
Contents

Introduction 1

1 Basics of Mathematics and Formal Languages 5

1.1 Sets, Words, Multisets . 5
1.2 Linear Algebra . 7
1.3 Formal Languages . 8

2 Lindenmayer Systems 13

2.1 The Basic Model – 0L Systems . 13
2.1.1 Two Biological Examples . 13
2.1.2 Definitions and Examples . 16
2.1.3 The Basic Hierarchy . 23
2.1.4 Adult languages . 27
2.1.5 Decision problems . 32
2.1.6 Growth functions . 36

2.2 Lindenmayer systems with interaction . 41
2.2.1 Definitions and examples . 41
2.2.2 Some results on Lindenmayer systems with interaction 46

3 DNA Molecules and Formal Languages 55

3.1 Basics from biology . 55
3.2 Adleman’s experiment . 60

Bibliography 63

3

neighbours and its l right neighbours. Obviously, the first and last letters do not have k
and l neighbours, respectively. Therefore we add a new letter $ and prolongate the word
by powers of $ to the right and to the left such that any letter has k left and l right
neighbours. Furthermore, we require a completeness condition to ensure that we have a
rule for any situation which can occur. Then, for any letter in a word, we have k left and
l right neighbours and a rule with respect to these neighbours. Again, the application of
rules is a purely parallel process of rewritings.

Formally we get the following concepts.

Definition 2.32 Let k and l be two non-negative integers. A < k, l > Lindenmayer sys-
tem (< k, l >L system for short) is a quadruple G = (V, $, P, ω) where

1. V is an alphabet, and $ is a symbol not occurring in V (used as an endmarker),

2. P is a finite set of quadruples (u, a, v, w) where

(a) u = $ru′ for some r ∈ N0 and some u′ ∈ V ∗ with |u| = k − r,

(b) a ∈ V ,

(c) v = v′$s for some s ∈ N0 and some v′ ∈ V ∗ with |v| = l − s,

(d) w ∈ V ∗

and, for any triple (u, a, v) with the properties a), b) and c), there is a w ∈ V ∗ such
that (u, a, v, w) ∈ P .

3. ω is a non-empty word over V .

As usual we write (u, a, v) → w instead of (u, a, v, w). Moreover, if we consider a
< k, 0 >L or < 0, l >L system, then we omit the non-existing context to the right or to
the left, and write only (u, a) → w or (a, v) → w, respectively.

Definition 2.33 Let G be a < k, l >L system as in Definition 2.32.
i) Let x be a non-empty word over V and y ∈ V ∗. We say that x directly derives y

(written as x =⇒G y or x =⇒ y if G is understood) if the following conditions are satisfied:

• x = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,

• y = y1y2 . . . yn,

• (ui, ai, vi) → yi ∈ P where

ui =

{

$k−i+1a1a2 . . . ai−1 for 1 ≤ i ≤ k
ai−kai−k+1 . . . ai−1 for k < i

and

vi =

{

ai+1ai+2 . . . ai+l for i + l ≤ n
ai+1ai+2 . . . an$l+i−n for n < i + l

42

ii) The language L(G) generated by G is defined as

L(G) = {z | ω =⇒∗
G z}

where =⇒∗
G denotes the reflexive and transitive closure of =⇒G.

Example 2.34 We consider the < 1, 0 >L system G7 = ({a, b, c}, $, P7, c) with

P7 = {($, a) → a2, ($, b) → b, ($, c) → a, ($, c) → ba2, (a, a) → a2}
∪{(p, q) → q | (p, q) ∈ {a, b, c} × {a, b, c} \ {(a, a)}} .

First we have the derivations c =⇒ a and c =⇒ ba2. If we have a word an, then any
letters is doubled according to the rules, which leads to a2n. Starting from a we get all
words a2n

for n ≥ 0. If we have a word bam with m ≥ 1, then we replace b by b, the first
a by a, and all remaining a’s by a2. Thus we get

ba2n+1 = baa2n

=⇒ baa2n+1

= ba2n+1+1 .

Therefore we obtain

L(G7) = {c} ∪ {a2n | n ≥ 0} ∪ {ba2n+1 | n ≥ 0} .

Example 2.35 We consider the < 1, 1 >L system G8 = ({a, b}, $, P8, ab2) with P con-
sisting of the following rules:

(u, a, b) → a2 for u ∈ {a, b, $},
(a, b, v) → b3 for v ∈ {a, b, $},
(u, z, v) → z in all other cases

Assume that we have a word anb2n. Then we have to replace the last letter a by a2, the
first letter b by b3 and the remaining letters x by x. Therefore

anb2n = an−1abb2n−1 =⇒ an−1a2b3b2n−1 = an+1b2(n+1)

for n ≥ 1, and hence
L(G8) = {anb2n | n ≥ 1} .

Example 2.36 We consider the < 1, 0 >L system G9 = ({a, b, o, r}, $, P9, ar) with P9

consisting of the following rules:

($, a) → o, (o, a) → b, (o, b) → o, (o, r) → ar,

(u, o) → a for u ∈ {a, b, o, r, $},
(u, z) → z in all other cases

We note that the system is deterministic because, for any pair (u, a), there is exactly one
rule (u, a) → w. Then we get the only derivation

ar =⇒ or =⇒ aar =⇒ oar =⇒ abr =⇒ obr =⇒ aor

=⇒ oaar =⇒ abar =⇒ obar =⇒ aoar =⇒ oabr =⇒ abbr

=⇒ obbr =⇒ aobr =⇒ oaor =⇒ abaar =⇒ obaar =⇒ . . .

43

We shall not determine the language in detail, but we note some properties of the sequence
generated.

Fact 1: Each word of L(G9) starts with o or a.

The statement holds for the start word, and in the sequel o and a alternate as the first
letter by the rules ($, a) → o and ($, o) → a.

Fact 2: No word of L(G9) has the subword oo.

If we want to produce an o which is not in the beginning of the word, then we have
to apply the rule (o, b) → o. This requires that the word to which we apply the rule is of
the form x1obx2 for some words x1 and x2. If x1 ends on a letter different from o, then
we get x′

1aox′
2. That means, in order to produce oo as a subword in v′ with v =⇒ v′ the

word v has already to contain the subword oo. Because the start word does not contain
oo as a subword, no word of L(G9) contains oo.

Fact 3: For any words u, v ∈ {a, b, o}+ and z ∈ {a, b}∗ we have derivations ubzr =⇒∗

u′ozr and vazr =⇒∗ v′abzr for some u′ and v′ with |u′| = |u| and |v′| = |v| − 1.

We prove the statement by simultaneous induction on the length of u and v.
Let |u| = 1. By Fact 1, u = o or u = a, we have the derivations obzr =⇒ aozr

and abzr =⇒ obzr =⇒ aozr, respectively. Thus the induction basis holds for ubzr.
Analogously we prove it for vazr.

Let |v| ≥ 2. We distinguish three cases.
Case 1: v = v1o. Then vazr = v1oazr =⇒ v′

1abzr, and |v′
1| = |v1| = |v| − 1. Therefore

the induction step is done.
Case 2: v = v1b. Then vazr = v1bazr. Now we apply the induction assumption for v1bz

′r
with z′ = az (this can be done since |v1| = |v| − 1 < |v|)and get v1bz

′r =⇒∗ v′
1oz

′r =
v′
1oazr =⇒ v′′

1abzr and |v′′
1 | = |v′

1| = |v1| = |v| − 1.
Case 3: v = v1a. Then vazr = v1aazr =⇒∗ v′

1abazr by induction hypothesis. Moreover,
|v′

1ab| = |v′
1|+ 2 = |v1|+ 1 = |v|. By Case 2 (with v′ = v′

1ab and |v′| = |v|), we know that
v′
1abazr = v′azr =⇒∗ v′′abzr with |v′′| = |v′| − 1 = |v′

1ab| − 1 = |v| − 1.
Analogously we prove the statement for |u| ≥ 2.

Now assume that in some step of the derivation we have an extension of the word with
respect to the length. By the rules, the only possibility is xor =⇒ yar. Let |yar| = s + 2.
Now, by Fact 3, we have the following derivation

yar =⇒∗ y1abr =⇒∗ y2abbr =⇒∗ y3abbbr =⇒∗ . . . =⇒∗ ys−1abs−1r =⇒∗ absr (2.11)

where s = |y|+ 1 = |yi| + i for 1 ≤ i ≤, followed by the derivation

absr =⇒ obsr =⇒ p1ob
s−1r =⇒ p2ob

s−2r =⇒ . . . =⇒ psor =⇒ ps+1aar (2.12)

where |pi| = i for 1 ≤ i ≤ s and |ps+1| = s. Therefore we get a word of length s + 3.
This proves that L(G9) is infinite.

Example 2.37 For any k ∈ N0 and any l ∈ N0, the context-free language

L = {anb2n | n ≥ 1} ∪ {a2nbn | n ≥ 1}

cannot be generated by a < k, l >L systems. This can be seen as follows.

44

Assume the contrary, i.e., there is a < k, l >L system G = ({a, b}, $, P, ω) for some
non-negative integers k and l such that L(G) = L.

To words anb2n and a2nbn with sufficiently large n, we can only apply rules with left
hand sides ($rak−r, a, al), (ak, a, asbl−s), (arbk−r, b, bl) and (bl, b, bs$l−s) with 0 ≤ r ≤ k
and 0 ≤ s ≤ l. We prove some facts on the rules with these left hand sides.

Fact 1: If ($rak−r, a, al) → w ∈ P , then w ∈ a∗, and if (bk, b, bs$l−s) → v ∈ P , then
v ∈ b∗.

We prove the statement only for (ak, a, al); the proof for the other cases can be given
analogously.

Let n > k. Let anb2n = akaan−k+1b2n. If (ak, a, al) → w ∈ P and w contains a b, then
all a’s in a word which is generated from anb2n in one derivation step have there origin
in the the first k + 1 letters of anb2n. The same holds for words generated from a2nbn.
However, then we cannot produce words which start with an arbitrarily large numbers of
a’s, since a finite number of letters can produce only words of limited length.

Fact 2: If ($rak−r, a, al) → w1 ∈ P and ($rak−r, a, al) → w2 ∈ P , then w1 = w2, and
if (bk, b, bs$l−s) =→ v1 ∈ P and (bk, b, bs$l−s) =→ v2 ∈ P , then v1 = v2.

Again, we prove the statement only for (ak, a, al). Let (ak, a, al) → w1 and (ak, a, al) →
w2 be two rules in P . Let n ≥ k + l + 2, then we have the derivations anb2n =
akaan−k−1b2n = u1w1u2 and anb2n =⇒ u1w2u2 where u1 and u2 are obtained from ak

and an−k−1, respectively. By Fact 1, u1 contains only the letter a and u2 starts with a. If
u1w1u2 = arbs ∈ L(G) = L then u1w2u2 = ar′bs. If r = r′, then w1 = w2, and we are done.
If r 6= r′, then we can assume without loss of generality, that r = 2s and r′ = s/2. Thus
r−r′ = 3s/2 which is arbitrarily large for arbitrarily large n. However, r−r ′ = |w1|−|w2|
is bounded.

Fact 3: For sufficiently large n, the subword akbl of anb2n or a2nbn generates a uniquely
determined word ap′bq′ for some p′ ≥ 0 and q′ ≥ 0.

The proof is analogous to that of Fact 2.

Let (ak, a, al) → as and (bk, b, bl) → bt be the only rules for (ak, a, al) and (bk, b, bl),
respectively. We note that s ≥ 1 and t ≥ 1, since we cannot generate an infinite number
of occurrences of a and/or b, otherwise.

Moreover, by Facts 1 and 2, the the first k letters and the last l letters of anb2n

and a2nbn, where n is sufficiently large, generate uniquely determined words ap and bq,
respectively. Thus, for sufficiently large n, we have the unique derivations

anb2n =⇒ apa(n−k−l)sap′bq′b2n−k−l)tbq = ap+p′+(n−k−l)sbq+q′+(2n−k−l)t (2.13)

and

a2nbn =⇒ apa(2n−k−l)sap′bq′bn−k−l)tbq = ap+p′+(2n−k−l)sbq+q′+(n−k−l)t . (2.14)

Fact 4: There is a number n0 such that, for all n ≥ n0, any word anb2n generates only
words amb2m for some m and any word a2nbn generates only words a2m′

bm′

for some m′.

Assume the contrary, i.e., anb2n =⇒ a2mbm for some m or a2nbn =⇒ am′

b2m′

for some
m′. We only discuss the former case; the latter one can be handle analogously. By (2.13),
we get

2m = p + p′ + (n − k − l)s and m = q + q′ + (2n − k − l)t .

45

By an easy calculation we get

n =
p + p′ − 2q − 2q′ + k(2t − s) + l(2t − s)

4t − s
.

This is a contradiction, since the left side is unbounded, but the right side is a constant.

Fact 5: s = t = 1.

Let n be sufficiently large. By (2.13), from anb2n for sufficiently large n we derive
amb2m with m = p + p′ + (n − k − l)s. Let w = an′

b2n′

be the word which generates
am+1b2(m+1) (w has to have this form by Fact 4). By (2.13) we have

p + p′ + (n′ − k − l)s = m + 1 = p + p′ + (n − k − l)s + 1 .

Thus (n′ − n)s = 1. This can only hold iff s = 1 and n′ = n + 1.

Analogously, we show t = 1.

Let anb2n =⇒ amb2m and a2nbn =⇒ a2m′

bm′

. Then we have

m = p + p′ + (n − k − l), 2m = q + q′ + (2n − k − l),
2m′ = p + p′ + (2n − k − l), m′ = q + q′ + (n − k − l).

by (2.13), (2.14) and Fact 5. By an easy calculation one gets p + p′ = q + q′ and then

m = 2m − m = q + q′ + (2n − k − l) − (p + p′ + (n − k − l) = n .

Therefore we only generate a finite language in contrast to the infinity of L = L(G).

2.2.2 Some results on Lindenmayer systems with interaction

For k ∈ N0 and l ∈ N0, by L(< k, l > L) we denote the family of all languages generated
by < k, l >L systems. Further we set

L(IL) =
⋃

k≥0,l≥0

L(< k, l > L) .

From the definitions we get directly the following statement.

Corollary 2.38 i) L(< 0, 0 > L) = L(0L).
ii) L(< k, l > L) ⊆ L(< k′, l′ > L) ⊆ L(IL) for any k, k′, l, l′ ∈ N0, k ≤ k′ and l ≤ l′. 2

First we study the relations between families of Lindenmayer languages with interac-
tion and languages of the Chomsky hierarchy.

Lemma 2.39 For any recursively enumerable language L ⊆ T ∗ there is a < 1, 1 >L
system G such that L(G) ∩ T ∗ = L.

46

Proof. Let L be a recursively enumerable language. Then L = L(H) for some grammar
H = (N, T, P, S) in Kuroda normal form (see Theorem 1.5). With any rule p = AB →
CD ∈ P we associate the two new letters Al,p and Br,p. We define

N ′ = {A′ | a ∈ N},
Nl = {Al,p | p = AB → CD ∈ P},
Nr = {Br,p | p = AB → CD ∈ P},
V = N ∪ N ′ ∪ Nl ∪ Nr ∪ T ∪ {F},
V ′ = V ∪ {$},
PT = {(u, a, v) → a | a ∈ T, u, v ∈ V ′},
PN = {(u, A, v) → A | A = A′ or A = Ar,p or A = Al,q for some p, q ∈ P, u, v ∈ V ′},
PN ′ = {(u, A′, v) → A | A ∈ N, u, v ∈ V ′} ∪ {(u, A′, v) → w | A → w ∈ P, u, v ∈ V ′},
Pr,l = {(u, Al,p, Br,p) → C | p = AB → CD ∈ P, u ∈ V ′}

∪{(Al,p, Br,p, v) → D | p = AB → CD ∈ P, v ∈ V ′}
∪{(u, Al,p, v) → F | u ∈ V ′, v ∈ V ′ \ {Br,p}}
∪{(u, Al,p, v) → F | u ∈ V ′ \ {Al,p}, v ∈ V ′},

P ′ = PT ∪ PN ∪ PN ′ ∪ Pr,l ∪ {(u, F, v) → F 2 | u, v ∈ V }

and consider the < 1, 1 >L system G = (V, $, P ′, S).
Let w be a sentential form generated by H and assume that w ∈ L(G) (note that

these requirements hold for the axiom) and let w =⇒H w′ by an application of the rule
p = AB → CD ∈ P . Then we replace the occurrences of A and B to which p is applied
by Al,p and Br,p, respectively, all remaining nonterminals E by the associated E ′ and any
terminal a by a. This corresponds to a derivation step in G which yields a word w′′. To
any occurrence of a symbol E ′ in w′′ we apply (u, E ′, v) → E, to any terminal a in w′′ we
apply (u, a, v) → a, and we apply (u, Al,p, Br,p) → C and (Al,p, Br,p, v) → D. This leads
to w′. Analogously, we can prove that derivation steps in H with an application of rules
of the forms A → B or A → a or A → λ can be simulated in G. Thus any sentential
form of H belongs to L(G), too. Since L(H) is the intersection of all sentential forms of
H with T ∗, we have L(H) ⊆ L(G) ∩ T ∗.

Conversely, by arguments as above, it is easy to see, that any sentential form of G is
a sentential form of H or it contains the letter F . Thus L(G) ∩ T ∗ ⊆ L(H).

Therefore, L(G) ∩ T ∗ = L(H) = L. 2

Theorem 2.40 The diagram of Figure 2.7 holds.

Proof. i) L(REG) ⊂ L(IL).
By Theorem 2.13, there exists a 0L language L which is not regular. Since L ∈ L(IL) by
Corollary 2.38, we have a language in L(IL)\ cL(REG). Thus it is sufficient to prove the
inclusion L(REG) ⊆ L(IL).

Assume that K ⊂ V ∗ is a regular language. Then K is accepted by a deterministic
finite automaton A = (V, Z, z0, F, δ). Let n = #(Z).

We first note that K contains a word whose length is at most n. Assume the contrary,
i.e., the shortest word w of K has a length r ≥ n + 1. Let w = a1a2 . . . ar. We consider

47

L(RE)

L(CS)

OO

L(IL)

BB������������������
L(CF)

OO

L(0L)

OO

BB������������������
L(REG)

OOeeKKKKKKKKKK

Figure 2.7: Relations between families of Lindenmayer languages with interaction and
languages of the Chomsky hierarchy

the states zi = δ(z0, a1a2 . . . ai) for 1 ≤ i ≤ r}. We have at least n + 1 elements zi, but
only n states. Thus there are two numbers i and j, 1 ≤ i < j ≤ r such that zi = zj. By
w ∈ K, we have

δ(z0, a1 . . . ar) = δ(δ(z0, a1 . . . aj), aj+1 . . . ar) = δ(zj, aj+1 . . . ar) ∈ F .

Furthermore,

δ(z0, a1 . . . aiaj+1 . . . ar) = δ(δ(z0, a1 . . . ai), aj+1 . . . ar)

= δ(zi, aj+1 . . . ar)

= δ(zj, aj+1 . . . ar) ∈ F .

Therefore v = a1a2 . . . aiaj+1aj+2 . . . ar ∈ K and |v| = r − (j − i) < r which contradicts
the choice of w as a shortest word in K.

Analogously, we prove that, for any state z, there is a word w of length at most n with
δ(z, w) = z or there is no word v with δ(z, v) = z.

Now we construct the < n + 1, n >L system H = (V, $, P, ω) where ω is one word in
K with length at most n and P consists of all rules of the form

a1) ($n+1, b1, b2b3 . . . bs$
n−s+1) → w,

where s ≤ n and w is a word of K of length at most 2n,

a2) ($n−r+1b1b2 . . . br, br+1, br+2br+3 . . . bs$
n−s+r) → λ,

where r + 1 ≤ s ≤ n

(by rules of these types we generate all words of K of length at most 2n from a word of
length at most n),

48

b1) ($n+1, a0, a1a2 . . . an) → w,
where ai ∈ V for 0 ≤ i ≤ n and w = a0a1 . . . atvat+1at+2 . . . an

for some v ∈ V ∗ with |v| ≤ n, δ(z0, a0 . . . at) = δ(z0, a0 . . . atv),

b2) ($n−r+1c1c2 . . . cr, a, d1d2 . . . dn) → λ,
where 1 ≤ r ≤ n, ci ∈ V for 1 ≤ i ≤ r, di ∈ V ∪ {$} for 1 ≤ i ≤ n,

d1d2 . . . dn ∈ V s{$}n−s, r + s ≥ n

b3) (c1c2 . . . cn+1, a, d1d2 . . . dn) → a,
where ci ∈ V for 1 ≤ i ≤ n + 1, di ∈ V ∪ {$} for 1 ≤ i ≤ n,

d1d2 . . . dn ∈ V s{$}n−s, s ≥ 0

(by these rules, for a word x of length at most n + 1, i.e., x = a0a1 . . . anx′, we have a
derivation

a0a1 . . . atat+1at+2 . . . anx′ =⇒ a0a1 . . . atvat+1at+2 . . . anx′ (2.15)

where v is an arbitrary word with

δ(z0, a0 . . . at) = δ(z0, a0 . . . atv) and |v| ≤ n . (2.16)

We now prove that L(H) ⊆ K. By definition, the start word belongs to K. Moreover,
all words generated from the start word by an application of rules of type a1) and a2)
yield a word of K, and rules of types b1), b2) and b3) cannot be applied to the start
word. Further, if x ∈ K and we apply rules of type b1), b2) and b3) to x, then

δ(z0, a0a1 . . . atat+1at+2 . . . anx′) = δ(z0, a0a1 . . . atvat+1at+2 . . . anx′)

which implies that the generated word a0a1 . . . atvat+1at+2 . . . anx′ belongs to T (A) = K,
too. Thus we produce only words of K.

Conversely, K ⊆ L(H) also holds. This can easily be proved by induction on the length
of the words of K. If w ∈ K has a length at most 2n, then w can be produced by a1) and
a2) applied to the start word. Thus the induction basis is satisfied. If w ∈ K has a length r
with r > 2n, i.e., w = e1e2 . . . en+1v, then there are integers i and j with 1 ≤ i < j ≤ n+1
and δ(z0, e1e2 . . . ei) = δ(z0, e1e2 . . . ej). Thus w′ = e1e2 . . . eiej+1ej+2 . . . en+1v belongs to
K. By induction hypothesis, w′ ∈ L(H). Now we are able to produce w from w′ by an
applications of rules of type b1), b2) and b3). Therefore w ∈ L(H).

ii) L(0L) ⊆ L(IL).
The inclusion holds by definition. Since, by Theorem ??, there is a regular language R
which is not in L(0L). By part i) of this proof R ∈ L(IL) \ L(0L) holds. Thus the
inclusion is proper.

iii) L(IL) and L(CF) are incomparable.
Since L(0L) contains a non-context-free language, it follows that L(IL) as a superset of
L(0L) contains a non-context-free language.

On the other hand by Example 2.37 the context-free language

{anb2n | n ≥ 1} ∪ {a2nbn | n ≥ 1}

is not a < k, l >L language for any k ∈ N0 and l ∈ N0.

iv) L(IL) ⊂ L(RE).
In analogy to the proof that any 0L language can be generated by a phrase structure

49

grammar, we can show that any < k, l >L language is in L(RE). Therefore L(IL) ⊆
L(RE). The strictness of this inclusion follows from the Example 2.37.

v) L(IL) and L(CS) are incomparable.
The existence of a context-sensitive language which is not in L(IL) follows by Example

2.37.
Now let M be a set with M ∈ L(RE) and M /∈ L(CS). Such a set exists by the

proper inclusion of L(CS) in L(RE). By Lemma 2.39, there is a < 1, 1 >L system G
and a set T with L(G) ∩ T ∗ = M . If L(G) is context-sensitive, then M ∈ L(CS) by
the known closure properties of L(CS) (see Chapter 1). Thus L(G) /∈ L(CS). Therefore
L(IL) contains a non-context-sensitive language. 2

We now compare the families L(< k, l > L) with each other.

Lemma 2.41 For any k, k′, l, l′ ∈ N with k + l = k′ + l′, L(< k, l > L) = L(< k′, l′ > L).

Proof. We first prove L(< k, l > L) = L(< k + 1, l − 1 > L) for k ≥ 1 and l ≥ 2. Let
G = (V, $, P, ω) be a < k, l >L system. Then we construct the < k + 1, l − 1 >L system
G′ = (V, $, P ′, ω) where P ′ consists of all rules of the form
– ($k+1, a, v) → λ where |v| = l − 1 2,
– (ub, a, v) → w where (u, b, av) → w ∈ P , |u| = k, |v| = l − 1, v 6= $l−1,
– (cub, a, $l−1) → w1w2 where (cu, b, a$l−1) → w1 ∈ P , (ub, a, $l) → w2 ∈ P , |c| = 1,
|u| = k − 1.

Obviously, z =⇒G z′ if and only if z =⇒G′ z′. The only difference is that in G′ the
first letter is replaced by λ, the i-th letter is replaced by w in G′ iff the (i− 1)-st letter is
replaced by w in G, and the last letter is replaced by w1w2 in G′ iff the last two letters
are replaced by w1 and w2, respectively, in G. Therefore, L(G) = L(G′).

By an iterated application of equalities of this type, we get

L(< k, 1 > L) = L(< k − 1, 2 > L) = L(< k − 2, 3 > L) = . . . = L(< 1, k > L) .

2

For k ≥ 2, we set L(kL) = L(< 1, k − 1 > L).
By Lemma 2.41, L(kL) = L(< s, r > L) for any s ∈ N and r ∈ N with s + r = k.

Lemma 2.42 For any k, k′, l, l′ ∈ N0 with k ≤ k′, l ≤ l′ and k + l < k′ + l′,

L(< k, l > L) ⊂ L(< k′, l′ > L).

Proof. For a proof of this lemma, we refer to [13]. 2

The following theorem relates the families L(< k, l > L) to each other.

Theorem 2.43 The diagram of Figure 2.8 holds.

Proof. All inclusions and their strictnesses follow by Lemmas 2.41 and 2.42.

2We give here only the length of the words, their forms depend on the possibilities which are allowed
by the rules in a < k, l >L system.

50

...

... L(4L)

OO

...

L(< 3, 0 > L)

OO 88ppppppppppp

L(3L)

OO

L(< 0, 3 > L)

OOffNNNNNNNNNNN

L(< 2, 0 > L)

OO 77ppppppppppp

L(2L)

OO

L(< 0, 2 > L)

OOggNNNNNNNNNNN

L(< 1, 0 > L)

OO 77ppppppppppp

L(< 0, 1 > L)

OOggNNNNNNNNNNN

L(0L)

77ppppppppppp

ggNNNNNNNNNNN

Figure 2.8: Relations between families of Lindenmayer languages with interaction

We now prove the existence of a language L ∈ L(< 1, 0 > L) which is not contained
in L(< 0, l > L) for any l ≥ 1. This shows that no family of the left chain is contained in
some family of the right chain.

Let

L = {c} ∪ {a2n | n ≥ 0} ∪ {ba2n+1 | n ≥ 0} .

By Example 2.34, L = L(G7) for the < 1, 0 >L system G7. Therefore L ∈ L(< 1, 0 > L).

Now assume that L ∈ L(< 0, l > L) for some l ≥ 1. Let G = ({a, b, c}, $, P, ω)
be the < 0, l >L system generating L. It is easy to see that (a, v) → wa,v ∈ P and
(b, v) → wb,v ∈ P imply wa,v ∈ a∗ and wb,v ∈ ba∗ (otherwise, e.g., a2n

, n ≥ l, would
derive a word with at least two occurrences of b). Moreover, for any v, wa,v and wb,v are
uniquely determined. E.g., if (a, al) → w1 and (a, al) → w2, then we derive w′

1 = w1w
and w′

2 = w2w from a2n

with sufficiently large n where w originates from the last 2n − 1
letters. Since ||w′

1| − |w′
2|| = ||w1| − |w2|| and the length between different words over {a}

in L grows unbounded, we obtain a contradiction.

Let (a, al) → ar. If r = 0, then we cannot generate words with an unbounded number
of occurrences of a. If r = 1, then the increase of the length originates only from the
first letter b and/or the last l letters such that the increase is bounded in contrast to the
structure of the words of L.

Now assume that a2n

=⇒ a2m

with m ≥ n and (b, al) → bas. Then baa2n

=⇒
basara2m

= ba2m+r+s. Thus r + s = 1 which gives r ≤ 1 which is impossible as shown
above.

Hence in all cases we got a contradiction which shows L /∈ L(< 0, l > L).

Taking LR, by analogous arguments one can show that LR ∈ L(< 0, 1 > L) and
LR /∈ L(< k, 0 > L) for any k ∈ N which proves that no family of the right chain is
contained in some family of the left chain.

51

We omit the proof of the incomparability of L(< k, 0 > L) with L(kL) and that of
L(< 0, k > L) with L(kL). 2

Finally, we present some results on topics which we studied in Sections 1.1.4, 1.1.5 and
1.1.6 for D0L systems. We omit the exact formal definitions of adult languages and growth
functions of Lindenmayer systems with interaction. They can given by a straightforward
translation from the concepts for (deterministic) 0L systems.

We start with a characterization of adult languages of L systems with interaction.
By L(AIL) we denote the family of all adult languages which can be generated by

< k, l >L systems with k ∈ N0 and l ∈ N0.

Theorem 2.44 L(AIL) = L(RE).

Proof. Let L be an arbitrary language of L(RE). We consider the < 1, 1 >L system
constructed G constructed in the proof of Lemma 2.39. It is easy to see that LA(G) =
L(G) ∩ T ∗ = L. Thus L(RE) ⊂ L(AIL).

Let H be an arbitrary < k, l >L system. Then L(H) ∈ L(RE) by Theorem 2.40.
We construct a Turing machine M which checks for a word w whether or not w derives
only w according to the rules of H (as in the case of 0L system, if w =⇒ w is the only
derivation from w, then there is exactly one rule for any letter and its context, and thus
M has only to simulate the derivation and reject if there are more rules or one does
not get w). Because Turing machines accept recursively enumerable languages, we have
T (M) ∈ L(RE). Since LA(H) = L(H) ∩ T (M) and L(RE) is closed under intersection,
we get LA(H) ∈ L(RE). Therefore L(AIL) ⊆ L(RE). 2

By Theorem 2.40 and Theorems 2.20 and 2.44, we know that 0L systems generate a
smaller family of languages and a smaller family of adult languages than L systems with
interaction. We now show that this also holds with respect to growth functions.

Theorem 2.45 There is a deterministic < 1, 0 >L system G such that its growth function
is not a growth function of a D0L system. More precisely, fG is not bounded by a constant
and, for any polynomial p with p(m) ≥ m for all m ≥ m0 for some m0 ∈ N,

lim
m→∞

fG(m)

p(m)
= 0 .

Proof. We consider the < 1, 0 >L system G9 of Example 2.36. In Example 2.36, we have
shown that L(G9) is infinite. Therefore fG9

cannot be bounded by a constant.
Considering (2.11) and (2.12) we see that at least m derivation steps are necessary

in order to get a length extension of a word of length m by one. Thus we need at least
1 + 2 + 3 + . . . + m steps in order to obtain a word of length m + 1. Therefore we get

fG9
(
m(m + 1)

2
) ≤ m + 1

or

fG9
(m) ≤ −1

2
+

√

1 + 8m

4
≤

√
2m.

52

Therefore we get

lim
m→∞

fG9

p(m)
≤ lim

m→∞

√
2m

m
= 0 .

By Theorem 2.31, fG9
grows slower than any unbounded growth function of a D0L system.

Hence fG9
is not a growth function of a D0L system. 2

53

54

Chapter 3

DNA Molecules and Formal

Languages

3.1 Basics from biology

We do not want to give a precise introduction to DNA molecules from the biological and
chemical point of view. We here only mention some facts which are important for the
mutations and changes of DNA molecules and are the fundamentals for the operations
with DNA strands to perform computations or to describe the evolution.

The nucleotides which form the DNA strands are molecules consist of a base, which is
adenine, cytosin, guanine or thymine, a sugar group and a phosphate group. The left part
of Figure 3.1 gives the nucleotide with the thymine base. The five carbons within the sugar
group which are denoted by 1’, 2’, 3’, 4’ and 5’ in the left part of Figure 3.1 are of special
importance. Using this notation one can represent the whole molecule schematically as
done in the right part of Figure 3.1. In the sequel we shall denote these molecules by A,
C, G and T , depending on its base adenine, cytosine, guanine and thymine, respectively.

T

•

•

•

•

•

1’

2’

3’

4’

5’��

��

Figure 3.1: Molecule with thymine base.

55

The carbon group 5’ of one nucleotide and the OH group of a carbon 3’ of another
nucleotide can join, producing a phosphodiester and water. We obtain the molecule
shown in the right part of Figure 3.2. This forms a single strand. One can see that there
is direction by the joins, which we denote by 5′ → 3′. Finally, to get a double strand
the basic groups are connected. However, not all combinations are possible. We can only
combine adenine with thymine, thymine with adenine, guanine with cytosine and cytosine
with guanine. This pairing is called the Watson-Crick complementarity. Moreover, the
lower part has to have the opposite direction as the upper part. The middle part of Figure
3.2 gives a schematical description of a double stranded DNA molecule.

We note that Figure 3.2 is only an illustration. In nature, the double strands are
twisted and in a three-dimensional space, i.e., they are far from the linear structure as
given in the upper part of Figure 3.2.

Figure 3.2: Structure of a DNA strand.

In order to describe a double stranded DNA molecule it is sufficient to give the basic
parts, which are pairs

A

T
,

T

A
,

C

G
and

G

C
.

However, since the upper part uniquely determines the lower part, in many cases it is
sufficient to consider only the upper strand, which means that the DNA molecule can be
represented as a word over the alphabet {A, C, G, T}.

56

First we give a method to extract DNA strands of a certain length from a set of
DNA strands. We first produce a gel which is put into a rectangular container. Then
along one side of the container we form some wells, e.g., by means of a comb (see left
part of Figure 3.3). Then we fill a small amount of DNA strands into the wells and add
a charges at the ends of the container. Since DNA strands are negatively charged they
move through the gel from left to right. Obviously, the speed depends on the length of the
strands. Therefore taking into account the duration and the place we can select strands
of a certain length (see right part of Figure 3.3).

Figure 3.3: Measuring the length of DNA molecules by gel electrophoresis.

We now come to some operations which change the DNA under consideration.

Figure 3.4 shows the polymerase, where in the direction from 5’ to 3’ we complete a
partial double strand to a complete double strand, and the transferase, where we add in
one strand in the direction from 5’ to 3’ further nucleotides.

An important operation is the polymerase chain reaction. One cycle consists of three
steps. First we separate the bonds between the two strands by a heating to a temperature
near to the boiling temperature (see upper part of Figure 3.5). Then we assume that in
the solution are so-called primers which are obtained from the right end of the upper
strand and the left end of the lower strand by the Watson-Crick complementarity. If we
cool the solution, then the primer are connected with the corresponding ends (see the
middle part of Figure 3.5). Finally, by a polymerase we can fill the missing parts and
obtain two copies of the original DNA strand (see lower part of Figure 3.5).

This cycle can be iterated. After some cycles we have increased drastically the number
of the strand we are interested in. Now there is a chance by some filtering to separate
this strand from the others in the solution.

We now consider the endonuclease which is an operation where the strand is cut at
certain places. There are some enzymes which recognize a part of the strand and its
direction and are able to cut the phosphodiester bond between some nucleotides.

In the right part of Figure 3.6 this procedure is shown for the restriction enzyme
Xmal which has the recognition site CCCGGG in the upper strand. If we take into
consideration the direction, then the lower part is the same. The cut is performed after

57

Figure 3.4: Polymerase

the first C in both strands, and moreover, the bonds between both strands of the molecule
are separated between the cuts.

The left part of Figure 3.6 shows the same procedure for the restriction enzyme EcoRI
with the recognition site GAATTC. However, since the recognition site occurs two times
in the DNA molecule the cut is formed at two places.

The ligase can be considered as the operation inverse to endonuclease. Here, in a first
step the upper and lower part of the overhanging parts are connected, which is called a
bonding. In a second step the ligase itself produces the connections between the free 5’
and 3’ molecules. Figure 3.7 illustrates the ligase.

The hybridization combines endonuclease and ligase. It is described in Figure 3.8. In
the first step endonuclease with the enzyme HpaII and the recognition site rs = CCGG
is done on the strands α1rsβ1 and α2rsβ2. By this operation we get four molecules and
each of them has an overhanging part. In the second step by a bonding and ligase we
paste these four molecules, however, we combine the α1-part with the β2-part and the
α2-part with the β1-part. Thus we obtain the new molecules α1rsβ2 and α2rsβ1.

In a hybridization we use the same enzyme and the same recognition site at some places
in the molecule. Obviously, one can take different enzymes with different recognition sites

58

Figure 3.5: Polymerase chain reaction

Figure 3.6: Endonuclease

and perform an operation analogous to the hybridization. This new operation is the
splicing which will be intensively studied from the formal language point of view later.

Figure 3.7: Bonding and Ligase.

59

Figure 3.8: Hybridization.

Figure 3.9 presents an example of splicing with the recognition sites TCGA and GCGC.

ACTGCCGGTTTA

TGAGGCCAAAT

↓
ACTGC CGGTTTA

TGACGGC CAAAT

GCACTCGTGATAT

CGTGAGCACTATA

↓
GCACT CGTGATAT

CGTGAGC ACTATA

↓
ACTGCCGTGATAT GCACTCGGTTTA

TGACGGCACTATA CGTGAGCCAAAT

Figure 3.9: Splicing.

3.2 Adleman’s experiment

In this section we shall demonstrate how one can solve non-biological problems by applying
the operations considered in the preceding section. We partly follow the ideas by Adleman
who was one of the first scientists solving a hard problem by easy calculations with DNA
molecules.

We consider the well-known Hamilton path problem

Instance: a graph and two nodes v0 and v1,
Answer: Yes, if there is a path containing each node exactly once and

starting in v0 and ending in v1

60

Let us consider the graph H shown in Figure 3.10. Obviously, H has a Hamiltonian path
which starts in the node labelled by 0 and follows the labels of the nodes in their natural
order (thus ending in the node labelled by 6).

GFED@ABC4

��>
>>

>>
>>

>>

��)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

GFED@ABC3

@@���������

��

GFED@ABC1oo

��

GFED@ABC0 //

@@���������

55jjjjjjjjjjjjjjjjjjjjjjjj GFED@ABC6

GFED@ABC2

DDRR

GFED@ABC5oo

@@���������

Figure 3.10: Graph whose Hamiltonian path problem is solved by DNA operations by
Adleman

A very simple algorithm to find a Hamiltonian path in a graph G with n nodes or to
find that there exists no Hamiltonian path in G consists of the following steps.

1. Construct all paths in G.

2. Take only paths of length n.

3. Take only paths starting in v0 and ending in v1.

4. Take only paths containing all nodes.

We now show how we can perform the steps 1. - 3. by means of DNA molecules.
For this purpose we model the nodes by single upper DNA strands of length 20 given

in their 5’-3’ orientation. For instance we choose

node labelled by 2 corresponds to TATCGGATCGGTATATCCGA,
node labelled by 3 corresponds to GCTATTCGAGCTTAAAGCTA,
node labelled by 4 corresponds to GGCTAGGTACGAGCATGCTT .

To model the edges we use single lower strands of length 20, too, in their 3’-5’ orientation.
Because we want to model edges we have to take into them information from the two nodes
which are connected. One simple possibility is to take the Watson-Crick complementary
of the second half of the strand modelling the start node of the edge and the first half of
the end node of the edge. Thus we obtain that the

edge from 2 to 3 is modelled by CATATAGGCTCGATAAGCTC,
edge from 3 to 4 is modelled by GAATTTCGATCCGATCCATG.

Then by hydrogen bonding and ligase the following double stranded DNA molecule

61

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTAGGCTAGGTACGAGCATGCTT

CATATAGGCTCGATAAGCTCGAATTTCGATCCGATCCATG

can be build. Its structure is of the form

v(2) v(3) v(4)

e(2, 3) e(3, 4)

where v(i) represent the node labelled by i and e(i, j) represents the edge going from the
node labelled by i to that labelled by j. This structure can be considered as a model of
the path from 2 to 4 via 3.

Therefore we can build all paths if we put the models of nodes and edges in a tube.
Thus we have performed Step 1 of the above algorithm.

The second step requires the filtering of strands with a certain length. This can be
done by the method presented in the preceding section (see Figure 3.3).

In order to perform step 3 we can take the polymerase chain reaction by which we can
produce a lot of molecules which start and stop with a certain sequence of DNA molecules.
Then we can filter out those with this start and end sequence.

We do not discuss the methods which do the fourth step.
All together we can produce a tube which contains with high probability a molecule

which represents a hamiltonian path, i.e., we can solve the Hamilton path problem by
means of DNA molecules and operations on it.

However, two critical remarks are necessary. First, in order to get a probability which is
very near to one, we need a very large number of molecules, at least much more molecules
as we can put in a tube. Second, the execution of the steps by the methods given above
takes some time; Adleman needs hours to solve the Hamilton path problem for the graph
H of Figure 3.10, i.e., its solving by DNA structures takes more time than the solving by
electronic computers.

On the other side, Adleman implemented its solving process by methods which only
need a number of steps which is linear in the number of nodes. This contrast the well-
known fact that the Hamilton path problem is NP-complete1, which means that we cannot
expect an polynomial algorithm for this problem if we restrict to classical deterministic and
sequential algorithms. Moreover, Lipton (see [18]) has presented a general method which
allows a polynomial DNA computation for a lot of NP-complete problems. Therefore
DNA computing can be considered as a method to solve hard problems in polynomial
time (if we have fast implementations of the DNA operations).

Note that the existence of polynomial DNA algorithms for NP-complete problems is
not surprising, since it is based on a parallelism since many molecules act in each step. We
know that NP-complete problems can be solved in polynomial time by nondeterministic
algorithms.

1For the basic concepts of complexity theory we refer to [6].

62

