 + . . . + a2x
2 + a1x + a0 .

We note that an = (−1)n and a0 = det(A).
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A complex number µ is called an eigenvalue of the square matrix A iff det(A−µE) = 0,
i.e., iff µ is a root of χA. 2

The following theorem is named after the English mathematicians Cayley and Hamil-
ton.

Theorem 1.1 For any square matrix A, χA(A) = O. 2

If we give a complete writing of the characteristic polynomial χA(A), then this means

χA(A) = anA
n + an−1A

n−1 + an−2A
n−2 + . . . + a2A

2 + a1A + a0E = O .

Theorem 1.2 Let anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0 be a polynomial of
degree n with the roots αi of multiplicity ti, 1 ≤ i ≤ s, and

∑s
i=1 ti = n. Then the linear

difference equation

anf(m + n) + an−1f(m + n− 1) + . . . + a2f(m + 2) + a1f(m + 1)x + a0f(m) = 0

for m ≥ 0 has the solution

f(m) =
s∑

i=1

(βi,0 + βi,1m + βi,2m
2 + . . . βi,ti−1m

ti−1)αm
i

with certain constants βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1. 2

1.3 Formal Languages

A phrase structure grammar (or short grammar) is a quadruple G = (N, T, P, S), where
– N is an alphabet,
– T is an alphabet,
– VG = N ∪ T , N ∩ T = ∅,
– P is a finite subset of (V ∗

G \ T ∗)× V ∗
G),

– S is an element of N .
The elements of N and T are called nonterminals and terminals, respectively. The ele-
ments of P are called rules and written as α → β instead of (α, β). S is called the axiom
or start word.

A direct derivation x =⇒G y is defined by the following conditions:
– x = x1αx2, y = x1βx2,
– α → β ∈ P .
By =⇒∗

G we denote the reflexive and transitive closure of =⇒G. The language L(G)
generated by G is defined by

L(G) = {z | z ∈ T ∗ and S =⇒∗
G z} .

A grammar G is called monotone if and only if every rule of P has the form α → β
with |α| ≤ |β|.

2Here we have to consider complex numbers since the roots of polynomials are complex numbers in
general.
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A grammar G is called context-sensitive if and only if every rule of P has the form
uAv → uwv with A ∈ N , w ∈ V +, u, v ∈ V ∗

A grammar G is called context-free if and only if every rule of P has the form A → w
with A ∈ N and w ∈ V ∗,

A grammar G is called regular if and only if every rule of P has the form A → wB or
A → w with A,B ∈ N and w ∈ T ∗,

By REG, CF , CS, MON and RE we denote the families of regular, context-free,
context-sensitive, monotone and arbitrary (phrase structure) grammars.

A language L is called a regular, context-free, context-sensitive and monotone language
if and only if L = L(G) for some regular, context-free, context-sensitive and monotone
grammar G, respectively. A language L is recursively enumerable iff L = L(G) for some
(phrase structure) grammar G. 3

For a family X of grammars, by L(X) we denote the family of languages generated
by grammars of X. L(FIN) designates the family of finite languages.

Theorem 1.3 L(FIN) ⊂ L(REG) ⊂ L(CF ) ⊂ L(CS) = L(MON) ⊂ L(RE) 2

We say that a family L of languages is closed under the n-ary operation τ if, for any
languages L1, L2, . . . , Ln of L, τ(L1, L2, . . . Ln) ∈ L.

The following theorem presents the closure properties of the families of the Chomsky
hierarchy with respect to some important operations.

Theorem 1.4 The table of Figure 1.1 holds. A + or - at the intersection of the row with
operation τ and the column with X means that L(X) is closed or not closed under τ ,
respectively.

L(FIN) L(REG) L(CF ) L(CS) L(RE)
union + + + + +
intersection + + - + +
concatenation + + + + +
Kleene-closure + + + + +
homomorphisms + + + - +
inverse homomorphisms - + + + +
intersect with reg. sets + + + + +

Figure 1.1: Closure properties of the families of the Chomsky hierarchy

We give some theorems which give characterizations of recursively enumerable lan-
guages.

Theorem 1.5 For any recursively enumerable language L, there is a phrase structure
grammar G = (N, T, P, S) with L = L(G) and all rules of P have one of the following
four forms

A → B or A → a or A → λ or AB → CD with A,B, C,D ∈ N and a ∈ T .

3The notion ”recursively enumerable” comes from the theory of computation and the theory of recur-
sive function where the same set of languages occur.
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For a proof we refer to [6].

Lemma 1.6 For any recursively enumerable language L, there are context-free languages
L1 and L2 such that L = {u | uv ∈ L1 for some v ∈ L2}.

For a proof we refer to [23], Theorem 3.13.

Lemma 1.7 For any recursively enumarable language L ⊂ V ∗, there is a context-sensitive
language L′ and letters c1 and c2 not contained in V such that L′ ⊆ L{c1}{c2}∗ and, for
any w ∈ L, there is a number i ≥ 1 such that wc1c

i
2 ∈ L′.

Proof. Let L be a recursively enumerable language, and let G = (N, T, P, S) be a phrase
structure grammar generating L. We construct the monotone grammar

G′ = (N ∪ {C, S ′}, T ∪ {c1, c2}, P ′, S ′)

where P ′ consists of all rules of the following forms:

• S ′ → Sc1

(this rule introduces the start symbol of G and the additional symbol c1),

• α → β where α → β ∈ P and |α| ≤ |β|,
α → βCp where α → β ∈ P and |α| − |β| = p > 0
(these monotone rules simulate the rules of P ),

• Ca → aC for a ∈ N ∪ T ∪ {c1}
(by these rules, C can be shifted to the right),

• C → c2

(terminating rules for C).

By the explanations added to the rules it is obvious that v ∈ L(G′) if and only if v =
cr1
2 w1c

r2
2 w2 . . . crk

2 wkc
s
2 where ri ≥ 0 for 1 ≤ i ≤ k, s ≥ 0 and w1w2 . . . wn = wc1 for some

w ∈ L. Since L(G) ∈ L(CS) (by Theorem 1.3) and L(CS) is closed under intersections
(with regular sets), L′ = L(G′) ∩ T ∗{c1}{c2}∗ is a context-sensitive language, too. It is
easy to see that L′ has the properties required in the statement. 2

For the definition of an (accepting) Turing machine and a proof of the following the-
orem we refer to [6].

Theorem 1.8 A language L is recursively enumerable if and only if L = T (M) for some
(deterministic) Turing machine.

Let G = (N, T, P, S) be a phrase structure grammar. For a derivation

D : S =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = w

of w ∈ T ∗ in G, we define the workspace of w by D by

WsG(w, d) = max{|wi| | 1 ≤ i ≤ r}
and the workspace of w by

WsG(w) = min{WsG(w,D) | D is a derivation of w in G} .
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Theorem 1.9 If G = (N, T, P, S) is a phrase structure grammar and k is a positive
integer such that WsG(w) ≤ k|w| holds for any w ∈ L(G), then L(G) is a context-
sensitive language. 2

For a proof we refer to [31].
We now present some properties of regular and context-free languages. For proofs we

refer to [6].

Theorem 1.10 For any regular language L there is a regular grammar G = (N, T, P, S)
where all rules of P have the form A → aB or A → a with A,B ∈ N and a ∈ T such
that L = L(G).

Theorem 1.11 For any context-free language L there is a context-free grammar G =
(N, T, P, S) where all rules of P have the form A → BC or A → a with A,B,C ∈ N and
a ∈ T such that L = L(G).

Theorem 1.12 Let L be a regular language. Then there is a constant k (which depends
on L) such that, for any word w with |w| > k, there is a decomposition w = xyz such that
– |x| < k,
– |y| > 0,
– xyiz ∈ L for any integer i ≥ 0.

Theorem 1.13 Let L be a context-free language. Then there is a constant k (which
depends on L) such that, for any word w with |w| > k, there is a decomposition w = vwxyz
such that
– |wxy| < k,
– |wy| > 0,
– vwixyiz ∈ L for any integer i ≥ 0.

A finite nondeterministic automaton A is specified as a quintuple A = (X,Z, z0, F, δ)
where
– X is a finite non-empty set (the set of input symbols),
– Z is a finite non-empty set (the set of states),
– z0 ∈ Z and ∅ ⊂ F ⊆ Z,
– δ is a mapping from Z ×X into 2Z .

We extend δ to a mapping from Z ×X∗ into 2Z by the following settings:
– δ(z, λ) = {z},
– δ(z, wa) =

⋃
z∈δ(z,w) δ(z, a).

The language T (A) of words over X accepted by A is defined by

T (A) = {w | δ(z0, w) ∩ F 6= ∅} .

A finite deterministic automaton is a finite nondeterministic automaton where any set
δ(z, a), z ∈ Z, a ∈ X, contains at most one state.

Theorem 1.14 The following statements are equivalent:
– L is generated by a regular grammar.
– L is accepted by a finite nondeterministic automaton.
– L is accepted by a finite deterministic automaton.

For a proof we refer to [6].
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Chapter 2

Lindenmayer Systems

2.1 The Basic Model – 0L Systems

2.1.1 Two Biological Examples

We start with two biological examples describing the development of an alga and a moss.
In Figure 2.1 the first 10 stages of the development of a red alga is shown.
Any small part represents a cell; thus stage a) is formed by one cell; stage b) consists

of two cells and stage c) of four cells. Starting with stage d) we see a branching structure
of the alga. Thus the first problem consists in the description of the branching structure.
We choose a word over the alphabet consisting of the letters c, ( and ). c represents a cell
and ( and ) are used to describe the branching. If we have a word cr(cs)ct, then the central
part of the alga is given by crct and the subword cs describes a branch. By this method
we do not distinguish between branches to the left or to the right etc. Furthermore, we
can iterate the process, i.e., if we have a word cn(cr(cs)ct)cm, then crct is a branch of cncm

and cs is a branch of the branch crct.
Then we can describe the stages given in Figure 2.1 as follows:

a) c
b) cc
c) cccc
d) cc(c)cccc
e) cc(cc)cc(c)cccc
f) cc(ccc)cc(cc)cc(c)cccc
g) cc(cccc)cc(ccc)cc(cc)cc(c)cccc
h) cc(ccccc)cc(cccc)cc(ccc)cc(cc)cc(c)cccc
i) cc(cccccc)cc(ccccc)cc(cccc)cc(cccc)cc(cc)cc(c)cccc
j) cc(ccccccc)cc(cccccc)cc(ccccc)cc(cc(c)cccc)cc(cccc)cc(cc)cc(c)cccc

The development from stage a) to stage b) can be considered as a division of the cell
c resulting in cc. If we apply this division to both cells of stage b), again, then we get the
four cells of stage c). But now we cannot continue in this way by two reasons: Stage d)
does not consist of eight cells (which would be obtained from the division of four cells) and
we cannot model the branching which occurs in stage d). In order to solve this problem
one can introduce more rules for the cell or one makes a further differentiation of the cell

13



a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

Figure 2.1: First stages of the development of a red alga
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by introducing some states of the cell and different rules for different states.
We use the second approach and distinguish 10 states of cell c which we denote by the

digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

of the decimal system. Moreover, we consider the rules

0 → 10 1 → 32 2 → 3(4) 3 → 3 4 → 56
5 → 37 6 → 58 7 → 3(9) 8 → 50 9 → 39

for the states where the left hand side gives the state a of the cell and the right hand
side gives the part which is obtained from a in one step of the development. The rules
for 0 and 1 can be interpreted as divisions of one cell into two cells; the rules for 2 and 7
can be considered as the starting of a branch. The rule 3 → 3 can be omitted because it
says that c in state 3 is not changed in the sequel. However, if we want to describe the
development, then we have to tell what happens with each cell at every moment. Thus
we add 3 → 3 in order to know what happens to cells in state 3.

Then we obtain the following description of the first stages of the development of the
red alga and one sees that this corresponds to the stages given in Figure 2.1:

a) 4
b) 56
c) 3758
d) 33(9)3750
e) 33(39)33(9)3710
f) 33(339)33(39)33(9)3210
g) 33(3339)33(339)33(39)33(4)3210
h) 33(33339)33(3339)33(339)33(56)33(4)3210
i) 33(333339)33(33339)33(3339)33(3758)33(56)33(4)3210
j) 33(3333339)33(333339)33(33339)33(33(9)3750)33(3758)33(56)33(4)3210

We now consider the moss Phascum cuspidatum. A typical leaf of Phascum cuspida-
tum is shown in Figure 2.2. It consists of three types of cells: cells of type I are at the
top of the leaf, cells of type II are along the margin of the leaf, and cells of type III form
the inner part of the leaf.

The development of Phascum cuspidatum was already considered in 1845 by the Swiss
biologist Carl Wilhelm von Nägeli (1817–1891). He noticed that essentially we have
the developmental rules

I → I + II, II → II + II and II → II + III

and the rule III → III which says that cells of type III are not changed in the devel-
opmental process. However, as in the first example, in order to be precise one has to
distinguish different states of the cells, because e.g.
– cells of type II do not changed according to one of the rules above in every step,
– cells of type I are changed in every step, however, they produce the cells of type II
alternately to the right and to the left.

We describe a leaf as a square where the upper left corner corresponds to the top of
the leaf. We use cells of type Ii and IIr

i where the lower index i is a number and reflects
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Figure 2.2: Leaf of the moss Phascum cuspidatum

the ”age” of the cell and the upper index r ∈ {o, l} gives the margin where the cell is (l
stands for the left margin and o for the upper margin).
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Figure 2.3: Rules for the development of the moss Phascum cuspidatum

Figure 2.3 gives the more detailed rules and in Figure 2.4 the first stages of the
development according to these rules starting with a single cell of type I are shown. It is
easy to see that the last stage corresponds to the leaf given in Figure 2.2.

2.1.2 Definitions and Examples

Looking on the examples presented in the preceding subsection we see that a formalization
of them has to take into consideration the following aspects:

• in one step all cells or at least some of them are changed according to the rules
in parallel, i.e., the rewriting is not a sequential process as in the case of phrase
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Figure 2.4: First stages of the development of the moss Phascum cuspidatum

structure grammars,

• in order to describe an organism we have to take into consideration all cells, in-
dependent of the fact whether there exist rules for the cells or the cells do not
change in the further development, i.e., we do not distinguish between terminals
and nonterminals as in phrase structure grammars.

We now introduce Lindenmayer systems as a new type of rewriting systems. We restrict
to the case of words for simplicity. For approaches to multidimensional systems we refer
to Section VI.5 of [27], [3] and parallel graph grammars (e.g., [14]). Moreover, we mention
that by the method used in the description of the development of some red alga we are
able to cover some multidimensional cases as branching structures by means of (linear)
words.

Definition 2.1 A Lindenmayer system without interaction (0L system, for short) is a
triple G = (V, P, ω) where

• V is an alphabet,
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• P is a finite complete set of productions over V , i.e., P is a finite subset of V +×V ∗

and, for any a ∈ V , there is a word wa such that (a, wa) ∈ P ,

• ω ∈ V +.

The elements of the alphabet represent the cells.
Any production of P is a description of a developmental rule. As usual, instead of

(a, w) in P we write a → w. Note that by the completeness condition we require that, for
any letter or any cell, there is a developmental rule. Thus we have taken the rules 3 → 3
and III → III to describe the development of the red alga and Phascum cuspidatum
in the preceding subsection which reflect that the cells are not changed in the further
development. However, the set of rules for the red alga is not complete since we have no
rules for the letters ( and ) which are used to model branches. In order to get a complete
set one has to add (→ ( and ) →) which are clear from the biological motivation since
the places of branchings do not move during the development.

The word ω represents the organism which we have in the first stage of the develop-
ment. We call it the start word of the system. Obviously, it is not necessary that we start
with a cell which requires that the start element has to be a (non-empty) word.

We now define the derivation process in a 0L system.

Definition 2.2 Let G = (V, P, ω) be a 0L system. For two words x ∈ V + and y ∈ V ∗,
we say that x directly derives y in G (written as x =⇒G y, or x =⇒ y if G is clear from
the context) if and only if the following conditions are satisfied:

• x = x1x2 . . . xn where xi ∈ V for 1 ≤ i ≤ n,

• y = y1y2 . . . yn,

• xi → yi ∈ P for 1 ≤ i ≤ n.

Moreover, we sometimes use λ =⇒G λ.

By this definition, in every derivation step we replace any letter of x according to rules
of P . Thus we have a completely parallel derivation process.

The replacement of a letter xi of x does not depend on the neighbouring letters xi−1

and xi+1; we only have to use a rule of P . Thus there is no interaction between the letters
of the word during a derivation. Hence one can say that we have a parallel context-free
derivation process. The 0 (zero) in Definition 2.1 stands for no (or 0) interaction.

By =⇒∗ we denotes the reflexive and transitive closure of =⇒. Then x =⇒∗ y
holds if and only if x = y (reflexivity) or there are a natural number r ≥ 1 and words
z0, z1, z2, . . . , zr such that

x = z0 =⇒ z1 =⇒ z2 =⇒ . . . =⇒ zr−1 =⇒ zr = y

(transitivity).

Definition 2.3 Let G = (V, P, ω) be a 0L system. The language L(G) generated by G is
defined as

L(G) = {z | ω =⇒∗ z} .
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By this definition, the language generated by a 0L system consists of all words which
can be generated from the start element ω.

We set

L0(G) = {ω},
Ln(G) = {z | v =⇒ z for some v ∈ Ln−1(G)} for n ≥ 1.

By induction (on n) it is easy to prove that Ln(G) consists of all words y such that there
is a derivation

ω = z0 =⇒ z1 =⇒ z2 =⇒ . . . =⇒ zn−1 =⇒ zn = y .

Thus we get
L(G) =

⋃

n≥0

Ln(G) .

Before we give some examples we want to mention the differences between 0L systems
and the phrase structure grammars.

• We have only one alphabet and no distinction between terminals and nonterminals.

• The language of a 0L system consists of all words generated by the systems, whereas
the language generated by a phrase structure grammar only contains words over the
terminal alphabet, which is a (proper) subset of all words generated by the grammar.

• In a derivation step of a 0L systems all letters of the current word are replaced,
whereas in a derivation step of a phrase structure grammar subwords of a bounded
length and in the case of a context-free grammar one letter is only replaced. This
means that 0L systems are characterized by a purely parallel derivation process
whereas context-free grammars are characterized by a purely sequential process.

• The derivation in a 0L system starts with a non-empty word over the underlying
alphabet. In phrase structure grammars the derivation starts with a distinguished
nonterminal.

Example 2.4 We consider the 0L system

G1 = ({a}, {a → a2}, a) .

By induction, we prove that Ln(G1) = {a2n} for n ≥ 0. By definition, L0(G1) = {a}
since a is the start word. Thus the basis of the induction is shown. Let Ln(G1) = {a2n}.
Because Ln+1(G1) = {z | a2n

=⇒ z} and a2n
=⇒ (a2)2n

= a2n+1
is the only derivation

from a2n
, we get Ln+1(G1) = {a2n+1}. Therefore the induction step has been proved, too.

Hence we obtain
L(G1) =

⋃

n≥0

{a2n} = {a2n | n ≥ 0} .

Example 2.5 Let
G2 = ({a, b}, {a → λ, b → ab}, aab) .

Then we only have the derivation

aab =⇒ λλab = ab =⇒ λab = ab =⇒ ab =⇒ ab =⇒ . . . ,
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which results in
L(G2) = {aab, ab} .

Example 2.6 We consider the 0L system

G3 = ({a}, {a → a, a → a2}, a) .

We show that
L(G3) = {an | n ≥ 1} .

This can be seen as follows. First, by induction, we prove an ∈ Ln−1(G3). By definition,
we have L0(G) = {a}. Further, applying a → a to the first n − 1 occurrences of a in an

and a → a2 to the last letter of an, we get an = an−1a =⇒ an−1a2 = an+1. Therefore
an ∈ Ln−1(G3) implies an+1 ∈ Ln(G3), and the induction step is performed. Thus we have

{an | n ≥ 1} ⊆ ⋃

n≥0

Ln(G3) = L(G3) .

On the other hand, obviously from a word an we can only generate non-empty words
over {a} by application of a → a and a → a2. Hence

L(G3) ⊆ {an | n ≥ 1} .

Example 2.7 Let

G4 = ({a, b, c, d, e}, {a → a, b → ba, c → cbb, d → da, e → cbbd}, e) .

By definition, L0(G4) = {e}.
We now prove that, for n ≥ 1,

Ln(G4) = {cbb(ba)2(ba2)2 . . . (ban−1)2dan−1} .

Because there is only one production for e, we only have the derivation e =⇒ cbbd.
Therefore L1(G4) = {cbbd} which proves the basis. Furthermore,

cbb(ba)2(ba2)2 . . . (ban−1)2dan−1 =⇒ cbbbaba(baa)2(baa2)2 . . . (baan−1)2daan−1

= cbb(ba)2(ba2)2 . . . (ban)2dan

is the only one step derivation with left hand side cbb(ba)2(ba2)2 . . . (ban−1)2dan−1. Thus
the induction step is shown, too.

Hence we get

L(G4) = {e} ∪ {cbbbababa2ba2 . . . banbandan | n ≥ 0} .

Example 2.8 We consider the 0L system

G5 = ({a, b, c}, {a → a2, b → ab, c → bc, c → c}, abc) .

We now prove that

L(G5) = {a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bbc | n > n1 > n2 > . . . nr ≥ 1, r > 0, n ≥ 2}
∪{a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bc | n > n1 > n2 > . . . nr ≥ 1, r ≥ 0, n ≥ 1} .
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Let

wn,n1,n2,...,nr = a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bbc, n ≥ 2,

w′
n,n1,n2,...,nr

= a2n−1ba2n1−1ba2n2−1b . . . a2nr−1bc, n ≥ 1.

Applying c → bc or c → c, we only get the derivations

wn,n1,n2,...,nr =⇒ wn+1,n1+1,n2+1,...,nr+1,1 and wn,n1,n2,...,nr =⇒ w′
n+1,n1+1,n2+1,...,nr+1,1 ,

w′
n,n1,n2,...,nr

=⇒ wn+1,n1+1,n2+1,...,nr+1 and w′
n,n1,n2,...,nr

=⇒ w′
n+1,n1+1,n2+1,...,nr+1 .

Since the start word is w′
1, we can only generate words of the form wn,n1,n2,...,nr or

w′
n,n1,n2,...,nr

.
It remains to prove that we can obtain all these words. We prove this by induction

on the sum s = n + n1 + n2 + . . . + nr. If s = 1, then we have to generate the start word
w′

1 = abc. We consider two cases:
Case 1: wn,n1,n2,...,nr , nr ≥ 2.

Then w′
n−1,n1−1,n2−1,...,nr−1 ∈ L(G5) by induction and w′

n−1,n1−1,n2−1,...,nr−1 =⇒ wn,n1,n2,...,nr .
Therefore wn,n1,n2,...,nr ∈ L(G5).

Case 2: wn,n1,n2,...,nr−1,1.
Then nr−1 ≥ 2 and wn−1,n1−1,n2−1,...,nr−1−1 ∈ L(G5) by induction. Because we have the
derivation wn−1,n1−1,n2−1,...,nr−1−1 =⇒ wn,n1,n2,...,nr−1,1, we get wn,n1,n2,...,nr ∈ L(G5).

Thus we can obtain all words of the form wn,n1,n2,...,nr with r ≥ 1. Analogously, we can
prove that all words of the forms w′

n,n1,n2,...,nr
with r ≥ 1, wn and w′

n can be generated.

Example 2.9 We consider the 0L system

G6 = ({a, b, c, d, e, f}, {a → dabc, a → f, a → e, b → bc, c → λ, d → e, e → e}, a) .

It is easy to see that

L(G6) = {a, e}∪{en−1da(bc)n | n ≥ 1}∪{en+1(bc)n | n ≥ 1}∪{enf 2m

(bc)n | n ≥ 1,m ≥ 0} .

Giving the above definitions we followed the method to define phrase structure gram-
mars and their languages. However, we can give a alternative definition of 0L systems
based on algebraic concepts.

A mapping σ : V ∗ → 2W ∗
is called a substitution if the following relations hold:

σ(λ) = {λ} ,

σ(xy) = σ(x)σ(y) for x, y ∈ V ∗ .

In order to define a substitution it is sufficient to give the sets σ(a) for any letter a ∈ V .
Then we can determine σ(a1a2 . . . an) for a word a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n by

σ(a1a2 . . . an) = σ(a1)σ(a2) . . . σ(an)

which is a generalization of the second relation in the definition of a substitution. More-
over, for a language L, we set

σ(L) =
⋃

x∈L

σ(x) .
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Furthermore, we set

σ0(x) = {x} ,

σn(x) = σ(σ . . . (σ(x)) . . .)︸ ︷︷ ︸
n times

for n ≥ 1.

Let G = (V, P, ω) be a 0L system. Then we define the substitution σG : V ∗ → 2V ∗ by

σ(a) = {w | a → w ∈ P} .

Then it follows that

x =⇒G y if and only if y ∈ σG(x)

because in both cases we replace all letters xi of x by an element of σG(xi). Consequently
we get

L0(G) = {ω} = σ0
G(ω) ,

L1(G) = σG(ω) = σ1
G(ω) ,

L2(G) = σG(L1(G)) = σG(σG(ω)) = σ2
G(ω)

and, by induction,

Ln(G) = σn
G(ω) .

This implies

L(G) =
⋃

n≥0

σn
G(ω) .

We now define some special cases.

Definition 2.10 i) A 0L system G = (V, P, ω) is called propagating (P0L system, for
short) if a → w ∈ P implies w 6= λ.

ii) A 0L system G = (V, P, ω) is called deterministic (D0L system, for short) if, for
any a ∈ V , a → w ∈ P and a → v ∈ P imply w = v.

iii) A PD0L system is a 0L system which is propagating as well as deterministic.

In Figure 2.5 we summarize to which special cases the grammars of our examples
belong.

Let X ∈ {0L, P0L,D0L, PD0L}. If L is a language such that L = L(G) for some X
system G, then we say that L is an X language. Moreover, by L(X) we denote the family
of all languages generated by X systems. 1 Thus we get the families L(PD0L), L(D0L),
L(P0L) and L(0L) of all PD0L, all D0L, all P0L and all 0L languages, respectively.

1In order to be precise we consider a countable set U and require that the underlying alphabet V of
G is a (finite) subset of U . Hence we have in a family L(X) only languages over finite subsets of U . If
we do not make such a restriction, it is not clear what are ”all” languages.
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grammar PD0L D0L P0L
G1 + + +
G2 – + –
G3 – – +
G4 + + +
G5 – – +
G6 – – –

Figure 2.5: A + (a –, respectively) in the intersection of the row associated with G and
the column associated with the case X if G is (not) a X system.

2.1.3 The Basic Hierarchy

We start with two lemmas which show that without loss of generality we can assume that
derivations of the empty word have a bounded length and that the length of intermediate
words in a derivation of x can be bounded linearly in the length of x.

Lemma 2.11 Let G = (V, P, ω) be a 0L system with n = #(V ). For a ∈ V , let Ga =
(V, P, a). If λ ∈ L(Ga), then λ ∈ Lm(Ga) for some m ≤ n.

Proof. We define Lr as the set of all letters a ∈ V such that λ ∈ Lm(Ga) for some m ≤ r.
Obviously, if a ∈ Lr then a ∈ Lr+1, too. Thus we have Lr ⊆ Lr+1 for r ≥ 1.

Let Lr = Lr+1. Further let a ∈ Lr+2. Then there is a derivation

a =⇒ w1 =⇒ w2 =⇒ . . . =⇒ ws = λ

with s ≤ r + 2. If s < r + 2, then a ∈ Lr+1. Let s = r + 2. Then b ∈ Lr+1 for any letter b
which occurs in w1. By our assumption, b ∈ Lr for any b occurring in w1. Hence there is
a derivation

a =⇒ w1 =⇒ v2 =⇒ v3 =⇒ . . . =⇒ vr−1 =⇒ λ .

This implies a ∈ Lr+1. Therefore in both cases we have shown that a ∈ Lr+1. This gives
Lr+2 ⊆ Lr+1 which proves Lr+2 = Lr+1 = Lr. By induction we can show that Lr+k = Lr

for all k ≥ 1.
Thus there is a number t ≥ 1 such that

L1 ⊂ L2 ⊂ L3 ⊂ . . . ⊂ Lt−1 ⊂ Lt = Lt+1 = Lt+2 = . . . .

Because Lt is a subset of V , t is smaller than the number of letters of V . Therefore t ≤ n.
Now assume that λ ∈ L(Ga), then a ∈ Lt and thus λ ∈ Lm(Ga) for some m ≤ t ≤ n.

2

Lemma 2.12 Let G = (V, P, ω) be a 0L system. Then there exists a constant CG such
that, for any word x ∈ L(G), there is a derivation

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = x

with |wi| ≤ CG · (|x|+ 1).
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Proof. Let

n = #(V ) ,

k = max{|w| | a → w ∈ P} ,

l = max{|z| | z ∈ Lm(G) for m ≤ n} ,

CG = max{kn, l} .

Let x ∈ L(G). Then x ∈ Lr(G) for some r ≥ 0. Let

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wr = x .

Assume that there is some letter a ∈ V in the word wj, 1 ≤ j ≤ r, such that the
subderivation from a yields the empty word. Then we substitute this subderivation by a
derivation of λ which has at most n steps. Such a derivation exists by Lemma 2.11. This
procedure is done as long the derivation contains subderivations of the empty word with
more than n steps. As a result we obtain a derivation

ω = v0 =⇒ v1 =⇒ v2 =⇒ . . . =⇒ vs = x

with s ≤ r. We now prove that |vi| ≤ CG(|x|+ 1).
If i ≤ n, then vi ∈ Li(G) and therefore |vi| ≤ l ≤ CG ≤ CG(|x| + 1) which proves the

statement of the theorem.
If i ≥ n, then we consider the word vi−n = u1u2 . . . ut where uj ∈ V for 1 ≤ j ≤ t. Then

x = u′1u
′
2 . . . u′t where u′j 6= λ is obtained from uj or u′j = λ (if from uj a subderivation

starts which yields the empty word). Let h be the number of letters uj of vi−n such that
u′j 6= λ. Then h ≤ |x|. Moreover, since the subderivations giving λ are finished after
n derivation steps by our construction vi is build from the words u′j which are obtained
after n steps from uj. By definition of k we have |u′j| ≤ kn and hence

|vi| ≤ hkn ≤ CG(|x|+ 1) .

This proves the theorem. 2

We now compare the families generated by Lindenmayer systems with each other and
with the families of the Chomsky hierarchy.

Theorem 2.13 The diagram of Figure 2.6 holds.

Proof. The part L(FIN) ⊂ L(REG) ⊂ L(CF ) ⊂ L(CS) is well-known as a part of the
Chomsky hierarchy (see Theorem 1.3).

Since any PD0L system is a P0L system, too, it follows that L(PD0L) ⊆ L(P0L).
Analogously we obtain the other inclusions between L(PD0L), L(P0L), L(D0L) and
L(0L).

In order to prove the strictness of the inclusions it is sufficient to prove the existence
of languages L1 and L2 such that

L1 ∈ L(P0L), L1 /∈ L(D0L) and L2 ∈ L(D0L), L2 /∈ L(P0L) .
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L(CS)

L(0L)

88qqqqqqqqqq
L(CF )

ffMMMMMMMMMM

L(P0L)

88qqqqqqqqqq
L(D0L)

ffMMMMMMMMMM

L(REG)

OO

L(PD0L)

ffMMMMMMMMMM

88qqqqqqqqqq
L(FIN)

OO

Figure 2.6: L1 → L2 denotes a proper inclusion of L1 in L2. If two families are not
connected by arrows, then they are incomparable.

Then L1 ∈ L(P0L) \ L(PD0L) and L1 ∈ L(0L) \ L(D0L) which proves the properness
of two inclusions. L2 can be used to show the strictnesses of the other two inclusions.

We consider L1 = {a}+. Because L1 = L(G3) for the P0L system G3 from Example 2.6,
L1 ∈ L(P0L) by definition. Let us assume that L1 ∈ L(D0L). Then there is a D0L system
G = ({a}, {a → ar}, as) with L(G) = L1. Since

as =⇒ asr =⇒ asr2

=⇒ asr3

=⇒ . . . =⇒ asrk

=⇒ . . .

is the only derivation in G, we get L(G) = {asrn | n ≥ 0}. Now it is easy to see that, for
r ≥ 2,

as+1 ∈ L1 and as+1 /∈ {asrn | n ≥ 0} .

If r = 1, then L(G) = {as}. In both cases we have L1 6= L(G) in contrast to the choice
of G. Hence L1 /∈ L(D0L).

Let L2 = {aab, ab}. By L2 = L(G2) for the D0L system G2 of Example 2.5, we have
L2 ∈ L(D0L). If L2 ∈ L(P0L), then L(G) = L2 for some P0L system G′ = ({a, b}, P, ω).
By the completeness we have rules a → wa and b → wb in P . Then we obtain aab =⇒
wawawb and wawawb ∈ L(G′) = L2. Since G′ is propagating, wa and wb are non-empty
words which implies that the length of wawawb is at least 3. Therefore wa = a and wb = b.
Thus aab =⇒G′ aab and ab =⇒G′ ab are the only direct derivation steps. This implies
L(G′) = {ω}, i.e., L(G′) consists of one word, which contradicts L(G′) = L2 since L2

contains two words. Hence L2 /∈ L(P0L).

Let X ∈ {DP0L, P0L,D0L, 0L} and Y ∈ {FIN, REG, CF}. In order to prove that
L(X) and L(Y ) are incomparable, it is sufficient to present languages

L3 ∈ L(FIN), L3 /∈ L(0L) and L4 ∈ L(PD0L), L4 /∈ L(CF ) .

We choose L3 = {a2, a4}. Obviously, L3 ∈ L(FIN). If L3 ∈ L(0L), then there
is a 0L system H = ({a}, P, ω) with L3 = L(H). Let a → wa ∈ P . Then we get
a4 =⇒ (wa)

4 ∈ L3 or (wa)
4 = λ (because L3 = L(H) means that both languages can

differ in the empty word by our convention). In the former case, we have wa = a, and in
the latter case, we get wa = λ. Thus we have to consider the following three cases:
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Case 1. P = {a → a}.
Then ω =⇒ ω holds which yields L(H) = {ω} in contrast to the choice of H such that
L(H) = L3.

Case 2. P = {a → λ}.
Then ω =⇒ λ holds which gives L(H) = {ω, λ} in contrast to the choice of H.

Case 3. P = {a → a, a → λ}.
Then a4 = aaaa =⇒ aaaλ = a3. This implies a3 ∈ L(H) which contradicts L(H) = L3.

Therefore L3 /∈ L(0L).

Let L4 = {a2n | n ≥ 2}. By Example 2.4, L4 = L(G1) for the PD0L system G1 and
thus L4 ∈ L(PD0L). On the other hand, it is well-known that L4 /∈ L(CF ) (which can
easily be proved by the use of a pumping lemma, see Theorem 1.13).

Let G = (V, P, ω) be a 0L system. We construct a phrase structure grammar H =
(N, V, P ′, S) with L(H) = L(G) as follows. We set N = {A,B, C,D, E} and define P ′ as
the set of all rules of the following types:

a) S → ADωB,
b) AD → AC, AD → AE,
c) Ca → wC for a → w ∈ P and CB → DB,
d) aD → Da for a ∈ V ,
e) AEa → aE and Ea → aE for a ∈ V , AEB → λ, EB → λ.

Any derivation in H starts with S =⇒H ADωB. Let us now assume that we have
generated a word ADa1a2 . . . anB with ai ∈ V for 1 ≤ i ≤ n. Now we can only apply the
rules of type b) and we obtain ACa1a2 . . . anB or AEa1a2 . . . anB.

In the former case we have to continue with rules of type c) which gives

ACa1a2 . . . anB =⇒H Aw1Ca2 . . . anB =⇒H . . . =⇒H Aw1w2 . . . wnCB

=⇒H Aw1w2 . . . wnDB

where ai → wi ∈ P for 1 ≤ i ≤ n. By rules of type d) we shift the letter D to the left and
obtain ADw1w2 . . . wnB. That is, we have obtained a word of the form we start with and –
besides the nonterminals – we have simulated the derivation a1a2 . . . an =⇒G w1w2 . . . wn.

In the latter case, if n = 0, we get AEB =⇒H λ, and if n ≥ 1 we get the derivation

AEa1a2 . . . an =⇒H a1Ea2 . . . anB =⇒H . . . =⇒H a1a2 . . . anEB =⇒H a1a2 . . . an .

That is, we only delete the nonterminals. (Note that other derivations are not possible
since the application of Ea1 → a1E would not delete the letter A which remains such
that the derivation cannot terminate.)

Therefore, for any derivation

ω =⇒G v1 =⇒G v2 =⇒G . . . =⇒G vn

in G, there is a derivation

S =⇒H ADωB =⇒∗
H ADv1B =⇒∗

H ADv2B =⇒∗
H . . . =⇒∗

H ADvnB =⇒∗
H AEvnB =⇒∗

H vn

and conversely. Thus L(G) = L(H).
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Let x be a non-empty word of L(G). By Lemma 2.12, there is a derivation of x
such that any intermediate word has a length bounded by CG(|x|+ 1). Therefore all the
intermediate words of the corresponding derivation of x in H have at most the length
CG(|x| + 1) + 3 ≤ C|x| for an appropriate constant C. By the workspace theorem (see
Theorem 1.9), the language of all non-empty words of L(H) is context-sensitive. Taking
into consideration our convention concerning the equality of languages we have that the
0L language L(G) is context-sensitive. 2

2.1.4 Adult languages

The language generated by a 0L system consists of all words which can be derived from
the start word. Thus it takes into consideration all phases of the development, e.g. in case
of a flower the ”green” phase, which produces the handle or stem and the leaves, as well
as the ”flowering” phase, where the blossom is build and the parts of the ”green” phase
are not changed. Especially, one is interested in the final stages or adult stages which are
not changed (at least for a long time).

Modelling this aspect within the framework of 0L systems we are interested in those
strings w which belong to the language and only allow the derivation w =⇒ w. This leads
to the following definition.

Definition 2.14 The adult language LA(G) of a 0L system G is the set of all words
z ∈ L(G) such that, for any v ∈ V ∗, w =⇒ v implies w = v.

The adult alphabet VA(G) is set of all letters of V , which occur in words of LA(G).

Let X ∈ {0L, P0L,D0L, PD0L}. By L(AX) we denote the family of adult languages
generated by X systems.

Example 2.15 We consider the 0L system G6 from Example 2.9 Since

L(G6) = {a, e} ∪ {en−1da(bc)n | n ≥ 1} ∪ {en(bc)n | n ≥ 1} ∪ {enf 2m

(bc)n | n ≥ 1,m ≥ 0}

we obtain the adult language

LA(G6) = {e} ∪ {en(bc)n | n ≥ 1} .

Note that the adult language of G6 is a context-free language whereas L(G6) is not
context-free.

The aim of this section is to show that the fact seen in the example holds in general,
i.e., any adult language of a 0L system is a context-free language, and conversely, any
context-free language is an adult language of some 0L system.

Theorem 2.16 For any context-free grammar G, there is a propagating 0L system G′

such that LA(G′) = L(G).
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Proof. Let G = (N, T, P, S) be a context-free grammar. First we construct a context-free
grammar G′′ = (N ′′, T, P ′′, S ′′) in Chomsky normal form such that L(G′′) = L(G) (see
Theorem ??. Then we define the 0L system G′ by

G′ = (N ′′ ∪ T, P ′′ ∪ {a → a | a ∈ N ′′ ∪ T}, S ′′) .

Since G′′ is in Chomsky normal form, P ′′ contains no rule of the form A → λ. Thus G′ is
propagating.

Let x =⇒G′′ y. Then x = u1Au2 and y = u1wu2 for some rule A → w ∈ P ′′. Then we
also have x =⇒G′ y by applying a → a to all letters of u1 and u2 and A → w ∈ P ′ to the
distinguished occurrence of A in x.

Moreover, if x =⇒G′ y, then x = x1x2 → xn, y = y1y2 . . . yn and xi → yi ∈ P ′ for
1 ≤ i ≤ n. Let M = {i1, i2, . . . , ir} be the subset of {1, 2, . . . , n} such that xi → yi 6= xi

for i ∈ M and xj → yj = xj for j ∈ {1, 2, . . . , n} \M . Then i ∈ M implies xi ∈ N ′′ and
we have in G′′ the derivation

x = u1xi1u2xi2 . . . urxiiur+1

=⇒G′′ u1yi1u2xi2 . . . urxiiur+1

=⇒G′′ u1yi1u2yi2u3xi3 . . . urxiiur+1

. . .

=⇒G′′ u1yi1u2yi2 . . . ur−1yir−1urxiiur+1

=⇒G′′ u1yi1u2yi2 . . . ur−1yir−1uryiiur+1

= y

This proves that L(G′) is the set of all sentential forms of G′′.
If x = u1Au2 is a sentential form of G′′ with A ∈ N ′′, then we apply to all letters of

u1 and u2 rules of the form a → a and to A a rule A → w with w 6= A (such a rule exists
since G′′ is in Chomsky normal form) and obtain u1wu2 6= x. Hence x is not in the adult
language of G′. On the other hand, if a sentential form x′ only contains terminals, then
we can only apply identity rules to the letters of x′ which gives x′ ∈ LA(G′).

Therefore LA(G′) consists of all sentential forms which only contain terminals, i.e.,
LA(G′) = L(G′′) = L(G). 2

Lemma 2.17 Let G = (V, P, ω) be a 0L system. Let m = #(VA(G)). For any letter
a ∈ VA(G), let Ga = (V, P, a). Then, for any a ∈ VA(G), λ ∈ Lt(Ga) for some t ≤ m or
Ln(Ga) contains exactly one word za and, for all words v ∈ V ∗, za =⇒ v implies v = za.

Proof. Let a ∈ VA(G). Then there is exactly one rule a → wa in P . Assume the contrary,
i.e., a → w1 ∈ P and a → w2 ∈ P with w1 6= w2. For a word x ∈ LA(G) where a occurs
in x, i.e., x = x1ay1, we then have two derivation x1ay1 =⇒ x2w1y2 and x1ay1 =⇒ x2w2y2

with x2w1y2 6= x2w2y2 in contrast to the property of the words of LA(G).
Since x = x1ay1 =⇒ x2way2 = x ∈ LA(G), all letters of wa belong to the adult

alphabet VA(G). Thus there is a unique derivation in Ga. Therefore, for any t ≥ 0, Lt(G)
contains at most one word.
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If wa contains two occurrences of a, then we have a derivation

wa = u1au2au3 =⇒ u′1wau
′
2wau

′
3

= u′1u1au2au3u
′
2u1au2au3u

′
3 =⇒ u′′1u

′
1wau

′
2wau

′
3u
′′
2u
′
1wau

′
2wau

′
3u
′′
3

= u′′1u
′
1u1au2au3u

′
2u1au2au3u

′
3u
′′
2u
′
1u1au2au3u

′
2u1au2au3u

′
3u
′′
3

. . . . .

and therefore from wa we can generate a word with an arbitrarily large number of oc-
currences of a. Therefore, from x we can also generate a word with an arbitrarily large
number of occurrences of a. Again, we have a contradiction to the property defining the
words of LA(G).

Now assume that wa contains exactly one occurrence of a. Let wa = p1aq1. Then we
have the derivation

x = x1ay1 =⇒ x2p1aq1y2 =⇒ x3p2p1aq1q2y3 =⇒ . . . =⇒ xmpm−1pm−2 . . . p1aq1q2 . . . qm−1ym .

Obviously, if pi 6= λ or qi 6= λ for i ≥ 1, then we can generate arbitrarily long words from
x in contrast to x ∈ LA(G). If λ can be generated from p1 and q1 then by Lemma 2.11
we have derivations

p1 =⇒ p2 =⇒ p3 =⇒ . . . =⇒ ps =⇒ λ and q1 =⇒ q2 =⇒ q3 =⇒ . . . =⇒ qt =⇒ λ

with s < m and t < m and non-empty words p1, p2, . . . , ps, q1, q2, . . . , qt. Then we get
from a in at most m steps the word psps−1 . . . p1aq1q2 . . . qt which has the property

psps−1 . . . p1aq1q2 . . . qt =⇒ psps−1 . . . p1aq1q2 . . . qt .

Thus za = psps−1 . . . p1aq1q2 . . . qt has the properties required in the statement.

Now assume that wa contains no occurrence of a. For i ≥ 1, let zi be the unique word
in Li(Ga). We first prove that zi has no occurrence of a for i ≥ 1. Let x be a word of
LA(G) containing a. Then x = x0ax1ax2 . . . axr with r ≥ 1 and xi does not contain a for
0 ≤ i ≤ r. If u defined by x0 =⇒ u contains an occurrence of a and zj contains a for
some j ≥ 1, x =⇒j u0zju1zju2zj . . . zjur = x. Because u0 starts with u which contains a
and any zj contains an a, the generated word x contains at least r + 1 occurrences of a
which is impossible. Analogously we get a contradiction if u contains no a, i.e., all a’s are
contained in the word derived from x1ax2a . . . axr.

Now we have x = x1ay1 =⇒ x2z1y2 = x. Because a does not occur in z1 = wa, a
has to occur in at least one of the words x2 and y2. We only discuss the case that a
occurs in x2, the other case can be handled analogously. Then x = v1av2z1y2. Now we
get x =⇒ v′1z1v

′
2z2y

′
2 = x. Continuing in this way we get that x contains all the words

z1, z2, z3, . . . which is only possible if zi = λ for some i. From Lemma 2.11 we know that
λ ∈ Lt(Ga) for some t ≤ n. 2

Lemma 2.18 For any 0L system G, there is a 0L system G′ = (V, P ′, S) such that
LA(G′) = LA(G) and, for any a ∈ VA(G′), the only production in P is a → a.
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Proof. Let G = (V, P, S). Without loss of generality we assume that the start word of G
is a letter S not belonging to the adult alphabet VA(G) (if this is not the case, we add S
to the alphabet and S → ω to the set of productions, where ω is the original start word;
these additions do not change the adult language). Let n = #(VA(G)). For any letter
a ∈ VA(G), let Ga = (V, P, a).

We define the homomorphism h by

h(a) = λ if a ∈ VA(G) and λ ∈ Lm(Ga) for some m ≤ n ,

h(a) = za if a ∈ VA(G) and za ∈ Ln(Ga) ,

h(a) = a if a /∈ VA(G) .

By Lemma 2.17 the homomorphism is well defined. We set

G′ = (V, P ′, S) ,

P ′ = {a → h(w) | a → w ∈ P and a /∈ VA(G)} ∪ {a → a | a ∈ VA(G)} .

Now one can easily prove by induction on the number i of derivation steps that

S =⇒i
G x if and only if S =⇒i

G′ h(x) . (2.1)

Now let x = x1x2 . . . xm be a word of LA(G) with xi ∈ VA(G) for 1 ≤ i ≤ m. Then
x1x2 . . . xm =⇒G′ x1x2 . . . xm by the definition of P ′ and this is the only possible derivation
of x. Therefore x ∈ LA(G′). Therefore LA(G) ⊆ LA(G′).

Now let w be a word of LA(G′). By (2.1) there is a word w′ such that w′ ∈ L(G) and
w = h(w′). We assume that w′ = w0B1w1B2w2 . . . wt−1Btwt with t ≥ 0, wi ∈ VA(G)∗ for
0 ≤ i ≤ t and Bj /∈ VA(G) for 1 ≤ j ≤ t. For 0 ≤ i ≤ t, we define zi as follows. If wi = λ,
then we set zi = λ. If wi 6= λ, then wi consists only of letters VA(G). Then we define zi

as the only word which can be generated from wi in m steps in G. Therefore

h(wi) = zi and zi =⇒G zi (2.2)

for 1 ≤ i ≤ n. Then
h(w′) = z0B1z1B2z2 . . . zt−1Btzt = w .

For 0 ≤ i ≤ t, by the definition of P ′, if zi 6= λ,

zi =⇒G′ zi (2.3)

holds, because all letters of zi belong to VA(G). Let BrBr+1 . . . Bs be a subword of w only
consisting of letters not in VA(G), i.e zr = zr + 1 = . . . zs−1 = λ, and the letters before Br

and after Bs in w – if they exist – are from VA(G). Since w ∈ LA(G′), we have w =⇒G′ w.
Taking into consideration (2.3) we get

BrBr+1 . . . Bs =⇒G′ BrBr+1 . . . Bs . (2.4)

For r ≤ i ≤ s, if Bi → yi in P , then Bi → h(yi) ∈ P ′. Thus

BrBr+1 . . . Bs =⇒G′ h(yr)h(yr+1) . . . h(ys) .
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By (2.4),

BrBr+1 . . . Bs = h(yr)h(yr+1) . . . h(ys) . (2.5)

Therefore, for r ≤ i ≤ s, h(yi) contains only letters not in VA(G), which implies h(yi) = yi

by the definition of h (since letters of VA(G) occur in h(yi) otherwise). By (2.5) this yields

BrBr+1 . . . Bs =⇒G yryr+1 . . . ys = h(yr)h(yr+1) . . . h(ys) = BrBr+1 . . . Bs .

If we combine this relation with (2.2) we get w =⇒G w is the only derivation for w = h(w′)
which proves that w ∈ LA(G). Thus we obtain LA(G′) ⊆ LA(G). 2

Theorem 2.19 For any 0L system G, there is a context-free grammar G′′ such that
L(G′′) = LA(G).

Proof. First, for G, we consider the 0L system G′ = (V, P ′, S) according to in Lemma 2.18,
i.e., a → a is the only rule for a ∈ VA(G′) and LA(G′) = LA(G). Then we construct the
context-free grammar

G′′ = (V \ VA(G′), VA(G′), P ′ \ {a → a | a ∈ VA(G′)}, S) .

It is easy to show that L(G′′) = LA(G′) 2

Theorem 2.20 i) L(A0L) = L(AP0L) = L(CF ).
ii) L(AD0L) = L(APD0L) = {{w} | w ∈ V +} ∪ {∅}.

Proof. i) By Theorem 2.16, we get L(CF ) ⊆ L(AP0L). Obviously, L(AP0L) ⊆ L(A0L).
Furthermore, By Theorem 2.19, we have L(A0L) ⊆ L(CF ). Combining these relations
we get the statement.

ii) If G = (V, P, ω) is a D0L system, then we have only one derivation ω = w0 =⇒
w1 =⇒ w2 =⇒ w3 =⇒ . . . If there is an i such that wi = wi+1, then we have LA(G) = {wi}.
If wi 6= wi+1 for any i, then LA(G) = ∅. By our convention, the languages {λ} and ∅ are
equal, since they differ in the empty word only. This proves

L(AD0L) ⊆ {{w} | w ∈ V +} ∪ {∅} . (2.6)

Let w be a non-empty word over some alphabet V . Then we consider the propagating
D0L system G = (V, {a → a | a ∈ V }, w). Obviously, w =⇒ w =⇒ w =⇒ . . . is the only
derivation in G. Thus LA(G) = {w}. Furthermore, LA(G1) is empty. Therefore

{{w} | w ∈ V +} ∪ {∅} ⊆ L(APD0L) . (2.7)

If we combine (2.6) and (2.7) with L(APD0L) ⊆ L(AD0L) (which holds by definition),
then we obtain the statement.

2
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2.1.5 Decision problems

In this section we want to discuss the decidability status of the classical decision problems
considered in the theory of formal languages for interactionless Lindenmayer systems. For
X ∈ {0L, P0L,D0L, PD0L}, we regard the following problems.

Membership problem: Given X system G = (V, P, ω) and w ∈ V ∗,
decide whether or not w ∈ L(G).

Emptiness problem: Given X system G = (V, P, ω),
decide whether or not L(G) is empty,

Finiteness problem: Given X system G = (V, P, ω),
decide whether or not L(G) is finite.

Equivalence problem: Given X systems G = (V, P, ω) and H = (V, P ′, ω′),
decide whether or not L(G) = L(H).

We mention that the membership problem and the finiteness problem have some bi-
ological relevance. Let us assume that we have a 0L system G which we want use as
a model for the development of some filamentous organism or alga etc. Usually such
a model is obtained by an analysis of the first step of the biological object. Now the
membership problem is the question whether or not a later stage of the development can
be got by the model G. The finiteness problem has an negative answer if and only if
the development does not be finished after a certain time and at least one branch of the
development produces larger and larger plants. By such an interpretation, there is an
interest from a biological point of view in these questions. The equivalence problem is the
test whether or not two given models describe the same development.

However, one has to note that in biology one is more interested in the sequences of
the stages of the development instead of the set of all stages. In this lecture we shall only
consider the language theoretic part, for a discussion of decidability for sequences instead
of languages we refer to [13] and [27].

First we note that the emptiness problem is not of interest since any 0L system gen-
erates a non-empty language because the start word is in the language. Thus the answer
to the emptiness problem is ”no”, and this answer can be given immediately, i.e., it can
be given in constant time.

By Theorem 2.13, L(0L) is contained in L(CS). If we consider the proof we see
that, for a given 0L system G, we can construct a context-sensitive grammar H with
L(G) = L(H). It is known that it is decidable, whether or not a given word w belongs to
the language generated by a given context-sensitive grammar. Thus the membership for
0L systems is decidable, too. However, all known algorithms for the membership problem
for context-sensitive grammar have exponential time complexity.

By Lemma 2.12, there is a natural algorithm. We construct all derivations which only
contain words of length CG|w|. If w is obtained the answer to the membership is ”yes”,
otherwise w /∈ L(G) holds. However, this algorithm is also exponential in time because
we have to consider exponentially many derivation steps.

In [19] it has been shown that the Cocke-Younger-Kasami algorithm known for context-
free grammars can be translated to interactionless 0L systems. However, by the parallelism
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in the derivation in 0L system we get the complexity O(|w|4) for a fixed 0L system (in
the case of context-free grammars, the complexity is O(|w|3).

The following theorem gives this statement in a weaker version (we do not mention
the degree of the polynomial). We omit the (long) proof.

Theorem 2.21 For 0L systems, the membership problem is decidable in polynomial time.
2

Theorem 2.22 For 0L systems, the finiteness problem is decidable in polynomial time.

Proof. Let G = (V, P, ω) be a 0L system. Let n = #(V ). For any letter a ∈ V , we set
Ga = (V, P, a).

We call a letter a ∈ V surviving in G iff Li(Ga) is non-empty for any m ≥ 0. Let
Vs(G) be the set of all surviving letters of G. (Note that V = Vs(G) for a propagating 0L
system.)

We construct the directed graph HG = (V,E) where the set of vertices coincides with
the set of all letters of V and (a, b) ∈ E if and only if there is a production a → x1bx2 ∈ P
with x1, x2 ∈ V ∗.

Claim 1: a is surviving if and only if there is an infinite path in HG which starts in
a.

Let HG contain an infinite path starting in a. Let b be the letter which is obtained by
the beginning of length i of the this path. Then, by the definition of HG, there is a word
in Li(G) which contains b. This shows the non-emptiness of Lm(Ga) for any i ≥ 0.

Conversely, let us assume that a is surviving. Then Ln+2(Ga) is nonempty. Thus
Ln+1(Ga) contains a non-empty word w. Let b be a letter of w. Then there is a derivation

a = a0 =⇒ u1a1v1 =⇒ u2a2v2 =⇒ . . . =⇒ un+1an+1vn+1 = w

such that an+1 = b and (ai, ai+1) ∈ E for 0 ≤ i ≤ n. Clearly, there are integers i and j,
0 ≤ i < j ≤ n + 1, such that ai = aj. Therefore the path

a0 → a1 → a2 → . . . → an+1

contains a cycle and can be continued to an infinite path.

Now we interpret HG as the graph of a (nondeterministic) finite automaton where all
edges are labelled by Z, the start state is a and all states are accepting states. Then the
existence of an infinite path starting from a is equivalent to the infinity of the (regular)
language accepted by this automaton. By Claim 1, there is an polynomial algorithm
which decides whether or not a ∈ Vs(G) holds. Thus we can algorithmically construct the
set Vs(G) in polynomial time.

Now we construct the directed graph H ′
G = (Vs(G), E ′) where E ′ is the restriction of

E to Vs(G)×Vs(G). Further, we define a labelling of the edges of E ′ by the letters X and
Y . We label (a, b) ∈ E ′ by X if and only if there is a production a → x1bx2 ∈ P where
x1x2 contains a letter of Vs(G). Otherwise, we label (a, b) by Y .

Claim 2: L(G) is infinite if and only there is an infinite path in H ′
G starting in a letter

occurring in ω and containing an infinite number of occurrences of edges labelled by X.
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Assume that there is an infinite path a0 → a1 → a2 → . . . starting from a = a0

which occurs in ω. Let j ≥ 0. Then aj occurs in some word of wj of Lj(G). Let
wj = x0b1x1b2x2 . . . brxr for some r ≥ 1, some words xk ∈ (V \ Vs(G))∗, 0 ≤ k ≤ r
and some letters bl ∈ Vs(G), 1 ≤ l ≤ r. Let aj = bs. Then we consider a derivation
wj =⇒ wj+1 = x′0y1x

′
1y2x

′
2 . . . yrx

′
r, where any subword yl, 1 ≤ l ≤ r contains at least one

letter of Vs(G) (such rules exist for letters of Vs(G) by definition) and a rule aj → x1aj+1x2

to bs = aj. If (aj, aj+1) is labelled by X, then ys = x1aj+1x2 contains at least two
occurrences of surviving letters. Therefore wj+1 contains at least r + 1 occurrences of
surviving letters. Continuing in this way we obtain words in L(G) with an arbitrarily
large number of occurrences of letters of Vs(G). Thus L(G) has to be infinite.

Conversely, let us assume that L(G) is infinite. Then, for any number i ≥ 1, L(G)
contains a word of length i. We can improve this statement to the following one: For any
number i ≥ 1, L(G) contains a word with at least i occurrences of letters of Vs(G). If we
assume the contrary, then there is a number j such that any word of L(G) contains at
most j letters of Vs(G). Then any word of L(G) can be written as W = x0b1x1b2x2 . . . brxr

for some r ≥ 1, some words xk ∈ (V \ Vs(G)∗, 0 ≤ k ≤ r and some letters bl ∈ Vs(G),
1 ≤ l ≤ r, where r ≤ j. Since there is a number t such that Lt(Ga) = ∅ for all a /∈ Vs(G),
we have w =⇒t

G z1z2 . . . zr where bi =⇒t
G zi for 1 ≤ i ≤ r. If K = max{wa | a → wa ∈

P, a ∈ V , then |z1z2 . . . zr| ≤ rKt ≤ jKt. This yields a bound for the length of the words
in L(G) in contrast to the infinity of L(G).

Now let p be a sufficient large number, and let w be a word of L(G) containing at
least p occurrences of letters from Vs(G). Then we have have a derivation

ω = u0a0v0 =⇒ u1a1v1 =⇒ u2a2v2 =⇒ . . . =⇒ umamvm = w

such that (ai, ai+1) ∈ E for 0 ≤ i ≤ m and the path

a0 → a1 → a2 → . . . → am

contains at least n + 1 edges labelled by X. For 1 ≤ q ≤ n + 1, let

aiq → aiq+1 → aiq+2 → . . . aiq+1 → aiq+1+1

be the subpath where (aiq , aiq+1) and (aiq+1 , aiq+1+1) are labelled by X and its remaining
edges are labelled by Y . Then we set

Mq = {aiq+1, aiq+2, . . . aiq+1−1}

for 1 ≤ q ≤ n + 1. Obviously, there are g and h, 1 ≤ g < h ≤ n + 1, such that Mg = Mh.
Again, this implies the existence of a cycle containing an edge labelled by X. Therefore
the infinite path with the required property exists.

Again, we interpret H ′
G as a nondeterministic finite automaton taking the above la-

belling of the edges. The existence of a path having the properties mentioned in Claim 2
is equivalent to the infinity of the language accepted by the automaton after application
of the homomorphisms which maps X to X and Y to the empty word. Thus we can
decide the infinity and therefore the finiteness of L(G). 2
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Theorem 2.23 i) For (P)0L systems, the equivalence problem is undecidable.
ii) For (P)D0L systems, the equivalence problem is decidable.

Proof. We only prove i). The proof for ii) is omitted because it is long if it is based on
the elementary knowledge and formal language theory or it is based on deep results of
(mathematical) group theory.

We prove i) by reduction to the Post Correspondence Problem. Let

U = {(u1, v1), (u2, v2), . . . , (un, vn)}

be a set of pairs of words with ui, vi ∈ {a, b} for 1 ≤ i ≤ n.
We consider the 0L systems

G1 = (V, P, S) and G2 = (V, P ′, S)

with

V = {S, S ′, S ′′, Su, Sr, Sl, S
′, a, b, c} ,

P = {S → S ′, S → S ′′, Su → c, Sl → c, Sr → c}
∪ ⋃

x∈{a,b}
{S ′ → xS ′x, S ′ → xSl, S

′ → Srx, Sl → xSl, Sr → Srx, Su → Srx, Su → xSl}

∪ {S ′ → xSuy : x, y ∈ {a, b}, x 6= y} ∪ {Su → xSuy : x, y ∈ {a, b}}
∪

n⋃

i=1

{S ′′ → uiS
′′vR

i } ,

P ′ = P ∪
n⋃

i=1

{S ′′ → uicv
R
i } .

It is easy to show that

L(G1) = {S, S ′, S ′′} ∪ {αS ′αR : α ∈ {a, b}+}
∪ {αSuβ

R : α, β ∈ {a, b}+, |α| = |β|, α 6= β}
∪ {αSrβ

R : α, β ∈ {a, b}+, |α| < |β|}
∪ {αSlβ

R : α, β ∈ {a, b}+, |α| > |β|}
∪ {αcβR : α, β ∈ {a, b}+, α 6= β}
∪ {ui1ui2 . . . uikS

′′vikvik−1
. . . vi1 : k ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ k}

and

L(G2) = L(G1) ∪ {ui1ui2 . . . uikcvikvik−1
. . . vi1 : k ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ k} .

Obviously, L(G1) ⊆ L(G2), and L(G1) = L(G2) holds if and only the part added to
L(G1) to obtain L(G2) is contained in {αcβR : α, β ∈ {a, b}+, α 6= β}. Thus we get
L(G1) = L(G2) iff the Post Correspondence Problem has no solution. 2

Note that Theorem 2.23 implies that the equivalence problem for PD0L systems is
decidable and that the equivalence problem for 0L systems is undecidable.
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Since the transformation of an 0L system G into a context-free grammar G′ such that
LA(G) = L(G′) is constructive, we get the following results from the decidability results for
context-free languages. The membership in the adult language and the emptiness and the
finiteness of the adult languages of a 0L systems are decidable, whereas it is undecidable
whether two P0L systems generate the same adult language. The equivalence of two D0L
system with respect to adult languages is decidable, because we can first check whether
both system generate a non-empty adult language (consisting of one word) and then we
determine the adult languages and compare them.

2.1.6 Growth functions

A very important field in the study of the development of filamentous organisms and
plants is the growth of the organism or plant. Usually, as a measure of the size of the
plant one takes the number of cells which build it and the growth is measured by a function
which associates with a given time moment the size of the plant at this moment.

We now formalize this concept. In order to get a function one has to ensure that at
every moment only one organism exists, i.e. the Lindenmayer system has to generate
exactly one word. Therefore we have to restrict to deterministic Lindenmayer systems.
For a D0L system G = (V, P, ω), we have a uniquely determined derivation

ω = w0 =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wm =⇒ . . . , (2.8)

and thusLm(G) contains exactly one element wm. Conversely, let H be a 0L system
which, for some letter a ∈ V , has two rules a → w1 and a → w2 with w1 6= w2 in its
set of productions, and let a occur in some word w of L(H) (otherwise we can omit a
and its rules). Then we can generate two words from w because we have the derivations
w = x1ax2 =⇒ x′1w1x

′
2 and w = x1ax2 =⇒ x′1w2x

′
2. Hence Lm(H) for some m ≥ 1

contains at least two words.

Definition 2.24 The growth function fG : N → N of a deterministic 0L system G is
defined by

fG(m) = |wm| .

Example 2.25 We consider the deterministic 0L systems

G1 = ({a}, {a → a2}, a) ,

G2 = ({a, b}, {a → λ, b → ab}, aab) ,

G4 = ({a, b, c, d, e}, {a → a, b → ba, c → cbb, d → da, e → cbbd}, e)

given in the Examples 2.4, 2.5 and 2.7.
In G1, the only derivation is

a =⇒ a2 =⇒ a4 =⇒ a8 =⇒ . . . ,

which results in

fG1(m) = 2m for m ≥ 0 .
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In G2, we only have the derivation

aab =⇒ λλab = ab =⇒ λab = ab =⇒ ab =⇒ ab =⇒ . . . ,

which gives
fG2(0) = 3 and fG2(m) = 2 for m ≥ 1 .

In Example 2.7, we have shown that

L0(G4) = {e} ,

Lm(G4) = {cbb(ba)2(ba2)2 . . . (bam−1)2dam−1} for m ≥ 1 .

Thus we get fG4(0) = |e| = 1 and, for m ≥ 1,

fG4(m) = |cbb(ba)2(ba2)2 . . . (bam−1)2dam−1|
= 1 + 2 · 1 + 2 · 2 + 2 · 3 + . . . + 2 ·m + 1 + (m− 1)

= m + 1 + 2 ·
m∑

i=1

i = m + 1 + 2 · m(m + 1)

2
= m2 + 2m + 1

= (m + 1)2 .

This gives
fG4(m) = (m + 1)2 for m ≥ 0 .

In the examples we have determined the growth function by a determination of the
sequence of words generated by the system and obtained fG(m) as the length of |wm|
according to the definition. However, in biology one is interested in a computation of
fG(m) for arbitrary m, especially for large m, without a determination of wm. Such a
computation can easily be done if one has a formula for fG. In the sequel we shall present
some such formulae.

In the sequel we shall assume that the D0L system under consideration is given as

G = ({a1, a2, . . . , an}, {a1 → v1, a2 → v2, . . . , an → vn}, ω) (2.9)

and that its only derivation is given by (2.8).

Definition 2.26 Let G be a D0L system as in (2.9). Then we define the growth matrix
MG of G as the (n, n)-matrix

MG = (ai,j) = (#aj
(vi)) .

Example 2.27 Again, we consider the systems G1, G2 and G4. We get

MG1 = (2), MG2 =

(
0 0
1 1

)
, MG4 =




1 0 0 0 0
1 1 0 0 0
0 2 1 0 0
1 0 0 1 0
0 2 1 1 0



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Theorem 2.28 Let G be a D0L system as in (2.9), and let MG be its growth matrix.
Then, for m ≥ 0,

fG(m) = Ψ(ω)(MG)m(1, 1, . . . , 1)T .

Proof. First we note that

Ψ(wm) · (1, 1, . . . , 1)T = (#a1(wm), #a2(wm), . . . , #an(wm))(1, 1, . . . , 1)T

=
n∑

i=1

#ai
(wm) = |wm|

= fG(m) .

Thus it is sufficient to to prove that, for m ≥ 1,

Ψ(wm) = Ψ(ω)Mm
G .

This will be done by induction on m.
m = 0. We have

Ψ(w0) = Ψ(ω) = Ψ(ω) · E = Ψ(ω)M0
G ,

where E is the unit matrix. Thus the induction basis is shown.
m > 0. By induction hypothesis,

Ψ(ω)Mm
G = Ψ(ω)Mm−1

G MG = Ψ(wm−1)MG (2.10)

Further, any occurrence of a letter ai, 1 ≤ i ≤ n, in wm−1 contributes #aj
(vi) occurrences

of aj, 1 ≤ j ≤ n, in wm. Thus

#aj
(wm) =

n∑

i=1

#ai
(wm−1)#aj

(vi) .

This implies
Ψ(wm) = Ψ(wm−1)MG .

Together with (2.10) we get
Ψ(wm) = Ψ(ω)Mm

G .

2

Let
χMG

(x) = det(MG − xE) = anx
n + an−1x

n−1 + . . . + a1x + a0

be the characteristic function of MG. By the Cayley-Hamilton Theorem (see Theorem 1.1),

O = χMG
(MG) = anM

n
G + an−1M

n−1
G + . . . + a1MG + a0E .

For k ≥ 0, by left and right multiplication with Ψ(ω)Mk
G and (1, 1, . . . 1)T , respectively,

and Theorem 2.28, we obtain

0 = anΨ(ω)Mk+n
G (1, 1, . . . , 1)T + an−1Ψ(ω)Mk+n−1

G (1, 1, . . . , 1)T + . . .

a1Ψ(ω)Mk+1
G (1, 1, . . . , 1)T + a0Ψ(ω)Mk

G(1, 1, . . . , 1)T

= anfG(k + n) + an−1fG(k + n− 1) + . . . + a1fG(k + 1) + a0fG(k) .
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Thus the growth function fG satisfies the difference equation

0 = anh(k + n) + an−1h(k + n− 1) + . . . + a1h(k + 1) + a0h(k) .

Using the theory of difference equation (see Chapter 1) we get

h(x) =
s∑

i=1

(βi,0 + βi,1x + βi,2x
2 + . . . βi,ti−1x

ti−1)µx
i

where, for 1 ≤ i ≤ s, µi is a root of multiplicity ti of

g(y) = anxn + an−1x
n−1 + . . . + a1x + a0 ,

∑s
i=1 ti = n holds and βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1 are n real constants, which are

uniquely determined by the values h(0), h(1), . . . , h(n− 1).
If we take into consideration that χMG

= g holds, then the roots βi, 1 ≤ i ≤ s are the
eigenvalues of MG. Thus we obtain the following theorem.

Theorem 2.29 Let G be a D0L system as in (2.9), and let MG be its growth matrix. For
1 ≤ i ≤ s, let µi be a eigenvalue of MG of multiplicity ti such that

∑s
i=1 ti = n. Then

fG(m) =
s∑

i=1

(βi,0 + βi,1m + βi,2m
2 + . . . βi,ti−1m

ti−1)µm
i

for certain constants βi,j, 1 ≤ i ≤ s, 0 ≤ j ≤ ti − 1. 2

Example 2.30 We apply the theory developed up to this point to the our D0L systems
G1, G2 and G4. In order to simplify the notation, we shall sometimes only use the indexes
1, 2 and 4 to refer to G1, G2 and G4, respectively.

Then we get

χ1(x) = det(MG1 − xE) = det(2− x) = 2− x .

The only eigenvalue is µ1 = 2 of multiplicity 1. Thus we get fG1(m) = β02
m. Since

fG1(0) = 1 = β02
0 = β0 we obtain β0 = 1 which yields fG1(m) = 2m for m ≥ 0.

Considering G2 we have

χ2(x) = det(MG2 − xE) = det

(
−x 0
1 1− x

)
= −x(1− x) .

Therefore the eigenvalues of G2 are µ1 = 0 and µ2 = 1 which both are of multiplicity 1.
Thus

fG2(m) = β1,00
m + β2,01

m .

In the sequel we shall assume that 00 = 1 (note that 00 is an indefinite expression whose
value depends on the context). Then we have

β1,0 +β2,0 = 3 = fG2(0)

β2,0 = 2 = fG2(1).
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The solutions of this system of linear equations are β1,0 = 1 and β2,0 = 2. Consequently,

fG2(0) = 3 and fG2(m) = 2 for m ≥ 1 .

For G4, we get

χ4(x) = det(MG4 − xE) = det




1− x 0 0 0 0
1 1− x 0 0 0
0 2 1− x 0 0
1 0 0 1− x 0
0 2 1 1 −x




= (1− x)4(−x) .

Thus the eigenvalues of MG4 are µ1 = 1 of multiplicity 4 and µ2 = 0 of multiplicity 1.
Therefore we get

fG4(m) = β1,00
m + (β2,0 + β2,1m + β2,2m

2 + β2,3m
3)1m .

The constants β1,0, β2,0, β2,1, β2,2, β2,3 can be determined as the solutions of the following
of linear equations

β1,0 +β2,0 = 1 = fG4(0)

β2,0 +β2,1 +β2,2 +β2,3 = 4 = fG4(1)

β2,0 +2β2,1 +4β2,2 +8β2,3 = 9 = fG4(2)

β2,0 +3β2,1 +9β2,2 +27β2,3 = 16 = fG4(3)

β2,0 +4β2,1 +16β2,2 +64β2,3 = 25 = fG4(4) .

We obtain

β1,0 = 0, β2,0 = 1, β2,1 = 2, β2,2 = 1, β2,3 = 0 ,

which leads fG4(m) = 1 + 2m + m2 = (m + 1)2 for m ≥ 1.

We mention that the formulae given in Theorems 2.28 and 2.29 have some nice and
some bad features. One formula uses the Parikh vector of ω and growth matrix, which
both can directly be obtained from the given system, however, the computation of fG(m)
requires the calculation of the m-th power of a matrix. By the other formula, it is easy
to compute the value of the growth function for an arbitrarily given argument, however,
we note that it is hard to compute the eigenvalues of a growth matrix since they can be
complex and the degree of the characteristic function will be arbitrarily large for arbitrarily
large alphabets.

Theorem 2.31 Let G be a D0L system. Then the growth fG satisfies one of the following
conditions:
a) there is a constant c such that fG(m) ≤ c for all m
b) there are constants c1, c2 and p such that c1m

p ≤ fG(m) ≤ c2m
p for large m,

c) there are constants c1 and c2 such that cm
1 ≤ fG(m) ≤ cm

2 for large m.
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Proof. We only give the proof for the case that the eigenvalues of MG are non-negative real
numbers, for a general proof (including complex roots) one has to consider the absolute
values |µ| of the eigenvalues µ of MG.

If G generates a finite language, then case a) holds obviously.
Let us now assume that G generates an infinite language. Let µ be the largest eigen-

value of MG. Then

fG(m) = (β0 + β1m + β2m
2 + . . . + βt−1m

t−1)µm + R(m)

where t is the multiplicity of µ and R(m) is asymptotically smaller than (β0 +β1m+ . . .+
βt−1m

t−1)µm.
If µ > 1 holds, then fG is asymptotically equal to (β0 + β1m + . . . + βt−1m

t−1)µm. We
choose d such that

β0 + β1m + β2m
2 + . . . + βt−1m

t−1 ≤ dm

for large m. Then we get

fG(m) ≤ dmµm = (dµ)m = cm
2

for large m. On the other hand β0 + β1m + . . . + βt−1m
t−1 > 0 for large m. Therefore, we

also have
µm = cm

1 ≤ fG(m)

for large m. Thus we have case c).
If µ = 1 holds, then fG is asymptotically equal to β0 + β1m + β2m

2 + . . . + βt−1m
t−1.

Then it is easy to see that case b) holds if t ≥ 2 and that a) holds if t = 1.
If µ < 1, then (β0 +β1m+β2m

2 + . . .+βt−1m
t−1)µm tends to zero and the same holds

for R(m). Since the range of fG is the set of non-negative integers, this situation cannot
occur (since we assume that the generated language is infinite). 2

Theorem 2.31 says that we have only three different types of growth functions of D0L
systems. Thus there is no DOL system G such that fG(m) = log(m) holds. If we have
seen that the real growth of a plant is logarithmic, then we cannot take a D0L system to
model the development.

2.2 Lindenmayer systems with interaction

2.2.1 Definitions and examples

It is a well-known fact that in reality other growth function also occur, for example there
are organisms with logarithmic growth. The development of such an organism cannot be
modelled by D0L systems.

In order to obtain more powerful systems one can take into consideration the context
of a cell, i.e., the rules for the development of a cell does not only depend on the cell itself,
it also depends on neighbouring cells. This reflects the biological situation much better
than the case without interaction considered in the preceding section.

Again, we model the cells by elements of an alphabet and the organisms by words.
However, we assume that the development of a cell in an organism depends on its k left
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[12] T. Head, Gh. Păun and D. Pixton, Language theory and molecular genetics. In:
[30], Vol. II, Chapter 7, 295–360

[13] G.T. Herman and G. Rozenberg, Developmental Systems and Languages. North-
Holland Publ. Co., Amsterdam, 1975.

43



[14] D. Janssens, G. Rozenberg and R. Verraedt, On sequential and parallel node-
rewriting graph grammars. Part I, Computer Graphics and Image Processing 18
(1982) 279–304 and Part II, Computer Vision, graphics and Image Processing 23
(1983) 295–312.

[15] L. Kari, G. Rozenberg and A. Salomaa, L systems. In: [30], Vol. I, Chapter 5,
253–328.

[16] A. Lindenmayer, Mathematical models for cellular interaction in development I
and II. J. Theoret. Biol. 18 (1968) 280–315.

[17] A. Lindenmayer and G. Rozenberg (eds.), Automata, Languages, Development.
North-Holland Publ. Co., 1976.

[18] R. J. Lipton, Using DNA to solve NP-complete problems. Science 268 (1995) 542–
545.

[19] J. Opatrny and K. Culik II, Time complexity of recognition and parsing of E0L
languages. In [17], 243–250.
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