
Prof. Dr. Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

F O R M A L L A N G U A G E S

A N D

B I O L O G I C A L P R O C E S S E S

Vorlesungsmanuskript

Magdeburg, April - July 2008

Introduction

In the end of the fifties as N. Chomsky has introduced the well-known classes of reg-
ular, context-free and context-sensitive languages the aim was to model the syntax of
natural languages. Based on the Backus-Naur form for the description of the syntax
of programming languages, in the beginning of the sixties S. Ginsburg and H.G. Rice
noticed that the grammars introduced by Chomsky can be used for programming lan-
guages, too. Since that time until at least the middle of the seventies most investigations
to formal languages followed this approach. The central feature of such grammars is a
sequential process of rewriting of subwords.

On the other hand one has to mention that already since the fifties there exist some
devices nearly related to formal languages which were motivated and/or applied to biolog-
ical phenomena. The well-known Kleene Theorem on the description of regular languages
by means of algebraic operations was discovered by S.C. Kleene as he represented the
events in nerve nets. Furthermore, it was known that cellular automata are able to a
self-replicating behaviour known from biological organisms or colonies of organisms. But
in both cases, in order to model the biological processes finite automata or collections of
finite automata have been used.

Since the seventies the situation changed completely. Motivated by biological processes
new types of grammars have been introduced and their investigation dominated in a
certain sense the development of the theory of formal languages.

In 1968 the first approach was initiated by A. Lindenmayer (see [16]. Cell divisions,
changes of states of the cells, death of cells etc. were modelled by production as one uses
in Chomsky grammars. However, the rewriting process by application of rules is a parallel
one because cell divisions, changes of cell states etc. proceed in parallel. The large interest
in these Lindenmayer systems originated from the biological motivation as well as by the
interest in a comparison between sequential and parallel processes in computer science.
The monograph [13] presents a summary of the state of the theory of developmental sys-
tems and languages in 1975 and considers intensively motivation from and application to
bilogy, whereas the monograph [27] emphasizes the mathematical theory of such systems.
Further summaries and material can be found in [26], [17], [28], [29], [15]. In [25] the
authors use Lindenmayer systems to generate graphical representations of plants.

Although DNA sequences are twisted strands (in a 3-dimensional space) it is very nat-
ural to model them by (linear) strings/words. Mutations of DNA sequences, genes, chro-
mosomes etc. caused by deletions, insertions, splicings, inversions etc. can be described
by operations on words. Iterated applications of these operations model the evolution
of molecules. Thus we have sequential process, again, however, the basic step is not a
rewriting. After the first investigations in this direction by T. Head (see [11]) in the last

1

decade a lot of papers appeared studying the behaviour of formal languages under these
operations. Moreover, one has to mention that these considerations are nearly related to
some aspects of molecular computing (see [1], [18]). The book [23] is the first monograph
on this topic, summaries are contained in [2], [12], [24], [7].

An approach – called membrane systems – to describe the behaviour of a single cell was
startet by Gh. Păun in the paper [21]. A cell is considered as an object with membranes
which define substructures of the cell, e.g. the kernel of the cell. Changes of the objects
in the different regions of the cell are described by rules associated with the regions.
However, the rules are not applied to words as in the two types of grammars mentioned
above, the rules are applied to multisets since the objects in a region form a multiset.
The books [22] and [2] summarize parts of the theory developed for these grammatical
systems.

We mention that these three new types of grammars/languages are natural by their
motivation from biology as well as by the fact that they allow nice characterizations of
well-known classes of formal languages.

In this lecture we shall emphasize Lindenmayer systems, languages and systems using
operations as splicing and membrane systems. We shall omit grammars with valuations
(see [5]), eco-grammar systems (see [4]) and other language generating devices modelling
aspects of biology.

Throughout this lecture we assume that the students/reader is familiar with the ba-
sic concepts of the theory of formal languages as usually presented in basic courses on
Theoretical Computer Science and with some facts of mathematics (especially linear al-
gebra, theory of difference equations, combinatorial formulae, etc). The notation, some
definitions and results are summarized in the first chapter.

Jürgen Dassow April - July 2008

2

Contents

Introduction 1

1 Basics of Mathematics and Formal Languages 5
1.1 Sets, Words, Multisets . 5
1.2 Linear Algebra . 7
1.3 Formal Languages . 8

2 Lindenmayer Systems 13
2.1 The Basic Model – 0L Systems . 13

2.1.1 Two Biological Examples . 13
2.1.2 Definitions and Examples . 16
2.1.3 The Basic Hierarchy . 23
2.1.4 Adult languages . 27
2.1.5 Decision problems . 32
2.1.6 Growth functions . 36

2.2 Lindenmayer systems with interaction . 41
2.2.1 Definitions and examples . 41
2.2.2 Some results on Lindenmayer systems with interaction 46

3 DNA Molecules and Formal Languages 55
3.1 Basics from biology . 55
3.2 Adleman’s experiment . 60
3.3 Splicing as an operation . 63

3.3.1 Non-iterated splicing . 63
3.3.2 Iterated splicing . 69
3.3.3 Remarks on descriptional complexity 75
3.3.4 Splicing on multisets . 79

3.4 Sticker Systems . 85

4 Membrane Systems 97
4.1 Further Basics . 97
4.2 Basic Type of Membrane Systems and its Power 102
4.3 Membrane Systems with Symport/Antiport Rules 113

Bibliography 117

3

96

Chapter 4

Membrane Systems

4.1 Further Basics

In this section we introduce two further types of grammars. The common feature is that
they use only context-free rules, however, by some restrictions in the application of rules a
larger generative power than that of context-free grammars is obtained. These grammars
will be used in the sequel to discuss the power of membrane systems which are the subject
of this chapter.

We start with the definition of a matrix grammar1. Essentially instead of context-free
rules finite sequences of context-free rules are considered and if one applies the first rule
of such a sequence one has to apply the further rules of this sequence in the given order.

Definition 4.1 i) A matrix grammar is a quintuple G = (N, T,M, S, F) where

• N , T and S are specified as in a context-free grammar,

• M = {m1,m2, . . . mn} is a finite set of finite sequence of context-free rules, i.e., for
1 ≤ i ≤ n,

mi = (Ai,1 → wi,1, Ai,2 → wi,2, . . . , Ai,ri
→ wi,ri

)

for some ri ≥ 1, Ai,j ∈ N , wi,j ∈ (N ∪ T)∗, 1 ≤ j ≤ ri,

• F is a subset of the rules occurring in the sequences mi, 1 ≤ i ≤ n.

ii) For a matrix m = (A1 → w1, A2 → w2, . . . , Ar → wr) ∈ M , we say that x derives
y by m, written as x =⇒m y if there exist words x1, x2, . . . xr+1 such that the following
conditions hold:

• x = x1, y = xr+1,

• for 0 ≤ i ≤ r − 1, xi = x′iAix
′′
i and xi+1 = x′iwix

′′
i or Ai does not occur in xi,

xi+1 = xi and Ai → wi ∈ F .

1To be precise, we introduce matrix grammar with appearance checking and with erasing rules. Be-
cause the other more restricted types of matrix grammars will not be used we only use the term matrix
grammar.

97

iii) The language L(G) generated by G consists of all words z ∈ T ∗ which have a derivation

S =⇒mi1
w1 =⇒mi2

w2 =⇒mi3
. . . =⇒mit

= wt = z

where t ≥ 1 and mij ∈ M for 1 ≤ j ≤ t.

The sequences m ∈ M are called matrices. By definition the rules of a matrix have
to be applied in the given order and all matrices of a matrix have to be applied where
applications means a usual application if the left hand side occurs in the sentential form or
no change if the left hand side does not occur in the sentential form and the rule belongs
to F .

By L(MAT) we denote the family of all languages which can be generated by matrix
grammars.

We give two examples.

Example 4.2 Let G1 = ({S, A,B}, {a, b, c}, {m1,m2,m3}, S, ∅) be a matrix grammar
with

m1 = (S → AB), m2 = (A → aAb,B → Bc), and m3 = (A → ab,B → c).

Then any derivation has the form

S =⇒m1 AB =⇒m2 aAbBc =⇒m2 a2Ab2Bc2 =⇒m2 a3Ab3Bc3 =⇒m2 . . .

=⇒m2 an−1Abn−1Bcn−1 =⇒m3 anbncn,

which yields that
L(G1) = {anbncn | n ≥ 1}.

Example 4.3 We consider the matrix grammar

G2 = ({S, A, B, X, Y, Z, #}, {a}, {m1,m2, . . . , m8}, S, {A → #, B → #})

where

m1 = (S → XA), m2 = (X → X,A → BB),
m3 = (X → Y, A → #), m4 = (Y → Y,B → A),
m5 = (Y → X,B → #), m6 = (Y → Z,B → #),
m7 = (Z → Z,A → a), m8 = (Z → λ,A → a).

Let us assume, that we have a sentential form XAn for some n ≥ 1; note that by the
application of the matrix m1 (which has been used in the first step) we obtain such a word
with n = 1. We cannot apply the matrix m3 since it introduces the nonterminal # which
cannot be replaced, i.e., the derivation cannot be terminated. Hence the only applicable
rule is m2 which gives XAn1BBAn2 with n1+n2 = n−1. Again, m2 is the only applicable
if n− 1 > 1; moreover, this situation holds as long as a letter A is present. Thus we get
after n applications of m2 the sentential form XB2n. Now the only applicable matrix is
m3 where A → # cannot be applied which is allowed by A → # ∈ F . Now we have to
proceed with 2n application of m4 which yields Y A2n. Now we have two possibilities; we
use m5 or m6. In the former case we obtain the sentential form XA2n which has the same
form as our starting sentential form; only the number of occurrences of A is doubled. In
the latter case we have to apply 2n − 1 times the matrix m7 and once m8 which results

98

in a2n (note that m8 cannot be applied earlier since we then obtain a sentential with no
occurrence of X,Y, Z, i.e., the derivation is blocked). Thus we double the number of A’s
or we terminate. Therefore

L(G2) = {a2n | n ≥ 1}.

Obviously, if all matrices have length 1, i.e., they consist of one rule only, then the
application of the matrix coincides with the application of its rule. Thus such matrix
grammars generate only context-free languages and all context-free languages can be
generated. The example shows that also non-context-free languages can be generated by
matrix grammars. Without proof we give that the generative power of matrix grammars
equals the power of arbitrary phrase structure grammars.

Theorem 4.4 L(MAT) = L(RE). 2

We now present a normal form for matrix grammars.

Definition 4.5 A matrix grammar G = (N, T,M, S, F) is in normal form if the following
conditions hold:

• N = N1 ∪N2 ∪ {S, Z, #}, S, Z /∈ N1 ∪N2, N1 ∩N2 = ∅
• any matrix of M has one of the following forms

— (S → XA) with X ∈ N1, A ∈ N2,
— (X → Y, A → w) with X, Y ∈ N1, A ∈ N2, w ∈ (N2 ∪ T)∗,
— (X → Y, A → #) with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
— (Z → λ),

• there is only one matrix of the form (S → XA) in M ,

• F consists of all rules of the form A → # with A ∈ N2.

The following theorem shows that the naming normal form is used correctly.

Theorem 4.6 For any recursively enumerable language L, there is a matrix grammar G
in normal form such that L(G) = L.

Proof. We first proof that the required special forms of matrices are sufficient. Let
L be a recursively enumerable language. By Theorem 4.4, there is a matrix grammar
G′ = (N, T, M, S ′, F) such that L(G′) = L. We assume that

N = {A1, A2, . . . , At},
M = {m1,m2, . . .mn},
mi = (Ai,1 → wi,1, Ai,2 → wi,2, . . . , Ai,ri

→ wi,ri
) for 1 ≤ i ≤ n.

We construct the matrix grammar G in normal form by the settings

N1 = {[i, j] | 1 ≤ i ≤ n, 1 ≤ j ≤ ri} ∪ {[k] | 1 ≤ k ≤ t,

N2 = N,

new letters S, Z, #,

99

(1) (S → [i, 1]S ′) for 1 ≤ i ≤ n,

(2) ([i, j] → [i, j + 1], Ai,j → wi,j) for 1 ≤ i ≤ n, 1 ≤ j < ri,

(3) ([i, j] → [i, j + 1], Ai,j → #) for 1 ≤ n, 1 ≤ j < ri, Ai,j → wi,j ∈ F,

(4) ([i, ri] → [i′, 1], Ai,ri
→ wi,ri

) for 1 ≤ i ≤ n, 1 ≤ i′ < n,

(5) ([i, ri] → [i′, 1], Ai,ri
→ #) for 1 ≤ i ≤ n, 1 ≤ i′ < n, Ai,ri

→ wi,ri
∈ F,

(6) ([i, ri] → [1], Ai,ri
→ wi,ri

) for 1 ≤ i ≤ n,

(7) ([i, ri] → [1], Ai,ri
→ #) for 1 ≤ i ≤ n, Ai,ri

→ wi,ri
∈ F,

(8) ([i] → [i + 1], Ai → #) for 1 ≤ i ≤ t− 1,

(9) ([t] → Z,At → #),

(10) (Z → λ).

We have L(G′) = L(G) by the following reasons. We start with an application of a matrix
of type (1), which says that the application of the i-th matrix is started. The simulation
is performed by applying in succession the rules of type (2) or (3) with left hand sides
[i, 1], [i, 2], . . . , [i, ri − 1] in their first rules and finishing the simulation with rules of type
(4), (5), (6) or (7) with left hand side [i, ri] in its first rule. The matrices of types (3) and
(5) can only be applied if the nonterminal Ai,j and Ai,ri

does not occur in the sentential
form since otherwise the nonterminal # is introduced which cannot be changed (there
are no rules with left hand side #), i.e., we cannot derive a terminal word. After the
simulation of a complete matrix of G′, we start another simulation of a matrix if we
applied a rule of type (4) or (5) and we start the applications of type (8) and (9) if we
applied matrices of type (6) or (7). By the matrices of type (8) and (9) we check that no
nonterminal is present in the sentential form (otherwise a # is introduced). Finally, we
cancel the first letter Z. Thus any derivation consists of simulations of the application of
matrices in G followed by a check that the word is terminal.

It remains to show that one rule of the form (S → XA) is sufficient. In order to
prove this we change G′ to G′′ = (N ∪ {S ′′}, T, M ∪ {(S ′′ → S ′), S ′′, F). It is obvious
that L(G′) = L(G′′) since any derivation has to start with S ′′ =⇒ S ′. Moreover, there
is a unique matrix (S ′′ → S ′) of G′′ which has to be used in the first step. Such the
construction of G as above starting from G′′ requires only the matrix (S → [i, 1]S ′′)
where i refers to (S ′′ → S ′). 2

The second concept is that of grammar systems2 The basic idea can be illustrated as
follows. Some (context-free) grammars are sitting around a table and a word is placed on
the table. Now a grammar G can take the word and derive it as long productions of the
grammar G are applicable. If no rule can be applied by G, then G puts the newly derived
word back to the table. Obviously, this process can be iterated. We have a cooperation
of the grammars since rules of another grammar cannot be used if a grammar works.

We now give the formal definition.

Definition 4.7 i) A grammar system with n components is an (n + 3)-tuple

G = (N, T, P1, P2, . . . , Pn, S)

2To be precise we consider here cooperating distributed grammar systems with terminating derivation
mode t; however, since other types of grammar systems are not used, we use the term grammar system
only.

100

where

• N , T , S are specified as in a context-free grammar,

• P1, P2, . . . , Pn are finite subsets of N×(N ∪T)∗, i.e., Pi is a finite set of context-free
rules for 1 ≤ i ≤ n.

ii) We say that x derives y by the set Pi, 1 ≤ i ≤ n, written as x =⇒t
Pi

y if x =⇒Pi
y,

i.e., y can be obtained from x by a derivation which only uses rules from Pi, and no rule
of Pi can be applied to y.

iii) The language L(G) generated by the grammar system G consists of all word z ∈ T ∗

which can be generated by a derivation of the form

S =⇒t
Pi1

w1 =⇒t
Pi2

w2 =⇒t
Pi3

. . . =⇒t
Pis

ws = z

for some t ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤ s.

The sets P1, P2, . . . , Pn are called the components of the grammar system.
By Ln(CF) we denote the set of languages which can be generated by grammar systems

with n components.
We now present two examples which generate the same languages as the matrix gram-

mars considered in Examples 4.2 and 4.3.

Example 4.8 Let G′
1 = ({S, A, B, A′, B′}, {a, b, c}, P1, P2, P3, S) be a grammar system

with the three components

P1 = {S → AB, A → aA′b, B → B′c}, P2 = {A′ → A,B′ → B}, P3 = {A → λ,B → λ}.

Obviously, any derivation in the grammar system G′
1 has the form

S =⇒t
P1

aA′bB′c =⇒t
P2

aAbBc =⇒t
P1

a2A′b2B′c2 =⇒t
P2

a2Ab2Bc2 =⇒t
P1

. . .

=⇒P2 anAbnBcn =⇒P3 anbncn,

which gives
L(G′

1 = {anbncn | n ≥ 1}.

Example 4.9 We consider the grammar system G′
2 = ({S, S ′}, {a}, P1, P2, P3, S) with

the three components

P1 = {S → S ′S ′}, P2 = {S ′ → S}, P3 = {S → a}.

Then any derivation is of the form

S =⇒t
P1

S ′S ′ =⇒t
P2

SS =⇒t
P1

(S ′)4 =⇒t
P2

S4 =⇒t
P1

(S ′)8 =⇒t
P2

S8 . . .

=⇒t
P2

S2t

=⇒t
P3

a2n

and, consequently,
L(G′

2) = {a2n | n ≥ 0}.

101

It is clear that a grammar system with one component is a context-free grammar.
Therefore L1(CF) = L(CF). However, if we use three components, then non-context-free
languages can be generated. The following theorem says that we need three components
in order to generate non-context-free languages and that three components are sufficient
to generate languages which can be obtained by an arbitrary number of components. We
omit the proof which needs some knowledge on further closure properties of L(CF) and
on extended tabled Lindenmayer systems.

Theorem 4.10 i) L(CF) = L1(CF) = L2(CF).

ii) For any n ≥ 3, Ln(CF) = L3(CF). 2

4.2 Basic Type of Membrane Systems and its Power

The idea of membrane systems is to model a biological cell as a computing device. A
cell is considered as a membrane which contains further membranes which can contain
membranes again. For instance the kernel of a cell gives a membrane contained in the
skin membrane of the cell. Moreover, there is a change of the contents of each of the
cells according to bio-chemical reactions inside a membrane, and there is an exchange of
molecules through the membranes. If one considers the state of the cell, i.e., the molecules
inside the membranes, as a configuration, then the above mentioned reactions lead to a
change of the configuration. Therefore we have something which looks as a computation.
However, inside of each membrane we only have a finite multiset of objects; therefore the
computation is not done via words, it is done via multisets.

In this chapter a multiset M over a finite alphabet V will be described by a word
wM such that the number #a(wM) of the letter a in the word wM coincides with the
multiplicity M(a). Obviously, wM is not determined uniquely if M is given, since a
change of the order of the letters in a word does not change the multiplicities but the
word. In the sequel we shall mostly used a word wM which fits best for our purposes.
Moreover, we shall use the words ”multiset” and ”word” as representatives of the same
object.

In Figure 1 we give a cell by the outer skin membrane 1 containing two membranes 2
and 3 and the membrane 2 contains a further membrane 4. Moreover, the content of the
cell itself is abb, the contents of the three membranes 2, 3, and 4 inside the cell are bc,
aac, and abc respectively.

The first problem is to describe the membrane structure. This can be done by a tree,
where the outer skin membrane is the root and x is a son of y if and only if the membrane
y contains the membrane x. The membrane structure of the cell given in Figure 4.1 is
then represented by

1

2

¢¢¢¢¢¢¢
3

=======

4

102

abb

bc

aacabc

1

2

3

4

Figure 4.1: A membrane structure

A further possibility to give a membrane structure is a correct sequence of indexed
brackets where the index refers to the membrane. The outer membrane is represented by
[1]1. If one has already a membrane structure where [i is followed by]i, i.e., the sequence of
brackets has the form w[i]iw

′, and the i-th membrane contains the membranes j1, j2, . . . , js,
then we get a bracket word

w[i[j1]j1 [j2]j2 . . . [js]js]i .

The structure given in Figure 4.1 is represented by [1[2[4]4]2[3]3]1.
A membrane is called simple if there is no membrane inside of it. In terms of trees

which describe a membrane structure, the leaves correspond to simple membranes.

We also have to clarify the concept of a rule in a membrane system because we cannot
only change a letter or a multiset of letters, i.e., a word, we can also move letters or
multisets of letters through membranes. Obviously, a letter is kept in a membrane, it
can go out of the membrane, or it can move into a membrane which is inside the given
membrane. Therefore we define the set Tar consisting of here, out and inj where j refers
to the j-th membrane. Thus we formally define a rule in a membrane system as a pair

(x1x2 . . . xn, (y1, t1)(y2, t2) . . . (ym, tm))

where xi and yj are letters for 1 ≤ i ≤ n and 1 ≤ j ≤ m, and tj ∈ Tar for 1 ≤ j ≤ m. The
application of this rule to the multiset x1x2 . . . xn in membrane k is performed as follows:
the multiset x1x2 . . . xn is taken away from the multiset of j, the letters yq, 1 ≤ q ≤ m,
— are added to the multiset in membrane k, if tj = here,
— are added to the multiset in membrane k′, if tj = out and membrane k′ contains
membrane j,
— are given to the environment (and are lost) if tj = out and membrane k is the outer
membrane,
— are added to the multiset in membrane p, if tj = inp and membrane k contains
membrane p. We note that, obviously, given a membrane k, the targets of the rules

103

applicable to multisets in membrane j – besides here and out – can only be numbers
of membranes which are contained in membrane k, i.e., which are sons of k in the tree
describing the membrane structure. Moreover, out defines a unique membrane or the
environment to which the letters have to go.

Again, we write x1x2 . . . xn → (y1, t1)(y2, t2) . . . (ym, tm) for a rule.
In order to simplify the notation, we write a instead of (a, here).
Before giving the formal definition of a membrane system we shortly discuss the prob-

lem of defining the generated languages. Obviously, since the membranes contain multi-
sets, only multisets can be generated. In a (context-free) grammar a derivation is finished
iff the generated word contains only terminals, or in other words, no rule can be applied
to the generated sentential forms. Therefore it is of interest to consider such multisets
which are in the system if no rule is applicable. There are at least two possibilities for the
choice of the generated multiset: take the union of all multisets present in the membranes
or choose a special membrane and take the multiset in that membrane. We shall follow
the second idea. Moreover, we shall not consider multisets, which count how often a letter
occurs; we shall consider only the number of letters occurring in the multiset, that is the
length of the word describing the multiset.

Let L be a language. Then we set

N(L) = {n | n = |w| for some w ∈ L},

i.e., N(L) is the set of all lengths of words in L.
Let X be a set of grammars. Then we set

N(X) = {N(L) | L ∈ L(X).

Without proof we mention the following statements.

Theorem 4.11 i) N(REG) = N(CF) ⊂ N(CS) ⊂ N(RE).
ii) A set M of natural numbers belongs to N(CF) if and only if there are numbers

r, s, p, q1, q2, . . . qr, p1, p2, . . . , ps such that r ≥ 0, s ≥ 0, p ≥ 1, q1 < q2 < . . . < qr < p1 <
p2 < . . . < ps and

M = {q1, q2, . . . , qr} ∪
s⋃

i=1

{pi + np | n ∈ N0}.

We now give the formal definition of a membrane system.

Definition 4.12 i) A membrane system with m membranes is a (2m + 3)-tuple

Γ = (V, µ, w1, w2, . . . wm, R1, R2, . . . Rm, i)

where

• V is a finite alphabet (of objects occurring in the membranes),

• µ is a membrane structure (of m membranes),

• for 1 ≤ j ≤ m, wj is a word over V (giving the initial content of membrane j),

104

• for 1 ≤ j ≤ m, Rj is a finite set of rules which can be applied to words in mem-
brane j,

• i is a natural number such that 1 ≤ i ≤ m and the membrane i is a simple membrane
(the output membrane).

ii) A configuration of Γ is an m-tuple of multisets/words.
For two configurations C = (u1, u2, . . . , um) and C ′ = (u′1, u

′
2, . . . , u

′
m), we say that C

is transformed to C ′ by Γ, written as C ` C ′ if and only if C ′ is obtained from C by a
maximal parallel application of rules of Ri to ui for all i, 1 ≤ i ≤ m, i.e., no rule of Ri

can be applied to the multiset which remains after subtracting all sets to which rules are
applied from ui.

iii) A configuration C = (u1, u2, . . . , um) is called halting iff no rule of Ri is applicable
to ui for 1 ≤ i ≤ m.

The language L(Γ) generated by a membrane system Γ is the set of all numbers n such
that there is a halting configuration C = (u1, u2, . . . , um) of Γ with |ui| = n.

We give two examples.

Example 4.13 We consider the membrane system

Γ1 = ({a, b, c}, [1[2]2]1, a2, λ, R1, ∅, 2)

with
R1 = {a → (a, here)(b, in2)(c, in2)

2, a2 → (a, out)2}.
Since, initially, we have two letters a in the membrane 1, we have two possibilities: we
apply two times the rule a → (a, here)(b, in2)(c, in2)

2 or we apply once the rule a2 →
(a, out)2. In the latter case both letters a are send in the environment and are lost
such that the derivation stops since no further letters are in membrane 1. In the former
case, two letters a remain in membrane 1 and two letter b and four letters c are send
inside membrane 2. If we apply n times a → (a, here)(b, in2)(c, in2)

2 and finish by one
application of a2 → (a, out)2, then we have finally 2n letters b and 4n letters c in membrane
2. Hence

L(Γ1) = {6n | n ≥ 0}.

Example 4.14 Let

Γ2 = ({A,B, D, E,X, Y, Z, a, #}, [1[2]2]1, XADE, λ, R1, ∅, 2)

be a membrane systems with two membranes where

R1 = {XADE → XBBDE, XE → Y E, AD → #, # → #,

Y BDE → Y ADE, Y D → Y D, BE → #,

Y D → Z, ZA → Z(a, in2) }
We note that any application of a rule requires an occurrence of X or Y or Z. the initial
configuration contains one such letter, namely X, and each rule produces at most one
such letter. Therefore only one such letter occurs in any configuration (and as we see

105

below, hence we can only apply one rule of R1 in each step). Furthermore, if the letter #
is introduced by some rule, then we can apply the rule # → # at every moment and thus
the system cannot reach a halting configuration, i.e., no word of L(Γ2) can be generated.

Let a configuration (XAnDE, λ) with n ≥ 1 be given: note that the initial configu-
ration is given by n = 1. Then we cannot apply XE → Y E since we also have to apply
AD → # by the maximal parallelism, which introduces #. This holds as long A is present
in the first component of the configuration. Hence we get

(XAnDE, λ) ` (XAn−1B2DE, λ) ` (XAn−2B4DE, λ) ` . . . ` (XB2nDE, λ).

Now we can use XE → Y E (and only this rule is applicable) since it cannot be accompa-
nied by DA → #. Thus we have (Y B2nDE, λ). By arguments as above we have to replace
all occurrences of B by A using the rule Y BDE → Y ADE. This yields (Y A2nDE, λ).
Now we have two cases for the continuation.

Case 1. We apply Y D → XD. Then we obtain the configuration (XA2nDE, λ) which
has the form as the configuration from which we started and the process of doubling the
A’s can be iterated.

Case 2. We apply Y D → Z. We get (ZA2nE, λ). In this configuration only ZA →
Z(a, in2) is applicable. Thus we obtain

(ZA2nE, λ) ` (ZA2n−1E, a) ` (ZA2n−2E, a2) ` . . . ` (ZE, a2n).

The last configuration is a halting one and therefore a2n belongs to L(Γ2). Therefore

L(Γ2) = {2n | n ≥ 1}.

We ask the reader to note that the membrane systems Γ2 works as the matrix grammar
G2. In both cases the introduction of # leads to a non-terminating derivation or only to
non-halting configurations, and it is necessary to replace all A’s or all B’s, before X can
be changed to Y or Y to X or Z, respectively.

We say that a rule is
– non-cooperating if it has the form a → w with a ∈ V and w ∈ (V × Tar)∗,
– cooperating if it has the form u → w with u ∈ V ∗, |u| ≥ 2, and w ∈ (V × Tar)∗.
These notions non-cooperating and cooperating correspond to context-free and context-
sensitive in usual grammars. However since in a membrane system the word are inter-
preted as multisets we have no context in membrane systems and therefore we have only
a cooperation between the letters in a multiset if the multiset is replaced.

A letter c ∈ V is called a catalyst iff all rules where c occurs have the form ca → cw
with a ∈ V and w ∈ (V ×Tar)∗, i.e., the catalyst is not changed by the reaction, however,
it is necessary that a can perform the change to w. We say that ca → cw is a catalytic
rule. Obviously, catalyst rules are a special case of cooperating rules.

We say that a membrane system is
– non-cooperating if all its rules are non-cooperating and
– catalytic if all its rules are non-cooperating or catalytic.
Otherwise, the membrane system is called cooperating.

106

By Ln(P, nco), Ln(P, cat), and Ln(P, coo) we denote the families of languages which
can be generated by non-cooperating, catalytic, and cooperating membrane systems with
at most n membranes, respectively. For X ∈ {nco, cat, coo},

L∗(P, X) =
⋃

n≥1

Ln(P,X).

By definition, for X ∈ {nco, cat, coo}, we have

L1(P, X) ⊆ L2(P, X) ⊆ L3(P,X) ⊆ . . . ⊆ Ln(P,X) ⊆ . . . ⊆ L∗(P, X). (4.1)

We first prove that the hierarchies given in (4.1) is finite for all X under consideration
and has at most two levels.

Lemma 4.15 For X ∈ {nco, cat, coo} and n ≥ 2, L1(P, X) ⊆ L2(P, X) = Ln(P, X) =
L∗(P,X).

Proof. Obviously, by (4.1) it is sufficient to prove that L∗(P,X) ⊆ L2(P, X).
The idea of the proof consist in an indexing of letters in such a way that the index

gives the membrane in which the letter is. Thus we set

V ′ = {aj | a ∈ V, 1 ≤ j ≤ m, j 6= i}

and define for 1 ≤ j ≤ m, j 6= i, the morphisms hj : V → V ′ by h(a) = aj.
Let L ∈ L∗(P,X). Then L = L(Γ) for some membrane system Γ. Let

Γ = (V, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i)

with m ≥ 3 (if m ≤ 2, then L ∈ L2(P,X) by definition). We construct the membrane
system

Γ′ = (V ′ ∪ V, [1[i]i]1, w
′
1, wi, R

′
1, R

′
i, i)

with
w′

1 = h1(w1)h2(w2) . . . hi−1(wi−1)hi+1(wi+1)hi+2(wi+2) . . . hm(wm)

and R′
1 and R′

i consisting of all rules which are constructed in the following way:

• If u → (b1, t1)(b2, t2) . . . (bs, ts) ∈ Rk with 1 ≤ k ≤ m, k 6= i, then hk(u) →
c1c2 . . . cs ∈ R′

1 where
– cr = ((br)k, here) if tr = here
– cr = ((br)p, here) if tr = inp and p 6= i,
– cr = (br, ini) if tr = ini,
– cr = ((br)l, here) if tr = out and l is the unique membrane which contains mem-
brane k in µ.

• If u → (b1, t1)(b2, t2) . . . (bs, ts) ∈ Ri with 1 ≤ k ≤ m, k 6= i, then hk(u) →
c1c2 . . . cs ∈ R′

i where
– cr = (br, here) if tr = here
– cr = ((br)l′ , out) if tr = out and l′ is the unique membrane which contains mem-
brane i in µ.

107

By these definitions,
(v1, v2, . . . , vm) ` (v′1, v

′
2, . . . , v

′
m)

in Γ if and only if

(h1(v1) . . . hi−1(vi−1)hi+1(vi+1) . . . hm(vm), vi) ` (h1(v
′
1) . . . hi−1(v

′
i−1)hi+1(v

′
i+1) . . . hm(v′m), v′i)

in Γ′. Moreover, we have that (v1, v2, . . . , vm) is a halting configuration of Γ if and only if
(h1(v1)h2(v2) . . . hi−1(vi−1)hi+1(vi+1) . . . hm(vm), vi) is a halting configuration of Γ′. There-
fore the membrane i contains the same multisets if a halting configuration is obtained.
Thus L(Γ) = L(Γ′). This implies L = L(Γ′) ∈ L2(P, X). 2

We now prove that Lemma 4.15 can be improved for nco and coo to n ≥ 1. Moreover,
we characterize L∗(P, nco) and L∗(P, coo).

Theorem 4.16 For all n ≥ 1, L1(P, nco) = Ln(P, nco) = L∗(P, nco) = N(CF).

Proof. By (4.1) and Lemma 4.15, it is sufficient to prove that N(CF) ⊆ L1(P, nco) and
L2(P, nco) ⊆ N(CF).

Let L ∈ N(CF). Then there is a context-free language L′ such that L = N(L′).
Let G be a context-free grammar generating L′. We construct the membran system
Γ = (N∪T, [1]1, S, P, 1). Note that the rules of P in Γ are a short writing of rules where the
target is here in all cases. It is obvious that a derivation S =⇒ w1 =⇒ w2 =⇒ . . . =⇒ wn

in G corresponds to (S) ` (w1) ` (w2) ` . . . ` (wn) in Γ (any configuration has only one
component). Moreover, z ∈ L(G) iff z ∈ T ∗ iff no rule is applicable in G iff (z) is a halting
configuration. Hence L(Γ) = N(L(G)) = N(L′) = N . This proves N(CF) ⊆ L1(P, nco).

Let L = L(Γ) for some membrane system with 2 membranes, i.e.,

Γ = (V, [1[2]2]1, w1, w2, R1, R2, 2).

Without loss of generality we assume that w1 contains no letter of F1 since such letters
cannot be changed by Γ, and therefore they are superfluous for L(Γ). For 1 ≤ i ≤ 2, we
define Fi as the set of all a ∈ V such that there is no rule with left-hand side a in Ri,

Vi = {ai | a ∈ V } and V ′
i = {a′i | a ∈ V },

the homomorphisms

hi : V → V ′
i , g1 : V ×{here, out, in2} → F2∪V ′

1∪V ′
2 and g2 : V ×{here, out} → F2∪V ′

1∪V ′
2

by

hi(a) = a′i,

g1((b, here)) =

{
λ if b ∈ F1

b′1 otherwise,

g1((b, out) = λ,

g1((b, in2)) =

{
b if b ∈ F2

b′2 otherwise,

108

g2((b, here)) =

{
b if b ∈ F2

b′2 otherwise,

g2((b, here)) =

{
λ if b ∈ F1

b′1 otherwise,

and the grammar system G = (N, V \ F2, P1, P2, S) with two components by

N = V1 ∪ V2 ∪ V ′
1 ∪ V ′

2

P1 = {S → h1(w1)h2(w2)} ∪ {ai → gi(x) | a → x ∈ Ri, 1 ≤ i ≤ 2},
P2 = {a′i → ai | a ∈ V, 1 ≤ i ≤ 2}.

A configuration (w1v, w2u) with w1 ∈ (V \ F1)
∗, v ∈ F1∗, w2 ∈ (V \ F2)

∗ and u ∈ F ∗
2

is described in the grammar system G by a word h1(w1)h2(w2)u. Such a word cannot
be processed by the first component of G and the second component of G cancels all
the primes, i.e., we obtain the word v1v2 where v1 is the variant of w1 where all letters
have the index 1 and v2 is the variant of w2 where all letters have the index 2. The first
component of G transforms a word v1v2 with v1 ∈ V ∗

1 and v2 ∈ V ∗
2 in u1u2 where u1 and

u2 are the indexed and primed versions of w′
1 and w′

2 with (w1, w2u) ` (w′
1, w

′
2u) besides

the letters of F1 which are cancelled since they do not contribute to Γ and the letters
of F2 which remain in the second membrane. Therefore there are words z1 ∈ (V \ F1)

∗,
z ∈ F1∗, z2 ∈ (V \ F2)

∗ and u′ ∈ F ∗
2 such that w′

1 = z1z, w2 = z2u
′ and

h(w1)h(w2)u =⇒P1 v1v2 =⇒P2 h1(z1)h2(z2)u
′u

in G. Moreover, the derivation stops in G if and only if all letters belong to F2, and a
halting configuration in Γ is obtained if and only if all letters in membrane 1 belong to
F2 and all letters in membrane 2 belong to F2. Taking into consideration that the letters
of F1 are cancelled in G, we obtain that L(Γ) = N(L(G)). By Theorem 4.10 i), L(G) is
a context-free language. Hence N(L(G)) ∈ N(CF). Therefore we have L(Γ) ∈ N(CF)
and L2(P, nco) ⊆ N(CF) is shown. 2

Theorem 4.17 For all n ≥ 1, L1(P, coo) = Ln(P, coo) = L∗(P, coo) = N(RE).

Proof. By (4.1) it is sufficient to prove that N(RE) ⊆ L1(P, coo).
Let L ∈ N(RE). By Theorem 4.4, there is a matrix grammar G = (N, T, M, S, F)

such that L = N(L(G)). By Theorem 4.6, we can assume that G is in normal form. We
construct the membrane system

Γ = (N1 ∪N2 ∪ T ∪ {S,Z, #, H, H ′, H ′′} ∪ {HA | A ∈ N2}, [1]1, S, R1, 1)

with R1 consisting of all rules of the forms

(1) S → HXA for (S → XA) ∈ M,

(2) HXA → HY x for (X → Y,A → x) ∈ M,

(3) HX → H ′HAY, HAA → #, # → #, H ′ → H ′′, H ′′HA → H

for (X → Y, A → #) ∈ M,

(4) HZ → λ

109

Obviously, we have S =⇒ XA in G and (S) ` (HXA) in Γ, i.e., besides the additional
symbol H we have simulated a derivation step of G.

If we have a sentential form w = Xw1Aw2 in G, then we can apply a matrix of the form
(X → Y,A → x) and obtain Y w1xw2. In Γ we simulate this by applying HXA → HY x
to HXw1Aw2 which gives HY w1xw2, i.e., the simulation is correct.

The matrix (X → y, A → #) is only applicable to Xw if A does not occur in w and
results in Y w. Accordingly, if we apply HX → H ′HAY to Xw, we get H ′HAY w. If A is
present, i.e. w = w1Aw2, we have to apply H ′ → H ′′ and HAA → # in parallel (maximal
parallelism) and get H ′′#w1w2. However, now # → # can be applied at any moment
and thus we cannot come to a halting configuration. If A is not present, we get

H ′HAY w ` H ′′HAY w ` HY w,

i.e., again, the application of (X → y, A → #) is correctly simulated by the rules of (3).
If Z → λ is used in G we simulate this by HZ → lambda.
By these explanations it follows that L(Γ) = N(L(G)) = L and thus L ∈ L1(P, coo)

which proves N(RE) ⊆ L1(P, coo).
2

For catalytic systems the situation is different. However, before we present the result
on the power with respect to language generation we change the definition slightly and
obtain a possibility to calculate by membrane systems.

Definition 4.18 Let Γ = (V, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i) be a membrane system
with m membranes and o ∈ V be a distinguished element such that, for any natural number
n, the language of the membrane system

Γx == (V, µ, w1o
n, w2, . . . , wm, R1, R2, . . . , Rm, i)

is a singleton {f(x)}. Then we say that Γ computes the function f : N → N.

We show that any partial recursive function can be computed by membrane systems.

Theorem 4.19 For any partial recursive function f : N → N, there is a catalytic mem-
brane system

Γ = (V, [1[2]2]1, w, λ, R1, R2, 2)

with two membranes which computes f .

Proof. The proof consists in the simulation of a register machine. We assume that the
reader is familiar with the notions and results on register machines. Especially we need
two facts:

• For any partial recursive function f , there exist a register machine which computes
f .

• For any register machine, there exists an equivalent register machine (i.e., both ma-
chines compute the same function) which has only three types of commands:

110

– i : a+ which adds one to the contents of register a and the computation is
continued by command i + 1,

– i : a − (k) which subtracts one from the register a if it is not empty and
continues with command i + 1 or it continues with command k without a
change of the registers if register a is empty,

– Halt which ends the computation.

• The command Halt is only used as the last command.

• The result is the contents of a distinguished register where no subtraction is done.

Let f be a partial recursive function. Then there is a register machine M which
computes f . Let M have m registers r1, r2, . . . , rm which are used in the computation and
n commands i1, i2, . . . , in, in = Halt, and rm be the distinguished register for the result.

We set

Γ = (V, [1[2]2]1, w, λ, R1, ∅, 2),

V = {om, r, r′, #} ∪
m−1⋃

i=0

{oi, o
′
i, ci, c

′
i} ∪

n⋃

j=1

{pj, p
′
j, p

′′
j},

w = (r′)m−1p′1o0o
′
0c0c

′
0c1c

′
1 . . . cm−1c

′
m−1.

The elements ci and c′i, 0 ≤ i ≤ m− 1, will be the catalysts of the system. The elements
oi and o′i, 1 ≤ i ≤ m, are used to represent the contents of the register ri, om is used for
the contents of the register rm. The additional elements o0 and o′0 will be used in the
simulation of the halting command. The elements pj, p

′
j, p

′′
j , 1 ≤ j ≤ n, are used for the

counting of commands.
The rules of R1 are all rules of the following form:

r → #, r′ → #, # → #, and cir → cir
′, c′ir

′ → c′ir for 1 ≤ i ≤ m− 1

(in order to avoid the introduction of # in a configuration which does not allow a halting
the rules c′ir

′ → c′ir and cir → cir
′ have to be used for 1 ≤ i ≤ m− 1 in order to rewrite

all symbols of rm−1 or (r′)m−1; moreover, we have alternately (r′)m−1 and rm−1 in the
beginning of the word representing the contents in membrane 1; thus we can speak that
there are odd steps which replace (r′)m−1 and even steps which replace rm−1)

(*) cioi → cio
′
i, c′io

′
i → c′ioi, ø

′
i → #, cioi → c′i for 1 ≤ i ≤ m− 1

(by these rules the remaining catalysts are used; the latter two rules will be used in the
case of decrementation),

p′1 → p1

(by this rule in the first step the first command i1 is announced to be applied)

pj → p′j+1oa, p′j+1 → pj+1 for ij = a+, a < m,
pj → p′j+1(oa, in2), p′j+1 → pj+1 for ij = a+, a < m

111

(we simulate the command a+ by generating an additional element oa which is sent into
membrane 2 if the incrementation concerns the distinguished register rm; we use two steps
in order to come back to an element pj+1 which is the next command to be simulated),

capj → cap
′′
j+1, p′′j+1 → p′j+1, P ′

j+1 → pj+1, c′apj → c′ap
′
k, p′k → pk

for ij = a− (k)

(if the register a is empty, we have to apply c′apj → c′ap
′
k and p′k → pk in the even and odd

step, i.e., the configuration is changed as follows (where we only give in detail the part of
word which is essential) (wc′apj, z) ` (w′c′ap

′
k, z) ` (wc′apk, z); if a is non-empty, then o′a is

present and we have to avoid the application of o′a → # from (*), hence c′ao
′
a → c′a has to

be used, which yields

(wcac
′
ao
′
apj, z) ` (w′c′apj, z) ` (w′′cac

′
ap
′′
j+1, z) ` (w′′′cac

′
ap
′
j+1, z) ` (wcac

′
apj+1, z);

thus in both cases the command a− (k) is correctly simulated),

(**) c0pn → c0, c′0r → c0, c′0r
′c0

(if the halting command in is reach, we get only considering the interesting part

c0c
′
0o0o

′
0pn ` c0c

′
0o0o0 ` c0c

′
0o
′
0 ` c0c

′
0o0 ` c0c

′
0

by the use of c0pn → c0 and rules of (*); now we cancel all occurrences of r and r′ by
the latter two rules of (**) and then all occurrences of oi and o′i by rules of (*). After
these cancellation we get a halting configuration since any rule requires the presence of
at least one of the symbols pj, p

′
j, p

′′
j , 1 ≤ j ≤ n or oi, o

′
i, 0 ≤ i ≤ m − 1 or r, r′ which

all are not existing anymore). By these explanation it is easy to see that Γ reaches a
halting configuration with f(x) symbols om in the second membrane if we start with wox

1 .
Therefore Γ computes f . 2

Theorem 4.20 For all n ≥ 2, L1(P, cat) ⊂ L2(P, cat) = Ln(P, cat) = L∗(P, cat) =
N(RE).

Proof. We omit the proof of L1(P, cat) ⊂ L2(P, cat).
Let L be a recursively enumerable subset of N0. It is known that there is a partial

recursive function f such that L is the range of f . Let Γ be the membrane system given
in the proof of Theorem 4.19 which computes f . We consider

Γ′ = (V ′, [1[2]2]1, w′, λ, R′
1, ∅, 2)

with

V ′ = V ∪ {p0, p
′
0},

w′ = rm−1p0o0o
′
0c0c

′
0c1c

′
1 . . . cm−1c

′
m−1,

R′
1 = R1 ∪ {p0 → p′0o1, p′0 → p0, p0 → p′1},

where V and R1 are taken from Γ.

112

It is easy to see that first some elements o1 are introduced, say ox
1 , and then p0 → p′1 is

used which gives (wox
1 , λ) with w from Γ. From here we get of(x)

m in the second membrane
if we reach the unique halting configuration. Consequently, L(Γ′) is the range of f and
thus L(Γ′) = L which proves L ∈ L2(P, cat) and therefore N(RE) ⊆ L2(P, cat). From
(4.1 we get L2(P, cat) = Ln(P, cat) = L∗(P, cat). 2

For completeness we remark that the number of catalysts (which was two times the
number of registers in the proof of Theorems 4.19 and 4.20) can be decreased to 2 and it
is open whether one catalyst is sufficient.

4.3 Membrane Systems with Symport/Antiport Rules

In this section we discuss membrane systems without the ability of changing objects.
Hence only the moving through the membranes can be used for computation. Thus we
have a process which only works by the exchange of information. Hence the study of
these systems is also of interest from an information-theoretic point of view, since it is
investigated the power of communication.

In biology it is known that there are many cases where two chemicals pass through a
membrane at the same time with the help of each other. Both chemicals go in the same
direction (this is called symport) or in opposite direction (called antiport). Formally, such
movements can be written as (ab, in) or (ab, out) in symport case where both chemicals
come in or leave out a membrane, respectively, or as (b, out; a, in) denoting that a comes
in and b leaves a given membrane.

Obviously, if one considers membrane systems where any rule is a symport or antiport
rule, then no change of the involved chemicals occurs, and therefore finitely many objects
are only moving around, which gives only a strongly limited power. Therefore we add
symbols in the environment and assume that an infinite number of copies of each of these
symbols is present in the environment.

We now give the formal definition of a membrane system with symport/antiport rules.

Definition 4.21 i) A membrane system with m membranes and symport/antiport rules
is a construct

Γ = (V, µ, E, w1, w2, . . . , wm, R1, R2, . . . Rm, i)

where V , µ, w1, w2, . . . wm, R1, R2, . . . , Rm and i are specified as in membrane system, E
is a subset of V and, for 1 ≤ j ≤ m, Rj is a finite set of rules of the form (x, in) or
(x, out) or (x, out; , y, in) with x, y ∈ V +.

ii) A configuration of a membrane system with symport/antiport rules is a m-tuple
C = (u1, u2, . . . , um) of words (or equivalently, multisets) over V .

Let j, 1 ≤ j ≤ m, be a membrane and let j′ be the unique membrane which contains
membrane j. The application of a rule (x, in) of Rj to C results in taking the multiset
x out cj′ and adding to cj; the application of (x, out) is performed by subtracting x from
cj and adding to cj′; the application of (x, out; y, in) consists in a parallel application of
(x, out) and y, in) as described. If j is the outer membrane, then E takes the rule of
membrane j′ where any element of E is present in E infinitely often.

The transformation of a configuration C into a configuration C ′ (written as C ` C ′)
is done by a maximal parallel application of the rules of all Rj, 1 ≤ j ≤ m, to C.

113

A configuration C is called halting if no rules from the sets Rj, 1 ≤ j ≤ m, can be
applied to C

iii) The language L(Γ) generated by a membrane system Γ with symport/antiport rules
is the set of all numbers n such that there is a halting configuration C = (u1, u2, . . . , um)
of Γ with |ui| = n.

Example 4.22 We consider the membrane system

Γ = (V, [1[2]2]1, E, ac, df,R1, R2, 2)

with

V = {a, b, c, c′, d, e, e′, f, g, #},
E = {a, b, c, c′, e, e′, f, g, #},

R1 = {(c, out; #, in), (ca, out; cbb, in), (ca, out, c′bb, in), (da, out; #, in)

(c′d, out; e, in), (eb, out; ea, in), (eb, out; e′a, in), (fb, out; #, in),

(e′f, out; cdf, in), (e′f, out; g, in)},
R2 = {(d, out; c′, in), (c′, out), (f, out; e′, in), (e′, out), (df, in),

(#, in), (#, out), (ga, in), (g, out)}.

First we mention that the introduction of # is forbidden, again, because by the rules
(#, out) and (#, in) in R2 the symbol # can alternately moved from membrane 2 to
membrane 1 and conversely such that no halting configuration can be reached. Therefore
we have the following sequence of configurations (note that the case n = 1 is given initially)

(can, df) ` (cbban−1, df) by (ca, out; cbb, in) ∈ R1

` (cb4an−2, df) by (ca, out; cbb, in) ∈ R1
...

` (cb2n−2a, df) by (ca, out; cbb, in) ∈ R1

` (c′b2n, df) by (ca, out; c′bb, in) ∈ R1

` (db2n, c′f) by (d, out; c′, in) ∈ R2

` (dc′b2n, f) by (c′, out) ∈ R2

` (eb2n, f) by (dc′, out; e, in) ∈ R1

` (eab2n−1, f) by (eb, out; ea, in) ∈ R1

` (ea2b2n−2, f) by (eb, out; ea, in) ∈ R1
...

` (ea2n−1b, f) by (eb, out; ea, in) ∈ R1

` (e′a2n, f) by (eb, out; e′a, in) ∈ R1

` (fa2n, e′) by (f, out; e′, in) ∈ R2

` (e′fa2n, λ) by (e′, out) ∈ R1.

Now we have two possibilities of continuation:

(e′fa2n, λ) ` (cdfa2n, λ) by (e′f, out; cdf, in) ∈ R1

` (cbba2n−1, df) by (ca, out; cbb, in) ∈ R1, (df, in) ∈ R2

114

which means that, essentially, we have doubled the number of occurrences of a in mem-
brane 1 and can iterate this process, or

(e′fa2n, λ) ` (ga2n, λ) by (e′f, out; g, in) ∈ R1

` (a2n−1, ga) by (ga, in) ∈ R2

` (ga2n−1, a) by (g, out) ∈ R2

` (a2n−2, ga2) by (ga, in) ∈ R2

` (ga2n−2, a2) by (g, out) ∈ R2
...

` (λ, ga2n) by (ga, in) ∈ R2

` (g, a2n) by (g, out) ∈ R2

and a halting configuration is obtained. Therefore

L(Γ) = {2n | n ≥ 1}.

We now prove that membrane systems with symport/antiport rules, i.e., membrane
systems which only work on the basis of communication, are able to generate all recursively
enumerable sets of numbers.

Theorem 4.23 For any set L ∈ N(RE), there is a membrane system Γ with sym-
port/antiport rules such that L(Γ) = L.

Proof. By Theorems 4.4 and 4.6 there is a matrix grammar G = (N, T,M, S, F) in
normal form such that L = N(L(G)). Let (S → X ′A′) be the only matrix in G of this
form. Let M have n matrices of the form (X → Y, A → x) or (X → Y, A → #).

We define the membrane system

Γ = (V, [1[2]2]1, E, cX ′A′, λ, R1, R2, 2)

with

V = N1 ∪N2 ∪ T ∪ {c, g, h, Z, #} ∪
n⋃

i=1

{ci, c
′
i, di},

E = N1 ∪N2 ∪ T ∪ {g, h, Z, #} ∪
n⋃

i=1

{ci, c
′
i, di},

Qi = {(cX, out; ciY), (ciA, out; cc′i, in), (c′i, out; x, in), (ci, out; #, in)}
for mi = (X → Y,A → x),

Qi = {(cX, out; cidi, in), (di, out; Y h, in), (ciA, out; #, in), (h, out; cg, in), (cig, out)}
for mi = (X → Y,A → #),

R1 = {(c, out; #, in), (cZ, out)} ∪
n⋃

i=1

Qi,

R2 = {(#, in), (#, out)} ∪ {(a, in) | a ∈ T}.
We note, again, that introducing the symbol # does not allow reaching of a halting

configuration since it can be move from the second membrane to the first membrane or
conversely at every moment.

115

Moreover, the second membrane only collects the terminals occurring at some moment
in the first membrane.

Therefore we now consider only the first component of a configuration. If it has the
form cXAw (as it is the case for the initial configuration), then we can without introducing
only perform the following steps

cXAw ` ciY Aw ` cc′iY w ` cY xw

which means that we have correctly applied the simulation of the matrix mi = (X →
Y, A → x) and can proceed with the simulation of a further matrix.

If the configuration is cXw and A does not occur in w, then the following steps have
to be done

cXw ` cidiw ` ciY hw ` ciY cgw ` cY w

which is a correct simulation of the application of (X → Y,A → #).
Moreover, in both cases we stop no nonterminal is present in the sentential form or in

the first membrane (since the configuration (cZw, x) is only reachable if w =). Therefore
L(Γ) = N(L(G)) = L. 2

116

