Faculty of Computer Science

Research Group Theoretical Computer Science

Oberseminar: Heterogene formale Methoden

Date: 2021, April 27
Time: 10:00 a. m.
Place: Online
Author: Mossakowski, Till
Title: Neural Logic Machines


I will report about the paper “Neural Logic Machines” https://arxiv.org/abs/1904.11694 , using slides from the authors.

Abstract of the paper:
We propose the Neural Logic Machine (NLM), a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs exploit the power of both neural networks—as function approximators, and logic programming—as a symbolic processor for objects with properties, relations, logic connectives, and quantifiers. After being trained on small-scale tasks (such as sorting short arrays), NLMs can recover lifted rules, and generalize to large-scale tasks (such as sorting longer arrays). In our experiments, NLMs achieve perfect generalization in a number of tasks, from relational reasoning tasks on the family tree and general graphs, to decision making tasks including sorting arrays, finding shortest paths, and playing the blocks world. Most of these tasks are hard to accomplish for neural networks or inductive logic programming alone.

Back to the Oberseminar web page